
Introduction to Apama

Version 10.5

October 2019

This document applies to Apama Version 10.5 and to all subsequent releases.

Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 2013-2019 Software AG, Darmstadt, Germany and/or Software AG USA Inc., Reston, VA, USA, and/or its subsidiaries and/or
its affiliates and/or their licensors.

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or
Software AG USA Inc. and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product names mentioned
herein may be trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
hp://softwareag.com/licenses.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product
documentation, located at hp://softwareag.com/licenses and/or in the root installation directory of the licensed product(s).

This software may include portions of third-party products. For third-party copyright notices, license terms, additional rights or
restrictions, please refer to "License Texts, Copyright Notices and Disclaimers of Third Party Products". For certain specific third-party
license restrictions, please refer to section E of the Legal Notices available under "License Terms and Conditions for Use of Software AG
Products / Copyright and Trademark Notices of Software AG Products". These documents are part of the product documentation, located
at hp://softwareag.com/licenses and/or in the root installation directory of the licensed product(s).

Use, reproduction, transfer, publication or disclosure is prohibited except as specifically provided for in your License Agreement with
Software AG.

Document ID: PAM-INTRO-105-20191015

http://softwareag.com/licenses/
http://softwareag.com/licenses/
http://softwareag.com/licenses/

M
Table of Contents

Introduction to Apama Version 10.5 3

Table of Contents

About this Guide..7
Documentation roadmap.. 7
Online Information and Support... 9
Data Protection... 10

Apama Overview.. 11
What is Apama?... 12
Understanding the different user viewpoints.. 14
About Apama license files..16
Running Apama without a license file..17

Apama Architecture...19
Distinguishing architectural features...20
How Apama integrates with external data sources..21
Descriptions of Apama components...25

Description of the Apama correlator... 26
Description of event processing languages.. 26

Introduction to Apama EPL..26
Introduction to Apama in-process API for Java (JMon)... 30

Description of Software AG Designer... 31
Description of Query Designer.. 31
Description of Dashboard Builder and Dashboard Viewer..31
Description of client development kits...32
Description of Apama's Data Player... 32

How the correlator works... 33

Apama Concepts..37
Event-driven programming..38
Complex event processing... 39
Understanding monitors and listeners..40
Understanding queries..42
Architectural comparison of queries and monitors... 44
Understanding dashboards...45

Getting Ready to Develop Apama Applications... 47
Becoming familiar with Apama...48
Introduction to Software AG Designer..48
Steps for developing Apama applications.. 49
Overview of starting, testing and debugging applications.. 51

Apama Glossary...53
action...56

M
Table of Contents

Introduction to Apama Version 10.5 4

activation... 56
adapter.. 56
aggregate function.. 56
batch... 56
bundle... 56
.cdp... 57
CEP...57
channel..57
connectivity plug-in... 57
context...57
correlator... 57
correlator deployment package.. 58
correlator-integrated messaging for JMS... 58
.csv..58
current events... 58
custom blocks... 58
dashboard... 58
Dashboard Builder.. 58
dashboard data server..59
dashboard display server... 59
Dashboard Viewer.. 59
Data Player... 59
DataView...59
EPL... 59
EPL plug-in... 60
event... 60
event collection... 60
event listener.. 60
event pattern...60
event template.. 60
.evt.. 61
exception...61
IAF...61
Integration Adapter Framework (IAF)...61
JMon... 61
latest event... 62
listener...62
lot.. 62
match set.. 62
MemoryStore...62
method.. 62
.mon.. 62
monitor.. 63
MonitorScript... 63
optional..63

M
Table of Contents

Introduction to Apama Version 10.5 5

parameterization... 63
parameters.. 63
partition... 63
partitioning...63
.qry.. 64
query... 64
query aggregate..64
Query Designer...64
query input definition.. 64
query instance.. 64
query key.. 65
query window..65
range... 65
.rtv... 65
simulation.. 65
Software AG Designer..65
stack trace element.. 65
static action...66
stream... 66
stream listener.. 66
stream network... 66
stream query...66
stream source template..66
window.. 67
within clause... 67
without clause... 67

M
Even Header

Introduction to Apama Version 10.5 6

M
Odd Header

About this Guide

Introduction to Apama Version 10.5 7

About this Guide

This Introduction to Apama is for new Apama users. It provides a high-level overview of
Apama, describes the Apama architecture, discusses Apama concepts and introduces
Software AG Designer, which is the main development tool for Apama.

Documentation roadmap
Apama provides documentation in the following formats:

HTML (available from both the documentation website and the doc folder of the
Apama installation)

PDF (available from the documentation website)

Eclipse help (accessible from Software AG Designer)

You can access the HTML documentation on your machine after Apama has been
installed:

Windows. Select Start > All Programs > Software AG > Tools > Apama n.n > Apama
Documentation n.n. Note that Software AG is the default group name that can be
changed during the installation.

UNIX. Display the index.html file, which is in the doc/apama-onlinehelp directory of
your Apama installation directory.

The following guides are available:

Title Description

Release Notes Describes new features and changes introduced with
the current Apama release as well as earlier releases.

Installing Apama Summarizes all important installation information
and is intended for use with other Software AG
installation guides such as Using Software AG
Installer.

Introduction to Apama Provides a high-level overview of Apama, describes
the Apama architecture, discusses Apama concepts
and introduces Software AG Designer, which is the
main development tool for Apama.

Using Apama with Software
AG Designer

Explains how to develop Apama applications in
Software AG Designer, which is an Eclipse-based
integrated development environment.

M
Even Header

About this Guide

Introduction to Apama Version 10.5 8

Title Description

Developing Apama
Applications

Describes the different technologies for developing
Apama applications: EPL monitors, Apama
queries, and Java. You can use one or several of
these technologies to implement a single Apama
application. In addition, there are C++ and Java
APIs for developing components that plug in to a
correlator. You can use these components from EPL.

Connecting Apama
Applications to External
Components

Describes how to connect Apama applications
to any event data source, database, messaging
infrastructure, or application.

Building and Using Apama
Dashboards

Describes how to build and use an Apama
dashboard, which provides the ability to view
and interact with DataViews. An Apama project
typically uses one or more dashboards, which are
created in the Dashboard Builder. The Dashboard
Viewer provides the ability to use dashboards
created in the Dashboard Builder. Dashboards can
also be deployed as simple web pages. Deployed
dashboards connect to one or more correlators by
means of a dashboard data server or display server.

Deploying and Managing
Apama Applications

Describes how to deploy components with Software
AG Command Central, how to deploy and manage
queries, and how to deploy Apama applications
using Docker and Kubernetes. It also provides
information for improving Apama application
performance by using multiple correlators, for
managing and monitoring Apama components over
REST (Representational State Transfer), and for
using correlator utilities and configuration files.

In addition to the above guides, Apama also provides the following API reference
information:

API Reference for EPL in ApamaDoc format

API Reference for Java in Javadoc format

API Reference for C++ in Doxygen format

API Reference for .NET in HTML format

API Reference for Python in Pydoc format

API Reference for Component Management REST APIs in HTML format

M
Odd Header

About this Guide

Introduction to Apama Version 10.5 9

Online Information and Support
Software AG Documentation Website

You can find documentation on the Software AG Documentation website at “hp://
documentation.softwareag.com”. The site requires credentials for Software AG's Product
Support site Empower. If you do not have Empower credentials, you must use the
TECHcommunity website.

Software AG Empower Product Support Website

If you do not yet have an account for Empower, send an email to
“empower@softwareag.com” with your name, company, and company email address
and request an account.

Once you have an account, you can open Support Incidents online via the eService
section of Empower at “hps://empower.softwareag.com/”.

You can find product information on the Software AG Empower Product Support
website at “hps://empower.softwareag.com”.

To submit feature/enhancement requests, get information about product availability,
and download products, go to “Products”.

To get information about fixes and to read early warnings, technical papers, and
knowledge base articles, go to the “Knowledge Center”.

If you have any questions, you can find a local or toll-free number for your country
in our Global Support Contact Directory at “hps://empower.softwareag.com/
public_directory.asp” and give us a call.

Software AG TECHcommunity

You can find documentation and other technical information on the Software AG
TECHcommunity website at “hp://techcommunity.softwareag.com”. You can:

Access product documentation, if you have TECHcommunity credentials. If you do
not, you will need to register and specify "Documentation" as an area of interest.

Access articles, code samples, demos, and tutorials.

Use the online discussion forums, moderated by Software AG professionals, to
ask questions, discuss best practices, and learn how other customers are using
Software AG technology.

Link to external websites that discuss open standards and web technology.

http://documentation.softwareag.com
http://documentation.softwareag.com
mailto:empower@softwareag.com
https://empower.softwareag.com/
https://empower.softwareag.com
https://empower.softwareag.com/Products/default.asp
https://empower.softwareag.com/KnowledgeCenter/default.asp
https://empower.softwareag.com/public_directory.asp
https://empower.softwareag.com/public_directory.asp
http://techcommunity.softwareag.com

M
Even Header

About this Guide

Introduction to Apama Version 10.5 10

Data Protection
Software AG products provide functionality with respect to processing of personal data
according to the EU General Data Protection Regulation (GDPR). Where applicable,
appropriate steps are documented in the respective administration documentation.

M
Odd Header

Apama Overview

Introduction to Apama Version 10.5 11

1 Apama Overview

■ What is Apama? ... 12

■ Understanding the different user viewpoints .. 14

■ About Apama license files ... 16

■ Running Apama without a license file ... 17

M
Even Header

Apama Overview

Introduction to Apama Version 10.5 12

In addition to reading this Introduction to Apama, it is recommended that you do the
following to become familiar with Apama:

Work through the Apama tutorials in Software AG Designer. From the Help menu,
choose Welcome to display the Welcome page, and then click Tutorials under the
Apama heading. This displays links to interactive tutorials that provide step-by-
step instructions for writing simple Apama applications that you can then run and
monitor.

Look at the Apama demos in Software AG Designer. Click Demos under the Apama
heading on the above-mentioned Welcome page.

Use the skills you learned in the tutorials to try modifying the demos as suggested in
their readme files.

There are several approaches for developing Apama applications:

EPL. Apama's Event Processing Language (EPL) is designed for developing event
processing applications. This approach is for programmers who need a powerful
event processing language.

Apama queries. Apama queries are useful when you want to monitor incoming events
that provide information updates about a very large set of real-world entities such
as credit cards, bank accounts, cell phones. Typically, you want to independently
examine the set of events associated with each entity, that is, all events related to
a particular credit card account, bank account, or cell phone. A query application
operates on a huge number of independent sets with a relatively small number of
events in each set.

You can also use the following approach, but keep in mind that this is less powerful and
therefore not really recommended:

Apama in-process API for Java (JMon). Apama's JMon interface lets programmers use
the industry standard Java programming language to develop event processing
applications.

Depending on what you are trying to accomplish, you can use as many approaches as
required in a single Apama application.

What is Apama?
Apama is an event processing platform. It monitors rapidly moving event streams,
detects and analyzes important events and paerns of events, and immediately acts on
events of interest according to your specifications.

Event-based applications differ from traditional applications in that rather than
continuously executing a sequence of instructions, they listen for and respond to
relevant events. Events describe changes to particular real-world or computer-based
objects, for example a new bid price for Vodafone's stock on the London Stock Exchange.

