5 software~

Connecting Apama Applications to External
Components

Version 10.15.4

November 2023

APAMA

This document applies to Apama 10.15.4 and to all subsequent releases.
Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 2013-2023 Software AG, Darmstadt, Germany and/or Software AG USA, Inc., Reston, VA, USA, and/or its subsidiaries
and/or its affiliates and/or their licensors.

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or
Software AG USA Inc. and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product names mentioned
herein may be trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
https://softwareag.com/licenses/.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product
documentation, located at https://softwareag.com/licenses/ and/or in the root installation directory of the licensed product(s).

This software may include portions of third-party products. For third-party copyright notices, license terms, additional rights or
restrictions, please refer to "License Texts, Copyright Notices and Disclaimers of Third Party Products". For certain specific third-party
license restrictions, please refer to section E of the Legal Notices available under "License Terms and Conditions for Use of Software
AG Products / Copyright and Trademark Notices of Software AG Products". These documents are part of the product documentation,
located at https://softwareag.com/licenses/ and/or in the root installation directory of the licensed product(s).

Document ID: PAM-EXT-10154-20231127

https://www.softwareag.com/licenses/default.html
https://www.softwareag.com/licenses/default.html
https://www.softwareag.com/licenses/default.html

Table of Contents

ADOUL thiS GUIE.....cecuteeeretetteeetettee et as s s s s s s sssasses s sssasnasassssnes 9
Documentation roadmap..........cceeueieieieieieieieieicieeieee s 10
Online Information and SUPPOTt.........cciriiiiiiiiiniic s 11
Data ProteCtion........cououiiiiiii s 12

I Working with Connectivity PIUG-INS........cccoevrnirenirinrisinisinininnininininiisniisniensenisnsssssssses 13
1 Getting Started with Connectivity PIug-ins..........cccoermiiiiiiiicccccccccccccce 15

CONCEPES. ..ttt 16
Adding the connectivity bundles...........cccoooiiiiiiiii 19
Specifying the main settings in the properties file..............cccocoeeiiiiiine 20
Specifying the settings for the connectivity chains in the YAML file...........c.cccccceuenneee. 20
Controlling how the correlator interacts with a chain...........c.cccocoeeiii 21
USING COARCTS....uonininininininiiccc e 21
WIIING EPL..ooiiii e 21
2 Using Connectivity PIUg-INS.......cccooeieieieieieieicieieeeeee s 23
Overview of using connectivity plug-ins........cccoovvvviiiiiiiiniiiiiie, 24
Static and dynamic connectivity chains.........ccocoovovoiiiiiniie, 26
Configuration file for connectivity plug-ins...........cccooeeriiiiiiciiccccccce 26
Host plug-ins and configuration...........cccceeveieieeieinicccece s 30
Translating EPL events using the apama.eventMap host plug-in..........ccccoooveviinnnnen. 32
Using reliable transports..........coiiiiiiiii e 33
Creating dynamic chains from EPL...........ccccocooiiiiiie 37
Sending and receiving events with connectivity plug-ins.........ccccoovvviviiinininnnnnen. 38
Deploying plug-in libraries..........ccooovoiiiiiiiii 40
3 Developing Connectivity PIUg-iNs........cccccoueieieiiiiiiiiiiceeece s 43
Chain components and MeSSAZES..........ccceeueveieieieieieieieiee s 44
Requirements of @ plug-in Class..........ccoovviiiiiiiiii 45
Requirements of a transport chain manager plug-in class..........ccocoovviviiniiiiiincnnne. 49
Building plUg-iNS.......cooviiiiiii s 52
Crt data tYPeS...cucieeicicieece s 53
Map contents used by the apama.eventMap host plug-in..........ccccooevviiiiinnnnne. 56
Metadata Values.........c.cooieiiiiiii s 60
Lifetime of connectivity plug-iNS.........ccoovviiiiiiiiii 62
Creating dynamic chains from a chain manager plug-in..........c.cococoooeeiiiiiieeeenn 64
User-defined status reporting from connectivity plug-ins..........c.cccoeeeveiineieiecenennne 65
Logging and configuration...........cceueueveieieieiiieicieecceeee e 67
TRIEAAING....ecvveeecteectee e 68
Developing reliable transSports..........ccocoooioiiiiiiii 69
Flushing background queues in connectivity plug-ins.........cccooovvvviviviniiniiinininccne, 72
General notes for developing transports..........ccoouoveviiieiiviniiiinine, 73

IT Standard Connectivity PIUG-iNS.......coueeeeenineneeentntseestntnsseeststsss st sssssss s ssssssssssssnes 75

4 The Universal Messaging Transport Connectivity Plug-in.........cccccoovivninnnne. 77
About the Universal Messaging transport.........ccoooiiiniiiiiiiceecnene 78

Connecting Apama Applications to External Components 10.15.4 i

Table of Contents

Overview of using Universal Messaging in Apama applications...........cccccoevvvvveirnnnen. 78
Setting up Universal Messaging for use by Apama.........ccccoovoviiiiiiiiiiiine, 85
Configuring the Universal Messaging connectivity plug-in...........cccocooeeiiieeeennnen 87
EPL and Universal Messaging channels..............c.cccooooiiiiiiiiicce 95
Using Universal Messaging connectivity from EPL...........cccccooiine, 96
Monitoring Apama application use of Universal Messaging...........ccccocoeevvvrivivieiniccnnnen. 96
5 The MQTT Transport Connectivity Plug-in..........cccocoeeiiiiiiiiiiiiie 97
About the MQTT transpOTt........coouiiiiiiiiiicc e 98
Using MQTT connectivity from EPL........cccooooiiiiiiiiiie, 98
Loading the MQTT transport.......c.cocoiiiiiiiiii e 99
Configuring the connection to MQTT.........ccccoovoioiiiiii e 99
Mapping events between MQTT messages and EPL...........c.cccoooiiine, 101
Payload for the MQTT meSSage...........ccouvuviiiiiiiiiii e 102
Wildcard topic sUbSCIiPHONS.......ccoviiiiiii 102
Metadata for the MQTT meSSage........ccccvuriirueieiiiiicieiecice e 102
RESTIICHONS. ...ttt 103
6 The Digital Event Services Transport Connectivity Plug-in............cccocoeeieiiiiiicn 105
About the Digital Event Services transport.........ccooovoveiiiniiiniiiiiie, 106
Using Digital Event Services connectivity from EPL...........cccooooiiiie, 107
Reliable messaging with Digital Event Services..........cococoviovviiiniiiiiniiie, 108
7 The HTTP Server Transport Connectivity Plug-in...........cococooviiiiiiii 111
About the HTTP server transport..........ccooeeeiiiiiiiiniiei e 112
Loading the HTTP server transport..........ccoooeiiiiiiiiniiice 114
Configuring the HTTP server transport..........cccocoeeviccnininiineieccieeccce e, 114
Handling requests to different paths with different chains..............ccccoeeviiiiiiiin. 118
Handling responses in EPL..........ccooiiiiiiiiii s 120
Serving static files.........cciiiiiiiiii 121
Mapping events between EPL and HTTP server requests...........cccccccevvvvriiicvnininncnnnne. 122
HTTP Server SECUTItY.....cooiviiiiieiiietiiecetcetc e 132
Monitoring status for the HTTP Server.........cccccovoieieiiiniccieeicceeccceeceeans 134
8 The HTTP Client Transport Connectivity Plug-in...........ccccooeiiiiiiii 137
About the HTTP client transport.........cooovieiiiiiii e 138
Loading the HTTP client transport.........ccoooviiiiiiiiii 139
Configuring the HTTP client transport...........ccoceeviccniniiccceiecceeecc e, 139
Mapping events between EPL and HTTP client requests............ccccoccovvviiiiininninnnnne. 143
Monitoring status for the HTTP client.........ccccooviioiiiiniiiiiicceccccce 161
Configuring dynamic connections to Services.............cocovvvivniniininiiinninninens 163
Using predefined generic event definitions to invoke HTTP services with JSON and
StriNg PAYloads.......ccueviieiiiii e 163
Executing HTTP requests concurrently.............ccooeoiviiiiiinniiiinicccc 165
9 The Kafka Transport Connectivity PIUg-iN.........cccooeviiiiiiniiiiiiccccc 173
About the Kafka transport.........cccoviiiieiiiiiciiccc 174
Loading the Kafka transport..........cccccoviiiiiiiiiiiiiiiicce 174
Configuring the connection to Kafka (dynamicChainManagers)..........c.ccccceuvueueveennnnes 175
Configuring message transformations (dynamicChains)........c.cccccceeevveeinneeccnnnnes 177
Payload for the Kafka meSSage.........cccovueueuiininiiiiiinirieiccieeceee s 177
Metadata for the Kafka mesSage........c.coeeueiniriiiiiiiniiiiiciiinccceeeeeeee s 178
10 The Cumulocity IoT Transport Connectivity Plug-in.........ccccccoeiiviiinininiiininiiine 179
About the Cumulocity IOoT transport........cccccvveueiriririiiiiiinnccreceeeeeeee s 181
Configuring the Cumulocity IoT transport..........coceeeevivirieicinnniecireccreeeenes 182

