5 software

Developing Apama Applications

Version 10.5

October 2019

APAMA

This document applies to Apama Version 10.5 and to all subsequent releases.
Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 2013-2019 Software AG, Darmstadt, Germany and/or Software AG USA Inc., Reston, VA, USA, and/or its subsidiaries and/or
its affiliates and/or their licensors.

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or
Software AG USA Inc. and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product names mentioned
herein may be trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
http://softwareag.com/licenses.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product
documentation, located at http://softwareag.com/licenses and/or in the root installation directory of the licensed product(s).

This software may include portions of third-party products. For third-party copyright notices, license terms, additional rights or
restrictions, please refer to "License Texts, Copyright Notices and Disclaimers of Third Party Products". For certain specific third-party
license restrictions, please refer to section E of the Legal Notices available under "License Terms and Conditions for Use of Software AG
Products / Copyright and Trademark Notices of Software AG Products". These documents are part of the product documentation, located
at http://softwareag.com/licenses and/or in the root installation directory of the licensed product(s).

Use, reproduction, transfer, publication or disclosure is prohibited except as specifically provided for in your License Agreement with
Software AG.

Document ID: PAM-DEV-105-20191015

http://softwareag.com/licenses/
http://softwareag.com/licenses/
http://softwareag.com/licenses/

Table of Contents

Table of Contents

ADOUL thiS GUILE.......eerecercerererecssrre e ane e s s e snane s 19
Documentation r0AAMAP........ccvieueiiiiicerr bbb 19
Online Information and SUPPOM.........cceuiiriiiiceeceee ettt 21
Data ProtECHON........ceeueieiiciciee et 22

Developing Apama Applications in EPL.........cccoonecnnnnnscscsssssesesssssssesesessssssssesesesssssseseses 23
Getting Started with Apama EPL...........cccoooiiiceiicce et 25

Introduction to Apama Event Processing Language............cccoveeeeeeeccrccssensnnnnnens 26
How EPL applications compare to applications in other languages............ccccocvvvrvererunne. 27
About dynamic compilation in the correlator............ocoecvviiccii e 28
About the Apama development environment in Software AG Designer............c.ccccoeuc..... 28
TEIMINOIOGY. ... e 29
DEfiNING BVENE EYPES....oieiecrciiicce e 35
Allowable event field TYPES........cccviiieeiiece e 36
Format for defining event types..........cocevirircccc s 36
Example event type definition............cccceiiiicciies e 38
WOrKINg With VENES.......cucuiiciiiiicce s 39
Making event type definitions available to monitors and queries........c.c.cocovvvrrinee 39
Channels and INPUL BVENTS.........ccviiiieeicce e 40
DEFINING MONITOTS......cvviiiceetc ettt bbb bbbt 43
ADOUL MONITOE CONENTS......eveieieiccier s 44
Loading monitors into the correlator...........ccovovvvniieisis s 46
Terminating MONIOIS........ccovvvviiic e 46
Unloading monitors from the COrrelator.............cccvevirnieniccrese e 46
Example of @ SImple MONITOF..........coccuiiicccs s 47
Spawning MONItOr INSTANCES.........c.ccccvviieieeccecce e 50
HOW SPAWNING WOTKS. ...ttt 50
Sample code for SPAWNING........ccccviveveieiicceee s 51
Terminating monitor INSTANCES..........cccceciccee s 53
About executing ondie() aCtIONS...........ccvrrirreeeee 54
Specifying parameters When Spawning...........ccccvveiceiiniicccesseeee s 55
Communication among MONItor INSTANCES.............coceeiiieieree e 55
Organizing behavior iNt0 MONITOFS.........c.ciiiieiereeee s 56
Event processing order for MONItOrS...........occveeviivecesccccee s 56
Allocating events in MONILOTS..........cccceucieeeeeeceeee e 58
Sending events to other MONItOrS. ..o 59
Defining your application's message exchange protocol...........c.coceeevivicrererninnnns 60
Using events t0 CONtrol ProCESSING.......cvovvviviiiiiiririisssss e 61
ADOUL SEIVICE MONILOTS........coiveieiiiieieieieisicreie et 62
Adding predefined annotations............ccceriiceenicee e 63
Subscribing t0 ChANNEIS........c.cocviceccieicccee e 65

Developing Apama Applications Version 10.5 3

Table of Contents

About the default ChannEl...........cccoriieerce s 67
About wildcard ChannElS...........ccviririr e 67
Adding service monitor bundles t0 Your ProjecCt.........cccveeeiniiiieinen s 68
Utilities for operating On MONIOTS...........c.cviiuriiiriieree s 68
DEfINING QUETIES.vuveeeiierceie et 69
INtrOUCHION 10 QUENIES.......vvcveiice ettt 70
EXamPIE Of @ QUEIY....ooieieeeecceeese s 70
USE CaSES fOF QUEIES........ceeivereiciiectcte sttt 71
Delayed and out of Order BVENTS...........cccceeuceriiicececeeeerce et 72
QUETY tEIrMINOIOGY......ceuvreriiiireieirtieieie e 73
Overview Of QUETY ProCESSING........coceveiiiiiercieirsi sttt 75
Overview of query application COMPONENTS..........cccceviviiceirecece e 76
Format of query definitions...........ccocviiii e 79
Defining metadata in @ QUEIY.......c.ooccuiiiicce e 81
Partitioning QUETIES.......ccviviiiiiiiiriisis st 82
DEfINING QUETY KEYS.....oucveireiicieieiciees st 82
Defining actions @s QUENY KEYS........cocueiiiiceiisicce e 84
Query partition example With ON€ INPUL...........ccrierirrirrese s 85
Query partition example with multiple INPUES........ccoverriecrrrcce s 86
About keys that have more than one field..........ccccvviceiiicce e, 87
DEfiNNG QUETY INPUL......cviviviiiiiccee ettt bbb 88
Format of input definitionS..........coovieriiicc 91
Behavior when there is more than one iNPUt............cccvvccccnecccecccee s 94
Specifying event duration in WINAOWS............c.ccceeuireiniiiiiciee e 95
Using the output of another query as query iNPUL.........cccovverernecesnncceen, 97
Specifying maximum number of events in WiNAOWS............cccceeervereceesiceeenen, 100
Specifying event duration and maximum number of events..........c.c.ccceeeeevererrnnnee. 101
Using source timestamps Of VENLS...........ccoeviriincccece s 103
Using heartbeat events with source timestamps.........coccovviecerviccecsscec, 109

OUL OF OFET BVENES.......oieceieeer s 111
Matching only the latest event for a given field............ccoovvini, 115
Finding and acting on event patterns..........cccovvvceiiieccesceee e 117
Defining event Patterns..........cccccicceecce s 117
Query followed-by OPErator...........cocvirieririerreeee e 121

QUETY AN OPEIALON........veeeceeireireircieee et 124

QUETY OF OPEIATON.vervreiscicieieiseiesseee sttt snsns 125

QUETY Wit OPEIALON.........ceieeiciiricie et 127

QUETY CONGILIONS.....ooveeeeceirrecisese ettt 128

QuEry CONAItION FANGES........cveeireirierieicieiee e 135

Special behavior of the and operator.............cooveevvicrnsscce e, 137
Aggregating event field ValUes..........cccccvevereiiiicce e, 139

Event matching POLCY.....coceiiiiiiieii e 142
Acting on pattern MatCheS.........coueuriiiriiiriee s 144
Defining actions iN QUEIES..........cceviiiiiccee e 144
Implementing parameterized QUEHIES.........ccvcceiiiiiiieieiere s 145

Developing Apama Applications Version 10.5 4

Table of Contents

Parameterized queries as templates..........ccoevrrnnnnicnere e 146
Using the Scenario Service to manage parameterized queries..........ccovvrvvcvevnnn. 147
Referring to parameters in QUENES..........ccvcvcueieiiiiecee e 148
Scaling and performance of parameterized QUENES.........cccovvvveerrrrecerrrcees 150
RESHCHONS IN QUETIES.vviicecreteiicetcte ettt 150
Best practices for defining QUETIES..........ccceiviiicieiicicecece e 151
TeStiNG QUETY EXECULION.vuieeireiicieiece e 154
Communication between monitors and QUETIES..........cccceueicreereiiiee s 157
Defining EVENE LISEENETS........ccuiieiiiccree ettt 159
About event expressions and event templates..........cooverrrienienseee 160
Specifying the on StatemMENt..........c.cccvieicce s 163
Using a stream source template to find events of interest...........cccooovvviviceniccccnnan, 165
Defining event expressions with one event template...........coovveevncnnnsncsss 165
Listening for ONE BVENL..........cocueiccce e 165
Listening for all events of a particular type...........cccoeeveceeiiiceccccece e, 165
Listening for events with particular Content............ccooeerencnirniece 166
Using positional syntax to listen for events with particular content.......................... 166
Using name/value syntax to listen for events with particular content....................... 166
Listening for events of different types..........cocvvniivnccee 167
Listening for events of all types.......ccccveviiicccescce e, 169
Terminating and changing event lIStENErs..........cccceccciccieiciiie s 169
Specifying multiple event lISTENErS. ... 171
Listening for events that do not match............ccooeceiiiccc e, 172
Specifying completion event ISENETS...........ccocveeiccecccce e 173
Example using unmatched and completed...........cocovovevniiccnnnneeeeeen, 174
Improving performance by ignoring some fields in matching events...........ccccccevvvvenenen. 175
Defining event listeners for patterns of eVents...........ccocevveceeciecccecececee e 176
Specifying and/or/not logic in event lIStENErs...........ccovereriiinieneee e, 178
Specifying the 'or' operator in event eXpressions.........coceevveeeerneiecssse e, 178
Specifying the 'and' operator in event eXpressions............ccocoecveeveveeveresecereeenenn, 179
Example event expressions using ‘and/or' logic in event listeners..............ccccoceenee. 179
Specifying the 'not' operator in event expressions..........cocvvvceeivveccceses e, 180
Specifying 'and not' logic to terminate event listeners..........cccccoeeeeeriviccrereiene. 180
Pausing eVent lISTENErS. ..o 181
Choosing which action t0 eXeCULE.........cccevviveeiciieccce e 182
Specifying 'and not' logic to detect when events are missing............cccccoevevnnee 183

How the correlator executes event lISteners........c.covvvernieeensneee s 183
How the correlator evaluates event eXpressions...........ccccveceeeeeninienenennneneens 184
Avoiding event listeners that trigger upon instantiation............cccccceevvniiiinnne, 184
When the correlator terminates event liStEners..........ccocvveevcecennscccesres 185
How the correlator evaluates event listeners for a series of events.............cccoueu.e. 185
Evaluating event listeners for all A-events followed by B-events.............ccccccueeee. 186
Evaluating event listeners for an A-event followed by all B-events............ccccccoeuune. 188
Evaluating event listeners for all A-events followed by all B-events....................... 189
Defining event listeners with temporal constraints.............ccccoevecieiccccece e, 191

Developing Apama Applications Version 10.5 5

Table of Contents

Listening for event patterns within @ set time...........cccoooeniicinccc 192
Waiting within an event lISteNer.........ccccovvicciiice e 193
Triggering event listeners at sPecific iMeS.........ccccevvveceenccccce e 194
Using variables t0 SPeCify IMES...........ccreriirireeeeee e 196
Understanding time in the Correlator............oovieriiieccessccee e 196
Correlator timestamps and real time.........ccoceceeeieicccecece e, 196
EVENt armival Me.........ceeeecees e 197
About timers and their trigger imes.........ccccevvieeiicce e 197
Disabling the correlator's internal ClOCK.........ccccovvviviiiiiieiicccc e 199
Externally generating events that keep time (&TIME events)...........c.ccovveunenee 199

About repeating timers and &TIME eVENtS........cccccoveceeiviccesseeese 201

Setting the time in the correlator (&SETTIME event)..........cccoeevvevccveveieienee. 201