Events are collections of aribute-value pairs that describe a change in an object. For
example, the figure below shows stock quote events. Each stock quote has a number of

M
Odd Header

Apama Overview

Introduction to Apama Version 10.5 13

aributes, including current bid price, current offer price, and current volumes. In the
figure, the highlighted event shows the latest quote for Vodafone stock.

The aributes, or fields, of an individual event class may be of a variety of types,
including numerical and textual data. Events with multiple fields can be viewed as
multi- dimensional types, in that a search to find an event of interest might involve
searching across several of the event fields.

Rather than executing a sequence of activities at some defined point, an event-based
system waits and responds appropriately to an asynchronous signal as soon as it
happens. In this way, the response is as immediate (or real-time) as possible.

The main Apama features include:

Graphical development tools accessible to business users.

EPL, which is a concise, richly-featured event processing language.

The connectivity plug-in API, which allows in-correlator integration with external
data sources of varying formats.

Integration Adapter Framework (IAF), which provides easy integration to external
event source and systems.

Note: The IAF architecture is superseded by connectivity plug-ins. Therefore,
Software AG strongly recommends choosing connectivity plug-ins over
the IAF when creating new adapters and connectivity.

M
Even Header

Apama Overview

Introduction to Apama Version 10.5 14

Sophisticated analytics with native support for temporal arguments.

Sub-second response to detected events and paerns of interest.

Highly scalable, patented, event-driven architecture, supporting tens of thousands of
concurrent scenarios.

Integrated tools for creating visually appealing user dashboards.

Flexible event replay for testing new event scenarios and analyzing existing ones.

Tools for managing and monitoring your application.

The following functional diagram shows the main Apama features:

Understanding the different user viewpoints
Apama has been designed for a range of users. The figure below shows the spectrum of
users from application developers to business analysts to pure business users. Apama
provides different facilities for each of these classes of user. After the initial design is
set for an Apama application, multiple users can work concurrently to implement the
design.

M
Odd Header

Apama Overview

Introduction to Apama Version 10.5 15

Application developers can make use of the full set of APIs and technologies within
the Apama architecture to create sophisticated, custom, CEP solutions. Using Software
AG Designer, they can create applications directly in EPL or Java. They can extend the
capabilities of the Apama correlator with their own in-house analytic routines. Using the
connectivity plug-in API or the Integration Adapter Framework (IAF), they can integrate
with a new data service by developing a new adapter if one that can be plugged in does
not already exist. They can also take advantage of low-level APIs for building custom
client user interfaces in C, C++, Java and .NET.

Business analysts are provided with GUI tools (Query Designer, Dashboard Builder) to
enable the creation of queries and dashboards without having to write code. A query
is a self-contained processing unit suitable for applications where the incoming events
provide information updates about a very large set of real-world entities. A query can be

M
Even Header

Apama Overview

Introduction to Apama Version 10.5 16

an application in its own right, or part of a bigger application. Query Designer provides
features for creating reusable application components (parameterized queries).

Thus, there are several approaches to developing Apama applications. Your
development team can use one, two or all three in an Apama application:

EPL. Apama's native event processing language.

Queries. Use EPL and the Query Designer GUI to create Apama query applications.

Java. Apama provides an in-process API for Java (called JMon) for processing events.

Pure business users are often only interested in the end-game application. The output
of the Dashboard Builder GUI provides an immediately usable application for this
purpose.

About Apama license files
Software AG supplies you with an Apama license file. Refer to the licensing terms
specified in your software contract for any additional legal restrictions that may be
imposed on your use of Apama.

A license file is required for the full functionality of Apama. The Software AG Installer
will ask for it during the installation. See "License file" in Installing Apama for further
information.

It is possible to run Apama without a license file or with an expired license file. Apama
behavior with regard to the Apama license file is as follows:

When a license file cannot be found, the correlator will run with reduced capabilities.
See “Running Apama without a license file” on page 17.

A correlator started with a license file does not shut down when its license expires.
It continues operation for seven days beyond expiration. The correlator logs periodic
warning messages until it reaches the end of the seven days or until you replace the
expired license.

Removing the license file from a running correlator does not cause it to shut down.
It continues operation for seven days after the license file is removed. The correlator
logs periodic warning messages until it reaches the end of the seven days or until
you restore the license.

You can start a correlator with an expired license if it is less than seven days beyond
expiration.

If you obtain a license file after you have been running Apama, copy it to the license
directory in your APAMA_WORK directory, for example: C:\Users\Public\SoftwareAG
\ApamaWork_n.n \license\ApamaServerLicense.xml (where n.n stands for the current
version number).

If the correlator's license has expired, you have to have obtain a new license file and
copy it into the same location before the end of the above mentioned grace period. The

M
Odd Header

Apama Overview

Introduction to Apama Version 10.5 17

correlator checks for an updated license file every five minutes, so the new license file is
automatically picked up. The correlator does not need to be restarted in this case.

Note: If you name the license file "ApamaServerLicense.xml" and put it in the
license directory in APAMA_WORK, then the correlator will automatically pick up
the license file. Otherwise, you must specify the path to the license file on the
command line.

Running Apama without a license file
Apama can be run without a license file in which case it runs with reduced capabilities
and can be used for simple or exploratory use cases. Refer to "License Terms and
Technical Restrictions" in the Release Notes for the current license terms and restrictions.

The following restrictions apply when starting the correlator without a license file:

The correlator does not start more than 4 threads for EPL processing. The number of
threads being used is logged. Up to 20 contexts may be created and all are runnable,
but the correlator does not use more than 4 threads to execute EPL, limiting the
correlator's performance.

Reliable messaging with connectivity plug-ins is not permied.

Correlator-integrated messaging for JMS is limited to BEST_EFFORT only
messaging (unreliable). It refuses to connect using reliable modes (EXACTLY_ONCE,
AT_LEAST_ONCE or APP_CONTROLLED).

The correlator logs that it is running without a license file.

The following restrictions are enforced while the correlator is running and a license file
cannot be found:

The correlator is limited to 1024MB of resident memory. If 1024MB of memory
is exceeded, the correlator is stopped and an error is logged indicating that the
correlator is running without a license file. There is a warning if the resident memory
exceeds 90% of the 1024MB limit - though if the correlator's memory increases very
quickly, the limit may be hit before the 90% warning is logged.

Note that this limit also includes Java memory usage. It is recommended that you
size your Java virtual machine to not consume too much memory. If you are using
Java features, you may need to use -J-Xmx256M to limit the memory usage of your
Java virtual machine to 256MB (or some suitable size less than 1024MB). Note that
the memory usage may increase if a burst of events is received.

The correlator does not allow more than 20 contexts to be created. The spawn
statement throws an exception if it would create a new context and 20 contexts are
already created. In addition, a startup error occurs when recovering a persistent
database with more than 20 contexts. Both the exception and the startup error
indicate that the correlator is running without a license file.

M
Even Header

Apama Overview

Introduction to Apama Version 10.5 18

The correlator does not allow more than 5 persistent EPL monitors (this does not
include monitor instances of persistent monitors). An error is logged if there are
more than 5 persistent monitors.

The correlator does not allow the injection of user-generated correlator deployment
packages (CDPs). If a user-generated CDP is injected, the correlator rejects the
injection and an error is logged indicating that the correlator is running without a
license file.

The correlator does not allow more than 5 query definitions to run and no more than
5 query instances per definition. When more than 5 query definitions are injected
into the correlator, ERROR log messages are wrien.

The query runtime drops events if there are already 50 different partition values for
a query. When more than 50 partition values are sent in, ERROR log messages are
wrien.

If reliable JMS connections are requested dynamically, an exception is thrown
which should be caught in EPL, and an error message is logged indicating that this
configuration is not supported as the correlator is running without a license file.

The correlator info web page (hp://localhost:15903/info) always shows you whether the
correlator is currently running with or without a license file.

To find out if the above-mentioned limits have been exceeded, you can check the
following:

The correlator log file for most of the above-mentioned cases. See "Descriptions of
correlator status log fields" in Deploying and Managing Apama Applications.

The status messages of the engine_watch tool. See "Watching correlator runtime
status" in Deploying and Managing Apama Applications.

The -a (--getall) or -Pm (--getpmemory) option of the engine_management tool to
get the physical memory usage. See "Shuing down and managing components" in
Deploying and Managing Apama Applications.

The scenario browser for status information on queries. See "Using the Scenario
Browser view" in Using Apama with Software AG Designer.

M
Odd Header

Apama Architecture

Introduction to Apama Version 10.5 19

2 Apama Architecture

■ Distinguishing architectural features .. 20

■ How Apama integrates with external data sources ... 21

■ Descriptions of Apama components .. 25

■ How the correlator works ... 33

M
Even Header

Apama Architecture

Introduction to Apama Version 10.5 20

Apama architecture has a modular, scalable design with core features that

Monitor inbound events typically delivered by a messaging infrastructure or market
data feed.

Analyze those events in memory, either singly or in conjunction with other events
whose aributes and temporal ordering represent a paern.

Trigger outbound events that represent an action to be taken in response to the
analysis.

As you can see, Apama's architecture is designed to process events. Event processing
requires an architecture that is fundamentally different from traditional data processing
architectures. Because Apama's architecture is event driven, an understanding of the
distinctive qualities of this architecture is crucial to designing and building robust
Apama applications.

Distinguishing architectural features
Apama inverts the paradigm of traditional data-centric systems. Rather than the "store
> index > search" model of those architectures, Apama introduces the correlator — a
real-time, event processing engine. An Apama application comprises monitors and/
or Apama queries that specify the events or paerns of events that interest you. These
specifications are the logical equivalent of database queries. After you load monitors
and /or Apama queries into the correlator, incoming events flow over them and they
monitor these event streams for the events and paerns you specified. When a matching
event or paern is found the correlator processes it according to the rules you specify.

Apama's architecture is further distinguished by its ability to support huge numbers
of monitors and queries operating simultaneously. Each can have its own logic for
monitoring the event streams, seeking out paerns and, upon detection, triggering
specified actions.

The correlator supports two main programming languages: EPL and Java. EPL, Apama's
native event programming language, lets developers define rules for processing complex
events. Such rules let the correlator find temporal and causal relationships among
events.

Messages on a variety of transports, such as an Enterprise Service Bus (ESB), carry
events to and from correlators. Apama connectivity plug-ins and adapters translate
application-specific data into Apama application event formats that the correlator
can process. For example, Apama trading systems integrate with various exchanges
by means of adapters that translate between Apama and market data feeds or order
management protocols. For more information, see “How Apama integrates with external
data sources” on page 21.

Apama's architecture also provides tools for creating dashboards that let you manage
your event processing scenarios. You can use Apama dashboards to start, stop,
parameterize, and monitor event processing from client applications.

M
Odd Header

Apama Architecture

Introduction to Apama Version 10.5 21

The Apama ADBC (Apama Database Connector) adapter provides a mechanism to
capture and replay event streams from JDBC/ODBC-compliant third-party databases.
Together, the ADBC standard adapters and Apama's Data Player in Software AG
Designer let you analyze the actual performance of applications already in production,
and also investigate the likely behavior of Apama applications prior to deployment.

Apama components can be connected to each other by executing the Apama
engine_connect tool with specification of an explicit point-to-point connection or by
using Software AG's Universal Messaging message bus.

The following figure illustrates the Apama architecture. Each component is described
later in this section.

How Apama integrates with external data sources
You can connect Apama to any event data source, database, messaging infrastructure, or
application. There are several ways to do this:

Write transport and codec connectivity plug-ins.