iv Connecting Apama Applications to External Components 10.15.4

Table of Contents

Loading the Cumulocity IoT transport........cccoooovoiiiiiiiiii, 188
Using managed ODJectS...........ccooiiiiiiii s 188
USING @larmiS......cuoeieiiii s 193
USING @VENTS.....coiiiiiiii e 197
USING MEASUTEIMENLES.......coovitiiiiiietcii et 202
Using measurement fragments............cooeoviiiiiiiininii e 206
USING OPEIatiONS.......cviuiiiiieicii ettt 209
Receiving update notifications............ceeueueieieieieieicicccc 214
Paging Cumulocity IoT qUeTies.........ccccooviiiiiiiii e 216
Invoking other parts of the Cumulocity IoT REST APL........ccooviiiiiiiiine, 217
INVOKING MICIOSEIVICES.cuiuiviriiiiiiiiicc s 219
Monitoring status for Cumulocity IOT..........coovoiiiiiiie, 220
Finding tenant OPtioNS..........ccoeiiiiiiiii e 222
Getting user details..........coooiiiiiiii 222
Optimizing requests to Cumulocity IoT with concurrent connections......................... 224
Working with multi-tenant deployments............cccoovoiiiiiiiiiiie, 227
Sample EPL.......oo s 230
11 Codec Connectivity PIUg-iNS.......cocuiuiuiuiiiiicicicicicccccctc e 235
The String codec connectivity plug-in........ccccoovviviiiiiiiiiie, 236
The Base64 codec connectivity plug-in........coovoiiiiiiiiiiie, 237
The JSON codec connectivity plug-in.......cccovvviiiiiiiiiie, 239
The Classifier codec connectivity plug-in...........coovrueiiiiiicniniicce 242
The Mapper codec connectivity plug-in........ccooovvviiiiiiiiiii, 243
The Batch Accumulator codec connectivity plug-in.........ccooveviiiiiiiiiie, 247
The Message List codec connectivity plug-in........cccccoovviiiiiiiiiiie, 248
The Unit Test Harness codec connectivity plug-in........cccooeoviiiiiiiiiiiiine, 251
The Diagnostic codec connectivity plug-in.........ccccooovviiiiiiiini, 254
IIT Correlator-Integrated Support for the Java Message Service (JMS)......ccceeveverrvrercsesurunnencas 257
12 Using the Java Message Service (JMS)........ccociruerrmcciciciccicicicicicicicccccccsccscvcse e 259
Overview of correlator-integrated messaging for JMS..........ccccocoovvivnnnnnnnnnne. 260
Getting started with simple correlator-integrated messaging for JMS..............c........... 262
Getting started with reliable correlator-integrated messaging for JMS......................... 272
Mapping Apama events and JMS messages...........cccoouvereriririnininininiiniiieeeeeens 274
Dynamic senders and reCeiVerS.........ocovuviiiiiiiiiiii e 301
DUTable tOPICS....cviiiiiiicccc s 302
Receiver flow CONIOL........couiviiiiiiiiiciciccc s 302
Monitoring correlator-integrated messaging for JMS status..........cccccceevviiiiiiniicnnne. 303
Logging correlator-integrated messaging for JMS status.........cccocoevvviviivininininincncnnnnen. 304
JMS configuration reference............oceeueucicicicicieicicccccc 311
Designing and implementing applications for correlator-integrated messaging for
TMIS e 322
Diagnosing problems when using JMS..........ccccoooiiine, 337
JMS failures modes and how to cope with them.............ccocooo 339
IV Working with IAF PIUG-iNS......iiiiiiiiininiinnciininisiimsssesssssssssssssssnes 343
13 The Integration Adapter Framework...........ccccccoviiiiininiiiiiniiiiiiccccceaes 345
OVEIVIEW ..ttt 346
ATCItOCTUT@....oviiit s 347

Connecting Apama Applications to External Components 10.15.4 v

Table of Contents

The transport Jayer ... 349

The cOdeC LaYeT ..o 349

The Semantic Mapper layer...........cooiiiiiiii 350
Contents of the TAF ... 351

14 USING the TAF ...ttt 353
The TAF TUNHIME......oiii e 354

IAF Management — Managing a running adapter L., 361

IAF Client — Managing a running adapter IL..........ccccoooe, 362

IAF Watch — Monitoring running adapter status.........cccooovevviviieiiiininie, 363

The IAF configuration file..............coooiiiiiii e 365

15 C/C++ Transport Plug-in Development............ccoceuiiiiiiiniicciccecc e 393
The C/C++ transport plug-in development specification...........ccccoeeveveireiiiiicccinnnnes 394

16 C/C++ Codec Plug-in Development.............c.oovriiiiiiiinininiicecce e 399
The C/C++ codec plug-in development specification............ccccoveveeiniiiicininiiccicines 400

17 C/C++ Plug-in SUpPpOrt APISs.......oooiiiiiiiii e 409
Logging from IAF plug-ins in C/C.......c.ooiiiiiiiiicice e 410
Using the latency framework...........ocoooioiiiiiiiic 410

18 Transport Plug-in Development in Java..........cccceceriicccccccccccccccccccccccne 413
The transport plug-in development specification for Java.........ccccoeeveireiiiiiniicccinnnes 414

19 Java Codec Plug-in Development.............cccrreiiiiiiiiicicicicccccccccccccicca e 419
The codec plug-in development specification for Java.........cccccoeveueiiiiiicninincccinnes 420

20 Plug-in Support APIS fOr Java......cccoceueiiieininiiccicc e 427
Logging from IAF plug-ins in Java......ccccccoeireieiiiiicnieiiiccc e 428
Using the latency framework...........ooooioiiiiiii 429

21 Monitoring Adapter Status..........ccceeieieieiiieieieece s 431
TAFStatusSMan@ger..........ccueueueueieieicicicictciceete ettt 433
Application INterface...........coooiiueieiiiiiicic 433
Returning information from the getStatus method...........cccooovviiiii 434
Connections and other custom properties.............cccceeueeeeiiieiccccecee 435
Asynchronously notifying IAFStatusManager of connection changes............cccc.c...... 436
StAtUSSUPPOTL....viiiii s 439
DataView SUPPOTt.....cciiiiiiiii e 442

22 Out of Band Connection Notifications..........ccoeeueiiicieininiiceiicecc s 445
Mapping example..........cccoiiii s 446
Ordering of out of band notifications............cceeveiiiieiiiiiii 447

23 The Event Payload...........coeiiiiiiii s 451
V Standard IAF PIUG-INS......iiinriiniiniiiniisininiinsiissiissiissiisssismssimssimssssisssssssssssssssssssssssess 453
24 The Database Connector IAF Adapter (ADBCQC)........ccccovviiiiiiiniiiiinicccce, 455
Overview of using ADBC..........cooiiiiii e 456
Registering your ODBC database DSN on Windows...........cccovvvviiniiiniinicniniccne. 457
Adding an ADBC adapter to an Apama project........cccccoeveverinininenenenenincreneneeeneeneneenens 458
Configuring the Apama database cONNeCtOr...........cccoevvvrieiiiiieieicec e 459

The ADBCHelper application programming interface...........cccocoeevevevvinevenenencnencncnennnen. 466

The ADBC Event application programming interface............cccocooevvvvninninnnnincncncnnen. 476

The Visual Event Mapper...........cooiiiiiiii e 499
PIayback.....cooiiiiiiiiiiiic 501
Format of events in .sim files...........ccouevrviieiiiiiiiiicc s 502

25 The File IAF Adapter (JMultiFileTransport)..........cccceeveeeieieeeiecneeeeeeeeees 503

vi Connecting Apama Applications to External Components 10.15.4

Table of Contents

File adapter plug-inS........cccooiiiiiiiiii s 504

File adapter service monitor files............ccooeviiiiiiiii e 505
Adding the File adapter to an Apama project.........ccccoeeeeevveeiviinineninininincnceene, 505
Configuring the File adapter..........ccoooeioiiiii e 506
Overview of event protocol for communication with the File adapter......................... 507
Opening files for reading..........ccceueueieieieiciiiceeee s 508
Specifying file names in OpenFileForReading events............ccccoeeiiiiniiiiiieiniceene 510
Opening comma separated values (CSV) files............ccoeveiiiiiiiiiie 511
Opening fixed width files...........cccoovoiiiiii e 512
Sending the read request..........ccoooiiiiiiiii 513
Requesting data from the file.............ccooiiiiiii 513
Receiving data.......ocooviiiiiiii e 513
Opening files fOr WITtiNgG........ccoeueiiveieiiieiceee e 514
LineWTitten @VeNt........ccooiiiiiiiii e 515
Monitoring the File adapter.........cccooiiiiiiii 516

26 The Basic File IAF Adapter (FileTransport/JFileTransport)...........ccccoeeevrveccnieinincccnennn. 517
27 Codec TAF PIUG-INS......cooiiiieieieicieee e 519
The String codec IAF plug-in.......c.coooiiiiiiii 520

The Null codec IAF plug-in........ccooiiiiiiii e 521

The Filter codec IAF plug-in........c.coooviiiiiiiii e 523

The XML codec IAF plUg-iN.......coooiiiiiiiii e 527

The CSV codec TAF plug-in........ccooiiiiiiiiiii e 541

The Fixed Width codec IAF plug-in........ccoooviiiiiiiii 544

VI Developing Custom ClIentS........ciieuiinicnnininisinniinsiissiisnienssinssiissiisiessisssssssssssssssess 549
28 The Client Software Development Kits..........cccocoeeieieieiciiiiice e 551
The client Hbraries.........ccooiiiiiiii e 552
Working with event objects..........cooiiiiiiii 554
LOZZINE ottt 554
Exception handling and thread safety............c.cccoooeiiiiiiiine 554

29 Engine Management APL............ccoooiii 557
30 Engine Client APL........ccooi s 561
31 Event Service APL.......ccoi s 565
32 Scenario Service APL.........ooiiii s 567

Connecting Apama Applications to External Components 10.15.4 vii

Table of Contents

viii Connecting Apama Applications to External Components 10.15.4

About this Guide

B DOCUMENtAtION FOAAIMEP ..coiiiiiiiiiiiee e e ettt ettt e e e e e e e e e e e e e e s ans e e e e e e e e aannes 10
B Online Information and SUPPOIToii e e e e e e 11
LT = = e 0= ox 1T o 12
Connecting Apama Applications to External Components 10.15.4 9

Connecting Apama Applications to External Components describes how to connect Apama applications
to any event data source, database, messaging infrastructure, or application.