Out of band connection NOLIfICAtIONS..........cccoviiiiererreee s 202
Working with Streams and Stream QUENES...........ccoeurerirririeirerese e 205
Introduction to streams and stream NEWOIKS...........cccorrirrrrrncer s 206
DEfINING SIEAMS.......c.iviieic e 207
Creating streams from event templates..........ccccovvvieeiicicesccce e 208
Terminating StrEAMS......ccvciiiii s 208
Using output from SErEAMS.........c.oviviiieicrcee s 208
Listener variables and Streams...........cccoverirrerninniesese e 211
Coassigning to sequences in stream lISENErs..........occcvcveevivicececececee e 211
DefiNiNg Stream QUENIES........cviuieieciricieicees s 211
Linking stream queries t0gether..........cocviiceeiicce s 212
Simple example of @ stream NEIWOrK...........ccccceeeiviiccesc e, 213
Stream query definition SYNTaX.........ccoieeiiriei e 214
Stream query processing flOW........ccevieeieiiiceee e 215
Specifying input streams in from ClAUSES...........ccccoeeveiriiiiicreesece e 216
Adding window definitions to from and join Clauses...........ccccovevniiniinncsnicn, 217
Window definition SYNtaX........ccccvvcceeiiceesce e 218
Defining time-based WINAOWS...........ccccoviiiicreeiiiccce e 220

Defining size-hased WINAOWS...........ccceiririeesee e 221
Combining time-based and size-based WINdOWS...........cccceevvirecrcesiieennnnn, 223

Defining batched WINAOWS...........ccccveiiiiicccecece e 224
Partitioning StrE@MS..........coiueiiriere e 225
Partitions and aggregate functions............cccceevvirecceiscccs e 226

Using multiple partition by eXpressions...........ccccvvveeeeeeeeeecceeere e, 228
Partitioning time-based WINAOWS............cooiiiinieniceeese s 228

Defining content-dependent WINAOWS............coceevieceeiiiceee e 228

JOINING tWO SIrEAMS.......cviiiiiiice e 230
Defining cross-joins with two from Clauses.............ccvvniennccnienecne 230

Defining equi-joins with the joiN ClAUSE..........ccceveveiiciccesceece e 232

Filtering items before projeCtion............ccccveccveiciiiccesceece s 234
Generating QUENY FESUIES...........cueviecerieiriceee s 235
Aggregating items in ProjeCtions..........ccccevviveicens e 237
Filtering items in ProjECHONS.cucvcvcvciccccii s 238

Developing Apama Applications Version 10.5 6

Table of Contents

|EEE special values in stream query eXpreSSIioNS..........voveeereereeneernereeseensnenesenes 240
Defining custom aggregate functions...........cccevveeceiniccess e, 241
Example of defining a custom aggregate function..........c.cccccovvcevviiccnccenne, 242
Defining actions in custom aggregate functions...........cc.ocvvenenncincnicsn, 243
Overloading in custom aggregate functions..........ccccevveeceericcesscce s 243
Distinguishing duplicate values in custom aggregate functions..........c.cccccecevvevenee. 244
Working with lots that contain multiple ItemMS..........ccoericreie e 245
Stream queries that generate lotS..........cocveeiiiiciee e 245
Behavior of stream queries With 10tS...........ccccceviiiiicccceeecee e, 245
Size-based wWindows and I0tS.........cccevriirrnrneee s 246

Join operations and l0tS..........covvvviirrcc e 247
Grouped projections and Iots...........cccccveicrereeiiiceee e, 248

Stream NetWOrk lIfEiME.......c.ovvveeeercee s 249
Disconnection Vs termination............cccverrrninnese s 250
Rules for termination of stream NetWOrkS...........ccoivnienenieesee s 251
Using dynamic expressions in Stream QUENIES...........cueeurieereeirenieeseeiseieessieeseeinenas 251
Behavior of static and dynamic expressions in stream queries............cccocceverrvinnes 252
When to avoid dynamic expressions in stream QUENES.........ccoevvvvrrvvvirisisrevevennns 252
Ordering and side effects in stream qUEriEs............ccvrerircnnccce 253
Understanding when the correlator evaluates particular expressions.............cov..... 254
Using dynamic expressions in WINAOWS..........cccovvvvrrinievssiseee e esereenenenns 254

Using dynamic expressions in €qUI-JOINS..........ceeereeeereeereniseereeeseeeeseseeeenens 255

Using dynamic expressions in where predicates........c.coovvvvvvrvvrrnssvinnne 256

Using dynamic expressions in Projections...........cccccvvvrererenenenenevesesesessssvsnnns 256
Examples of using dynamic expressions in stream qUENES.........coovvreerererereenenn. 256
Example of altering query window size or period.........cccccvvvreceeniiccrcvennnn, 256
Example of altering @ threshold............cccoviiieeiiccceece e 257
Example of looking up values in @ dictionary............cccocoevvennenneinnicnenns 258
Example of actions and methods in dynamic expressions............cccceeevvvennee. 258
Troubleshooting and stream query coding QUIdENINES........ccucieeeeririiiee e 258
Prefer on statements to from statements...........cccoevvviiennnccnieere, 259
Know when to spawn and when to partition.............cccceviecceniicceescce e, 259
Filter early to minimize reSOUrCE USAQE..........cceerereueererereeeeeee s 259
Avoid duplication of stream source template eXpresSions.........covvveeevrreeerennenns 260
Avoid using large windows where poSSIbIe.........ccccovvieeeiiiiccees e, 260

In some cases prefer retain all to a timed WiNdOW.............ccooeceevieccceece e, 261
Prefer equi-joins t0 CroSS-JOINS.......c.cviviviicirieireiesee e 261

Be aware that time-based windows can empty.........ccccocvevvierceinceccce e, 261

Be aware that fixed-size windows can overflow...........coocvvrninnicnnnccn, 261
Beware of accidental stream 18aks.........ccoovvverrnnnccnnrceer e, 262
Defining What Happens When Matching Events Are Found...........cccoovvicccvsiccccscnns 263
USING VANIBDIES........ocviiiiiiisise ettt bbb ersnens 264
Using global variabIES..............cviriiricee e 264
USINgG 10Cal VANADIES........ccviiiiicieiesccce et 265
Using variables in listener actions...........ccccovvvvvivriniisscee s 266

Developing Apama Applications Version 10.5 7

Table of Contents

Specifying named constant ValUES.............ccoerirnirnicnce e 267
DEFINING ACHONS........cviviiiiiicce bbb 268
Format for defining actions...........ccccoiiceiiicce e, 269
Invoking an action from another action............c.cccvenerncnneeseses 270
Specifying actions in event definitions............ccccvvviiceirciccee e, 271
Using action type VariabIES.........ccciviiviiviiriiiss s 273
Defining Static aCtIONS.........c.cviiiiciriicr s 279
Getting the CUMTENt IME.......c.oiecee e 280
GENEIALING BVENTS.......cucviviieiicctee ettt bbb bbbt bbb 281
Generating events with the route statement............ccoocoviniiinc, 282
Generating events with the send statement...........cccccooceeriicccnccce s, 282
Sending events to com.apama.Channel Objects............cccoeeveiericceesiccce, 283
ENQUEUING t0 CONEXES.....c..vuivirieiieir 285
Generating events to emit to outside receivers.........ccoovvvvieeicccce s 285
Handling the @ny tYPe.......cucccccieee e 287
Handling any values of different types with the switch statement..........cccccovvvernnn. 289
ASSIGNING VAIUES........cvivireiiiiicietetsiieeete ettt bbb senes 290
Defining conditional logic with the if statement............ccccoveeeviiccieieccccee 291
Defining conditional logic with the ifpresent statement.............cccoovvininicnni, 291
DEFINING I00PS.. . ittt bbb 292
EXCEption NandliNg.........ccvovviiiiiiicecss e 294
L0gging @nd PrINtING......c.cuveeiiiieiricir s 296
Specifying 10g StateMENLS..........ccceveiiicce s 296

Log levels determine results of log statements.........ccccceoeeeeviicccescccccea 297
Where do 10g €NHES JO7.......ciiiiriiiricircee e 299
Examples of using log statements.........ccccovvvieiiicccccc e 300
Strings in print and log statemeNts...........cccccceeiiiccce e, 300
Sample financial @ppliCatioN..........ccovveirirrriicee s 301
Implementing Parallel ProCESSING........cccoviiiieiieiiiiecice st 303
INtrodUCtiON 10 COMIEXES.cvvieiriciceeie e 304
What is inside/outside @ CONEX?........cvvviriierrcce e 304
AboUt CONtEXE PrOPEILIES.....cvviecececreiccce e 305
CONEXE IFECYCIE ...ttt 306
Comparison of a correlator and @ CoNteXt.........covvvverviecnnnceere s 306
Creating COMEXIS.....viriuiiicicce bbb 306
How many contexts Can YOU CrEate?.........ccccvuvicuereeiieieciee e 307
Using channels to communicate between CONtexts. ... 307
Obtaining context refErENCES.......covvviieeer e 308
SPAWNING 10 CONEXES.viiiiecreieiicece ettt bbb 309
Channels and CONEXES........ciuiriirrrces s 310
Sending an event t0 @ ChanNEl..........cccuvviciieicce e, 311
Sending an event to a particular CONtEXL.........cc.occeeeiricccee e 312
Sending an event to a sequence Of CONEXES.......c.ovuvricriercec e 313
Common USe CaSses fOr CONLEXES. ..o 315
Samples for implementing CONEXES........cociviviiieiiicce s 315

Developing Apama Applications Version 10.5 8

Table of Contents

Simple sample implementation of CONtEXIS..........cvvrrriiererreee e 316
Running samples of common concurrency problems..........ccccvvevcenviccerennn, 316
About the samples of concurrency problems........ccccvveecvceeieccceee e 317
AbOUL the race SAMPIE......c.covieeerircee e 318
About the deadlock SAMPIE..........ccccveveiiiiicer e 319
About the compareswap SAMPIE.........cccccvvceeieeee e 320
Contexts and correlator determiniSm............coveerriirerereers s 323
How contexts affect other parts of your Apama application............ccccceeeevvvicsiiinnnns 323
About input logs and parallel ProcesSINg..........cccvvvrviiiiiiceeeee s 323
Deadlock avoidance when parallel processing........ccocvvrverernnireennnseeeennenens 324
Clock ticks when parallel proCesSing..........covcevevivieecieiieiece e 324
Using EPL plug-ins in parallel processing applications.............ccccceevisececcennnns 324
Using Correlator PErSISTENCE. ..o 325
Description of state that can be persistent..............cocoevevviiceeiicce e 326
When persistence iS USEUL..........cccuiiiiicieiciecce bbb 327
When non-persistent monitors are USEfUl............cocvvvriierrnicceseeece s 327
How the correlator persists State.........ccocoeviiiieeiicccecce e 328
Enabling correlator PersiStenCe. ..o e 329
How the correlator reCoVErs State.........oovvirereceeee s 332
RECOVEIY OFQETcvcviiieecte ettt bbb 333
Defining rECOVENY @CHONS........ccviiiiictctee et 334
SIMPIESt FECOVETY USE CASE.......vuieirieciriieirieieiei et 335
Designing applications for persistence-enabled correlators...........ccoovvvcveiviccreriinennn, 335
Upgrading monitors in a persistence-enabled correlator..........ccocovvvrvvvvvvvsccenn 336
Sample code for persistence appliCations...........cocverrvreiennnreer e 336
Sample code for discarding stale state during recovery........ccooovviveceercicrcrennnn, 336
Sample code for recovery behavior based on downtime duration.............ccccc......... 337
Sample code that recovers subscription to non-persistent monitor..............cccceu..... 338
Requesting snapshots from EPL..........ccccoviiiiiccccs e 338
Developing persistence applications...........ccccccceeeicccicineeeeese e 339
Backing up the persistence database while the correlator is running..............cccvvvvenee 339
Using EPL plug-ins when persistence is enabled............cccocevveiceiicccccesccccvn, 341
Using the MemoryStore when persistence is enabled..........c.cccocooceeeviieiceniceecnnen, 341
Comparison of correlator persistence with other persistence mechanisms..................... 343
Restrictions on correlator persistencCe. ..o 344
Common EPL Patterns in MONItOrS..........ccouueurirririiieienie st 345
Contrasting using a dictionary With SPAWNING.........cocvriirirrirsees 346
Translation using @ diCtioNArY........ccccvviiieeirceece s 346
Translation USING SPAWNING.......cccociiiiiiiiiiiiirire i rerenas 346
FaCIOrY PAEIM......c.cvieieic 347
Canonical factory Patter...........ccceeiiicccsecce e 347
Alternate factory Pattern..........ccoccceiicceeeee e 348
Using quit() to terminate event lISteners............cocveerirnicneeeee e 348
Combining the dictionary and factory patterns.........c.cccoveeeiviiccesccccce e, 349
TESHNG UNIGUENESS......cviiiiieieie sttt nenens 349