Implement Apama Integration Adapter Framework (IAF) adapters.

Develop custom client applications with Apama APIs for Java, .NET, and C++.

Create applications that use correlator-integrated messaging for JMS.

M
Even Header

Apama Architecture

Introduction to Apama Version 10.5 22

Use Software AG Digital Event Services to communicate with other Software AG
products.

Use MQTT for communication between constrained devices, for example, devices
with limited network bandwidth.

Use Kaa for communication with the Kaa distributed streaming platform.

Use Cumulocity IoT for communication with connected IoT devices.

Using connectivity plug-ins to connect with external data sources

Connectivity plug-ins can be wrien in Java or C++, and run inside the correlator process
to allow messages to be sent and received to/from external systems. Individual plug-
ins are combined together to form chains that define the path of a message, with the
correlator host process at one end and an external system or library at the other, and
with an optional sequence of message mapping transformations between them.

Connectivity plug-ins perform a similar role to IAF adapters: both allow plug-ins
to transform and handle delivery of events. In most cases, we recommend using
connectivity plug-ins instead of the IAF for new adapters. The reasons are:

Connectivity plug-ins run inside the correlator process itself. This allows for
simpler deployments with less moving pieces. It also avoids problems for handling
cases where one of the IAF and correlator are restarted and the other is not, or
communication problems (including latency) between them. Ensuring the correct
startup order is also simpler (see "Sending and receiving events with connectivity
plug-ins" in Connecting Apama Applications to External Components).

Connectivity plug-ins have a richer data model for both messages and configuration.
Connectivity plug-ins can be given events (including sub-events), sequences and
dictionaries as map objects. The values within a map can be strings, integers, floats,
lists or maps. The lists and maps can in turn contain any of these types (for example,
a map can contain a list, where the list contains a map which again contains a list,
and so on). This provides an easier to use API for handling nested events and other
nested data structures, both in EPL events and in external data formats (such as
JSON).

Connectivity plug-ins allow multiple codecs to be used in combination, allowing for
a modular approach to message transformation and greater re-use of codecs.

Connectivity plug-ins provide for reliable messaging (at-least-once delivery). See
"Using reliable transports" in Connecting Apama Applications to External Components.

Connectivity plug-ins also perform a similar role to the Apama client library, which
allows Java or C++ code in an external process to send/receive messages to/from the
correlator. If Apama events need to be made available within an external system, then
consider connectivity plug-ins if the external system has a protocol (such as JSON over
HTTP). If the external system hosts plug-ins via an API, then the client library may be a
beer fit.

For detailed information, see "Using Connectivity Plug-ins" in Connecting Apama
Applications to External Components.

M
Odd Header

Apama Architecture

Introduction to Apama Version 10.5 23

Using IAF adapters to connect with external data sources

Apama's Integration Adapter Framework (IAF) provides bidirectional connectivity with
event sources and with your environment.

Note: The IAF architecture is superseded by connectivity plug-ins. Therefore,
Software AG strongly recommends choosing connectivity plug-ins over the
IAF when creating new adapters and connectivity.

Apama adapters provide both connectivity and XML-based mapping between your
application's data format and Apama's internal format. The purpose of an adapter is to
translate events from a proprietary format into Apama events. This lets the correlator
analyze those events. Also, an adapter converts Apama events into your proprietary
source format. This lets Apama send the events to an external service.

Adapters allow a single Apama application to efficiently monitor and analyze disparate
event types within a common event processing scenario. For example, the same scenario
can process events relating to foreign exchange (FX) aggregation, smart order routing
and cross-asset trading in capital markets or cold chain automation in supply chain
applications.

Within the IAF, Apama offers a range of standard adapters for capital markets,
infrastructure, and connectivity to data and messaging sources (see “hps://
empower.softwareag.com/Products/default.asp”), as well as APIs for building custom
adapters.

The IAF is a server component that adapters plug into for runtime invocation. You
can develop an adapter with the IAF adapter library, along with whatever specific
connection APIs you need to connect to your data service. Each adapter is structured so
that the mapping of parameters between the source format and Apama format can be
configured dynamically through XML.

The following figure shows the bidirectional operation of an adapter.

Examples of types of adapters include:

Middleware messaging adapters. Several middleware bus technologies are available on
the market, including technologies by Tibco, IBM MQ Series, Vitria, webMethods,
SeeBeyond and others. When the middleware you are using supports JMS, you can

https://empower.softwareag.com/Products/default.asp
https://empower.softwareag.com/Products/default.asp

M
Even Header

Apama Architecture

Introduction to Apama Version 10.5 24

create applications that use correlator-integrated messaging for JMS in place of an
adapter.

Apama is able to interface with these technologies through an appropriate adapter.
If the middleware bus offers publish and subscribe capabilities, then Apama can
become a named endpoint like any other service. Apama is able to receive events
from the bus and convert them, via an adapter, into Apama events for the correlator
to process. An adapter can convert any events emied by a correlator back into the
native bus format.

Database adapters. Apama is able to connect to databases for a number of purposes,
including searching historical state or storing key events as an audit trail in the
corporate database. Most popular databases support a standard access protocol, such
as ODBC or JDBC. The Apama Database Connector (ADBC) provides ODBC and
JDBC adapters that use these standard access protocols to connect to your database.

Custom real-time feed adapters. A number of companies provide real-time content as
information feeds. Examples in the finance industry include Reuters, who provides a
variety of stock and news feeds, and GLTrade, who provides bidirectional access to a
variety of the world's equities and derivatives exchanges. Many such companies use
custom communications protocols to provide their data. However, Apama adapters
have been easily developed for these and other bidirectional data services.

For detailed information, see "The Integration Adapter Framework" in Connecting Apama
Applications to External Components.

Using Apama APIs to connect with external data sources

A range of APIs let you extend Apama at the dashboard, client, and correlator levels for
integration with other environments, such as Java, .NET or C++. In addition, you can
extend correlator behavior with Java and C++ plug-ins that can call external function
libraries from within an application.

For detailed information, see "Developing Custom Clients" in Connecting Apama
Applications to External Components.

Using correlator-integrated messaging for JMS to connect with external data sources

Apama's correlator-integrated messaging for JMS provides an efficient way to receive
and send JMS messages to and from Apama applications. It also provides for reliable
messaging (guaranteed delivery) and duplicate detection.

For detailed information, see "Using the Java Message Service (JMS)" in Connecting
Apama Applications to External Components.

Using Software AG Digital Event Services to communicate with other Software AG products

Software AG Digital Event Services is a messaging system for communicating between
different Software AG products using events. Digital Event Services allows event
definitions to be converted between a product's internal event or document definition
to digital event types and vice versa, so participating products can share a set of event
definitions. When you develop Apama applications that make use of Digital Event
Services, the translation between digital event type definitions and Apama event types

M
Odd Header

Apama Architecture

Introduction to Apama Version 10.5 25

is done automatically. When digital events are sent to or received from Digital Event
Services, they are converted to or from Apama events.

For detailed information, see "The Digital Event Services Transport Connectivity Plug-
in" in Connecting Apama Applications to External Components.

Using MQTT for communication between constrained devices

Apama provides a connectivity plug-in, the MQTT transport, which can be used to
communicate between the correlator and an MQTT broker, where the MQTT broker uses
topics to filter the messages. MQTT messages can be transformed to and from Apama
events by listening for and sending events to channels such as prefix:topic (where the
prefix is configurable).

For detailed information, see "The MQTT Transport Connectivity Plug-in" in Connecting
Apama Applications to External Components.

Using Kafka for communication with a Kafka distributed streaming platform

Apama provides a connectivity plug-in, the Kaa transport, which can be used to
communicate with the Kaa distributed streaming platform. Kaa messages can be
transformed to and from Apama events by listening for and sending events to channels
such as prefix:topic (where the prefix is configurable).

For detailed information, see "The Kaa Transport Connectivity Plug-in" in Connecting
Apama Applications to External Components.

Using Cumulocity IoT for communication with connected IoT devices

Apama provides a connectivity plug-in, the Cumulocity IoT transport, which allows you
to communicate with the IoT devices connected to Cumulocity IoT. For example, you
can receive events from the devices and send operations to the devices.

For detailed information, see "The Cumulocity IoT Transport Connectivity Plug-in" in
Connecting Apama Applications to External Components.

Descriptions of Apama components
While traditional architectures can respond to events after they have happened,
Apama's event-driven architecture responds in real time to fast moving events of any
kind. Apama applications leverage a platform that combines analytic sophistication,
flexibility, performance and interoperability. In addition to being an event processing
engine, Apama provides sophisticated development tools, a flexible testing
environment, an extensible integration framework and graphically-rich dashboards.
This makes Apama a comprehensive event processing platform for building real-time,
event-driven applications.

M
Even Header

Apama Architecture

Introduction to Apama Version 10.5 26

Description of the Apama correlator
Apama's correlator is the engine that powers an Apama application. Correlators
execute the sophisticated event paern-matching logic that you define in your Apama
application. Apama applications track inbound event streams and listen for events
whose paerns match defined conditions. The correlator's patented architecture can
monitor huge volumes of events per second

When an event or an event sequence matches an active event expression, the correlator
executes the appropriate actions, as defined by the application logic.

The correlator can concurrently search for and identify vast numbers of discrete
event paerns with sub-millisecond responsiveness.

The correlator can deliver low latency analytics on multiple inbound data streams by
monitoring the event streams for paerns you specify.

The correlator goes beyond simple event processing to deliver actionable responses.

See also “How the correlator works” on page 33.

Description of event processing languages
Apama provides developers with two language models for building event-based
applications:

EPL, which is Apama's native event processing language

Apama (in-process) API for Java (JMon)

This section gives you a flavor for how these languages process events. You can find
complete information in Developing Apama Applications.

Introduction to Apama EPL
Before EPL can look for paerns in event streams, you must define the types of events
you are interested in and inject their definitions in the correlator. An event definition
informs the correlator about the composition of an event type. An example event
definition for a stock exchange tick feed is as follows:
event StockTick {
 string symbol;
 float price;
 float volume;
}

Each field of the event has a type and a name. The type informs the correlator how to
handle that field and what operations to allow on it. As you can see, the correlator can
handle multiple types, such as numeric values and textual values, within the same event
type. Apama can handle any number of different event types at one time.

External event sources such as connectivity plug-ins, clients and the IAF need to be
able to send events into the correlator. For the correlator to be able to detect an event

M
Odd Header

Apama Architecture

Introduction to Apama Version 10.5 27

of interest, the event's type definition must have been loaded into the correlator. An
example of a StockTick event is as follows:
StockTick ("APAMA", 55.20, 250010)

There are two basic EPL structures called monitors and queries.

Apama monitors

A monitor defines:

One or more listeners. EPL provides event listeners and stream listeners.

An event listener observes the correlator event stream analyzing each event in
turn until it finds a sequence of events that match its event expression. When this
happens the event listener triggers, causing the correlator to execute the listener
action.

A stream listener passes stream query output to procedural code. A stream query
operates on one or two streams to transform their contents into a single output
stream. The type of the stream query output items need not be the same as the
type of the stream query input items. The output for one stream query can be
the input for another stream query. At the end of the chain of stream queries,
a stream listener coassigns each stream query output item to a variable and
executes specified code.

One or more actions. An action is one or more operations that the correlator performs.
An action might be to register a listener or it might be an operation to perform when
the correlator finds a match between an incoming event or sequence and a listener.