Documentation roadmap

Apama provides documentation in the following formats:

» HTML (available from both the documentation website and the doc folder of the Apama
installation)

m PDF (available from the documentation website)
® Eclipse help (accessible from Software AG Designer)
You can access the HTML documentation on your machine after Apama has been installed:

® Windows. Select Start > All Programs > Software AG >Tools > Apama n.n > Apama
Documentation n.n. Note that Software AG is the default group name that can be changed
during the installation.

= UNIX. Display the index.html file, which is in the doc/apama-onlinehelp directory of your
Apama installation directory.

The following guides are available:

Title Description

Release Notes Describes new features and changes introduced with the current
Apama release as well as earlier releases.

Installing Apama Summarizes all important installation information and is
intended for use with other Software AG installation guides
such as Using Software AG Installer.

Introduction to Apama Provides a high-level overview of Apama, describes the Apama
architecture, discusses Apama concepts and introduces Software
AG Designer, which is the main development tool for Apama.

Using Apama with Software AG ~ Explains how to develop Apama applications in Software AG
Designer Designer, which is an Eclipse-based integrated development
environment.

Developing Apama Applications Describes the the technology for developing Apama applications:
EPL monitors. You can use this technology to implement a single
Apama application. In addition, there are C++ and Java APIs
for developing components that plug in to a correlator. You can
use these components from EPL.

Connecting Apama Applications to Describes how to connect Apama applications to any event data
External Components source, database, messaging infrastructure, or application.

10 Connecting Apama Applications to External Components 10.15.4

Title Description

Building and Using Apama Deprecated. Describes how to build and use an Apama

Dashboards dashboard, which provides the ability to view and interact with
DataViews. An Apama project typically uses one or more
dashboards, which are created in the Dashboard Builder. The
Dashboard Viewer provides the ability to use dashboards
created in the Dashboard Builder. Dashboards can also be
deployed as simple web pages. Deployed dashboards connect
to one or more correlators by means of a dashboard data server
or display server.

Deploying and Managing Apama Describes how to deploy Apama applications using Docker and

Applications Kubernetes. It also provides information for improving Apama
application performance by using multiple correlators, for
managing and monitoring Apama components over REST
(Representational State Transfer), and for using correlator
utilities and configuration files.

In addition to the above guides, Apama also provides the following API reference information:

m API Reference for EPL (ApamaDoc)

m API Reference for Java (Javadoc)

m API Reference for C++ (Doxygen)

m API Reference for NET

m API Reference for Python

m API Reference for Component Management REST APIs

Online Information and Support

Product Documentation

You can find the product documentation on our documentation website at https://
documentation.softwareag.com.

In addition, you can also access the cloud product documentation via https://www.softwareag.cloud.
Navigate to the desired product and then, depending on your solution, go to “Developer Center”,
“User Center” or “Documentation”.

Product Training

You can find helpful product training material on our Learning Portal at https://
learn.softwareag.com.

Connecting Apama Applications to External Components 10.15.4 1

https://documentation.softwareag.com/
https://documentation.softwareag.com/
https://www.softwareag.cloud/
https://learn.softwareag.com/
https://learn.softwareag.com/

Tech Community

You can collaborate with Software AG experts on our Tech Community website at https://
techcommunity.softwareag.com. From here you can, for example:

®m Browse through our vast knowledge base.

m Ask questions and find answers in our discussion forums.

® Get the latest Software AG news and announcements.

m Explore our communities.

= Go to our public GitHub and Docker repositories at https://github.com/softwareag and https://
containers.softwareag.com/products and discover additional Software AG resources.

Product Support

Support for Software AG products is provided to licensed customers via our Empower Portal at
https://empower.softwareag.com. Many services on this portal require that you have an account.
If you do not yet have one, you can request it at https://empower.softwareag.com/register. Once

you have an account, you can, for example:

® Download products, updates and fixes.

m Search the Knowledge Center for technical information and tips.
® Subscribe to early warnings and critical alerts.

®m Open and update support incidents.

® Add product feature requests.

Data Protection

Software AG products provide functionality with respect to processing of personal data according
to the EU General Data Protection Regulation (GDPR). Where applicable, appropriate steps are
documented in the respective administration documentation.

12 Connecting Apama Applications to External Components 10.15.4

https://techcommunity.softwareag.com/
https://techcommunity.softwareag.com/
https://github.com/softwareag/
https://containers.softwareag.com/products
https://containers.softwareag.com/products
https://empower.softwareag.com/
https://empower.softwareag.com/register/

I Working with Connectivity Plug-ins

1 Getting Started with Connectivity PIUQ-INSouuiiiiiiii e 15
2 Using Connectivity PIUG-INS ..o 23
3 Developing ConnectiVity PIUG-INScooiiiiiiiiiiiiiiiiee e 43
Connecting Apama Applications to External Components 10.15.4 13

| Working with Connectivity Plug-ins

14 Connecting Apama Applications to External Components 10.15.4

1 Getting Started with Connectivity Plug-ins

(@0 [0 0] £ 16
Adding the conNeCtiVity DBUNAIESooovviiiiiiiiiiiieeeeeee e 19
Specifying the main settings in the properties filecccc 20
Specifying the settings for the connectivity chains in the YAML fileoovvviiiiiiviiinnnnee. 20
Controlling how the correlator interacts with a chaincccccooiiiiin 21
L LS o I o0 o [T o3 RSP 21
LAY 1T T =1 21

Connecting Apama Applications to External Components 10.15.4 15

1 Getting Started with Connectivity Plug-ins

Concepts

A connectivity chain is used to get events of a certain shape from a particular external source and
convert them from a given format into Apama events and back. There will be at least one chain
for each event source. There could also be one chain for each format of events you want to receive
from that source. There can be multiple instances of a given chain definition in the configuration
file, corresponding to multiple connections to that source. The choice of which chain to use for a
given event may vary between different sources.

All chains begin with a host plug-in, which defines how events are converted into Apama events.
All chains end with a transport, which determines the external source we are connecting to. Between
these you have an ordered sequence of any number of codecs. These are used to convert messages
from the format produced by the transport to that which the host plug-in will consume and vice
versa. Messages are passed between the elements in a connectivity chain using an abstract message
format made up of maps, lists, byte arrays and various primitive formats. As well as the (arbitrary)
payload, there is also a (nested) map of metadata with string keys and any of the supported types
as values.

The following diagram shows a typical connectivity chain:

Application Receiving
Context Context
Channel Channel

Haost Plug-in

!

Codec

1(Tran ::-rtT
-

External Source

16 Connecting Apama Applications to External Components 10.15.4

1 Getting Started with Connectivity Plug-ins

The connectivity chain in the above diagram uses several plug-ins and codecs:

® The host plug-in is the connection between the correlator and the chain of codecs that
manipulate and transform the messages as they pass through the chain. There are two host
plug-ins to choose from:

® apama.eventMap. This is the most common choice for a host plug-in. It produces and
consumes Apama events as a map with the keys being the names of the fields in the event
and the metadata.sag. type element set to the name of the event.

® apama.eventString. This host plug-in consumes events in Apama's proprietary string
format. It is usually used for interaction with legacy systems such as the IAF which use
Apama's string format.

For detailed information, see “Host plug-ins and configuration” on page 30.

® Any message is transformed into a compatible form for either the host or the transport as it
flows through the codec pipeline toward its destination.

m The transport is the plug-in that can actually retrieve or send the message to the external
resource. This is can be one of the standard plug-ins such MQTT or HTTP (see "Standard
Connectivity Plug-ins" in this guide for detailed information) or a plug-in written by the user.

Any message passing through from a transport plug-in to the host has common features that will
be similar in most implementations. The following diagram describes the common features
(metadata and payload) and indicates some of the common values they can take.

Metadata.sag. type
Metadata.sag.channel

Metadata. http.headers
Metadata.sag.channel

Metadata 4 Metadata.user.defined 1001011110...

Payload _ —

Metadata...

“labcl23..”

-l—-_.—l—l-'-'-#_

evt "myEvent”
sub Keyl | 123

_._______,.-'""‘-_—_

Codecs may be of various types. The following diagram describes an incoming message
transformation:

Connecting Apama Applications to External Components 10.15.4 17

1 Getting Started with Connectivity Plug-ins

Transport Host Plug-in
5tring Codec J50N Codec .. | Classifier Codec ~ | Mapper Codec /
- - -
10110111101000....
“{evt:* myEvent”,

*sub” fkeyl:123._
vt “myEvent” vt “myEvent”
sub Keyl | 123 sub Keyl | 123

sag. type: MyEvent sag.type: MyEvent

[|
vt “myEvent”

Mapped_vdue | Keyl | 123

extraField "foobar”

Apama provides a selection of codecs by default for converting from common formats and for use
with customer-provided codecs to provide standard transformations. The above diagram uses the
following standard codecs:

The String codec transforms an inbound message to an Apama string. It converts a buffer
(transport side) to a string (host side) by decoding it as UTF-8.

The outbound flow performs the reverse mapping in the other direction (see the diagram
below) and places a string representation of the message into an Apama string.

The JSON codec transforms the inbound message to a compatible representation. It converts
a string (transport side) to a structured type (usually map) by parsing it as a string JSON object.

The outbound flow performs the reverse mapping in the other direction (see the diagram
below) and transforms a JSON-compatible representation to a JSON string in the payload.