Developing Apama Applications Version 10.5 9

Table of Contents

REferenCe COUNTING.uiuiieieicice e 350
Inline request-reSPONSE PAEIN..........ccvvcveviiieicee s 352
Routing events for request-response behavior............ccccceeeeevicccceecccvee, 352
Canonical form for Synchronous reqUESLS.............ocveriniieeniinnecneeseeeee, 353
Writing echo monitors for debugging..........coceeriiiceeiscee e 353
Versioning and upgrading MONILOIS..........ccccueuevcreeieiceeeeeee e reaeees 354
USING EPL PIUG-INS ...t 357
Overhead of USING PIUG-INS.......coviiriiireecce e 358
When 10 USE PIUG-INS.....c.cvevireieieicicicieieie et rerenens 358
When Not 0 USE PIUG-INS.......cciviiiiiiieirieieeese e 359
Using the TimeFormat Event Library.........cccocoveceiieccessccce e 359
TimeFormat format fUNCHONS..........ccoiueiirerc s 360
TimeFormat parse fUNCHONS.........cccoviiiirrr e 360
Format specification for the TimeFormat functions.........c.cccovvvevcciiiccccsccnene, 361
Using the MemOIYSIOre.........cccueiiiiccesceetee et 369
Introduction to using the MemOryStOre...........coerierieriee e 369
Overview of MemoryStore EVENIS..........ccccviicieiceeee e 370
Adding the MemoryStore bundle to your project.........ccccoveecevivecceenieecrcrenen, 371
Steps for using the MemoryStore............cooeviricniccc s 371
Preparing and Opening StOreS..........cocevviicreinieeessse e, 372
Description Of FOW STTUCIUIES..........cccueveveiiccrce e 374
Preparing and opening tables............ocvriiiese 377

Using transactions to manipulate rows............ccccevveeeenniceens e 378
Determining which commit action to call.............cccoovveeeicccccccccccenns 379
Creating and remMOVING FOWS..........ccurviereiieerieirieiesiee s 380

lterating over the rows in @ table.........ccceviviceeiieccssr e 381
Requesting PersistenCe........ccoo s 382
Exposing in-memory or persistent data as DataViews............ccccoevrevnicnicinenne 382
Restrictions affecting MemoryStore disk files..........ccoveeivviieceiiicccer e, 383
Using the distributed MEMOIYSIOTE.........c.ccveueieiiciciee e, 383
Overview of the distributed MemoryStore.............cocvvererninncnceces 384
Distributed store transactional and data safety guarantees............c.cccocoevevvinnenee, 386
Configuring a distributed STOre........ccccvvveivcieecce e 387
Adding distributed MemoryStore support to @ project........c.cccoevvreririeerennnn. 387

Adding a distributed store t0 @ project...........ccoveeviviieieeicecee e 388
Configuring a distributed StOre........cccoviivieeciccc e, 389
Launching a project that uses a distributed store.............cccovvivniincnninn. 389
Interacting with a distributed StOre............ccoceeviiiiieeccc e, 390
Configuration files for distributed SIOreS...........cccovivicreiiicicccce e 391
Standard configuration properties for distributed stores............coovovvvniicinsnnnnes 394
TCStore (Terracotta) driver detailS...........ccccvvivieeiviiiccerceee s 397
BigMemory Max driver detailS.........ccccciiieiiiniiiiics e 402
Migrating from BigMemory Max to TCSHOre........coeuviirnivnicrcreeces 409
Changing bean property values when deploying projects.........ccccvvvevecessiveienens 409
Creating a distributed MemoryStore driver...........cococvviceeieccceeeeeee e 410

Developing Apama Applications Version 10.5 10

Table of Contents

Using the Management interface............ocoverirnirnieneeces s 412
Using the JSON PIUG-iN........cciiiiicce e 416
Using MATLAB® products in an application...............ccccceueriieeeceeneiecree e 417
MatlabManager @CHIONS. ... 418
MATLAB EXAMPIES......cucviriiiiiicieieiiiieseiete sttt 421
USING the R PIUG-IN...eeiiiiiiiiiiit st 425
Introduction to using the R pIUG-iN.........cveiiniiic s 425
Adding the R Support bundle t0 your project........ccccvecceviercessrceeeeessees 425
Steps for using the R PIUG-iN.........cciiiiiccesccce s 426

R PIUG-IN SAMPIES.......oeieeeeiiiccieiers s 427
Interfacing with user-defined EPL plug-iNS.........ccccceeriiiiceisseee s 427
AbOUL the ChUNK IYPE.....c.eiiie e 428
Making Application Data Available t0 ClIentS.........ccovveerrniiceess e, 431
Adding the DataView Service bundle to your project..........ccccovvivieeienicrecessecccenen, 433
Creating DataView definitions...........ccoeciviicieiiccccecce e, 433
Deleting DataView definitions............ccoeriiriinesese e 434
Creating DataVIEW ItBMS........cccuiiiicce st 434
Deleting DataVIeW IHEMS.......ccvvevceccce e 435
Updating DataVIEW IHEMS.........c.ieiiiiciiceei e 436
Looking up field POSIHIONS.......cvvicieresiicce e 437
Using mUItiple COMTEIAtOrS........c.cueuiuiiireciiie s 437
Testing and TuniNg EPL MONIOTS.........c.iiiiiicirieiieses e 439
Optimizing EPL Programs...........cccoiviicesiiicccs ettt 440
Best practices for Writing EPL............ccccviiieieiieccee e 440
Wildcard fields that are not relevant............cccevvvccinnicce e 441
Avoiding unnecessary alloCations.............cccceerrnninnieeneeeere s 441
IMPIEMENING STALES......c.ciiiieicceee s 441
Structure of a basic test frAaMEWOrK...........cccovrrriirrrcer s 442
USING BVENE fIES....cvcvitiiiicteesce s 442
Handling rUNtIME BITOIS.......c.ciiiiiieieeet e 443
What NAPPENS.......ceeeeeieiricce et 443
Using ondie() to diagnose runtime €rrors..........cocvvvveeeeniceercesceeee e 444
Using 10gging to diagn0SE EITOrS......ccoviiiiriiiiiirisiie s rerererenes 444
Standard diagnostic 10g OUIPUL..........covieeiiire 444
Capturing tESt OUIPUL........oveiecececcce e 445
Avoiding listeners and monitor instances that never terminate............ccccceoeveccicccnnnns 445
Handling Slow or DIOCKEd rECEIVETS..........ccuiiiriiricce s 446
Diagnosing infinite loops in the COMTEIAtor..........cccccviivcceec e, 446
TUNING CONEXES......vevvreietcreicicie ettt e 447
Parallel processing for instances of an event type...........ccoeveriivnicnncnnecnns 447
Parallel processing for long-running calculations............ccccevvvcccssscesssene 448
Generating Documentation for Your EPL COde...........cccceviviiieiriiecceeeeeeee e 451
Code constructs that are documented...........oocverviiccercece s 452
Steps for using APAMADOC..........cccviiveieieieeiee s 452
Inserting ApamaDOoC COMMENES..........ccviviviiciscsse e s 453

Developing Apama Applications Version 10.5 1"

Table of Contents

Inserting APamaDOC taGS.......c..u i 454
Inserting ApamaDbOC rEfErENCES..........ccoveviiicierer e 457
Inserting EPL source code eXamples..........ccceeueeieeeiereiereeeeeneseesess s 459
Generating ApamaDoc from an Ant SCrPL.......covrerrcer s 459
Developing Apama Applications iN Java..........coveeeevenmrerencsssnsnenesessssssese e sssesess 461
Overview of Apama JMon ApPlICatIoNS...........cccerererriieciee s 463
Introducing JMON API CONCEPLS.......ceuevererereicicceieee st renenes 465
ADOUL BVENT IYPES.......ceec 466
Simple example of an eVENL YPE........ccccvviicce s 467
Extended example of @ JMon event type.........c.ccceueeiviccicecccce e 468
Comparing JMon and EPL event type parameters........ccccocvveernnnncsnnnenenns 469
About event parameters that are CompleX types......ccovvvrvrrrrrenrrvvv v 470
Non-null values for non-primitive event field types..........ccococeevivicceeiicccreenn, 471
ADOUL MONITOIS. ...ttt b ns 472
About event listeners and match lIStENErS.........ccovvirrrrniere e 473
Example 0f @ MatChLISIENE..........cccoiieecccce e 473
Defining Multiple ISENEIS. ..o 474
REMOVING lISLENEIS....c.iviiicrsss s 475
Description of the flow of execution in JMon applications.............ccccoeevveieccinineenen. 475
Parallel processing in JMon appliCations...........couveeerrniniessrnccss s 476
Overview of contexts in JMon applications...........cccccvvieeeniiicceis e 476
Using contexts in JMon appliCations........cccuvvvvviviiiieiiiisis e 477
Using the Context class default consStructor.............cccvvevirrciniencreece 477
Descriptions of methods on the Context Class.........cococvvveeeeriiicccessceee 478
Identifying eXternal BVENES...........cccviiiiceececce et 479
OPtiMIZING EVENT EYPES.....cvirieiiiciicireeee s 479
Wildcarding parameters in eVent tYpes.......cccvvvcereiriciceessee s 480
Logging in JMon appliCations...........ccccueueueiereciccinieeeeieee s rerenes 481
Using EPL keywords as identifiers in JMon applications............cccouevevinninninennns 481
Defining EVENt EXPrESSIONS......cvcviiiiiecieisiii ittt ettt bbb 483
About eVeNt tEMPIALES........c.cvcvceccccccc s 484
Specifying POSIIoNal SYNEAX........c.cveviiiiriiieirieree e 484
Specifying completed event templates...........ccovvviiciiiicc e 486
Specifying parameter constraints in event templates.........cccccoovevieinieceiccecceeen, 486
Obtaining MatChing EVENLS..........coiriiiie s 488
Emitting, routing, and enqUEUING EVENTS.........cccvecveiii i 490
Specifying temporal SEQUENCING..........coeevriirieieeiiee e 491
Chaining ISTENETS. ..o 491
Using temporal OPEratorS........cccvicecverrriseeee e 492
Defining advanced event EXPresSioNs..........coceiccveeiniiecie e 493
Specifying other temporal OPErators............coveerrreeneirree e, 494
Specifying a perpetual listener for repeated matching........ccccevvveceeiccccssine, 496
Deactivating @ lISteNET........cciiiiiicieee e 496
TeMPOTal CONLEXES......viiicicieirr et 496

Developing Apama Applications Version 10.5 12

Table of Contents

Specifying the timer OPErators..........cooceiereeee s 501

Looking for event sequences within a set time.........c.cccocvvveevevvvcccscccenene, 502