The following EPL example illustrates these concepts in the form of a simple monitor
called PriceRise. The monitor is composed of three actions. The first two actions
declare listeners, which are indicated by the on keyword.
monitor PriceRise
{
 action onload() {
 on all StockTick("IBM",>=75.5,*) as firstTick {
 furtherRise (firstTick);
 }
 from tick in all StockTick(symbol="IBM")
 within 60.0 every 60.0
 select mean(tick.price) as f { average(tick.price); }
 }
 action average(float av) {
 log "60-second average for IBM: "+av.toString();
 }
 action furtherRise(StockTick tick) {
 on all StockTick("IBM",>=(tick.price*1.05),*) as finalTick {
 log "IBM has hit "+finalTick.price.toString();
 emit PlaceSellOrder("IBM",finalTick.price,1000.0);
 }
 }
}

When a monitor starts running, the correlator executes the monitor's onload() action.
In the PriceRise monitor, the onload() action creates an event listener for all IBM
stock ticks that have a price above 75.5 at any volume and a stream listener for all IBM

M
Even Header

Apama Architecture

Introduction to Apama Version 10.5 28

stock ticks. Since the last field of the event (volume) is irrelevant to the event listener it is
represented by an asterisk (*), which indicates a wildcard. This monitor effectively goes
to sleep until the correlator detects an IBM stock tick.

If the correlator detects an IBM stock tick, the stream listener takes it as input and uses it
to log 60-second averages for IBM stock prices. If the IBM stock tick also has a price that
is greater than or equal to 75.5, the correlator copies the field values in that event to the
firstTick variable and calls the furtherRise() action.

The furtherRise() action creates another event listener. This event listener is looking
for the next part of the event paern, which involves detecting if the IBM stock price
goes up by more than 5% from its new value. The second listener uses the firstTick
variable to obtain the price value in the event that caused the first listener to detect a
match. If the price rise occurs, the correlator copies the values in the matching, incoming
event to the finalTick variable, and executes the associated block of code.

The associated block of code logs the new price and emits a PlaceSellOrder event to a
receiver that is external to the correlator. For example, an adapter can pick up this event,
and translate it into a message that an order book can operate on. The PlaceSellOrder
event causes placement of an order for 1000 units of IBM stock.

Apama queries

An Apama query does the following:

Operates on only specified input events. You can specify one or more event types. For
each event type, you can filter event content so that the query operates on only
certain instances of that event.

Partitions input events according to their keys — Based on the values of selected
fields in incoming events, the correlator segregates events into many separate
partitions. Partitions typically relate to real-world entities that you are monitoring
such as bank accounts, cell phones, or subscriptions. For example, an automated
bank machine associates an account number with every transaction. You can define
a query that partitions Withdrawal events based on their account number. Each
partition could contain the Withdrawal events for one account. This lets you look for
withdrawal paerns that look suspicious.

Typically, a query application operates on a huge number of partitions with a
relatively small number of events in each partition. Each partition is identified by a
unique key value, such as an account number.

Watches for the event pattern of interest across all partitions. An event paern can define
a sequence of events as well as conditions that determine whether there is a match.
A condition can be a filter that specifies a Boolean expression that must evaluate to
true for there to be a match, a time constraint that requires some or all elements in
the paern to occur within a given time period, or an exclusion, which is an event
whose presence prevents a match.

Executes specified actions when a pattern match is found. Actions can send events. This is
how a query can communicate with other queries, with monitor instances, and with

M
Odd Header

Apama Architecture

Introduction to Apama Version 10.5 29

external system elements in a deployment, such as adapters, correlators, or other
deployed processes.

Optionally uses parameters. When a query has no parameters, a single instance of the
query is automatically created when the query is loaded into a correlator. If one
or more parameters are defined for a query then when the query is loaded into a
correlator, no instances are created until you specify parameter values.

The following simple query example illustrates these concepts:
query ImprobableWithdrawalLocations {
 parameters {
 float period;
 }
 inputs {
 Withdrawal(value>500) key cardNumber within period;
 }
 find Withdrawal as w1 -> Withdrawal as w2
 where w2.country != w1.country {
 log "Suspicious withdrawal: " + w2.toString() at INFO;
 }
}

The optional parameters block in a query definition specifies parameters for which you
must supply values so that an instance of the query (a parameterization) can be created.
A query that defines parameters functions as a template for multiple parameterizations.
Each parameterization of the simple query above would watch for the identified
Withdrawal events for a different time period.

The inputs block of a query definition identifies the events that the query operates on.
The example query operates only those Withdrawal events whose value field is greater
than 500 and that arrived within the time range specified by the value of the period
parameter. You can also specify that no more than a particular number of events can be
in each partition at a given moment.

In the example, the Withdrawal input definition specifies the cardNumber field as the
key. The query partitions incoming Withdrawal events according to their card numbers.

The find statement specifies the paern you are looking for. In the example, the paern
of interest is a Withdrawal event followed by another Withdrawal event where the
country fields for the two events are different. Since a query operates on the events in
each partition independently of the other partitions, this paern suggests a suspicious
transaction.

Finally, when a query finds a match it executes the statements in its find block. In the
example, the query logs a message that contains the Withdrawal event that triggered the
match.

See also “Understanding queries” on page 42 and “Architectural comparison of
queries and monitors” on page 44.

M
Even Header

Apama Architecture

Introduction to Apama Version 10.5 30

Introduction to Apama in-process API for Java (JMon)
EPL was designed specifically for event processing. However, some organizations
and individuals prefer to use a mainstream programming language, such as Java.
Consequently, Apama has made the features of the correlator available in Java.

The correlator uses its embedded Java virtual machine (JVM) to execute JMon monitors.
The following Java code defines the StockTick event type.
import com.apama.jmon.Event;

public class StockTick extends Event {
 public String symbol;
 public double price;
 public double volume;

 //No argument constructor
 public StockTick() {
 this("",0,0);
 }

 //Constructor
 public StockTick(String name, double price, double volume) {
 this.name = name;
 this.price = price;
 this.volume = volume;
 }
}

In JMon, an event class definition must include the following:

A set of public variables to hold the event's fields

A no-arguments constructor

A parameterized constructor

While this is not as concise as EPL, these are familiar Java conventions.

The following code defines a JMon monitor that listens for any IBM stock tick events
with a price that is greater than 75.5. The onLoad() method creates an event expression
object, which receives an Apama event string. This string represents the event to listen
for. Also, the PriceCheck class implements the MatchListener class, which provides a
match() method to be invoked if the correlator finds a match. This is passed to the event
expression object as well.
import com.apama.jmon.*;
public class PriceCheck implements Monitor, MatchListener {
 public PriceCheck() {}
 public void onLoad() {
 EventExpression eventexpr =
 new EventExpression("StockTick(\"IBM\",>75.5,*)");
 eventexpr.addMatchListener(this);
 }
 public void match(MatchEvent event) {
 System.out.println("Pattern detected");
 }
}

M
Odd Header

Apama Architecture

Introduction to Apama Version 10.5 31

Description of Software AG Designer
Software AG Designer is the main entry point for Apama development. When you are
ready to start developing your Apama application, open Software AG Designer and
create an Apama project to contain your application files.

Complete information is in Using Apama with Software AG Designer.

Description of Query Designer
Apama's Query Designer editor, which runs in Software AG Designer, provides a
graphical environment that complements Apama's event processing language. You use
Query Designer to define and update Apama queries. An Apama query monitors a
very large number of real-world entities and processes events on a per-entity basis, for
example, all events related to one credit card account.

Query Designer provides graphical tools for specifying:

Inputs a query operates on. For each input, you specify the event type and a partition
key field. You can also specify a filter, a time constraint, and a maximum number of
events to operate on in each partition.

Parameters For each parameter you add, you specify a name and a type, which must
be one of integer, float, string, or boolean.

Event pattern of interest. After you add an event type as an input to a query, you can
drag that event type on to a canvas where you graphically define the event paern
you are interested in.

Actions. Define one or more actions to be executed when a match is found.

Conditions. Add a filter, time constraint, or exclusion (an event that prevents a match)
to the event paern of interest.

Aggregates. Find data based on many sets of events.

Query Designer is intended for business users who may not be familiar with EPL.

See "Adding query files to projects" in Using Apama with Software AG Designer.

Description of Dashboard Builder and Dashboard Viewer
Apama's Dashboard Builder enables you to create end-user dashboards and prepare
them for deployment. For applications wrien in EPL, you create DataViews and use
Dashboard Builder to create a dashboard from the DataViews.

Dashboard Builder is a visual design environment. A primary goal of Dashboard Builder
is to enable non-technical users to create sophisticated dashboards. Consequently,
Dashboard Builder provides a complete design and deployment environment. With
a wide range of visual objects and drag-and-drop development, Dashboard Builder

M
Even Header

Apama Architecture

Introduction to Apama Version 10.5 32

provides the tools needed to create highly customized dashboards from which users can
start/stop, parameterize and monitor Apama DataViews.

Dashboard Builder offers an extensive array of graphical widgets with which to build
custom user dashboards. Meters, gauges, tables, graphs, and scales are available for
creating highly customized dashboards. You can further personalize the interface
through addition/deletion of panels or modification of graphics and color schemes.

Dashboard Viewer is the tool that end-users run to access dashboards.

See also "Building Dashboard Clients" and "Using the Dashboard Viewer" in Building and
Using Apama Dashboards.

Note: This documentation refers to using the dashboard components provided with
Apama. If you are using MashZone NextGen instead to visualize your data
from Apama, refer to the MashZone NextGen documentation.

Description of client development kits
Apama is highly extensible with a range of APIs provided at the dashboard, client and
correlator levels. You can use these APIs to integrate with other environments, such as
Java, JavaBeans, C++, or .NET. You can extend correlator behavior with plug-ins that can
call external function libraries from within an application scenario.

See "Developing Custom Clients" in Developing Apama Applications.

Description of Apama's Data Player
Apama's Data Player, which runs in Software AG Designer, accelerates the
development/deployment cycle of EPL applications or JMon applications by leing you
pre-test (via simulation) your applications on event streams captured in Apama. It also
supports flexible event processing replay features.

Data Player provides analysis tools for the Apama environment. It enables Apama users
to investigate the likely behavior of Apama applications prior to deployment, as well as
analyze the actual performance of those applications already in production.

Data Player operates on data captured by the Apama Database Connector (ADBC).
ADBC provides Apama standard adapters that allows access to JDBC/ODBC compliant
databases as well as to Apama Sim files. Analysis can include all events received by
Apama or only selected event streams. Likewise, you can choose specific segments
of time from the past (for example, an entire day, a specific 30 minute period, or any
user chosen time slice). Additionally, you can accelerate replay speeds many times the
actual live speeds, or slow them down or pause for more careful exploration of event
processing operations.

See Using Apama with Software AG Designer for information about the Data Player. See
Connecting Apama Applications to External Components for information about the ADBC
adapter.

M
Odd Header

Apama Architecture

Introduction to Apama Version 10.5 33

How the correlator works
The following figure shows the inner details of a running correlator. After the figure,
there is a detailed discussion of how the correlator works.

Monitors and queries identify event paerns of interest and the responses to take if
those paerns are detected. You can use EPL to write monitors and queries directly.
You can use JMon to write monitors directly. Apama uses the Software AG Designer
development environment for writing source code for monitors and queries, and
provides a graphical editor for defining queries (Query Designer). When you use Query
Designer, the query is translated into a monitor that the correlator can execute.