Messages to the host are identified as a particular event type by matching patterns on the
metadata or message contents. The Classifier codec defines what the metadata.sag. type will
be and uses rules that are triggered by values held by a field or fields in the inbound message.

This does not apply to outbound messages (see the diagram below).

The Mapper codec sets up the map fields ready for either the correlator or transport depending
upon the direction of the flow. It moves fields in the event around and adds default values to
missing fields. It can have different rules for different event types, and it can have symmetric

18

Connecting Apama Applications to External Components 10.15.4

1 Getting Started with Connectivity Plug-ins

rules or different rules depending on direction. towardsHost is the inbound direction, and
towardTransport is the outbound direction. The metadata and payload keys provide the source
or destination for the values.

For detailed information (and more codecs), see “Codec Connectivity Plug-ins” on page 235.

The following diagram describes an outgoing message transformation:

Transport Host Plug-in

\ String Codec 150N Codec N Classifier Codec | Mapper Codec /

-

10110111101000...

li_"'"-"r |Iﬁ-- '|“;
—_—

“lewt:"myEvent”,
*sub”{keyl:123 "

ayload type: Map ayload type: Map

e e |
evt “myEvent” evt “myEvent”

sub Keyl | 123 sub Keyl | 123

sag.type: MyEvent sag.type: MyEvent sag.type: MyEvent
e —)

evt “myEvent”
Mapped_vdue | Keyl | 123

extraField “foobar”

Adding the connectivity bundles

You can easily add connectivity bundles, either to a new Apama project or to an existing Apama
project. You can do this in Software AG Designer or using the apama_project tool. For more
information, see "Adding adapters to projects" in Using Apama with Software AG Designer and
"Creating and managing an Apama project from the command line" in Deploying and Managing
Apama Applications.

To get started quickly, we recommend that you import the genericsendreceive sample as a project
into Software AG Designer. This is a simple generic EPL application for sending and receiving
test messages, for use with any connectivity plug-in. You can find it in the samples/connectivity_
plugin/application directory of your Apama installation. See the README . txt file in that directory
for detailed information on how to import and run this sample.

Connecting Apama Applications to External Components 10.15.4 19

1 Getting Started with Connectivity Plug-ins

With the above sample, you can add one or more connectivity bundles to the project.

You configure a connectivity plug-in by editing the properties and YAML files that come with the
connectivity bundle.

Specifying the main settings in the properties file

Edit the properties file (with the file extension .properties) which comes with the connectivity
bundle to specify the main settings such as hosts, ports, and credentials.

The properties defined in this file are used to replace specific substitution values in the YAML
file. In many cases, all the configuration that is required is in the .properties file.

See also "Using properties files" in Deploying and Managing Apama Applications.

Specifying the settings for the connectivity chains in
the YAML file

The configuration file for a connectivity plug-in describes both the chains and the plug-ins making
up each chain. It is written in the YAML markup language. See also "Using YAML configuration
files" in Deploying and Managing Apama Applications.

Edit the YAML configuration file (with the file extension . yaml) which comes with the connectivity
bundle and specify all required information for creating the connectivity chains.

Find out from the documentation for the standard connectivity plug-ins how connectivity chains
are created for the transport you are using. See "Standard Connectivity Plug-ins" in this guide.

= If the transport provides a dynamic chain manager, then the chains are created by the transport.
In this case, you have to provide one or more dynamicChains definitions in the YAML
configuration file so that the chains are then created from these definitions.

m If the transport does not provide a dynamic chain manager, you have to choose between
m defining the chains statically in your YAML configuration file using startChains, or

m creating the chains dynamically from EPL using dynamicChains definitions in the YAML
configuration file.

Your decision on which transport to use affects which sections of the YAML configuration file
you have to edit. See also “Static and dynamic connectivity chains” on page 26.

Sometimes it is necessary to make more changes in the YAML configuration file. For example:

® You can add custom connectivity transport plug-ins or codec plug-ins that you have built
yourself in Java or C++, or have downloaded from the Apama community. See also
“Configuration file for connectivity plug-ins” on page 26.

® You can change the configuration settings for the transport. This depends on whether your
transport has a dynamic chain manager that will be either in the dynamicChainManager section

20 Connecting Apama Applications to External Components 10.15.4

1 Getting Started with Connectivity Plug-ins

and/or under the transport's name in the startChains or dynamicChains sections of the YAML
configuration file. For an example, see “Configuring the HTTP server transport” on page 114.

Note:

The Digital Event Services connectivity plug-in is an exception. In this case, the YAML
configuration file should not be modified by the user. All of the required configuration is to be
done in the properties file.

Controlling how the correlator interacts with a chain

A host plug-in controls how the correlator interacts with a chain. In the YAML configuration file,
the host plug-in is the first element in the configuration of a chain. You can configure the
apama.eventMap host plug-in, for example, to specity the following;:

m A default channel to send to.
® A channel to subscribe to for events that are sent towards the transport.
m A default event type for events that are sent towards the correlator (host).

See also “Host plug-ins and configuration” on page 30 and “Translating EPL events using the
apama.eventMap host plug-in” on page 32.

Using codecs

You can add one or more codec plug-ins to each chain which is defined in a YAML configuration
file.

For example, you can add or configure the Classifier codec to have rules that determine which
Apama event types to use for each message that comes from the transport and is sent towards the
correlator (host). Alternatively you can use the Mapper codec for more advanced cases, or for
simple cases where there is only one incoming event type for which you can set a defaultEventType
in the apama.eventMap.

Or you can add or configure the Mapper codec rules to have rules that customize the mapping
between the fields in your Apama event definitions and the payload and metadata of the transport
messages, and that set default values in case any fields are missing. In some cases, you may wish
to write rules to get or set the metadata.sag. type which specifies the Apama event type, or the
metadata.sag.channel which specifies the correlator (EPL) channel name.

You can add, remove or configure any other standard codecs you wish to use, such as the JSON
codec. For more information, see “Codec Connectivity Plug-ins” on page 235.

Writing EPL

After you have edited the properties file for the connectivity plug-in (and maybe also the YAML
configuration file), you have to write some EPL to cover the following main steps:

m Define the Apama event types for the messages you wish to send or receive.

Connecting Apama Applications to External Components 10.15.4 21

1 Getting Started with Connectivity Plug-ins

m Usemonitor.subscribe to subscribe to the correlator channel(s) from which you wish to receive
messages from the transport. Add an event listener for these events, perhaps logging the
incoming events to check that everything is working.

® Send events to any correlator channels to which the connectivity chain is subscribed. Keep in
mind that the channel names depend on the transport and how it is configured.

m Call connectivityPlugins.onApplicationInitialized once your EPL is ready to receive
incoming messages.

For simple applications, this can be done in the onload() action.
For real applications, we recommend the following:
1. Define an event to indicate when the application is fully injected.

2. Send that event by providing an event (.evt) file, which is always sent by default after all
EPL has been injected.

3. Call connectivityPlugins.onApplicationInitialized once that event has been received.

m If your transport does not have a dynamic chain manager and you wish to create chains
dynamically from EPL (rather than statically in YAML), you also have to create those chains
using com.softwareag.connectivity.ConnectivityPlugins.createDynamicChain.

Note:

If you use the genericsendreceive sample as recommended in “ Adding the connectivity
bundles” on page 19, all required EPL code is already available in the SendReceiveSample.mon
file.

22 Connecting Apama Applications to External Components 10.15.4

2 Using Connectivity Plug-ins

m Overview of using conNNEeCiVity PIUG-INSc.ovuuiiiiiii e e 24
B Static and dynamic connNectivity ChaiNSuuvuviiieiiiieiiiiiiriiieeierereeereereeeereeeeeeeeeeereeea 26
m Configuration file for connectivity plUg-INScoovviiiiiiiiii 26
B Host plug-ins and CONIQUIATIONuviiiiiiiiiiiiiii e 30
m Translating EPL events using the apama.eventMap host plug-incccccoeiiiiiiiiennnns 32
B Using reliable tranSPOrtS ... 33
m Creating dynamic chains from EPLccooiiiiiiiiiiiiiii e e e e e eeneens 37
B Sending and receiving events with connectivity plug-insccoooeiiiiiiiiiiiiiiceeeececccs 38
B Deploying plug-in lIBraries ..., 40

Connecting Apama Applications to External Components 10.15.4 23

2 Using Connectivity Plug-ins

Connectivity plug-ins allow plug-ins to transform and handle delivery of events.

TTKEsamples/connectivity_plugin/application/genericsendreceive(ihectory()fyouerpanla
installation includes a simple sample which provides an easy way to get started with sending and
receiving messages to or from any connectivity plug-in. For more information, see the README . txt
file in the above directory and “Sending and receiving events with connectivity plug-ins” on
page 38.

Overview of using connectivity plug-ins

Connectivity plug-ins can be written in Java or C++, and run inside the correlator process to allow
messages to be sent and received to/from external systems. Individual plug-ins are combined
together to form chains that define the path of a message, with the correlator host process at one
end and an external system or library at the other, and with an optional sequence of message
mapping transformations between them.

You can configure connectivity plug-ins and also develop applications that use them with Software
AG Designer. To do so, you have to add an instance of the User Connectivity connectivity bundle
to your project. See "Adding adapters to projects” in Using Apama with Software AG Designer or
"Creating and managing an Apama project from the command line" in Deploying and Managing
Apama Applications for more information.

A configuration file describes both the chains and the plug-ins making up each chain. The
configuration file is written using the YAML markup language, and can express structured
configuration (maps, lists and simple values) for plug-ins. The default text encoding of the
configuration file is UTF-8.