Waiting Within @ lIStENET.........cccveveccccce e 503

Working With absolute tiMe..........cvviiiriiccc s 503

Optimizing eVENt EXPIESSIONS.......c.cvvviviveteiieeie ettt 505
Validation of VNt EXPrESSIONS..........cceviveviiiiieiereieieeie et 506
Concept of Time in the Cormelator..........ov e 507
Getting the CUMTENt IME.......c.oiecee e 508
About timers and their trigger iMes.........covviiiiicss s 509
Developing and Deploying JMon Applications...........cceeerrnienernseesssreees e, 513
Steps for developing JMon applications in Software AG Designer...........cccococeevirinnen. 514
Java prerequisites for using Apama's JMon APL...........ccccoiieeeniiiceeeeee e 515
Steps for developing JMon applications manually.............ccceeervrieeinrnieeenseeees 516
Deploying JMon appliCations............ccceeriiceriiices e 516
Removing JMon applications from the correlator............cccocevviiienicceeccee s 517
Creating deployment descriptor files............oevrienereee e 517
Format for deployment descriptor fileS........cccvviieeeiciccesrece s 518
Specifying the classpath in deployment descriptor files.........ccoviceeeiivicrciiines 519

Defining event types in deployment descriptor files..........covverirnicnicnicnn 520

Defining monitor classes in deployment descriptor files.........ccccoovvceeiiviiccienenne, 521
Inserting annotations for deployment descriptor files..........cccccovceeeviivcccciene, 522

Sample source files with annotations............cccoevvvrernnnrecseee e, 523
Generating deployment descriptor files from annotations...........cccccoovvveenicenen. 524
Package names and namespaces in JMon applications............cccocovvveeeccccecncnens 525
Sample JMoN appliCations..........cccerriirrrrrece s 525
Developing EPL PlUG-iNS........ccounmmmnnsinsisssssssssssssssssssssss s sssssssssssssssssssssssssssssasenss 527
INtroduction 10 EPL PIUG-NS......cuciiiiiiciesscctete sttt 529
Providing an EPL Event Wrapper for @ PIUg-in...........cccccoviiiiiiiicccce e 531
Writing EPL PIUG-INS IN CH . 533
Creating a plug-in USING CH. ... 534
Method SIGNALUIES........cccviecccs s 536
Compiling C PIUG-INS. ... s 538
EXCEPLONS. ..ot 539

Writing to the correlator 10g file.........ooicieiccee e 539

Storing data uSING ChUNKS............cuiiiiriiiiriee s 540
SENAING BVENTS ..ot 541
RECEIVING BVENES....c.oiiiiiicisss e nenes 542
Blocking behavior of PIUG-INS. ..o 544
Load-time or unload-time COUE..........cccviriirrrreee s 545
Handling thread-specific data in plug-ins.........cccccvviviceeicecece e, 545

Using plug-ins WIItEEN iN CHF ... 545
Writing EPL PlUg-inS iN JaVA........ccciieeecccceieseneeee v 547
Creating a plug-in USING JAVA.........cccouviiviiiiiciiice bbb 548
Permitted signatures for Methods...........ccoovirniicrceees 549

Developing Apama Applications Version 10.5 13

Table of Contents

Using EPL plug-ins Written in Java............cccvinieiccecseeee s 551
Sample PIUG-INS 1N JAVA......c.ciiieieiice s 557

A simple pIUG-IN N JAVA........ccicccccc s 557

A more complex plUg-in IN JAVA.........ccorrririeerreee e 558

A plug-in in Java that Sends eVENtS.........ccccovivririririisrrrrrss e 558

A plug-in in Java that subscribes to receive events............cccceeveecieciccieicieinnnnnnn, 558

Writing EPL PIUG-inS in PYENON. ... 561
Creating a plug-in USING PYIhON.........cciuiiiiciiestcee e e 562
Method Signatures and tyPeS......covvvvieiiiviirse e 563
EXCEPHONS. ...t 565

Writing to the correlator 10g file.......ccoviiiieiccee e 565
SENAING BVENTS.....cuiiiectetecce ettt 566

USING PYLNON PIUG-INS. ..o 567
Sample plug-ins Written i PYIhON.......ccoviiiccce e, 568
Protecting Personal Data in Apama Applications.............ccoevnennnnnmsmsesesmsssmsmsesesesesesesesesesenns 569
INEFOAUCHION. ...t 571
Where personal data is held within the Apama platform............ccccoevvvicininiicccerce 573
Documenting personal data flows within an Apama application.............cccccevvrereceniicncnnn. 577
Handling personal data in the "in-memory" state of the correlator..........c.cccooeveeeiiiiicnnen, 579
Handling personal data "at rest" in the correlator persistence and JMS datastores............... 583
Handling personal data "in motion" from dashboards.............cccccevviriieiniicccecccen 585
Handling personal data "at rest" in 10g fileS..........ccoeiiiiiiiiiceicccee e 587
Example log messages containing personal data..............ccverirninniennccnen, 588
Protecting and erasing data from Apama 10g fileS.........ccccoevviiiceienieccee e, 589
Recommended 10g [EVEIS.......c.ccucuiiiciecieitieeeeie st rernenas 590
Recommendations for logging by Apama application code............ccccovvvivnivnicnn. 590
Handling personal data "at rest" in the correlator input [0g file..........ccoveevivieccisicccinee, 593
Handling personal data "at rest" in containerization environments..............cccocecvvveccvennen 595
[o I LY (T o T 597
INEFOAUCHION. ...t 599
Hello WOrld €XamPIE.........cvvieiveieiiceieie ettt 600

L] 1= TP 603
Primitive and StriNg tYPeS........ciiiiice s 604
REFEIENCE TYPES.....cvcvcviiiecte e 604
Default ValUES fOr fYPES.......vcveieiciiecce bbb 606
TYpe Properties SUMMATY........cccrrirereeeueiririeietetsisessseessseseseese st sesessssssssssesesessssssesesees 607
Timestamps, dates, and IMES..........ccccevviiiice s 611
Type methods and instance MEthods..........ccoviiiiiiiicic e 611
TYPE CONVETSION.ouvriiaiiiieeieiseie ittt 612
COMPArADIE EYPES....c.cvivereiicicteter st 613
ClONEADIE YPES.....vvicecectete et 615
Potentially CYClIC tYPeS........cuiuiiiriciriiesi s 615
Which types are potentially CYClIC?.......cvviieeiiiceerc s 615

String form of potentially CyCliC tyPes........ccevviivereicececeecece e, 617

Developing Apama Applications Version 10.5 14

Table of Contents

Support for [EEE 754 special ValUES............cccevvivieirernceeeeseeee s 619
Events and EVENt LIStENETS. ..o s 621
Event defiNitioNS.........coiecee e 622
EVENE fIElUS ... e 622
EVENE CHONS. ...t 622
Event field and action SCOPE.........ccceiiiecieieiiecece et 624
EVENE tEMPIALES. ..o 624
By-position QUAlIfIErS.........cccuiviriicieieisicce s 624
BY-NAame QUAIIfIErS.......cccuivireiiiiiccte e 625
RANGE EXPIESSIONS.......ouviiieiiiiieiriisiei ettt 625
FIeld OPEIAIOrS........cvcveveieicice ettt s 626
Event listener definitionS..........coviririieieneees e 629
EVEN IIECYCIE... ..o 629
Event listener IfECYCIE.......ccvvicicieieccc s 630
Event processing order for MONItOrS.............ccocueviriiceicseceee e 631
Event processing Order fOr QUEMES.cvrierrrriceesrseee s 633
EVENE EXPIESSIONS......cvviiicicrcisce s 633
EVENE PIIMANIES....ciiiiccr e 633
THMETS vttt sttt sttt bbbttt bbb bbb bbbt b e en s s an b s 635
THE NOL OPEIALOL......coiieieceetecce s 636
The all OPEIALON......ciiiicisce et 636
The and, xor, and or logical event OPErators...........ocoeevvirereernsereee s 637
The followed-by event OPErator..........ccccvvvviceiiicce s 637
Event expression operator preCeAENCE.ccueevcievcieeeceeeee s 637
EVENE ChANNEIS........oieee et 638
IMONIEOTS ...ttt 639
MONIEOr IFECYCIE.....cvivveviiectcte ettt 640
MONILOE B, et bbbttt 641
PACKAGES. ... vttt 641
The USING AECIArAtoN......cciiiiiiiec e 642
MONItor AEClAratioNS..........cccvoiiieieiccec s 642
The import deClaration............coceuricceeece e 642
MONIEOT @CHONS.ceveeei ettt 643
SIMPIE ACHONS. ...t 643
ACtions With Parameters.........cvvvvivirrrr s 644
COMEEXES ..t 644
PIUGANS ... 645
Garbage COIBCHON..........ccvviicecrer et 645
QUETIES.....ee ettt 647
QUETY TIFEHIME.....cvveecieie e 648
QUETY AEFINITION......eecee e 650
Metadata SECHON.c.cieieeee e 652
Parameters SECHON...........c.cviviiccce e bbb 652
INPUES SECHON. ..ottt et 652
Query INPUL AEfINIION.eviiireiccse s 653

Developing Apama Applications Version 10.5 15

Table of Contents

FINd Statement.........coooie e 654
PAEIN. ... s 655
WhEre CONAITION........cvieiieciciee et 656
WIthin CONAIION.ceiiiiiiiec e 657
WIthOUt CONTItION.......coveiiceece s 657
BEtWEEN ClAUSE.......eeecce e 658
SEIBCE CIAUSE.......vvctctctctctctcccecec e 659
HAVING CIAUSE.........cvcveviieiectce et 660

AQOregate FUNCHONS.c.cucicieiciccectee sttt 661
Built-in aggregate fuNCHONS...........ooiiiic s 662
CUSIOM AQQrEQALES.......cviiiiiiceces et 662

SHAIEMENTS. ... 665

SIMPIE STAEMENES......ceceeeeee s 666
ASSIGNMENTS......cocvviicctctes et 666
The emit StAtEMENT..........coie s 666
The enqueue . . . 10 StatemMENt ..o 667
The 10g StatEMENL..........c.cciiecce e 668
The print StatemeNt.......ccciic 669
The route StatemMENL...... ..o 669
The send . . . 10 StAtEMENt.......c.ooii s 669
The spawn StateMENL..........ccciiiiii e 671
The spawn action to context statement............ccovvverriiiccieinnee e 671
The throw Statement...........coviriir s 671

Compound SEALEMENES..........ccveieiiccee et 671
The for StatemMENt........coooiieieec e 672
The from StatemMeNt..........coiiie s 672
The if StAtEMENL.....c.ie s 673
The ifpresent StatemMeNt..........ccevriicer s 673
The 0N STAIEMENT.......cooiee e 674
The SWItCh STAtEMENT........coicc e 674
The try ... catch StatemMent...........cooiiiii e 675
The while StateMENt.........c.oir s 675

Transfer of control StatemMeNts..........ccovericere s 676
The break statemeNt.........ccciiiii e 676
The continue StatEMENT...........cviir s 676
The die StatEMENL..........c.oe s 676
The return StatemMENt.........cc i 677

EXPIESSIONS. ...ttt bbb bbb bbb 679

INtroduction 10 EXPrESSIONS.........ccviviiiccirs s 680

Using an expression as @ Statement...........c.occveniencnceeessesees e 681

PrIMary EXPrESSIONS........civiveviiiiictere ettt bes 681

Bitwise 10giCal OPEIatOrS........ccucvcuciccccceisi sttt rerens 681
Bitwise iNtersection (ANd)..........coveurieriiriiice e 681
BItWISE UNION (OF)..v.viiececrcieiiicce et 682
BitwiSe EXCIUSIVE (XOI)....viviiieieeveiiiitecte ettt bbbt 682