The correlator does not just execute loaded monitors and queries in a sequential
manner, as if they were traditional imperative programs. Instead, the correlator loads its
internal components (the hypertree and the temporal sequencer) with the monitoring

M
Even Header

Apama Architecture

Introduction to Apama Version 10.5 34

specifications of the monitors and queries. The in-built virtual machines execute only the
sequential analytic or action parts of the monitors and queries.

The correlator contains the following components:

HyperTree multi-dimensional event matcher

The event matcher contains data structures and algorithms designed for high
performance, multi-dimensional, event filtering. The correlator loads the event
matcher with event templates. An event template identifies the event you are
interested in. Logically, an event template is a multi-dimensional search. For
example, a template for a stock market event might have values such as the
following:

Instrument: IBM

Bid Price: 93.0 <- -> 94.5

Offer Price: *

Bid Volume: >10000

Offer Volume: *

This event template expresses a multi-dimensional search over stock market events.
The template will match any event about stock IBM, which has a bid price between
93.0 and 94.5 and a bid volume greater than 100000. The offer price and volume are
irrelevant to this search and so wildcards are used.

This kind of multi-dimensional, multi-type, ranged searching is what the event
matcher was specifically designed for. In checking whether an incoming event
matches any of the registered event templates, the event matcher exhibits
logarithmic performance. This means that vast numbers of event templates can be
queried against, with the minimum possible performance tail-off.

An event template is the basic unit of monitoring. A simple monitor might have one
or a few event templates. A more complex monitor might have many. A monitor
needs to load event templates only when events that match the specification are
relevant to the monitor: in a multi-stage monitor, a monitor can insert and remove
several event templates as the monitoring requirements change.

Temporal and stream sequencer

The temporal and stream sequencer builds upon the single event matching
capabilities of the event matcher to provide multiple temporal event and stream
correlations. With EPL or JMon, you can declare a temporal sequence such as “tell
me when any news article event is followed within 5 minutes by a 5% fall in the
price of the stock the news article was about”. This is a temporal sequence, with a
temporal constraint. The sequence is a news article event, followed by the next stock
price event, and then another stock price event with a price 5% less than the previous
price event. The temporal constraint is that the last event occurs within 5 minutes of
the first event.

The sequencer manages this temporal monitoring process, using the event matcher
to monitor for appropriate event templates. This capability saves the programmer

M
Odd Header

Apama Architecture

Introduction to Apama Version 10.5 35

from having to encode such complex temporal logic through less intuitive
imperative logic.

Monitors

The correlator provides the capability for monitors to be injected as either EPL or
Java bytecode. The number of monitors that can be loaded into a single correlator
are only limited by memory size. When loaded, a monitor configures the hypertree
and temporal sequencer with event templates for monitoring. The correlator stores
the monitor internally and executes actions in the appropriate virtual machine in
response to event detection.

Each monitor instance has its own address space within the correlator for storage
of variables and other state. Monitor temporary storage size is limited only by the
memory size of the host machine.

Queries

Queries provide a higher level, more declarative mechanism for detecting event
paerns. Unlike monitors, they also support automatically storing their state
in a distributed cache such as Terracoa's TCStore. TCStore allows queries to
transparently and elastically scale out with the support of a JMS message bus such
as Software AG's Universal Messaging. The storage size is thus limited by the
distributed cache, which can exceed the memory size of a single host machine.

Event input queue

External interfaces, such as adapters and connectivity plug-in chains, send events
into the correlator. To start the monitoring process, the correlator injects each event,
in the order in which it arrives, into the hypertree. Any matches filter through the
temporal sequencer and invoke required actions in the virtual machines. Some
actions might cause events to be queued for output. During peak event input flow,
events might wait on an input queue for an extremely brief moment.

EPL virtual machine

In response to detected event paerns of interest, the EPL virtual machine executes
EPL. The fact that the correlator behaves this way, rather than continuously
executing imperative code, is another reason for its high performance. Also, you
can implement parallel processing in your applications so that the correlator can
concurrently execute code in multiple monitors.

Java virtual machine

The Java virtual machine is a standard JVM that has been embedded in the
correlator. Thus any standard Java code features are accessible from monitors. The
Java virtual machine behaves exactly as the EPL virtual machine in that the detection
of event paerns of interest invokes code fragments.

Event output queue

Monitor actions can output events to be communicated to other monitors or to
external systems. When a monitor routes an event, the event goes to the front of
the input queue. This ensures that any monitors that are listening for that event

M
Even Header

Apama Architecture

Introduction to Apama Version 10.5 36

immediately detect it. When a monitor generates an event for an external receiver the
event goes to an output queue for transmission to the appropriate registered party.

When you use the correlator in conjunction with connectivity plug-ins or the
IAF, then an output event might represent an action on an external service. The
connectivity plug-in or IAF transforms the output event into an invocation of the
external service. An example is an event that places an order into the order book of a
Stock Exchange.

EPL plug-ins

It is possible to extend the capabilities of the correlator through an EPL plug-in. An
EPL plug-in is an externally-linked software module that registers with the correlator
through the correlator's extension API. EPL plug-ins are useful when programming
libraries of useful real-time functions have been built up. These functions can be
made available as objects that can be invoked by EPL actions.

Apama provides a number of standard EPL plug-ins:

The MemoryStore plug-in lets monitors share in-memory data.

The TimeFormat plug-in helps you format dates and times.

State persistence

When the correlator shuts down the default behavior is that all state is lost. When
you restart the correlator no state from the previous time the correlator was running
is available. You can change this default behavior by using correlator persistence.
Correlator persistence means that the correlator automatically periodically takes a
snapshot of its current state and saves it on disk. When you shut down and restart
that correlator, the correlator restores the most recent saved state.

To enable persistence, you indicate in your EPL code which monitors you want to
be persistent. Optionally, you can write actions that the correlator executes as part
of the recovery process. When code is injected for a persistence application, the
correlator that the code is injected into must have been started with a persistence
option. Persistent monitors must be wrien in EPL. State in JMon monitors cannot be
persistent. State in chunks, with a few exceptions, also cannot be persistent.

You program the correlator by injecting monitors that you write in EPL or JMon, or by
injecting queries.

When events are sent to the correlator, the correlator processes events by comparing the
events to what listeners are active in the correlator. Each external event matches zero
or more listeners. The correlator executes a matching event's associated listeners in a
rigid order. The correlator completes the processing related to a particular event before
it examines the next event. If the processing of an event generates another event that
is routed to the correlator, the correlator processes all routed events before moving on
to the next event in its queue. If a listener action block does not route events, the next
external event is considered.

M
Odd Header

Apama Concepts

Introduction to Apama Version 10.5 37

3 Apama Concepts

■ Event-driven programming ... 38

■ Complex event processing ... 39

■ Understanding monitors and listeners ... 40

■ Understanding queries ... 42

■ Architectural comparison of queries and monitors .. 44

■ Understanding dashboards .. 45

M
Even Header

Apama Concepts

Introduction to Apama Version 10.5 38

This section discusses the concepts that are central to all Apama applications. A
thorough understanding of these concepts can help you design and develop more robust
Apama applications.

Event-driven programming
Events are data elements. Each event is a collection of aribute-value pairs that capture
the state (or changes to state) of real-world or computer-based objects. Events consist of
data and temporal aributes that represent the what, when, and where of an object. This
can be the state of an object or the interaction of objects at a particular time. Real world
examples of events include:

Stock market trades and quotes

RFID signals

Satellite telemetry data

Card swipes at a turnstile

ATM transactions

Network activities/faults

Troop movement on a balefield

Activity on a website

Electronic funds transfers

SCADA alerts (Supervisory Control and Data Acquisition)

Processing events requires event-driven programming. The hallmarks of event-driven
programming include the following:

Program execution does not flow sequentially from beginning to end. There is no
standard starting point.

Program execution happens in response to the arrival of events. Some external
source pushes the events into your program.

Events arrive in asynchronous messages.

There are two main bodies of code: code that analyzes incoming events to determine
if the events are of interest and code that performs actions when events of interest
are found.

There are a lot of similarities between GUI programming and event driven
programming. For example, in a GUI program you typically write code that responds to
mouse clicks.

See also Developing Apama Applications, "How EPL applications compare to applications
in other languages".

M
Odd Header

Apama Concepts

Introduction to Apama Version 10.5 39

Complex event processing
Complex Event Processing (CEP) is software technology that enables the detection and
processing of

Events derived from other events. A derived event is an event that your application
generates as a result of applying a method or action to one or more other events.

Event sequences, often with temporal constraints.

CEP programs find paerns in event data that enable detection of opportunities and
threats. Timely responses are then pushed to the appropriate recipients. The responses
can be in the form of automated events, such as placing orders in algorithmic trading
systems, or alerts to someone using Business Activity Monitoring (BAM) dashboards.
The result is faster and beer operational decisions

EPL and JMon provide the features needed to write applications that can perform CEP.
The following example shows how EPL can concisely define event paerns and rules.
While this example shows the implementation of an Apama monitor, an example that
shows an implementation of an Apama query would also demonstrate complex event
processing.

The NewsCorrelation monitor's onload() action defines a listener that specifies
a complex event expression. The literal translation of the expression is “look for all
news articles about any stock, followed by a 5% rise in the value of that stock within 5
minutes”. This is the kind of implied news impact that might be of interest to a trader or
a market risk analyst.
monitor NewsCorrelation {
 action onload() {
 on all NewsItem() as news {
 on StockTick(symbol=news.subject) as tick {
 on StockTick(symbol=news.subject,
 price >= (tick.price*1.05))
 within(300.0) alertUser;
 }
 }
 }
 action alertUser() {
 log "News to price movement Correlation for stock "
 +news.subject+" has occurred";
 }
}

The on keyword specifies a listener. The initial listener nests two additional listeners that
define the event sequence of interest. The listeners do the following:

1. The initial listener watches for all NewsItem events.

2. Each time the correlator detects a NewsItem event, this listener captures it in a news
variable.

M
Even Header

Apama Concepts

Introduction to Apama Version 10.5 40

3. The first nested listener then watches for a StockTick event for the stock that the
news item was about. This listener uses the news variable to access the information
from the previously detected event.

4. When the correlator detects a matching StockTick event, the first nested listener
captures it in the tick variable.

5. The innermost listener then watches for another StockTick event for the same stock
but with a price that is at least 5% higher than the price in the event captured by
the tick variable. The within keyword indicates that the correlator must detect
the second StockTick event within 300 seconds (5 minutes) of finding the initial
NewsItem event.

6. If the correlator finds a second StockTick event that matches within 5 minutes, the
monitor sends a message to the log file. The nested listeners terminate.

If the correlator does not find a second StockTick event that matches within the 5
minutes, the nested listeners terminate without sending a message to the log.

Understanding monitors and listeners
An introduction to monitors and listeners is in “Description of event processing
languages” on page 26. As mentioned there, monitors are the basic program component
that you inject into the correlator. You write monitors in EPL or JMon.

A monitor defines:

One or more listeners. A listener is the EPL mechanism that specifies the event or
sequence of events that you are interested in. Conceptually, listeners sift through the
streams of events that come in to the correlator and detect matching events.

One or more actions. An action is one or more operations that the correlator
performs. An action might be the registration of a listener or it might be the
execution of an operation when the correlator finds a match between an incoming
event or sequence and a listener.