An example configuration may look like the following;:

connectivityPlugins:
stringCodec:
libraryName: connectivity-string-codec
class: StringCodec
mapperCodec:
libraryName: MapperCodec
class: MapperCodec
jsonCodec:
libraryName: connectivity-json-codec
class: JSONCodec
HTTPClientTransport:
libraryName: connectivity-http-client
class: HTTPClient
startChains:
weatherService:
- apama.eventMap:
defaultEventType: com.apamax.Weather
- mapperCodec:
H*H:
towardsTransport:
mapFrom:
- metadata.requestId: payload.id
defaultValue:
- metadata.http.path: /data/2.5/weather?g=Cambridge,uk
- metadata.http.method: GET

24 Connecting Apama Applications to External Components 10.15.4

2 Using Connectivity Plug-ins

- jsonCodec
- stringCodec
- HTTPClientTransport:
host: api.openweathermap.org

A chain is a combination of plug-ins with configuration. Every chain consists of the following:

m Codec plug-in. Optionally, one or more codec plug-ins are responsible for applying
transformations to the messages (for example, the JSON codec in the above example) to prepare
them for the next plug-in in the chain.

m Transport plug-in. One transport plug-in is responsible for sending/receiving messages to/from
an external system (for example, HTTPClientTransport in the above example).

® Host plug-in. One built-in host plug-in is responsible for sending/receiving messages to/from
the correlator process that is hosting the chain. These are built-in plug-ins (which do not need
to be specified in the connectivityPlugins stanza) which the correlator supports. Host plug-ins
determine in which format events are passed in and out of the correlator. Thus, a chain should
specify a host plug-in that is compatible with the next codec or transport element in the chain.
Host plug-ins can also specify on which channel the chain receives events from the correlator,
and can specify a default channel to send events in to the correlator (for example, apama. eventMap
in the above example).

Each transport plug-in and codec plug-in used in the chain must also be described in the
connectivityPlugins stanza. All of the plug-ins in a chain can optionally take configuration that
is specified in the configuration file nested below them.

Plug-ins can pass messages in a number of different forms (strings, maps, plug-in-specific objects).
Codecs can be used to translate from one form into another. For example, the JSON codec in the
above example would convert the map objects from the host plug-in to strings in JSON format.
Transport plug-ins and codec plug-ins written in Java and C++ may be used together in the same
chain regardless of language, using strings or maps of values to represent messages passed across
the language boundary.

Plug-in chains support sending events in both directions, to and from the external system:

® An Apama application can send events to a connectivity chain in the same way as it would
send them to any other receiver connected to the correlator, that is, using the send or emit
keywords. Events from the EPL application are translated into the form specified by the host
plug-in (the first in the chain configuration). They are then passed through each codec in turn,
and then delivered to the transport. The host plug-in (apama.eventMap in the above example)
by default listens for events from the application using the chain's name as a channel name.
The host plug-in can be configured to listen on a specific set of channels with the
subscribeChannels configuration property.

m Events from a connectivity chain's transport are passed through the codecs in the reverse order
and are translated by the host plug-in to Apama events which are enqueued to the Apama
application on the desired channel. The channel can be specified per event, or a default channel
can be configured in the host plug-in using the defaultChannel configuration property.

See “Host plug-ins and configuration” on page 30 for more information on the above mentioned
configuration properties.

Connecting Apama Applications to External Components 10.15.4 25

2 Using Connectivity Plug-ins

Static and dynamic connectivity chains

Chains can be created statically using a YAML configuration file or dynamically at runtime. How
the chains are created depends on the type of transport:

® Some transports have a dynamic chain manager which manages chain creation in a
transport-specific way. New chains are created, for example:

® inresponse to external requests (for example, for each connection made to the HTTP server
connectivity plug-in), or

® when an Apama channel with a particular prefix is first used from EPL (for example, the
Universal Messaging connectivity plug-in creates a chain by default when a channel
beginning with “um:” is used from EPL, in a monitor.subscribe(...) method or a send
. to statement).

These transports always have a dynamicChainManagers section in their YAML configuration
file. The connectivity chains are created dynamically by a transport chain manager plug-in,
using chain definitions specified in dynamicChains. See “Configuration file for connectivity
plug-ins” on page 26 for information on how to configure dynamic chain managers and
dynamic chains in a YAML configuration file.

For more information on dynamic chain managers, see “Requirements of a transport chain
manager plug-in class” on page 49.

= For transports that do not provide a dynamic chain manager, chains are created either
m statically using the startChains section of the YAML file, or

® dynamically from EPL using ConnectivityPlugins.createDynamicChain. See “Creating
dynamic chains from EPL” on page 37.

A transport that permits user-controlled chain creation never has a dynamicChainManagers
section in its YAML configuration file.

See the documentation for each transport in "Standard Connectivity Plug-ins" in this guide on
how chains are created. See “Configuration file for connectivity plug-ins” on page 26 for more
details on startChains, dynamicChains and dynamicChainManagers.

Configuration file for connectivity plug-ins

A configuration file for the connectivity plug-ins is specified using the --config option when
starting the correlator with the correlator executable. It is possible to specify multiple configuration
files. See the description of the --config option in "Starting the correlator" in Deploying and Managing
Apama Applications.

A configuration file for the connectivity plug-ins is written in YAML. See also "Using YAML
configuration files" in Deploying and Managing Apama Applications.

A configuration file should contain a map at the top level which has keys for connectivityPlugins
and some of startChains, dynamicChains and dynamicChainManagers.

26 Connecting Apama Applications to External Components 10.15.4

2 Using Connectivity Plug-ins

m The value of connectivityPlugins is a map which specifies how each plug-in is to be loaded.
The keys name the plug-ins, and the values specify how the host loads the plug-ins. Plug-ins
may be written in:

® Java. In this case, a class key and a classpath key should exist.

The class is name of the plug-in class, which must include the package. The plug-in's
documentation specifies the class name to be used. The class is a transport, a codec or
dynamic transport chain manager. See also “Requirements of a plug-in class” on page 45.

The classpath can be either a single string or a list of strings. For example:

= Single string:

classpath: one.jar

m List of strings where each string is written on a new line with a preceding dash and
space:
classpath:
- one.jar
- two.jar
- three.jar

m List of strings where the strings are delimited by semicolons (;). For example:

classpath: one.jar;two.jar;three.jar

Each string can name an absolute or relative jar file or directory.

An optional directory key specifies a directory which is where the jar files will be found
(unless an absolute path is specified for a classpath element).

m C++. In this case, a class key and a libraryName key should exist.

The class is the base name of the class, without a package. The plug-in's documentation
specifies the class name to be used. The class is a transport, a codec or dynamic transport
chain manager. See also “Requirements of a plug-in class” on page 45.

The libraryName is the base filename name of the library, excluding the operating
system-specific prefixes and suffixes (that is, excluding the “lib” prefix and “.so” suffix for
UNIX, and the “.d1l”" suffix for Windows).

An optional directory key specifies a directory which is where the library will be found
(see “Deploying plug-in libraries” on page 40).

globalConfigis an optional map providing default configuration options for this plug-in,
which are used by all chains/chain definitions using this plug-in that do not provide their own
value for them. The globalConfig configuration can be overridden by configuration per chain.

m Chains under startChains are created at startup. The value of startChains is a map where
each key is a string that names a chain. Each value should be a list, naming the plug-ins that
make up the chain. Each chain must contain one host plug-in, which is one of the built-in
supported host plug-ins, optionally followed by a number of codecs, and end with a plug-in
that is the transport. Configuration can optionally be specified for each plug-in, by following

Connecting Apama Applications to External Components 10.15.4 27

2 Using Connectivity Plug-ins

the plug-in name with a colon and space, and providing the configuration below it. Note that
in YAML terms, the chain entry is a map rather than a string.

The dynamicChains map is used to provide chain definitions that are used by chain manager
plug-ins or EPL code that dynamically create chain instances after the correlator has started.
Each key in the map is a chain definition identifier, which is the string that will be used by the
chain manager or from EPL to identify what kind of chain it wants to create. Each value should
be a list, naming the plug-ins that make up the chain, similar to what you would specify in
startChains. Each chain must contain one host plug-in, which is one of the built-in supported
host plug-ins, optionally followed by a number of codecs, and end with a plug-in that is the
transport. Configuration can optionally be specified for each plug-in, by following the plug-in
name with a colon and space, and providing the configuration below it as a map value. One
difference between dynamicChains and startChains is that the plug-in configurations used in
dynamicChains can specify @{varname} variable placeholders which get replaced when a chain
instance is created from the chain definition, with values provided dynamically by the chain
manager plug-in or the EPL createDynamicChain call. If you are using a chain manager plug-in,
see the plug-in's documentation for information about any @{varname} substitutions that it
supports. Note that this is unrelated to the ${varname} replacements that are performed statically
when YAML files are loaded at startup.

The value of dynamicChainManagers is a map where each key is a manager name, that is, a string
naming an instance of a dynamic chain manager plug-in class. Each value is a map providing
the configuration for the chain manager instance (such as details for connecting to a specific
external system) and the name of the transport plug-in it is associated with. The manager
should have the following keys:

® transport: Specifies the transport plug-in associated with this dynamic chain manager.
This must match the key used in connectivityPlugins toload this chain manager, and also
the name used in the dynamicChains definition to identify the transport plug-in at the end
of each chain. This is the name used for the plug-in in the configuration file, not the name
of the class that implements the plug-in.

® managerConfig: Specifies the configuration map that will be passed to the chain manager
constructor when it is created at startup. The available configuration options are defined
by the plug-in author, therefore, see the plug-in's documentation for details. If the
managerConfig is invalid and the chain manager throws an exception, the correlator logs
an error message and fails to start. The managerconfig usually includes details for connecting
to a specific external server or system. Some chain managers may also provide some options
that are set in the transport plug-in's configuration section under dynamicChains, for example,
options specific to the protocol or message format described by that chain definition.