Developing Apama Applications Version 10.5 16

Table of Contents

UNary DIWISE INVEISE.........ccuiiiriieirics e 683
LOGICAl OPEIAOIS......cveviiiiecteis sttt 683
Logical interseCtion (AaNd).........ccccevieieerereiiiieceree e e 683
LOGICAI UNION (OF)...v.eutiriiiieieseireeiei it 683
Logical EXCIUSIVE OF (XOT)...cucviviiirceeieiriiiieieisss ettt 684
Unary logical inVErSE (NOL)........ccccueviiiiiiieieieicecere ettt 684
Shift OPEIAIOIS.....vvveecectee e 684
Left Shift OPErator........ccvceceee e 684
Right shift OPEIatOr.........cecveeeiceece e 685
COMPAIISON OPETALOLS.......v.ceceeieeriiecietetsise ettt eees 685
AddItIVE OPEIAIOIS......cucveviiiciciete et 686
MUItIPlICAtiVE OPEIAOrS......vviiiiirieisr s s 687
Unary additive OPErators...........ccoceviiriiieinieieeisecieeei s 688
EXPression OPEIators.........ccccviviiiueiiiiiecrce ettt 688
EXpression operator PreCeABNCE.ccuieeveieeeeee e 690
POSHIX EXPIESSIONS.oieivciiririsiscie sttt bes s 691
Action and Method CallS...........coirriririiree s 691
The SubSCript OPEratOr [J...cccciiiiieiiiiie s 692
The new object Creation OPErator............cccveerierieiree e 692
SHEAM QUETIES ...ttt bbb 692
Stream query Window definitions...........ccceeviicceiiccce e 694
Stream SoUrCe tEMPIALES. ..o v 696
VAHADIES. ... 697
Variable declarations...........ccoeviirrrecee s 698
Variable SCOPE......iviieeeeiiiiiteie ettt 698
Predefined variable SCOPE..........ccccvieiiiiccce st 699
MONIEOT SCOPE... ittt et aes 699
ACHON SCOPE...cuvieiieieie ettt sttt 699
BIOCK SCOPE.....eviiiictctes sttt 699
EVENt aCtION SCOPE.....cuiiiiiiicec e 699
Custom aggregate funCtion SCOPE.........couveurireeriiiriiirieses s 699
Provided Variables...........ccvririece 700
CUITENETIME ...ttt 700
EVeNt tIMEStamPS.....c.cviiccee s 701

S e 701
Specifying named constant ValUES.............cccoviicveeiiieccceeceeee e 701
LeXICal EIBMENES......cueviiiiiiciciee sttt 703
PrOgram 1L 704
COMMENTS. ...ttt es 704
WHILE SPACE. ... ettt 704
LINE tEMMINGLOTS.........cvevieeieicie e 706
SYMDBOIS.......eiiitctctete ettt bbbttt ettt 707
IAENETIEIS. ...t 707
KEYWOITS.cvviiescteie ettt bbbt b bbb 708
OPBIALOLS.......ocecece ettt ettt bbbt bbbt bbbt 708

Developing Apama Applications Version 10.5 17

Table of Contents

RS TCT 072 = o £ TP 709

LIEIAIS. ...t 710
B0OIEAN THEFAIS.......ceoveii e 710

INtEGEr HEFAIS. ...t 710

Base 10 ralS........cceuviieriirieire e 710

Base 16 lralS.......ccriecceee s 710

Floating point and decimal [Herals............coeierirnee e 711

SHAING EFAIS.....cvcveveiiccee e 711

LOCAHON THEAIS.......ceeeeeieieeieee sttt 712

DiCHONArY EraIS.......cecvieceicieeccsc s 712

SEAUENCE ILEIAIS........cvcvcveieiiectete e 712

TIME THEIAIS. ... et 713

NAIMES....ceeeiee et bbbt e et sttt bbbt bbbttt bbbt 713
ANNOLALIONS.....eet e 714

LIMIES e 715
EPL Naming CONVENLIONS.........cccccviimiencnsnnnnincss s sssesesssssssssssesssssssssssssssssssssssssssssssns 717
Testing Apama Applications Using PYSYs........ccconnnnnncnnnessnssesesessssssssesessssssssenes 721

Developing Apama Applications Version 10.5 18

About this Guide

About this Guide

Developing Apama Applications describes different technologies for developing Apama
applications: EPL monitors, Apama queries, and Java. You can use one or several of
these technologies to implement a single Apama application. In addition, there are C++
and Java APIs for developing components that plug in to a correlator. You can use these
components from EPL.

Documentation roadmap

Apama provides documentation in the following formats:

m HTML (available from both the documentation website and the doc folder of the
Apama installation)

® PDF (available from the documentation website)
m Eclipse help (accessible from Software AG Designer)

You can access the HTML documentation on your machine after Apama has been
installed:

m Windows. Select Start > All Programs > Software AG > Tools > Apama n.n > Apama
Documentation n.n. Note that Software AG is the default group name that can be
changed during the installation.

® UNIX. Display the index.html file, which is in the doc/apama-onlinehelp directory of
your Apama installation directory.

The following guides are available:

Title Description

Release Notes Describes new features and changes introduced with
the current Apama release as well as earlier releases.

Installing Apama Summarizes all important installation information
and is intended for use with other Software AG
installation guides such as Using Software AG
Installer.

Introduction to Apama Provides a high-level overview of Apama, describes
the Apama architecture, discusses Apama concepts
and introduces Software AG Designer, which is the
main development tool for Apama.

Developing Apama Applications Version 10.5 19

About this Guide

Title

Description

Using Apama with Software
AG Designer

Developing Apama
Applications

Connecting Apama
Applications to External
Components

Building and Using Apama
Dashboards

Deploying and Managing
Apama Applications

Explains how to develop Apama applications in
Software AG Designer, which is an Eclipse-based
integrated development environment.

Describes the different technologies for developing
Apama applications: EPL monitors, Apama
queries, and Java. You can use one or several of
these technologies to implement a single Apama
application. In addition, there are C++ and Java
APIs for developing components that plug in to a
correlator. You can use these components from EPL.

Describes how to connect Apama applications
to any event data source, database, messaging
infrastructure, or application.

Describes how to build and use an Apama
dashboard, which provides the ability to view

and interact with DataViews. An Apama project
typically uses one or more dashboards, which are
created in the Dashboard Builder. The Dashboard
Viewer provides the ability to use dashboards
created in the Dashboard Builder. Dashboards can
also be deployed as simple web pages. Deployed
dashboards connect to one or more correlators by
means of a dashboard data server or display server.

Describes how to deploy components with Software
AG Command Central, how to deploy and manage
queries, and how to deploy Apama applications
using Docker and Kubernetes. It also provides
information for improving Apama application
performance by using multiple correlators, for
managing and monitoring Apama components over
REST (Representational State Transfer), and for
using correlator utilities and configuration files.

In addition to the above guides, Apama also provides the following API reference

information:

m API Reference for EPL in ApamaDoc format

m API Reference for Java in Javadoc format

m API Reference for C++ in Doxygen format

Developing Apama Applications Version 10.5 20

About this Guide

m API Reference for .NET in HTML format
m API Reference for Python in Pydoc format
® API Reference for Component Management REST APIs in HTML format

Online Information and Support

Software AG Documentation Website

You can find documentation on the Software AG Documentation website at “http://
documentation.softwareag.com”. The site requires credentials for Software AG's Product
Support site Empower. If you do not have Empower credentials, you must use the
TECHcommunity website.

Software AG Empower Product Support Website

If you do not yet have an account for Empower, send an email to
“empower@softwareag.com” with your name, company, and company email address
and request an account.

Once you have an account, you can open Support Incidents online via the eService
section of Empower at “https://empower.softwareag.com/”.

You can find product information on the Software AG Empower Product Support
website at “https://fempower.softwareag.com”.

To submit feature/enhancement requests, get information about product availability,
and download products, go to “Products”.

To get information about fixes and to read early warnings, technical papers, and
knowledge base articles, go to the “Knowledge Center”.

If you have any questions, you can find a local or toll-free number for your country
in our Global Support Contact Directory at “https://empower.softwareag.com/
public_directory.asp” and give us a call.

Software AG TECHcommunity

You can find documentation and other technical information on the Software AG
TECHcommunity website at “http://techcommunity.softwareag.com”. You can:

B Access product documentation, if you have TECHcommunity credentials. If you do
not, you will need to register and specify "Documentation” as an area of interest.

B Access articles, code samples, demos, and tutorials.

®m Use the online discussion forums, moderated by Software AG professionals, to
ask questions, discuss best practices, and learn how other customers are using
Software AG technology.

® Link to external websites that discuss open standards and web technology.

Developing Apama Applications Version 10.5 21

http://documentation.softwareag.com
http://documentation.softwareag.com
mailto:empower@softwareag.com
https://empower.softwareag.com/
https://empower.softwareag.com
https://empower.softwareag.com/Products/default.asp
https://empower.softwareag.com/KnowledgeCenter/default.asp
https://empower.softwareag.com/public_directory.asp
https://empower.softwareag.com/public_directory.asp
http://techcommunity.softwareag.com

About this Guide

Data Protection

Software AG products provide functionality with respect to processing of personal data
according to the EU General Data Protection Regulation (GDPR). Where applicable,
appropriate steps are documented in the respective administration documentation.

Developing Apama Applications Version 10.5 22

Developing Apama Applications in EPL

I Developing Apama Applications in EPL

m Getting Started With Apama EPLccoiii s 25
B DefiNiNg MONIOTS ..o 43
B DefiNiNg QUETIES ... 69
B Defining EVENE LISTENEIS ..o 159
m Working with Streams and Stream QUETIESccoveiririririnceces e 205
m Defining What Happens When Matching Events Are FOUN ... 263
B Implementing Parallel ProCESSINGcoveeiiiriieiiiiiiiesi sttt 303
B USing Correlator PErSISIENCEccoiiiiiiiiiiicees s 325
m Common EPL Patterns in MONIOTSccoiiiiiiriiiiseiisesie s 345
B USING EPL PIUG-INS ..o 357
B Making Application Data Available 10 ClIentScccoeveeeiiiiiiccce e 431
m Testing and Tuning EPL MONIOFSccviiiririeiriesiceisce s 439
m Generating Documentation for Your EPL COde ... 451

Developing Apama Applications Version 10.5 23

Developing Apama Applications in EPL

Developing Apama Applications Version 10.5 24

Getting Started with Apama EPL

1 Getting Started with Apama EPL

m Introduction to Apama Event Processing Language ... 26
m How EPL applications compare to applications in other languagescccccecevereeeciciiieninenns 27
m About dynamic compilation in the COIEIAtor ... 28
m About the Apama development environment in Software AG DeSignerc.cccovvverrnnienee. 28
T =T 44110 To] (oo OO STTRPRR 29
B DefiniNg EVENT EYPES ..o 35
B WOrKING With VENES ..ot nnnnes 39

Developing Apama Applications Version 10.5 25

Getting Started with Apama EPL

The correlator is Apama's core event processing and correlation engine. The interface to
the correlator lets you inject events that the correlator analyzes. You can configure the
correlator to watch for particular events or patterns of interest. In addition, you specify
the actions to undertake when the correlator identifies such patterns. Identification of
events of interest plus what to do when such events are found constitute an Apama
application's logic.

To deploy an application on the correlator, you can use either the correlator's native
Apama Event Processing Language (EPL) or the Apama in-process API for Java (JMon).
The information presented in this part focuses exclusively on EPL.

This part teaches you how to write EPL programs. While some programming experience
is assumed, no prior knowledge of EPL is assumed.

Apama EPL is an event-driven programming language. It lets you write applications
that:

B Monitor streams of events to find particular events or patterns of events of interest.

B Analyze events (or patterns of events) of interest to determine whether some action
is appropriate.

®m Perform actions based on particular events or patterns of events.

This section discusses the main concepts you must understand to write applications in
EPL.

Software AG Designer provides tutorials that can help you get started with EPL. On the
Welcome page of Software AG Designer, click Tutorials under the Apama heading.

Note: MonitorScript is the old name for EPL. You might still see the old name in the
product documentation.