When the correlator executes an on statement, it creates a listener. A listener watches
for an event, or a sequence of events, that matches the event expression specified in the
on statement. An event expression defines one or more event templates. Each event
template defines an event type to look for, and specifies whether the event's fields
should have any specific values. In addition, listeners can specify

Temporal constraints. For example, a listener can specify that two events of interest
must be received within 10 minutes.

Logic. For example, a listener can specify that it is interested in event A or event B or
event C.

It is often desirable to listen, separately but concurrently, for different instances of the
same event type. For example, you might want to listen for and process, separately but

M
Odd Header

Apama Concepts

Introduction to Apama Version 10.5 41

concurrently, stock tick events for different stocks. EPL accomplishes this by leing a
monitor instance spawn other monitor instances.

In the monitor code, you spawn a monitor instance by specifying the spawn keyword
followed by an action. Each act of spawning creates a new instance of the monitor.

When the correlator spawns a monitor instance, it does the following:

1. The correlator creates a new monitor instance from the original monitor instance.
The new monitor instance is almost identical to the original. The new monitor
instance has a copy of the variables from the original but the active listeners from the
original monitor instance are not copied.

2. The correlator invokes the named action on the new monitor instance.

Monitors that contain spawn statements typically act as factories, creating new monitor
instances that all listen for the same event type but where each listens for events that
have different values in one or more fields. Also, monitors can spawn to particular
threads, referred to as contexts in EPL. This enables the correlator to concurrently process
multiple monitor instances. (You must create contexts in EPL to implement parallel
processing. You can refer to contexts from both EPL and JMon.)

The lifecycle of a monitor is as follows:

1. You use Software AG Designer or a correlator utility to inject the EPL or Java that
defines the monitor into the correlator.

2. The correlator creates the original monitor instance, including space for variables as
needed.

3. The correlator executes the monitor instance's onload() action.

4. The original monitor instance might spawn several times creating new monitor
instances. For each spawned monitor instance, the correlator creates a copy of the
original monitor instance's variable space and then executes the specified action.

5. A monitor instance terminates when it has no active listeners. Upon termination, the
correlator invokes the monitor instance's ondie() method, if one is defined. Note
that it is possible for a monitor instance to remain active after the monitor instance
that spawned it has terminated.

6. When the last instance of a particular monitor terminates, the correlator calls
the monitor's onunload() method, if it defines one. The last monitor instance to
terminate might be the original monitor instance or a spawned monitor instance.
Regardless, when the last instance terminates the correlator invokes the monitor's
ondie() method and then the monitor's onunload() method, if these methods are
defined.

For example, suppose that a monitor definition specifies an ondie() method and an
onunload() method. You inject this monitor and the correlator creates the original
monitor instance. The original monitor instance spawns 9 times. Consequently, there
are 10 instances of that monitor in the correlator. After all of these monitor instances
have terminated, the correlator will have called ondie() 10 times and it will have
called onunload() once.

M
Even Header

Apama Concepts

Introduction to Apama Version 10.5 42

See "Geing Started with Apama EPL" in Developing Apama Applications.

Understanding queries
Apama queries allow business analysts and developers to create scalable applications
to process events originating from very large populations of real-world entities. Scaling,
both vertically (same machine) and horizontally (across multiple machines), is inherent
in Apama query applications. Scaled-out deployments, involving multiple machines,
will use distributed cache technology to maintain and share application state. This
makes it easy to deploy across multiple servers, and keep the application running even if
some servers are taken down for maintenance or fail.

Apama queries are designed to be easy to develop for both the business analyst and the
application developer. Graphical tools to specify the application design and full round-
trip engineering allows both the business analyst and the developer to work on the
same queries. At the developer level, an Apama query is defined using the Apama event
processing language, EPL.

Apama's visual Query Designer in Software AG Designer enables business analysts to
easily create new queries and to view and review existing queries.

Use cases for queries

Apama queries are well suited to problems that:

Map to a large set of partitions.

Have continuous availability and/or scalability requirements.

Do not require sub-millisecond latency.

Partitions may correspond to customer accounts, transactions being tracked, devices
or some other entity. In a query application, the correlator processes the events in each
partition independently of other partitions.

Advantages of Apama queries over Apama monitors:

Platform provides active-active availability. That is, queries can be run in a cluster,
where every node in the cluster contributes processing resources. The number of
nodes can be changed dynamically without losing state.

Scale out across multiple servers.

Declarative paern specification.

Query evaluation is based purely on past event history. Other than events, queries
have no state and so they behave uniformly over time.

Disadvantages of Apama queries compared to Apama monitors:

Higher latency than monitors. Latency is of the order of milliseconds to seconds
rather than microseconds to milliseconds. Exact values depend on the deployment
and the types of events being processed.

M
Odd Header

Apama Concepts

Introduction to Apama Version 10.5 43

Apama monitors allow you to write custom and more powerful EPL applications
that do not have the declarative and structural bounds that queries have.

To take advantage of the scalability and availability that the queries platform offers,
the problem your application needs to solve should meet one or more of the following
requirements:

Different partitions for a given query must be completely independent. However,
different queries can use different partition keys for the same event types. For
example, one query may partition ATM withdrawals by cardNumber, and another by
atmId.

The average number of events in each window should be low. The recommendation
is less than 50 events. For example, if ATM withdrawals are partitioned by
cardNumber then a window that retains withdrawals for a three-day period is fine
because the typical number of withdrawals per card is likely to be low. While it is
possible to have hundreds of withdrawals for a single card number, that would be an
exceptional case and probably indicative of suspicious behavior.

Other than the history of events, no state is required. Queries do not provide for
state to be stored. However, it is possible to mix monitors and queries in the same
deployment.

The time between events destined for the same partition would typically be long,
that is, more than a few seconds between events.

The exact ordering between events is not critical. A query may treat two events for
the same partition that occur close in time as having occurred in an order that is
different from the order in which they were sent.

Query application examples

Some examples of use cases for queries include:

Customer relation management. Monitoring transactions between a retailer or
service provider and individual customers. For example, queries can identify:

Transactions that are implausible and indicate fraudulent activity. See the ATM
Fraud demo which is available from the Welcome page (see also "Demos and
tutorials" in Using Apama with Software AG Designer).

Users who have not yet registered an optional account on their service provider's
website. See the Unregistered_Users_Sample application which is available from
the Welcome page. This is part of the Additional Samples.

Customers who may be interested in a particular retail offer.

Tracking parcels. Monitoring parcels to determine when one is failing to progress
through the distribution system for a certain amount of time, or is in danger of not
arriving at its destination.

In all of these cases, the problem can be easily partitioned (by customer account or
parcel), and the number of events per partition is likely to be low and spread out in time.

M
Even Header

Apama Concepts

Introduction to Apama Version 10.5 44

Architectural comparison of queries and monitors
In some ways, an Apama query is similar to an Apama monitor. Each operates as a self-
contained event processing agent that communicates with other monitors and queries by
sending and receiving events.

Note: While Apama queries and Apama stream queries use similar terminology,
they are different constructs. Apama queries can communicate with monitors,
but Apama queries are not contained in monitors. Whereas Apama stream
queries are defined and operate inside monitors.

One difference between a monitor and a query is the programming model for scaling.
With monitors, the approach is procedural. A spawn statement is used to create new
monitor instances. Typically, for each real-world entity, a separate monitor instance
is used to handle the events relating to that entity. The developer has full control over
what data is held where as well as the design of the solution architecture. With queries,
the approach is declarative. A key is defined which is used to identify how the events
are partitioned such that events from each real-world entity are handled separately.
Also, queries can use a distributed Apama MemoryStore to share historical data between
correlators. This allows query deployments to scale across several hosts, make the same
data available to multiple correlators and provide availability should a correlator fail or
be taken down for maintenance.

Another difference between monitors and queries is the way in which they handle the
state, or event history. With monitors, each monitor instance holds the state, or event
history, needed for its continuing processing. This state is held in memory, which allows
high-performance processing over complex state. With queries, the only state is the
event history, which is held separately from the query. The query is effectively stateless,
which allows queries to easily scale across correlators.

Typically, a monitor instance operates on events that relate to a particular real-world
entity. To operate on events related to another entity in the same set, the monitor
typically spawns another instance. In contrast, the definition of a query specifies how
to partition incoming events so that each set of events that relates to a particular real-
world entity is in its own partition. The query operates on the events in each partition
independently of every other partition.

The following table compares monitor variables with query parameters:

Monitor variables Query parameters

Can store any complex state that the
monitor requires.

Must be one of the following types:
boolean, decimal, float, integer,
string.

Can be updated by the monitor. Can only be read by the query.

M
Odd Header

Apama Concepts

Introduction to Apama Version 10.5 45

Monitor variables Query parameters

Are private to that monitor instance. Are controlled by Scenario Service
clients.

A monitor can subscribe to a channel to receive all events sent on that channel. A query
cannot subscribe to a channel. However, running Apama queries automatically receive
all events sent on the com.apama.queries channel as well as all events sent on the
default channel. For example, monitors, adapters, and the engine_send utility can send
events to the com.apama.queries channel.

Both monitors and queries can send events to a channel. In both monitors and queries,
the send statement sends events to only those components that are connected to that
correlator. For both monitors and queries, sending events to other correlators in the
cluster requires connections created by the engine_connect utility or the use of
Universal Messaging to connect the correlators to the same set of Universal Messaging
channels.

In general, monitors follow a more imperative paern while queries have more
declarative clauses. For example, a monitor can use conditional if ... else statements
to determine whether there is a match that triggers some processing. A query specifies
where, within, and/or without clauses to define filters, time constraints, and exclusions,
respectively, right in the event paern. In general, this allows queries to be simpler than
monitors.

Understanding dashboards
A DataView is a representation of application logic, but without any defined user
interaction. You add a dashboard to a DataView to enable end-users to:

Send an event to create a new DataView instance. This might include entering the
initialization values for the DataView.

Monitor the status of all DataView instances. For example, to see when a paern has
been detected, and some action taken.

Manually intervene in the execution of a DataView instance. For example, to take
some action in response to an alert.

Send an event to deactivate a DataView instance.

In an Apama application, a dashboard is a real-time, business cockpit for controlling and
receiving real-time updates from running DataViews. Deployed dashboards connect
to one or more correlators through a dashboard data server. As the DataViews in a
correlator run, and their variables or fields change, the correlator sends update events
to all connected dashboards. When a dashboard receives an update event, it updates
its display in real time to show the behavior of the DataView. User interactions with
the dashboard, such as sending an event to create an instance of a DataView, result in
control events that the dashboard data server sends to the correlator.

M
Even Header

Apama Concepts

Introduction to Apama Version 10.5 46

See "Introduction to Building Dashboard Clients" in Building and Using Apama
Dashboards.

See "Making event type definitions available to monitors and queries" in Developing
Apama Applications.

Alternatively, you can use the MemoryStore EPL plug-in in EPL applications. The
MemoryStore creates DataViews for you.

M
Odd Header

Getting Ready to Develop Apama Applications

Introduction to Apama Version 10.5 47

4 Getting Ready to Develop Apama Applications

■ Becoming familiar with Apama .. 48

■ Introduction to Software AG Designer ... 48

■ Steps for developing Apama applications ... 49

■ Overview of starting, testing and debugging applications ... 51

M
Even Header

Getting Ready to Develop Apama Applications

Introduction to Apama Version 10.5 48

The discussions in the following topics provide a foundation for developing your
Apama application.