Note that there can be more than one manager instance configured for a given transport, for
example, if you need to connect to several different servers of the same type. Each manager
can make use of more than one chain definition, for example, if different message formats
(such as XML and JSON) are being used with the same server or chain manager. In simple
configurations where a transport only ever had a single manager instance and a single chain
definition, it is common to use the same string for the transport name, dynamic chain definition
identifier and manager name. However, there is no requirement for them to be the same.

28

Connecting Apama Applications to External Components 10.15.4

2 Using Connectivity Plug-ins

You can use . properties files to specify values for ${varname} substitution variables in configuration

files. See "Using properties files" in Deploying and Managing Apama Applications for further
information.

There are a few values which can be written into the configuration file which will be substituted
at runtime. This is to aid portability of configuration files between different deployments.
Specifically the following variables may be used:

Variable Description
${PARENT_DIR} The absolute normalized path of the directory containing the
properties file or YAML file currently being processed.
${APAMA_HOME} The path to the Apama installation.
${APAMA_WORK} The path to the Apama work directory.
${$} The literal $ sign.
Example:
connectivityPlugins:
myTransport:
directory: ${APAMA_WORK}/build
classpath:

- myTransport.jar
class: org.my.Transport
startChains:
service:
- apama.eventMap
- myTransport:
apamaInstall: ${APAMA_HOME}

The following example shows a more complex configuration for a transport plug-in that uses two
dynamic chain manager instances and also two different chain definitions:

connectivityPlugins:
a transport plug-in that uses a chain manager to instantiate

its chains and transport instances dynamically
myTransport:
directory: ${APAMA_WORK}/build
classpath:
- myTransport.jar
class: org.my.MyTransportChainManager

... codecs defined here too

dynamicChainManagers:
example of multiple chain managers for the same transport;
an instance is created during correlator startup for each
manager listed here
myTransportManagerl:
must match transport plug-in name specified under connectivityPlugins
transport: myTransport

managerConfig:
myManagerConfigOption: ${myTransport.foo}

Connecting Apama Applications to External Components 10.15.4 29

2 Using Connectivity Plug-ins

myTransportManager2:
must match transport plug-in name specified under connectivityPlugins
transport: myTransport

managerConfig:
some managers specify which chain definition
to use 1in their configuration (others decide it at runtime)
myStaticallyConfiguredChainId: myJSONChainDefinition

dynamicChains:
myJSONChainDefinition:
- apama.eventMap
- jsonCodec
must match transport plug-in name specified under connectivityPlugins
- myTransport:
myTransportChainDefOptionl: @{bar}
myTransportChainDefOption2: ${myTransport.baz}

myXMLChainDefinition:
- apama.eventMap
- myXMLCodec
- myTransport

To see a fully working example of using a dynamic chain manager plug-in, try adding the Universal
Messaging connectivity plug-in to your project (see "Adding the Universal Messaging connectivity
plug-in to a project” in Using Apama with Software AG Designer).

In a configuration file, you can also specify the following:

= Additional YAML configuration files that are to be processed. For more details, see "Including
YAML configuration files inside another YAML configuration file" in Deploying and Managing
Apama Applications.

® JVM options which the correlator is to pass to the embedded JVM. For more details, see
"Specifying JVM options" in Deploying and Managing Apama Applications.

Host plug-ins and configuration

The first element in the configuration of a chain must be a host plug-in. This is a special type of
plug-in that controls how the correlator interacts with the chain. The type of plug-in will determine
in which form events are passed to and accepted from the chain. The host plug-in must use a
compatible type with the first codec (or, if no codecs specified, the transport), otherwise errors
will be reported and events will not be delivered.

Overview of host plug-ins
The following host plug-ins are supported:
B apama.eventMap

The eventMap plug-in translates EPL events to and from nested maps, which allows chains to
convert arbitrary structured data into forms that can be automatically translated into EPL
events without having to know the exact definition of the EPL event, provided the field names

30 Connecting Apama Applications to External Components 10.15.4

2 Using Connectivity Plug-ins

of the event definition match the keys in the map. See “Translating EPL events using the
apama.eventMap host plug-in” on page 32 for further information.

B apama.eventString

The eventString plug-in transfers events in Apama string event format, as used by the
engine_send and engine_receive tools and the Apama client library.

Common configuration properties

All Apama host plug-ins take the following configuration properties:

Configuration Property

Description

subscribeChannels

defaultChannel

suppressLoopback

Optional. Defines the channel or channels to which the chain
subscribes in order to receive events from the correlator.

subscribeChannels is only recommended for chains defined as
startChains. Dynamic chains will have their channel
subscription specified either from EPL or by the chain manager
which will override any setting in the configuration file.

To send an event to a chain from EPL, use the EPL send
statement with the name of a channel to which the chain has
subscribed.

Type of configuration: string or list of strings.
Default: the chain name.

Optional. Defines the default channel to deliver events from
the transport to the correlator from the chain.

Some chain managers provide a value for defaultChannel. It
is not permitted to specify defaultChannel for chains used by
such chain managers. It is recommended only for chains
defined as startChains or which you intend to create from
EPL.

Chains can also specify a channel name in the metadata of each
message. A channel provided in metadata takes precedence
over this configuration value.

Type of configuration: string.

Default: the default channel is an empty string ("), thus
delivering the event to all public contexts.

Optional. If set to true, any events which will be received by
this chain will not also be sent to contexts subscribed to the
same channel. It is assumed that this receiver may send the
events back into the correlator to be received by subscribed

Connecting Apama Applications to External Components 10.15.4 31

2 Using Connectivity Plug-ins

Configuration Property Description

contexts. This is typically used when this chain is connected to
a message bus. Any other external receivers are unaffected.

Type of configuration: boolean.
Default: false.

description Optional. A textual description which will appear in the
Management interface (see also "Using the Management
interface" in Developing Apama Applications).

remoteAddress Optional. A textual address for the remote component (if any)
to which this chain connects. This address will also appear in
the Management interface.

Translating EPL events using the apama.eventMap
host plug-in

The eventMap plug-in translates events to or from map objects, reflecting the structure of the event.
Each map entry has a key which is the same as an EPL event field. The values of the map can be
simple values (strings, numbers) or further maps or lists which correspond to dictionaries, nested
events or sequences.

If the message's payload does not contain all EPL fields, then by default the message is dropped
and a warning is logged. The allowMissing configuration property can be set to true, in which
case missing fields or fields with empty values are set to their default values.

If the message's payload has fields that do not have corresponding EPL fields (or which are perhaps
optional), then the map entries are ignored by default. An event definition can specify a
com.softwareag.connectivity.ExtraFieldsDict annotation that names a dictionary field; extra
values are placed in the dictionary (see “Map contents used by the apama.eventMap host plug-
in” on page 56 for more information). If needed, this can be disabled by setting the extraFields
configuration property to false. The dictionary must be one of the following types:

B dictionary<string,string>-Keysand values are coerced into strings. Lists generate the string
form of sequence<string>. Maps generate the string form of dictionary<string,string>.

® dictionary<any,any> - Values are mapped to the corresponding EPL type, or sequence<any>
for lists and dictionary<any,any> for maps without names.

® dictionary<string,any> - Keys are coerced into strings.

When events are sent from a chain to the correlator, the correlator needs to know what event type
they are. This can be set by a chain plug-in (in the metadata of a message) or by setting the
defaultEventType configuration property. The metadata will take precedence to specify a message's
type. Some chains will set the event type on every message, so the default event type does not
need to be set in the configuration. Other chains may not be aware of event types, so the event
type must be set.

32 Connecting Apama Applications to External Components 10.15.4

2 Using Connectivity Plug-ins

Configuration Property

Description

defaultEventType

allowMissing

extraFields

Optional. The name of the EPL type to which events that are
going into the correlator are converted if no event type is
specified on a message.

Type of configuration: string.

Default: none - requires that the chain send messages with the
event type set.

Optional. Defines whether missing fields or fields with empty
values (null values in Java) are permitted on inbound events.
If they are permitted, they are set to the EPL default for that
type. Similarly, empty values in nested events, elements in
sequences and key/value pairs in dictionaries are also set to
their default values.

There is an exception: an empty value that maps to an
optional<type> or any in EPL is permitted even if allowMissing
is false. See also the descriptions of the optional and any types
in the API Reference for EPL (ApamaDoc).

Type of configuration: boolean.

Default: false - this results in a WARN, and the events are
dropped if there are any missing or empty fields.

Optional. Defines whether to place map keys that do not name
fields in an extraFields dictionary member that is identified
with the @ExtraFieldsDict annotation (see above).

Type of configuration: boolean.

Default: true.

Using reliable transports

Reliable messaging gives you the tools to write event-processing applications that are resilient
against message loss (for example, due to crashes or network outages).

To make use of reliable messaging in your connectivity plug-ins, you must:

= Configure the transports for reliable messaging. The nature of this configuration is
transport-specific. Reliable messaging is only supported in chains that use the apama.eventMap
host plug-in. See also “Translating EPL events using the apama.eventMap host plug-in” on

page 32.

m Write EPL to send and receive events via these transports and to handle acknowledgments.
For detailed information, see the event descriptions for Chain, AckRequired and FlushAck in

Connecting Apama Applications to External Components 10.15.4 33

2 Using Connectivity Plug-ins

the com.softwareag.connectivity and com.softwareag.connectivity.control packagesin the
API Reference for EPL (ApamaDoc).

Note:
Not all transports support reliable messaging.

Reliable-messaging-aware transports only support at-least-once delivery, which admits the
possibility of duplicate messages, especially after recovery from downtime. Your applications
should be written to handle this.