Introduction to Apama Event Processing Language

EPL is a flexible and powerful "curly-brace", domain-specific language designed for
writing programs that process events. In EPL, an event is a data object that contains a
notification of something that has happened, such as a customer order was shipped,

a shipment was delivered, a sensor state change occurred, a stock trade took place, or
myriad other things. Each kind of event has a type name and one or more data elements
(called fields) associated with it. External events are received by one or more adapters,
which receive events from the event source and translate them from a source-specific
format into Apama's internal canonical format. Derived events can be created as needed
by EPL programs.

Though it contains many of the familiar constructs and features found in general-
purpose programming languages like Python or Java, EPL also has special features
to make it easy to aggregate, filter, correlate, transform, act on, and create events in a
concise manner. Here is the canonical "Hello world" example written in EPL:

monitor HelloWorld

{

action onload()

Developing Apama Applications Version 10.5 26

Getting Started with Apama EPL

print "Hello world!";

}

The Apama event processor, called the correlator, receives events of various types from
external sources. The EPL programs that process these events are monitors or queries.

Monitors have registered event handlers, called listeners, for events of particular types
with specific combinations of data values or ranges of values. When a listener detects an
event of interest, it triggers a particular action. If there are no listeners for an event, the
correlator either discards it or passes it to a listener specifically for events that have no
handler. A monitor instance processes events on one correlator and can send events to
communicate with other monitors on the same correlator or remote correlators.

Queries are scalable across multiple correlators. An Apama query operates on only

the input event types you specify and you can filter which instances of those events
should be processed. Apama partitions these incoming events according to a key field
that you specify, for example, there might be a partition for each credit card number.
The query processes the events in each partition independently of the events in every
other partition. As events are added to partitions, the query checks for a set of events
that matches the event pattern you specified, which can optionally specify complex
conditions for there to be a match. When a match is found the query executes procedural
code that you have defined, which can include sending events.

Event handlers in EPL are conceptually similar to methods or functions used for
handling user-interface events in other languages, such as Java Swing or SWT
applications. In EPL, the correlator executes code only in response to events.

The correlator is capable of looking for hundreds of thousands of different events or
different event patterns concurrently. When you write an EPL application, you write
a set of monitors and/or one or more queries and then you inject or load them into a
running correlator. As streams of events pass into a correlator, the monitors and their
listeners and/or the queries watch for the events or patterns of events that you have
specified as being of interest. There are a variety of actions that you can specify that
you want the correlator to perform when a listener or query detects an event or event
pattern of interest. For example, the most common action for a monitor is to generate
and dispatch a message to an external receiver.

EPL is case-sensitive.

How EPL applications compare to applications in other languages

EPL is an event-oriented programming language, as opposed to an object-oriented
language. Because EPL is part of an event-processing framework, it requires a different
approach to decomposing the problem you want to solve.

EPL syntax is similar to other scripting languages. EPL has variables, data structures,
conditions, and procedures (called actions in EPL). But EPL supports a paradigm that is
different from that supported by other scripting languages:

® A monitor or a query is the basic module in EPL programs.

Developing Apama Applications Version 10.5 27

Getting Started with Apama EPL

B All communication is by means of message passing.
m All processing is triggered in response to events.

® Monitors spawn instances of themselves to generate multiple units of execution and/
or to initiate parallel processing. A query uses a key to partition incoming events and
can share the same data across multiple correlators.

EPL requires a different way of developing applications.

About dynamic compilation in the correlator

EPL is dynamically compiled. You inject (load) EPL source files into a running
correlator. The correlator compiles the files into optimized byte-code representations.

The EPL compiler is strict. There is no implicit type conversion. You cannot discard
return values. To minimize the chance of runtime errors, your code must be explicit
and not make assumptions. The correlator terminates execution of a program at the first
runtime error.

The dynamic compilation approach removes the need for a byte code interpreter that
supports older versions of byte code. Also, the correlator can apply new optimization
techniques during byte code generation.

About the Apama development environment in Software AG
Designer

Software AG Designer provides an integrated environment for developing Apama
applications. The process of developing an Apama application is centered around an
Apama project. In Software AG Designer, you create a project and then you use Software
AG Designer to:

® Add and manage the component files that make up the application.

Write the EPL for your application.

Specity the adapters and dashboards that are necessary for the application.
Specify the configuration properties necessary for launching the application.
Run and monitor the application.

Export the initialization information necessary for deploying the application.

Export your EPL files to a correlator deployment package (CDP).
See Using Apama with Software AG Designer for detailed information.

In addition to using Software AG Designer to create Apama projects, you can also do
this using the apama_project command-line tool. See "Creating and managing an
Apama project from the command line" in Deploying and Managing Apama Applications
for more information.

Developing Apama Applications Version 10.5 28

Getting Started with Apama EPL

As you add components to your application, Software AG Designer automatically
generates the boilerplate EPL code for the application's standard features and launches
the appropriate editor where you add the code to implement the component's behavior.

A central Apama feature in Software AG Designer is the EPL editor. The EPL editor
provides support for writing EPL, for example:

Automatic EPL validation

Content assistance

Auto-completion

Hovering over an event declaration displays the event's type definition

Automatic indenting and bracketing

A separate panel shows the hierarchy of the EPL that appears in the editor
m Ability to define templates for frequently-used fragments of EPL

In Software AG Designer, you can examine the EPL files that are part of the Apama
demo applications.

See "Overview of Developing Apama Applications" in Using Apama with Software AG
Designer for more information.

Terminology

This topic provides a definition of each important EPL term. The definitions are
organized into several groups.

Basic modules

EPL Term Definition

Application An Apama application consists of one or more
collaborating monitors and/or one or more queries.

Package A mechanism for qualifying monitor, query and event
names. Monitors, queries and global events in the same
package must each have a unique name within the
package.

Context Contexts allow EPL applications to organize work into
threads that the correlator can concurrently execute.

Monitor A monitor is a basic unit of program execution. Monitors
have both data and logic. Monitors communicate by
sending and receiving events. A monitor is defined in a
.mon file.

Developing Apama Applications Version 10.5 29

Getting Started with Apama EPL

EPL Term Definition

In a monitor, you can create multiple contexts and divide
processing among multiple contexts.

A monitor cannot contain an Apama query.

Query An Apama query is a basic unit of program execution. It
partitions incoming events according to a key and then
independently processes the events in each partition.
Processing involves watching for an event pattern and then
executing a block of procedural code when that pattern is
found. A query is defined in a .qry file.

In a query, you do not create contexts. Apama
automatically uses multiple contexts as needed to process
your query.

An Apama query cannot contain a monitor.

Channel A string name that monitor instances and receivers can
subscribe to in order to receive particular events. Adapter
and client configurations can specify the channel to deliver
events to. In EPL, you can send an event to a specified
channel.

Queries do not subscribe to channels.
Event (type) An event is a data object. All events have an event type and
an ordered set of event fields. An event type might also

have zero or more defined event actions that operate on the
event fields.

Field A data element of an event.

Method A method is a predefined action. A given EPL type has a
given set of methods that it supports.

Data types
EPL Term Definition
Data type Usually referred to as simply type. EPL supports

the following value types: boolean, decimal, float,
integer, and the following reference types: action,
Channel, chunk, context, dictionary, event,
Exception, listener, location, optional, sequence,

Developing Apama Applications Version 10.5 30

Getting Started with Apama EPL

EPL Term

Definition

sequence

dictionary

optional

location

chunk

listener

action

context

stream

Channel

StackTraceElement, stream, string. Also, monitorisa
very limited pseudo-type.

An EPL type used to hold an ordered set of objects
(referenced by position).

An EPL type used to hold a keyed set of objects (referenced
by key).

An EPL type used to hold either zero elements or one
element.

An EPL type that represents a rectangular area in a two-
dimensional unitless Cartesian coordinate plane.

An EPL type that references an opaque data set, the data
items of which are manipulated only in an EPL plug-in.

You can assign an event listener or a stream listener to a
variable of this type and then subsequently call quit () on
the listener to remove the listener from the correlator.

An EPL type that references an action. Actions in EPL are
the equivalent of methods in object-oriented languages.
Actions are user-defined methods that you can define in
monitor and query definitions, event type definitions, and
custom aggregate function definitions.

An EPL type that provides a reference to a context. A
context lets the correlator concurrently process events.

An EPL type that refers to a stream object. Each stream is
a conduit through which items flow. A stream transports
items of only one type, which can be any Apama type.
Streams are internal to a monitor.

An EPL type that contains a string or a context. A
contained string is the name of a channel. A contained
context lets you send an event to that context. Defined in
the com. apama namespace.

Developing Apama Applications Version 10.5 31

Getting Started with Apama EPL

EPL Term Definition

Exception Values of Exception type are objects that contain
information about runtime errors. Defined in the
com.apama namespace.

StackTrace A stackTraceElement type value is an object that contains

Element information about one entry in the stack trace.

Monitors

EPL Term Definition

Monitor name

Monitor definition

Monitor instance

Sub-monitor

Queries

Each monitor has a name that can be used to delete the
monitor from the correlator.

The set of source statements that define a monitor.

A monitor instance is created whenever a monitor is
loaded into the correlator. Subsequent monitor instances
are created whenever a monitor instance spawns. As one
time, a monitor instance was referred to as a sub-monitor.

A monitor instance was previously referred to as a sub-
monitor.

See also “Query terminology” on page 73.

EPL Term

Definition

Query name

Query definition

Query instance

Each Apama query has a name that can be used to delete
the query from the correlator.

The set of source statements that define an Apama query.

A query instance is created whenever a non-parameterized
query is loaded into the correlator. When a parameterized
query is loaded, no instances are created until parameter
values are provided. After specification of parameter
values, Apama creates an instance of the query, which

is referred to as a parameterization. A query definition
supports multiple parameterizations.

Developing Apama Applications Version 10.5 32

Getting Started with Apama EPL

EPL Term

Definition

Query key

Query partition

Events

EPL Term

A query key identifies one or more fields in the event types
that the query specifies as input event types. Each query
input event type must specify the same key.

A partition contains a set of events that all have the same
key value. One or more windows contain the events added
to each partition.

Definition

Event name

Event definition

Event type

Event field

Event action

Listeners

EPL Term

Every event must identify its event type. Event types
are identified by a unique event name. The event name
can also be used to remove the event definition from the
correlator.

The set of source statements that define an event type.

All events of a given event type have the same structure.
An event type defines the event name, the ordered set of
event fields and the set of event actions that can be called
on the event fields.

A data element of an event.

An action defined within an event definition. The action
can operate only on the fields of the event and any
arguments passed into the action call.

Definition

Event listener

A construct that monitors the events passed to, or routed
within, a correlator context. When the event pattern
matches the event pattern specified in an event listener, the
correlator invokes the event listener's code block.

In monitors, it is up to you to define event listeners. In
queries, Apama defines event listeners for you.

Developing Apama Applications Version 10.5

33

Getting Started with Apama EPL

EPL Term

Definition

on statement

Stream listener

from statement

Listener action

Listener handle

Event template

Event operator

Event expression

Streams

EPL statement that defines an event listener. An on
statement specifies an event expression and a listener
action.

A construct that continuously watches for items from a
stream and invokes the listener code block each time new
items are available.

EPL statement that defines a stream listener. A from
statement specifies a source stream, a variable, and a code
block. The from statement coassigns each stream output
item to the specified variable and executes the statement or
block once for each output item.

The action, statement or block part of a listener.

It is possible to assign the handle (reference) to a listener to
a listener variable. This variable can then be used to quit
the listener.

Specifies an event type and the set of (or set of ranges of)
event field values to match.

Relational, logical, or temporal operator that applies to an
event template and that you specify in an event expression.

An expression, constructed using event operators and
event templates, that identifies an event or pattern of
events to match.

See also the above definitions for the stream data type, stream listener, and the from

statement.

EPL Term

Definition

Stream query

A stream query is defined in a monitor. A stream query
is a query that the correlator applies continuously to
one or two streams. The output of a stream query is one
continuous stream of derived items.

A stream query is a completely different construct than an
Apama query.