Becoming familiar with Apama
To become familiar with Apama, you should

Work through the tutorials in Software AG Designer. On the Welcome page, click
Tutorials under the Apama heading. The tutorials provide step-by-step instructions for
developing EPL applications.

Execute and examine the demonstration applications available from Software
AG Designer. On the Welcome page, click Demos under the Apama heading. The
demonstration applications are interactive. You can create instances of queries, set
parameters for queries, and watch the queries execute. The demonstrations provide
simple examples of what Apama can do and how you might interact with your
Apama application.

Examine sample code. Your Apama installation directory contains a samples
directory that contains many examples of queries, monitors, JMon programs, EPL
plug-ins, Apama client programs, and more.

Read all of this material, Introduction to Apama, so that you have a broad
understanding of what Apama is all about.

Understand what is covered in the Apama user documentation. Peruse the
documentation so that you know where to look for particular information. You can
then refer to the documentation for the component you need to use.

Introduction to Software AG Designer
Software AG Designer is the main tool for implementing Apama applications. It contains
a set of Eclipse plug-ins that provides a number of Eclipse perspectives:

Use the Apama Workbench perspective when you are new to Apama. This
perspective provides a simplified view of Apama features that makes it easy to get
started developing Apama applications.

Use the Query Designer to define a query.

Use the Apama Developer perspective when you are comfortable using the Apama
Workbench perspective. The Developer perspective gives you far more control over
your Apama project than the Apama Workbench perspective. For example, you
can view more than one Apama project at one time, and you can specify launch
configuration parameters.

Use the Apama Runtime perspective for monitoring and debugging the execution of
Apama applications.

M
Odd Header

Getting Ready to Develop Apama Applications

Introduction to Apama Version 10.5 49

Use the Apama Debug perspective to debug your Apama application. The Debug
perspective allows you to set break points, examine variable values, and control
execution.

Use the Apama Profiler perspective to profile your Apama application. The Profiler
perspective allows you to see which components of your application are consuming
the most CPU time or to see if there are other bolenecks in the application.

When developing an Apama application, the first step is to create an Apama project
to contain your application files. An Apama project is a convenient way to manage the
various files that make up your application. For example, an Apama application can
include the following types of files:

EPL files (.mon extension).

Query files (.qry extension).

Java files.

Dashboard files (.rtv extension).

Files that contain sample events (.evt extensions).

C++, Java and .NET files that contain Apama client applications or EPL plug-ins.

Adapters that provide the interface between your event sources and Apama.

Image files for your dashboards.

Text, HTML or XML files.

You can add and manage all of these files from your Apama project in Software AG
Designer. In addition, Software AG Designer provides an EPL editor and a Java editor
whose features include content assistance, auto-bracketing, templates for frequently
entered constructs, and problem detection. After you build an Apama project, Software
AG Designer flags any line that contains an error.

If your project contains dashboards, Software AG Designer opens the Dashboard Builder
when you double-click an .rtv file. You can also use Software AG Designer to test your
application. Software AG Designer provides Apama features that inject your application
into the correlator, send test event streams to the correlator, launch adapters, and
configure and monitor the operation of your application in a test environment.

Finally, Software AG Designer provides tools for packaging your application so that you
can deploy it. See "Overview of Developing Apama Applications" in Using Apama with
Software AG Designer.

Steps for developing Apama applications
Typically, Apama development is an iterative cycle:

M
Even Header

Getting Ready to Develop Apama Applications

Introduction to Apama Version 10.5 50

Multiple contributors with varying expertise can work concurrently to develop an
Apama application.

The main steps for developing an Apama application include:

1. Model: Design your application. Important tasks are modeling the events that your
application needs to handle and identifying the services that your application must
provide.

2. Implement: Use Software AG Designer to create an Apama project to contain your
application files (EPL files, adapters, event files, dashboards, and so on). Since
Apama applications typically consist of many components, it is often possible to
concurrently implement them, particularly if several people are working on the
application:

Create queries with Apama's Query Designer in Software AG Designer.

Write EPL or JMon programs in Software AG Designer.

Develop Apama client applications.

Implement or develop adapters.

Create dashboards in Dashboard Builder.

Develop EPL plug-ins that extend the correlator's standard features.

3. Test: In Software AG Designer, Apama provides a runtime perspective and Scenario
Browser view that help test applications as they are built. You can also use Apama's
Data Player in Software AG Designer in conjunction with the ADBC adapter to
analyze application behavior before, or after, deployment. You can automate testing
through the use of command-line clients.

4. Deploy: Use Software AG Command Central to start and manage Apama
components, including correlators. Or use the macro definitions in the Ant script that
is provided with Apama. You can also use the Ant export wizard in Software AG
Designer to generate a simple Ant script for deploying your Apama project. Tune
Apama applications for optimum performance.

M
Odd Header

Getting Ready to Develop Apama Applications

Introduction to Apama Version 10.5 51

See "Overview of Deploying Apama Applications" in Deploying and Managing Apama
Applications.

Overview of starting, testing and debugging applications
Software AG Designer provides tools for running your Apama application in a test
environment.

In the Apama Workbench perspective, click the Start buon to start a correlator and
inject the current project. The Scenario Browser panel is then shown. Use the Scenario
Browser to create running instances of your queries and examine parameter values
during execution. You can monitor execution in the Console and Problems panes.

In the Apama Developer perspective, select the project you want to test. Select Run from
the menu bar and then select whether you want to run, debug or profile your Apama
application. You can specify one or more launch configurations for your project.

In the Apama Runtime perspective, you can monitor your running application.

In Using Apama with Software AG Designer, see "Launching Projects", "Debugging EPL
Applications", and "Debugging JMon Applications".

M
Even Header

Introduction to Apama Version 10.5 52

M
Odd Header

Apama Glossary

Introduction to Apama Version 10.5 53

5 Apama Glossary

■ action .. 56

■ activation .. 56

■ adapter ... 56

■ aggregate function ... 56

■ batch ... 56

■ bundle ... 56

■ .cdp ... 57

■ CEP .. 57

■ channel ... 57

■ connectivity plug-in ... 57

■ context .. 57

■ correlator .. 57

■ correlator deployment package .. 58

■ correlator-integrated messaging for JMS ... 58

■ .csv ... 58

■ current events .. 58

■ custom blocks .. 58

■ dashboard ... 58

■ Dashboard Builder .. 58

■ dashboard data server ... 59

■ dashboard display server ... 59

■ Dashboard Viewer .. 59

■ Data Player .. 59

■ DataView .. 59

■ EPL ... 59

■ EPL plug-in ... 60

M
Even Header

Apama Glossary

Introduction to Apama Version 10.5 54

■ event ... 60

■ event collection .. 60

■ event listener .. 60

■ event pattern .. 60

■ event template .. 60

■ .evt .. 61

■ exception .. 61

■ IAF .. 61

■ Integration Adapter Framework (IAF) .. 61

■ JMon ... 61

■ latest event ... 62

■ listener .. 62

■ lot .. 62

■ match set .. 62

■ MemoryStore .. 62

■ method .. 62

■ .mon .. 62

■ monitor .. 63

■ MonitorScript .. 63

■ optional ... 63

■ parameterization ... 63

■ parameters ... 63

■ partition ... 63

■ partitioning .. 63

■ .qry .. 64

■ query ... 64

■ query aggregate ... 64

■ Query Designer .. 64

■ query input definition .. 64

■ query instance .. 64

M
Odd Header

Apama Glossary

Introduction to Apama Version 10.5 55

■ query key .. 65

■ query window ... 65

■ range .. 65

■ .rtv ... 65

■ simulation ... 65

■ Software AG Designer ... 65

■ stack trace element .. 65

■ static action .. 66

■ stream ... 66

■ stream listener .. 66

■ stream network ... 66

■ stream query .. 66

■ stream source template ... 66

■ window .. 67

■ within clause ... 67

■ without clause .. 67

M
Even Header

Apama Glossary

Introduction to Apama Version 10.5 56

action
An action is a block of code. Optionally, an action can have parameters and/or a return
type. An action can be called, typically as part of responding to an event listener. Actions
can be members of monitors, events or queries. The following action names have special
meanings and may be called by the correlator:

On monitors only: onload(), ondie(), onunload()

On monitors and events: onBeginRecovery(), onConcludeRecovery()

activation
When the passage of time or the arrival of an item causes a stream network or an
element in a stream network to process items.

adapter
Software component that translates events from a non-Apama format to Apama format.
This allows the correlator to analyze the event. An adapter plugs into the Apama
Integration Adapter Framework (IAF) and injects events into the correlator. Adapters
can be bidirectional, converting event formats in both directions.

aggregate function
A function that operates on all items in a query window, for example, sum().

batch
When you define a window in a stream query, you can specify that you want to update
the window in batches. A batch can be a certain number of items, or it can be the items
that arrived in a certain length of time.

bundle
When using Apama in Software AG Designer, a bundle is a named collection of Apama-
provided objects that are required to execute a particular type of Apama application.
Typically, a bundle includes EPL files, event definition files and event files, but it can
include a wide range of file types such as IAF configuration files.

M
Odd Header

Apama Glossary

Introduction to Apama Version 10.5 57

.cdp
File extension for Apama correlator deployment packages.

CEP
Complex event processing. CEP technologies let you detect and process events derived
from other events, and sequences of events with or without temporal constraints.

channel
Adapter and client configurations can specify the channel to deliver events to. A channel
is a string name that contexts and receivers can subscribe to in order to receive particular
events. In EPL, you can send an event to a specified channel. Sending an event to a
channel delivers it to any contexts that are subscribed to that channel, and to any clients
or adapters that are listening on that channel.

connectivity plug-in
A C++ or Java class running inside the correlator that can transform and transmit
messages between the correlator and external data sources.

context
Contexts allows EPL applications to organize work into threads that the correlator can
concurrently execute. In EPL, context is a reference type. When you create a variable of
type context, or an event field of type context, you are actually creating an object that
refers to a context. The context might or might not already exist. You can then use the
context reference to spawn to the context or enqueue an event to the context. When you
spawn to a context, the correlator creates the context if it does not already exist.

correlator
Event correlation engine. The part of Apama that looks for events of interest, analyses
matching events, and executes appropriate actions.

M
Even Header

Apama Glossary

Introduction to Apama Version 10.5 58

correlator deployment package
A correlator deployment package (CDP) is a file that contains application EPL code
in a proprietary, non-plain-text format. These files treat EPL files similarly to the way
Java files are treated in JAR files. CDP files can be created by exporting from Apama
projects in Software AG Designer or by using the engine_package utility. CDP files can
be injected to the correlator just as EPL files and JAR files containing JMon applications
are injected.

correlator-integrated messaging for JMS
Apama's correlator-integrated messaging for JMS provides an efficient way for Apama
applications to send messages and to receive JMS messages for processing. Correlator-
integrated messaging for JMS also provides for reliable messaging (guaranteed delivery)
and duplicate detection.

.csv
File extension ("comma separated values") for some exported data; suitable for third
party applications such as spread sheets.

current events
The set of current events contains the events in the window(s) of a partition.

custom blocks
In Apama query find blocks, %custom blocks contain EPL code that you write.

dashboard
Business cockpit for controlling, receiving, and visualizing real-time updates from
DataViews.

Dashboard Builder
GUI for creating and modifying dashboards.