In this version, reliable messaging with connectivity plug-ins is controlled exclusively from
EPL. At this time, reliable messaging cannot be automatically tied-in to correlator persistence.

If a license file cannot be found, reliable messaging with connectivity plug-ins is disabled. See
"Running Apama without a license file" in Introduction to Apama.

This transport connectivity plug-in supports reliable messaging
Universal Messaging No
MQTT No
Digital Event Services Yes
HTTP server No
HTTP client No
Kafka No
Cumulocity IoT No

Message identifiers

Messages going from the transport to the host contain unique message identifiers. Each identifier
is stored as sag.messageId in the metadata. See “Metadata values” on page 60. You only need
access to the message identifiers if you want to acknowledge individual events.

Where a message maps to an event type that has the MessageId annotation, the message identifier
in the metadata is copied into a field on that event. You should not name a field that you expect
to have a real value. See "Adding predefined annotations" in Developing Apama Applications.

The following EPL example shows how to use the MessageId annotation:

using com.softwareag.connectivity.Messageld;

@MessageId("messageIdentifier")
event MyEvent {
string s;
integer i;
string messageldentifier; // Contains the sag.messageId from the
// message that mapped to this event

34 Connecting Apama Applications to External Components 10.15.4

2 Using Connectivity Plug-ins

Chains

In general, when receiving or sending reliably, you need to know which connectivity chain is
receiving (from transport to host) or sending (from host to transport) the events. To identify that
connectivity chain, you use the EPL Chain event, which provides a wrapper with helpful actions
pertaining to reliability. There are two actions on the ConnectivityPlugins event that can be used
to get the Chain event for the chain you want:

B ConnectivityPlugins.getChainByChannel

This action looks up a chain instance by a channel it is subscribed to or sending to.
B ConnectivityPlugins.getChainById

This action looks up a chain instance by its identifier.

See the API Reference for EPL (ApamaDoc) for more information on these actions.

Reliable receiving

A transport can be configured for reliable receiving. This means the events are going from the
outside world into the correlator, and you make sure that they are not lost in the case of a failure.

The EPL that receives the events is obliged to acknowledge when the events have been fully processed
by the application. That is because the remote system to which a reliable transport connects typically
keeps track of what messages have been acknowledged and what messages have not been
acknowledged. In the event of a failure, any messages that have not been acknowledged are resent
to you after reconnection/restart.

Keep in mind that “fully processed” is different from just receiving an event. It means that you
have preserved the effect of that event, and done so safely enough that you will no longer need
the event to be resent in the event of a failure. As an example, that might mean committing the
contents of the event to a database, writing it to a file, or having sent an output event and received
an acknowledgment for it.

There are often performance implications for an application that is late with acknowledgments.
You should therefore acknowledge all events as soon as possible after receiving. There is no
guarantee, however, that an acknowledgment will be processed immediately. For example, if you
acknowledge some events in EPL and then the system goes down quite soon afterwards, the events
may not have been fully acknowledged to the remote system and will therefore get redelivered.

Once the events have been fully processed by the EPL application, they can be acknowledged in
either of the following ways:

m Listen for AckRequired events from the com.softwareag.connectivity.control package, and
call the ackupTo action on them. Doing it this way means you are acknowledging potentially
large batches of events at a time.

m Use the ackUpTo action on the Chain event type to acknowledge all previously received events,
up to and including a specific event of your choice. In this case, you identify the specific event
with its message identifier. If the event definition has the MessageId annotation, you can obtain
the message identifier from the named field.

Connecting Apama Applications to External Components 10.15.4 35

2 Using Connectivity Plug-ins

The detailed technical reasons for choosing between the above mechanisms are given in the
descriptions of the Chain and AckRequired events in the API Reference for EPL (ApamaDoc).

The following EPL example shows how an application can write reliably-received events to a file.
It uses a fictional plug-in named filePlugin for this purpose.

using com.softwareag.connectivity.ConnectivityPlugins;
using com.softwareag.connectivity.Direction;

using com.softwareag.connectivity.Chain;

using com.softwareag.connectivity.control.AckRequired;

monitor.subscribe("incomingEvents"); // The chain is sending us events
// on this channel
Chain chn := ConnectivityPlugins.getChainByChannel("incomingEvents",
Direction.TOWARDS_HOST); // Get the chain itself
on all MyEvent() as e { // The events the application is interested in
evtSequence.append(e);

3

on all AckRequired(chainId=chn.getId()) as ackRequired {
// Periodically acknowledge all previously received events,
// but only after safely writing their contents to a file
filePlugin.writeAndSync(evtSequence.toString());
evtSequence.clear();
ackRequired.ackUpTo() ;

}

In all reliable receiving, you have to consider the possibility that some events that have already
been acknowledged might be resent to your application, especially when recovering after a failure.
Your application should be written to either eliminate duplicates or tolerate them.

Any towards-host messages that get dropped by the chain due to errors (for example, when a
codec cannot translate from one form to another due to an invalid format) are treated as if they
have already been acknowledged.

Reliable sending

Reliable sending is symmetrical with reliable receiving for most purposes. With reliable sending,
your EPL application can ask to be notified when a remote system has safely processed your
events. As before, you have to know what chain is being used for reliable sending of these events,
and so you have to get the relevant Chain instance. After sending some events, you may call the
flush() action of the Chain.

Once all events sent to the chain before this call have been safely stored on (or have been processed
by) the remote system, your application will see an acknowledgment in the form of a FlushAck
event. Your application might then respond to this, for example, by acknowledging reliably-received
events that caused these events to be sent, or by recording the fact that the event has been sent in
a way that means that the application will not send it again. In the event of a restart, your application
should be written such that it is able to resend any events that were sent but not acknowledged
in its previous incarnation.

The following is an example of EPL application using the flush() action:

using com.softwareag.connectivity.ConnectivityPlugins;

36 Connecting Apama Applications to External Components 10.15.4

2 Using Connectivity Plug-ins

using com.softwareag.connectivity.Direction;
using com.softwareag.connectivity.Chain;
using com.softwareag.connectivity.control.FlushAck;

// Get the chain for the channel we are sending events to
Chain chn := ConnectivityPlugins.getChainByChannel("chanWeSendTo",
Direction.TOWARDS_TRANSPORT) ;

on all wait(0.1) {
globalInteger := globalInteger + 1;
MyEvent e := MyEvent(globalInteger);
send e to "chanWeSendTo";

// All previously sent events have now been safely processed by
// the remote system
on FlushAck(requestId=chn.flush()) {
log "Fully sent " + e.toString() at INFO;
}

Your application should be written with the idea that it might send duplicate events in the case
of a problem (for example, if your application sends out some events which are then processed
by some remote system, but there is a crash before your application can see the FlushAck event).

Creating dynamic chains from EPL

You can define chains under the dynamicChains section of the configuration file which are not tied
to a specific dynamicChainManager. These chains are not created on startup. Instead, multiple
instances of these chains can be created on demand from EPL using the ConnectivityPlugins EPL
API There is a static method on the com.softwareag.connectivity.ConnectivityPlugins event

type:

createDynamicChain(string chainInstanceId, sequence<string> channels, string

chainDefnName, dictionary<string, string> substitutions, string defaultChannelTowardsHost)
returns Chain;

Calling this method creates and starts a new instance of a chain defined under dynamicChains and

returns a com. softwareag.connectivity.Chain object which can later be used to destroy the chain
via the destroy () method.

The arguments to createDynamicChain are:

Argument Description

chainInstanceld The identifier to use for the new chain instance. This
identifier is used for logging, and it must be unique.

channels A sequence of channels to which this chain is to be
subscribed in the correlator. Events sent to these channels
from EPL are delivered to this chain.

Connecting Apama Applications to External Components 10.15.4 37

2 Using Connectivity Plug-ins

Argument Description

chainDefnName The name of a chain defined under dynamicChains in the
configuration file. This must not be for a transport which
has a dynamicChainManager.

substitutions A map of key-value pairs to be substituted into the chain
definition using @{key} syntax.

defaultChannelTowardsHost The default channel to use for sending a message towards
the host if no channel is specified on the message. Specify
an empty string if you do not want to use a default channel.

Note:

You must not specify a non-empty value for
defaultChannelTowardsHost if the configuration property
defaultChannelis also specified for the host plug-in (see
also “Host plug-ins and configuration” on page 30). An
error will occur in this case.

At the point when createDynamicChain returns, the chain is created and able to receive events. The
chain exists until either the correlator is shut down or the .destroy () method is called on the Chain
object returned by createDynamicChain.

Sending and receiving events with connectivity plug-
INs

When the correlator starts up, any connectivity chains listed in the configuration file are loaded
and started. At this point, events may be sent from EPL to the chains, through all of the codecs
towards the transport.

onApplicationlnitialized

While the transport is able to send events towards the host (the correlator), the correlator does not
process those events immediately. This prevents problems with events that are sent from the
transport to the correlator before the correlator has had event definitions injected, or the EPL to
handle those events has been injected or is ready to process the events. Instead, these events are
queued in the correlator.

An EPL application that sends or receives events to a transport should call the
onApplicationInitialized method on the com.softwareag.connectivity.ConnectivityPlugins
EPL object. This notifies the correlator that the application is ready to process events. Any events
that the transport sends towards the host (correlator) before this is called are then delivered to the
correlator. Events from a transport are maintained in the correct order.

38 Connecting Apama Applications to External Components 10.15.4

2 Using Connectivity Plug-ins

Calling onApplicationInitialized notifies all codecs and transports that the host is ready by
calling the hostReady method. The transport may choose not to receive events (for example, from
a JMS topic) until the application is ready if doing so may have adverse effects.