Developing Apama Applications Version 10.5 34

Getting Started with Apama EPL

EPL Term Definition
Stream source An event template preceded by the a1l keyword. It uses no
template other event operators. A stream source template creates a

stream that contains events that match the event template.

Stream network Network of stream source templates, streams, stream
queries, and stream listeners. Upstream elements feed into
downstream elements to generate derived, added-value
items.

Activation When the passage of time or the arrival of an item causes
a stream network or an element in a stream network to
process items.

Defining event types

Conceptually, an event is an occurrence of a particular item of interest at a specific time.
Examples of events include:

m A price of $100 for a share of IBM stock at noon on November 7, 2014

m Purchase of 1000 shares of IBM stock at $80 per share at 12:01 PM on December 12,
2014

RFID tag 123-456-789 was scanned at 10:05 AM at loading dock 3
Purchase order 55555 for 10,000 widgets sent to Acme Motor Supply
TCP/IP address 123.4.56.789 just accessed server 5

Container X was overfilled greater than 0.2 grams more than standard amount

An event usually corresponds to a message of some form. The correlator is designed to
take in huge numbers of messages per second, and sift them for the events or patterns
of events of interest. When the correlator detects interesting events or patterns it can
undertake a variety of actions.

A correlator can receive events in several ways:
B You use Software AG Designer to send events from a file.

® From an adapter that receives an event from an external source. Apama adapters
translate events from non-Apama format to Apama format.

® You run the Apama engine_send utility to manually send events into the correlator.
® A monitor or query generates an event within the correlator.

B You can write an application in C, C++, Java, or .NET that uses the Apama client API
to send events into the correlator.

Developing Apama Applications Version 10.5 35

Getting Started with Apama EPL

The correlator propagates information by sending events.

In EPL, each event is of a specific type. An event type has a name and a particular set
of fields. Each field has a name and is one of a selection of types. Every event instance
of a given event type has the same set and order of fields. For the correlator to process
an event of a specific event type, it needs to have the event type definition for that type.
Having the definition for an event type, lets the correlator

®m Operate on the messages of that event type
m Create optimal indexing structures for finding events of that type that are of interest

An event type definition specifies the event type's name and the name and type of each
of its fields.

See also “Specifying named constant values” on page 267.

Allowable event field types
A field in an event can be any Apama type. See also “Types” on page 603.

Certain field types are valid only within a certain scope and you cannot pass events with
such field types outside that scope. The details are as follows:

B context — When an event contains a context type field, you can send the event to
other monitors within the same correlator but you cannot send the event outside the
correlator. In other words, you can send or route the event. See “Generating events”
on page 281.

B chunk, listener and stream — An event that contains one or more of these types
of fields is valid only within the monitor that creates it. You cannot send, route, or
enqueue an event that contains a field of type chunk, listener or stream.

If an event contains a chunk, listener, or stream field you cannot listen for that event.

For more information, see the description of event in the API Reference for EPL
(ApamaDoc).

Format for defining event types

In EPL, the format for an event type definition is as follows:

event event type {
[
[wildcard] field type field name; |
constant field type field name := literal; |
action definition

]

Developing Apama Applications Version 10.5 36

Getting Started with Apama EPL

Syntax description

Syntax Element

Description

event

event type

{1}

wildcard

field type

field name

This EPL keyword is required. It indicates an
event type definition.

Replace event type with a name that you
choose for this event type. An EPL best
practices convention is to specify an initial
capital in event type names, and to capitalize
subsequent words in the name. For example:
StockTick.

Enclose the field definitions in curly braces.

Specify the wildcard keyword in front of a
field definition when you are certain that you
will never specify that field in the match criteria
for this event type. In other words, when the
correlator watches for certain events of this
type, the value of a wildcard field is always
irrelevant.

For more details, see “Improving performance
by ignoring some fields in matching events” on
page 175.

Replace field type with the name of a type.
If you specify action, sequence, stream

or dictionary, you must also specify the

type of the action's argument(s) and return
value if there are any, the type of the values

in the sequence or stream, or the type of

the dictionary's key as well as the type of

the values in the dictionary. For example:
dictionary<integer, string>. For more
details, see the descriptions of the dictionary
and sequence types in the API Reference for EPL
(ApamaDoc).

Replace field name with a name that you
choose for this field.

An event can have zero or more fields. You
might define an event with no fields in a

Developing Apama Applications Version 10.5

37

Getting Started with Apama EPL

Syntax Element

Description

constant

literal

action definition

Example event type definition

For example, the EPL definition of an event type for simple financial stock price ticks

situation where only detection of the event is
needed to start some process.

While there is no limit to the number of fields
in an event, the correlator can index up to 32
fields per event. This means that the correlator
can match on up to 32 fields per event. If

an event type has more than 32 fields, you
must specify the wildcard keyword for the
additional fields. Note that if the type of an
event field is 1location, that field counts as 2.
For example, if you have 28 non-location type
fields and 2 1ocation fields, then you have
reached the limit of 32 indexed fields. If you
try to inject an event definition that specifies
more than 32 fields and you do not specify the
wildcard keyword for additional fields, the
correlator rejects the file. You must add the
wildcard keywords to be able to inject the file.

Specify the constant keyword in front of
a field definition whose type is boolean,
decimal, float, integer, or string and
whose value never changes.

If you specify the constant keyword, you
must assign a literal to that field. The type of
the literal must be the same as the field type
you specified for this field.

When you specify an action in an event type
definition you can call that action on an
instance of the event (see “Specifying actions in
event definitions” on page 271), unless it is a
static action, in which case you can instead call
it on the event type itself (see “Defining static
actions” on page 279).

might include the stock's name and its price:

event StockTick {
string name;
float price;

Developing Apama Applications Version 10.5

38

Getting Started with Apama EPL

To represent a specific instance of an event, use the following form:

event type (fieldl value, field2 value ...)

For example, a StockTick event describing Acme's new price of 55. 20 looks like this:
StockTick ("ACME", 55.20)

The reading order of fields in an event type definition and in instances of that event type
must always match and is always left-to-right and then top-to-bottom. That is, "ACME" is
the value of the name field and 55. 20 is the value of the price field.

Working with events

After you define an event type, there are built-in methods you can call on it, and there
are various ways that you can make that event available to monitors and queries.

You can call a number of methods on any event type. For an overview of these methods,
see the description of event in the API Reference for EPL (ApamaDoc).

Making event type definitions available to monitors and queries

A monitor or query must have information about the type definitions of the events that
it processes. You can provide this information as follows:

®m Define the event type in a separate file that contains only event definitions. An event
type definition file has a .mon extension. It is still an EPL file even though it contains
only event type declarations.

You can define any number of event types in a single file. A common practice
is to define the event interface to a service in a file that is separate from the
implementation of that service. You might have a single event interface file and
multiple implementations of services that process those event types.

An event type definition file is the only way to make event type definitions available
to queries.

® Define the event type in the monitor. Only instances of that monitor can process
events of that type. Also, events of that type cannot be sent into the correlator from
outside. When you define an event type inside a monitor it has a fully qualified
name. For example:

monitor Test

{

event Example{}

}

The fully qualified name for the Example event type is Test .Example and the
toString () output for the event name is "Test .Example () ".

®m After the optional package specification, define the event type at the beginning of
an EPL file that also defines monitors. All event type declarations must be before
the monitor declarations. After you inject this file into the correlator, the following
monitors can process events of that type:

Developing Apama Applications Version 10.5 39

Getting Started with Apama EPL

m All monitors that you define in the same file

m All monitors that you inject after you inject the file that contains the event
definition.

You might have a need for different event type definitions to have the same event type
name. In this situation, define each event type in a different package. Remember that
event types to be used by queries must be defined in event type definition files. Then,
in your monitor or query, use one of the following ways to make the appropriate event
type definition available. In the monitor or query:

®m Specify the fully qualified name of the event type, for example:
com.apamax.test.Status

®m After any package declaration and before any other declarations, specify a using
declaration. For example:

using com.apamax.test.Status;
In your code, you can then simply refer to the status event type.

Do not create EPL structures in the com. apama namespace. This namespace is
reserved for future Apama features. If you inadvertently create an EPL structure in the
com.apama namespace, the correlator might not flag it as an error in this release, but it
might flag it as an error in a future release.

See also “Name Precedence” on page 714.

An event type definition must be injected into the correlator before a monitor that
processes events of that type. After you inject an event type definition into the correlator,
any monitor that you inject after that can process events of that type.

During development, when you use Software AG Designer to launch a project, it
ensures that files are injected in the right order. When more than one project requires the
same event definition file, do one of the following:

®m In each project, declare an external dependency on the common event definition file.
See "Specifying dependencies for a single-user project” in Using Apama with Software
AG Designer.

m Create a project that contains the common event definition file. In each project that
requires these event definitions, declare a dependency on the project that contains
the common event definition file. See "Specifying projects" in Using Apama with
Software AG Designer.

Channels and input events

Adapters, Apama client applications, and tools such as the engine send correlator
utility send events into the correlator. Each incoming event is associated with a channel
either explicitly or implicitly. An event that has a channel explicitly set is delivered on
the specified channel. An event that does not have a channel explicitly set is delivered on
the default channel. The default channel's name is the empty string.

Developing Apama Applications Version 10.5 40

Getting Started with Apama EPL

An incoming event that is sent on the default channel goes to each public context. In
addition, contexts can subscribe to channels of interest (see “Subscribing to channels”
on page 65). An incoming event for which a channel is explicitly set goes to each
context that is subscribed to its associated channel. If there are no contexts subscribed to
the specified channel the event is discarded.

Any running Apama queries receive events that come in on the default channel. In
addition, Apama queries run in contexts that are subscribed to receive events sent on the
com.apama.queries channel. So queries also receive events sent on that channel.

Events sent into the correlator from, for example, clients and adapters, are

not normally delivered to external receivers. However, external receivers can

specify the com. apama. input channel in their configuration. This is a wildcard

for all events coming into the correlator. Also, an external receiver can specify
com.apama.input.channel name to receive correlator input events that are associated
with that particular channel.

When two events are sent to different channels there is no ordering guarantee. The

only guarantee is that events going from the same source to the same destination on the
same channel will be delivered in order. Also, if there is an external connection with, for
example, an adapter or client, then the events must use the same connection for them to
be delivered in the same order.

All routable event types can be sent to channels, including event types defined in
monitors.

An Apama application can use Software AG's Universal Messaging message bus to
deliver events on specified channels. If a correlator is configured to connect to Universal
Messaging, then a channel might have a corresponding Universal Messaging channel.

See "Choosing when to use Universal Messaging channels and when to use Apama
channels" in Connecting Apama Applications to External Components.

Developing Apama Applications Version 10.5 41

Developing Apama Applications Version 10.5

42

Defining Monitors

2

Defining Monitors

ADOUL MONITOT CONENTS ... 44
Example of @ SIMPIE MONITOL ..o 47
Spawning MONITOr INSEANCEScvviiiireircie e 50
Communication among MONItOr INSLANCESevriieirirriieeiee s 55
ADOUL SEIVICE MONILOIS ...t 62
Adding predefined annotatioNS ..o 63
SubsCribing t0 ChANNEIScovieciciciiecce bbb 65
Adding service monitor bundles t0 YOUr ProJECtcoveririirnieee s 68
Utilities for operating on MONITOISccovieiviiiiiiicce e 68

Developing Apama Applications Version 10.5 43

Defining Monitors

A monitor is one of the basic units of EPL program execution.

Note: The other basic unit is a query. A monitor cannot contain a query. A
query cannot contain a monitor. For information about writing queries,
see “Defining Queries” on page 69. For a comparison of queries and
monitors, see "Architectural comparison of queries and monitors" in
Introduction to Apama.

Monitors have both data and logic. Monitors communicate by sending and receiving
events. You define a monitor in a .mon source file. When you load the .mon file into the
correlator, the correlator creates an instance of the defined monitor.

A monitor instance can operate like a factory and spawn additional monitor instances.