M
Odd Header

Apama Glossary

Introduction to Apama Version 10.5 59

dashboard data server
Process that mediates communication between dashboards and DataViews. The
dashboard data server mediates correlator access for local deployments. It delivers raw
data from which deployed dashboards construct the visualization objects that they
display.

dashboard display server
Process that mediates communication between dashboards and DataViews. The
dashboard display server mediates correlator access for simple thin-client, web-page
deployments. It delivers already-constructed visualization objects in the form of image
files and image maps.

Dashboard Viewer
Desktop application that supports local deployment of dashboards.

Data Player
Apama component in Software AG Designer that lets you retrieve events that pass
through the correlator. You can use the Data Player to play back stored events and use
the results to develop, test, and debug applications.

DataView
Table structure that contains event fields that you specify. In EPL applications, you
create DataViews so that you can use the Dashboard Builder to create dashboards that
let you interact with your running EPL application in the correlator.

EPL
The Apama Event Processing Language (EPL) is an event-based scripting language that
is an interface to the correlator. Java is the other interface to the correlator.

M
Even Header

Apama Glossary

Introduction to Apama Version 10.5 60

EPL plug-in
EPL plug-ins are C++ code modules or Java classes that you write to extend the
capability of an Apama component. Apama provides APIs that let you write EPL plug-
ins for correlators, dashboards, and adapters.

event
An occurrence of a particular circumstance of interest at a specific time that usually
corresponds to a message of some form. The message is a collection of aribute-value
pairs that describe a change in an object.

event collection
The process of storing events that stream through the correlator. Using Apama's Data
Player in Software AG Designer, the collected events can be played back to analyze what
happened or to test alternative strategies. The collected events can also be exported to
spreadsheet applications.

event listener
An event listener observes the correlator event stream, analyzing each event in turn
until it finds a sequence of events that match its event expression. When this happens,
the event listener triggers, causing the correlator to execute the listener action. See also
“stream listener” on page 66.

event pattern
Specification of the event or sequence of events or aggregation that you are interested in.
An event paern can include conditions and operators.

event template
Basic unit of monitoring in the correlator. An event template specifies the paern that
you want to act on. A simple application contains one or a few event templates. A more
complex application can contain many event templates. Here is an example of the data
that a particular event template might define:

Instrument = IBM

M
Odd Header

Apama Glossary

Introduction to Apama Version 10.5 61

Bid Price > 93 and < 95

Offer Price = *

Bid Volume > 100000

Offer Volume = *

.evt
File extension for files that contain events.

exception
An exception is an object that represents a runtime error that can be caught
with a try ... catch statement. In EPL, Exception is a reference type in the
com.apama.exceptions namespace. See "Exception handling" in Developing Apama
Applications.

IAF
Integration Adapter Framework.

Note: The IAF architecture is superseded by connectivity plug-ins. Therefore,
Software AG strongly recommends choosing connectivity plug-ins over the
IAF when creating new adapters and connectivity.

Integration Adapter Framework (IAF)
Server component that adapters plug into for runtime invocation.

Note: The IAF architecture is superseded by connectivity plug-ins. Therefore,
Software AG strongly recommends choosing connectivity plug-ins over the
IAF when creating new adapters and connectivity.

JMon
Apama in-process API for Java.

M
Even Header

Apama Glossary

Introduction to Apama Version 10.5 62

latest event
The latest event is the event that was most recently added to a query partition.

listener
See “event listener” on page 60 and “stream listener” on page 66.

lot
The items produced by a single activation of a stream query. Like an auction lot, a
stream query lot can contain one or more items.

match set
For a query, this is the set of events that matches the specified paern and that causes
the statements in the query find block to be executed. A match set always includes the
latest event.

MemoryStore
The MemoryStore provides an in-memory, table-based, data storage abstraction within
a correlator. All EPL code running in a correlator in any context can access the data
stored by the MemoryStore. In other words, all EPL monitors running in a correlator
have access to the same data. The Apama MemoryStore can also be used in a distributed
fashion to provide access to data stored in a MemoryStore to applications running in a
cluster of multiple correlators.

method
There are two kinds of built-in methods: type methods and instance methods. Type
methods are associated with types. Instance methods are associated with values.
Built-in methods are treated exactly the same as user-defined actions. See “action” on
page 56.

.mon
File extension for EPL files.

M
Odd Header

Apama Glossary

Introduction to Apama Version 10.5 63

monitor
A monitor contains event monitoring paerns and the responses to take when the
monitor's listeners detect those paerns. You can use EPL or Java to define a monitor.

MonitorScript
EPL is the new name for MonitorScript. Within the product, both EPL and MonitorScript
are used and should be treated as synonymous. EPL or MonitorScript is the Apama
event-based scripting language that is an interface to the correlator. Java is the other
interface to the correlator.

optional
An optional is a value that contains either a value (of some EPL type), or is empty and
thus has no value. This is useful for mapping to null values in other languages such as
Java, or for data which may not be present in some circumstances.

parameterization
An Apama query that defines parameters is referred to as a parameterized query. An
instance of a parameterized query is referred to as a parameterization.

parameters
An Apama query can define parameters and then refer to those parameters throughout
the query definition. This enables a query definition to function as a template for
multiple query instances, which are referred to as parameterizations.

partition
In a query, a partition contains a set of events that all have the same key value. One or
more windows contain the events added to each partition.

partitioning
A strategy to scale Apama by deploying multiple correlator processes to spread the
workload across several processors and/or machines. A correlator can be used to

M
Even Header

Apama Glossary

Introduction to Apama Version 10.5 64

partition incoming events, sending them to different correlators based on rules specific
to your partitioning strategy.

.qry
File extension for files that contain query definitions.

query
A self-contained processing unit. It partitions incoming events according to a key and
then independently processes the events in each partition. Processing involves watching
for an event paern and then executing a block of procedural code when that paern is
found.

query aggregate
An event paern in a query can aggregate event field values to find data based on many
sets of events. Specify the every keyword in conjunction with the select and having
clauses.

Query Designer
An Apama editor in Software AG Designer for writing queries.

query input definition
In a query, the inputs block defines one or more query input definitions. An input
definition specifies an event type plus details that indicate how to partition incoming
events. An input definition can also filter which events are operated on, and specify
what state, or event history, is to be held.

query instance
When a query has no parameters, a single instance of the query is automatically created
when the query is loaded into a correlator. This instance looks for match sets in all of
this query's partitions. If one or more parameters are defined for a query, when the
query is loaded into a correlator, no instances are created until a set of parameter values
is specified. Apama's Scenario Service then creates an instance of that query using the
specified parameter values and that instance is referred to as a parameterization.

M
Odd Header

Apama Glossary

Introduction to Apama Version 10.5 65

query key
A query key identifies one or more fields in the events being operated on. Each input
definition must specify the same key.

query window
For each input, a window contains the events that are current. The query operates on
only current events.

range
In a query's find statement, a within clause and/or a without clause can specify the
between keyword to define a range that restricts which part of the paern the within or
without clause applies to. The condition that the between clause is part of must occur in
the range of identifiers specified in the between clause.

.rtv
File extension for dashboard view files.

simulation
A Data Player playback session that uses persisted event data for "what if" analysis. A
simulation can test what would happen with modified data.

Software AG Designer
Eclipse-based GUI. When Apama is installed with Software AG Designer, you can use it
for managing Apama projects, developing EPL files, and running Apama applications in
test environments.

stack trace element
A stack trace element is an object that describes an entry in the stack trace. A
com.apama.exceptions.Exception object contains a sequence of stack trace elements
that show where an exception was first thrown and the calls that lead to that exception.

M
Even Header

Apama Glossary

Introduction to Apama Version 10.5 66

In EPL, com.apama.exceptions.StackTraceElement is a reference type. See
"Exception handling" in Developing Apama Applications.

static action
A static action can only be declared inside an event type. It does not apply to a specific
instance of an event.

stream
A conduit or channel through which items flow. An item can be an event, a location
type or a simple type (boolean, decimal, float, integer, or string). The set of items
flowing through the stream is often referred to as "a stream of items" and so, here, a
stream represents an ordered sequence of items over time. A stream transports items of
only one type. Streams are internal to a monitor.

stream listener
A construct that continuously watches for items from a stream and invokes the listener
code block each time new items are available.

stream network
A network of stream source templates, streams, stream queries, and stream listeners.
The upstream elements in the stream network feed the downstream elements to
generate derived, added-value items.

stream query
A query that the correlator applies continuously to one or two streams. The output of a
stream query is one continuous stream of derived items.

stream source template
An event template preceded by the all keyword. It uses no other event operators.
A stream source template creates a stream that contains events that match the event
template.

M
Odd Header

Apama Glossary

Introduction to Apama Version 10.5 67

window
In a query, for each input, a window contains the events that are current. The query
operates on only current events.

When working with streams, a window is a dynamic portion of the items flowing
through a stream. A window identifies which items a stream query is currently
processing.

within clause
In a query, a within clause sets the time period during which events in the match
set must have been added to their windows. A paern can specify zero, one, or more
within clauses.

without clause
In a query, a without clause specifies event types, which must be specified in the query's
inputs block, whose presence prevents a match. For example, if a potential match set
contains three events, it can be a match only if a type specified in a without clause was
not added to a window after the first event or before the third event. Any event type that
can be used in the find paern can be used in the without clause.

	Table of Contents
	About this Guide
	Documentation roadmap
	Online Information and Support
	Data Protection

	Apama Overview
	What is Apama?
	Understanding the different user viewpoints
	About Apama license files
	Running Apama without a license file

	Apama Architecture
	Distinguishing architectural features
	How Apama integrates with external data sources
	Descriptions of Apama components
	Description of the Apama correlator
	Description of event processing languages
	Introduction to Apama EPL
	Introduction to Apama in-process API for Java (JMon)

	Description of Software AG Designer
	Description of Query Designer
	Description of Dashboard Builder and Dashboard Viewer
	Description of client development kits
	Description of Apama's Data Player

	How the correlator works

	Apama Concepts
	Event-driven programming
	Complex event processing
	Understanding monitors and listeners
	Understanding queries
	Architectural comparison of queries and monitors
	Understanding dashboards

	Getting Ready to Develop Apama Applications
	Becoming familiar with Apama
	Introduction to Software AG Designer
	Steps for developing Apama applications
	Overview of starting, testing and debugging applications

	Apama Glossary
	action
	activation
	adapter
	aggregate function
	batch
	bundle
	.cdp
	CEP
	channel
	connectivity plug-in
	context
	correlator
	correlator deployment package
	correlator-integrated messaging for JMS
	.csv
	current events
	custom blocks
	dashboard
	Dashboard Builder
	dashboard data server
	dashboard display server
	Dashboard Viewer
	Data Player
	DataView
	EPL
	EPL plug-in
	event
	event collection
	event listener
	event pattern
	event template
	.evt
	exception
	IAF
	Integration Adapter Framework (IAF)
	JMon
	latest event
	listener
	lot
	match set
	MemoryStore
	method
	.mon
	monitor
	MonitorScript
	optional
	parameterization
	parameters
	partition
	partitioning
	.qry
	query
	query aggregate
	Query Designer
	query input definition
	query instance
	query key
	query window
	range
	.rtv
	simulation
	Software AG Designer
	stack trace element
	static action
	stream
	stream listener
	stream network
	stream query
	stream source template
	window
	within clause
	without clause