A spawned monitor instance is a duplicate of the monitor instance that spawned it
except that the correlator does not clone any active listeners or stream queries. Spawning
lets a single monitor instance generate multiple instances of itself. While generally, the
spawned monitor instances all listen for the same event type, each one can listen for
events that have different values in particular fields.

It is good practice to define monitors and events in separate files. An advantage of doing
this is that queries, as well as monitors, can use the same event definitions. When you
inject files into the correlator, be sure to load event type definitions before you load the
monitors and/or queries that process events of those types.

The topics below provide information and instructions for defining monitors. For
reference information, see “Monitors” on page 639. Apama provides several sample
monitor applications, which you can find in the samples\ epl directory of your Apama
installation directory.

See also: "Overview of Developing Apama Applications" in Using Apama with Software
AG Designer and "Overview of Deploying Apama Applications" in Deploying and
Managing Apama Applications.

About monitor contents

A file that defines a monitor has the following form:

1. An optional package declaration

2. Followed by
a. Zero or more using declarations
b. Zero or more custom aggregate function definitions
c. Zero or more event type definitions

3. One or more monitor definitions

When you define monitors that are closely related, it is your choice whether to define
them in the same file or different files.

Developing Apama Applications Version 10.5 44

Defining Monitors

A monitor must have information about any event types it processes. Hence, the
correlator must receive and parse all of the event types used by the monitor before it is
able to correctly parse the monitor itself.

A monitor can contain one or more global variables. A global variable declaration appears
inside a monitor but outside any actions. The variable is global within the scope of the
monitor.

A monitor can also contain a number of actions. Actions are similar to procedures.
Finding an event, or pattern of events, of interest can trigger an action. You can also
trigger an action by invoking it from inside another action.

Any construct that you declare inside a monitor is available only from within that
monitor. In other words, its use is restricted to the scope of the monitor.

Below is a minimal monitor:

monitor EmptyMonitor ({
action onload() {
}

}

The monitor above does not do anything; it does not register interest in any event or
event pattern, it does not have variables, and it does not do anything in its single action
statement. However, it does show the minimum structure of a monitor:

m It specifies the monitor keyword followed by the name of the monitor. In the
example, the name of the monitor is EmptyMonitor. The name of the monitor and
the name of the file that contains the monitor do not need to be the same. A single
file can contain multiple monitors.

®m It declares the onload () action. When you inject a monitor into the correlator, the
correlator executes the monitor's onload () action. Every monitor must contain an
onload () action. The onload () action is similar to the main () function in C/C++.

If you define two or more monitors in the same file, the correlator executes the
onload () actions of the monitors in the order in which you define the monitors.

If there is an onload () action whose execution is dependent on the results of the
execution of the onload () action of another monitor, but sure you define that other
monitor earlier in the same file. If you define that other monitor in a separate file, be
sure you inject that file first. Tip: it is better to avoid these dependencies as much as
possible by using initialization events. See “Using events to control processing” on
page 61.

EPL provides a number of actions, such as onload (), onunload (), and ondie (). You
can define additional actions, and assign a name of your choice that is not an EPL
keyword. See also “Keywords” on page 708.

Do not create EPL structures in the com. apama namespace. This namespace is reserved
for future Apama features. If you do inadvertently create an EPL structure in the
com.apama namespace, the correlator might not flag it as an error in this release, but it
might flag it as an error in a future release.

Developing Apama Applications Version 10.5 45

Defining Monitors

Loading monitors into the correlator

During development, you use Software AG Designer to load your project, including
monitors, into the correlator. Software AG Designer ensures that files are loaded in the
required order.

At any time, you can use the engine inject correlator tool to load EPL files into
the correlator. See "Injecting code into a correlator" in Deploying and Managing Apama
Applications.

In a deployment environment, you can load monitors into the correlator in any of the
following ways:

B Use the engine inject tool.
® Write a program in C++, Java, or .NET and use the corresponding Apama client APL

If you try to inject a monitor whose name is the same as a monitor that was already
injected, the correlator rejects the monitor. You can inject two monitors with the same
name into the correlator only if they exist in different packages. To specify the package
for a monitor or event type, add a package statement as the first line in the EPL file that
contains the monitor/event definition. For example:

package com.mycompany.mypackage;
monitor Foo ({

}

Terminating monitors

A monitor instance terminates when one of the following events occurs:
B The monitor instance executes a die statement in one of its actions.
B A runtime error condition is raised.

® The monitor is terminated externally (for example, with the engine_delete utility).
When the correlator deletes a monitor it terminates all instances of that monitor.

B The monitor instance has executed all its code and there are no active event or
stream listeners. This will occur rapidly if the monitor's onload () action does not
create any listeners. See also “Beware of accidental stream leaks” on page 262.

When a monitor instance terminates, the correlator invokes the monitor's ondie ()
action, if it is defined. You cannot spawn in an ondie () action.

Unloading monitors from the correlator
The correlator unloads a monitor in the following situations:

m All of the monitor's instances have terminated.

B An external request kills the monitor. This kills any instances of the monitor.

Developing Apama Applications Version 10.5 46

Defining Monitors

If the monitor defines an onunload () action, the correlator executes it just before it
unloads the monitor. You cannot spawn in an onunload () action.

If an owning monitor has an internal event type, it is possible for another dependent
monitor to hold an instance of that internal event type in a variable of the any type

(see the description of the any type in the API Reference for EPL (ApamaDoc)) if the
owning monitor has sent or routed an instance of the monitor-internal event. In this
case, a monitor is not completely unloaded, even if all of its monitors have terminated,
because another monitor still depends on one of the monitor-internal types. The
monitor name will stay in the correlator, but there will be no monitor instances running.
The onunload () action, if defined, still executes when the last monitor instance is
terminated. The monitor is not automatically deleted in this case. The monitor name
needs to be explicitly deleted with the engine delete tool or by using the client API,
which can only be done if the monitors that are dependent on the internal type are either
no longer dependent or have been deleted themselves. See also "Deleting code from a
correlator" in Deploying and Managing Apama Applications.

Example of a simple monitor

The empty monitor discussed in “About monitor contents” on page 44 does not do
anything. To write a useful monitor, add the following:

B An event type definition

m A global variable declaration

B An event expression that indicates the pattern to monitor for

B An action that operates on an event that matches the specified pattern
For example, the EPL below

B Defines the stockTick event type, which is the event type that the monitor is
interested in.

m Defines the newTick global variable, which is accessible by all actions within this
monitor. The newTick variable can hold a stockTick event.

B Registers an interest in all StockTick events.

B Invokes the processTick () action when it finds a StockTick event. The
processTick() action uses the 1og statement to output the name and price of all
StockTick events received by the correlator.

Lines starting with // are comments. EPL also supports the standard C++/Java /*
*/ multi-line comment syntax.

// Definition of the event type that the correlator will receive.
// These events represent stock ticks from a market data feed.
event StockTick {

string name;

float price;

}

// A simple monitor follows.

Developing Apama Applications Version 10.5 47

Defining Monitors

monitor SimpleShareSearch {

// The following is a global variable for storing the latest

// StockTick event.

StockTick newTick;
// The correlator executes the onload() action when you inject the
// monitor.
action onload() {

on all StockTick(*,*) :newTick processTick() ;

}

// The processTick() action logs the received StockTick event.

action processTick () {
log "StockTick event received" +
" name = " + newTick.name +
" Price = " + newTick.price.toString() at INFO;

About the variable in the example

The single global variable is of the event type StockTick. A variable can be of any
primitive type (boolean, decimal, float, integer, string), or any reference type
(action, context, dictionary, event, listener, location, sequence Or stream).

About the onload() action

In this example, the onload () action contains only one line of code:

on all StockTick(*,*):newTick processTick() ;
This line specifies the following:
B on all StockTick(*,*) indicates the event to look for.

The on statement begins the definition of an event listener. It means, "when the
following event (or a pattern of events) is received ...". This event listener is looking
for all stockTick events. The asterisks indicate that the values of the StockTick
event fields do not matter.

B :newTick processTick(); indicates what to do when a StockTick event is found.

If the event listener finds a StockTick event, the coassignment (:) operator indicates
that you want to copy the found event into the newTick global variable. The
onload () action then invokes the processTick () action.

About event listeners

The on statement must be followed by an event expression. An event expression
specifies the pattern you want to match. It can specify multiple events, but this simple
example specifies a single event in its event expression. For details, see “About event
expressions and event templates” on page 160.

The a11 keyword extends the on statement to listen for all events that match the
specified pattern. Without the a11 keyword, the event listener would listen for only the
first matching event. In this example, without the a11 keyword, the event listener would
terminate after it finds one stockTick event.

Developing Apama Applications Version 10.5 48

Defining Monitors

In the sample code, the event expression is StockTick (*, *). Each event expression
specifies one or more event templates. Each event template specifies one event that you
want to listen for. The stockTick (*, *) event expression contains one event template.

The first part of an event template defines the type of event the event listener is looking
for (in this case StockTick). The section in parentheses specifies filtering criteria for
contents of events of the desired type. In this example, the event template sets both
fields to wildcards (*). This declares an event listener that is interested in all StockTick
events, regardless of content.

When an event listener finds a matching event, the listener can use the as operator to
place the event into an implicitly declared variable only available in the scope of the
listener processing block or the : assignment operator to place that event in a global or
local variable. For example:

on StockTick(*,*) as newTick {

processTick (newTick) ;

}

This copies a StockTick event into the newTick variable which is only in scope of the
processing block. This is known as implicit coassignment.

Or:
on all StockTick(*,*) :newTick processTick() ;

This copies a StockTick event into the newTick global variable. This is known as a
variable coassignment.

Finally, the on statement invokes the processTick () action. For all received StockTick
events, regardless of content, the sample monitor copies the matching event into the
newTick global variable, and then invokes the processTick () action. For details, see
“Using global variables” on page 264.

About the processTick() action

The processTick () action executes the 1og statement to output some data on the
registered logging device, which by default is standard output. This 1og statement is
used to report some of the fields from the received event. For details, see “Logging and
printing” on page 296.

Accessing fields in events

EPL uses the . operator to access the fields of an event. You can see that the
processTick () action uses the . operator to retrieve both the name (newTick.name) and
price (newTick.price) fields of each event.

The 1og statement requires strings as fields, so the processTick () action specifies the
built-in . toString () operation on the non-string value:

newTick.price.toString ()

Developing Apama Applications Version 10.5 49

Defining Monitors

Spawning monitor instances

It is frequently necessary to enable a single monitor to concurrently listen for multiple
kinds of the same event type. For example, you might want one monitor to listen for
and process stock ticks that each have a different stock name. You accomplish this is by
spawning monitor instances as described in the topics below.

See also “Spawning to contexts” on page 309.

How spawning works

In a monitor, you spawn a monitor instance by specifying the spawn keyword followed
by an action. When the correlator spawns a monitor instance, it does the following:

1. Creates a new instance of the monitor that is spawning.
2. Copies the following, if there are any, to the new monitor instance:
m Current values of the spawning monitor instance's global variables
®m Any arguments declared in the action that is specified in the spawn statement
® Anything referred to indirectly by means of the copied variables and arguments

3. Executes the named action with the specified arguments in the new monitor
instance.

The new monitor instance does not contain any active event listeners, stream listeners,
streams or stream queries that were in the spawning monitor instance. For example,
data held in local variables that are bound to a listener are not copied from the spawning
monitor instance to the new monitor instance. The figure below illustrates this process:

Developing Apama Applications Version 10.5 50

Defining Monitors

= = =)
[1+] [3°] (3]
s = =
wy w) w
3 8 g)
= 2 L Received
= =) Events
= p >
= E 2
i -
—, Initial
Chosen Stock = “" Monitor
- Instance
| <
Chosen Stock = “IBM"
Spawned
Chosen Stock = “ATT" Monitor
Instances
Chosen Stock = “XRX"
—
-

The figure shows a monitor that spawns when it receives a NewStock event. Init