Initialization:

1. Apamarecommends that after all an application's EPL has been injected, the application should
send an application-defined "start" event using a .evt file.

Software AG Designer, engine_deploy and other tools all ensure that . evt files are sent in after
all EPL has been injected.

2. The monitor that handles the application-defined start event (from step 1) should use this
event object to notify the correlator that the application is initialized and ready to receive
messages, for example:

on com.mycompany.myapp.Start() {

com.softwareag.connectivity.ConnectivityPlugins.onApplicationInitialized();
// Any other post-injection startup logic goes here too.

Note:

For simple applications, you can add the EPL bundle Automatic onApplicationlnitialized to
your project (see also "Adding bundles to projects” in Using Apama with Software AG Designer).
This bundle will ensure that onApplicationInitializedis called as soon as the entire application
has been injected into the correlator. However, in cases where you need to wait for a
MemoryStore, database or another resource to be prepared before your application is able to
begin to process incoming messages, you should not use the bundle. In these cases, you should
write your own start event and application logic.

To aid diagnosing problems when part of the system is not ready in a timely manner, the correlator
logs this on every Status: log line (by default, every 5 seconds). For example:

Application has not called onApplicationInitialized yet - 500 events from connectivity

transports will not be processed yet

If EPL has not yet called onApplicationInitialized or if a plug-in in myChain has not returned
from hostReady yet, the following is logged:

Chain myChain is handling hostReady call

Calling ConnectivityPlugins.onApplicationInitialized also notifies the correlator-integrated
messaging for JMS, if enabled, that it is ready to receive events. It will then implicitly perform the
JMS.onApplicationInitialized() call (see “Using EPL to send and receive JMS messages” on
page 271). You should only call ConnectivityPlugins.onApplicationInitialized() once the
application is ready to receive all incoming events, either from connectivity chains or JMS.

Diagnostic codec

You can use the Diagnostic codec to view the messages being sent at any point in the connectivity
chain. This is very useful for diagnosing problems, and for configuring message transformations

Connecting Apama Applications to External Components 10.15.4 39

2 Using Connectivity Plug-ins

using codecs such as the Mapper and Classifier codecs. For more information, see “The Diagnostic
codec connectivity plug-in” on page 254 for further information.

Simple sample

The samples/connectivity_plugin/application/genericsendreceive directory of your Apama
installation includes a simple sample which provides an easy way to get started with sending and
receiving messages to or from any connectivity plug-in.

The sample contains some simple event definitions called mypackage .MySampleInput and
mypackage .MySampleOutput that can be used for input and output messages. These event definitions
can be customized with additional fields as you wish.

In addition, the sample contains a monitor that subscribes to a specific transport channel and logs
all events received from it, and also sends test events to a specific transport channel.

To use the sample, simply copy it into your Apama work directory or import it into Software AG
Designer as an existing project. Then customize the channel (or channels) it is sending to/from to
match the channel naming scheme specified in the documentation or configuration of the transport
you are using (for example, um:MyChannelName for Universal Messaging). Finally, add and configure
the connectivity plug-in you wish to use (see also "Standard Connectivity Plug-ins" in this guide).
Depending on the transport and chain configuration you are using, you may also need to configure
Mapper and/or Classifier codec rules in the YAML file (see also “Codec Connectivity Plug-ins” on
page 235) to use the mypackage .MySampleInput and mypackage.MySampleOutput event definitions
used by the sample.

See the README. txt file in the genericsendreceive sample directory for more details.

Deploying plug-in libraries

Every Java plug-in is loaded in a separate class loader. Static variables cannot be shared between
different plug-ins, unless a class is placed on the system's classpath. This allows different plug-ins
to use different versions of Java libraries without interference.

For C++ plug-ins, note that while a library can be loaded from any directory by specifying a
directory key in the connectivityPlugins section of the configuration file (see “Configuration file
for connectivity plug-ins” on page 26), any libraries that the plug-in depends on will only be
loaded from the system library path (using the LD_LIBRARY_PATH environment variable and standard
locations on UNIX, or using the PATH on Windows). The Apama Command Prompt (see "Setting
up the environment using the Apama Command Prompt" in Deploying and Managing Apama
Applications) adds $APAMA_WORK/lib to the system library path, which is the recommended place
to put any libraries that plug-ins require. Any libraries that the plug-in loads will be shared across
the entire process, therefore different plug-ins will need to use the same version of third-party
libraries where applicable. On Windows, ensure that the class and package names of plug-ins are
different across plug-ins.

In general, C++ plug-ins will give better performance than Java libraries, as there is a cost in
converting objects between Java and the C++ types. In particular, avoid mixing many interleaved
Java and C++ plug-ins in the same chain. If possible, put the C++ plug-ins on the host side of the
chain, as the correlator host plug-ins are C++ and adjacent plug-ins of the same type are cheaper

40 Connecting Apama Applications to External Components 10.15.4

2 Using Connectivity Plug-ins

than conversions. However, the language bindings of any libraries required by a plug-in and
familiarity with the programming environment should be the primary factors when deciding in
which language to write a new plug-in.

Connecting Apama Applications to External Components 10.15.4 41

2 Using Connectivity Plug-ins

42 Connecting Apama Applications to External Components 10.15.4

3 Developing Connectivity Plug-ins

B Chain components and MESSAUESccuvvuuiiiiieeieieeiiiiiiiaeeeeeeeeatai e e eeeeresaran i aeeaeraennes 44
B Requirements of a plug-in Class ... 45
B Requirements of a transport chain manager plug-in Classcccvvvvvvvvveiieeeeeeieeeeeeeene, 49
B BUldiNg PIUG-INS oo 52
I O o P 1= T 1V 1T SO P PP PP PPPPPPPPPPPR 53
m Map contents used by the apama.eventMap host plug-incccci 56
B Metadata VaIUESooiiiiiiiiiiii et 60
B Lifetime of cONNECtiVItY PIUG-INSooviiiiiiiiiiiiiieeeeeeeeeeeeee et 62
m Creating dynamic chains from a chain manager plug-incccccccc . 64
m User-defined status reporting from connectivity plug-inscccoovvriieeiniiiiiiiiiieee e 65
B L0gging and CONFIGQUIATIONuueiiiiiieeeeiiiit ettt e e e e e e e e e e e e e 67
T I 1= To [T T PP 68
B Developing reliable tranSPOITSccocciiiiiiiii e e e e e e e e e e eean 69
B Flushing background queues in connectivity plug-inscccccc 72
B General notes for developing traNSPOISuuuuuiuururiiiuiiieiiieeir .. 73

Connecting Apama Applications to External Components 10.15.4 43

3 Developing Connectivity Plug-ins

Chain components and messages

Connectivity chains consist of zero or more codecs and one transport.

Codecs perform some transformation of events, processing events going to and from the correlator,
and passing them on to the next component in the chain. Examples of codecs include:

= Translating events from structured form into a serialized form such as JSON or XML.
m Changing the name of a field to translate between different naming conventions.

® Removing unnecessary fields.

m Filtering, merging or splitting events.

Transports are the end of a chain. They may deliver the events to an external system that is not
part of the chain and may be out of process, or may perform some operation and send the result
to back to the correlator. Examples of transports include:

® Sending HTTP requests and receiving responses.
m Receiving events from a message bus.
® Performing operations on a file system.

Codecs and transports may be written in Java or C++, and chains can contain a mixture of C++ and
Java plug-ins. Messages will be automatically converted between C++and Java forms. The language
bindings of any libraries required by a plug-in and familiarity with the programming environment
should be the primary factors when deciding on the language in which to write a new plug-in.
Note that conversions between C++ and Java forms are copies and there are overheads in performing
these conversions. As the Apama host plug-ins are implemented in C++ (as is the core of the
correlator), a chain consisting of only C++ plug-ins will perform better. In particular, avoid mixing
many interleaved Java and C++ plug-ins in the same chain. If possible, put the C++ plug-ins on
the host side of the chain. Where adjacent plug-ins in a chain are of the same type (C++/Java),
messages are passed by reference/pointer (they are not copied).

Plug-ins communicate with each other and the correlator (also referred to as the host) by sending
batches of messages. Messages are converted to/from the events within a correlator. When a chain
sends a message to the host, the host plug-in converts it to an event and sends it into the correlator.
When the correlator emits an event to a channel on which a chain is listening, then the host plug-in
converts it from an event to a message, and delivers it to the chain. The plug-ins in a chain may
do conversions, for example, a codec may convert a map to a single string (for example, a JSON
codec), but that can be passed within a message. When it gets to a transport, it may be taken from
the message and delivered in some other form (for example, an HTTP request). A message consists
of a payload (which can be of different types according to the needs of the plug-in) and a metadata
map of strings. For more information, see the Message class in the API Reference for Java (Javadoc)
or API Reference for C++ (Doxygen,).

Metadata holds data about the event, such as the channel on which the event was delivered or the
type of the event. Plug-ins can use metadata to pass extra information about events that are not
part of the event (for example, latency through a chain could be measured by adding timestamps
to metadata and comparing that with the time needed for processing an event).

44 Connecting Apama Applications to External Components 10.15.4

3 Developing Connectivity Plug-ins

The message payload can be null. This means that the message is not a real event. This can be
useful for passing non-event information between plug-ins; many plug-ins will ignore this. For
example, a request to terminate a connection could be sent from one codec to signal the transport
to disconnect, and intermediate codecs that perform transformations such as JSON encoding would
ignore the event.

Messages are passed in batches so that transports (and codecs) can take advantage of amortizing
costs if operating at high throughput. Most plug-ins can be written by subclassing
AbstractSimpleCodec Or AbstractSimpleTransport classes (see “Requirements of a plug-in class” on
page 45) and only need to process a single Message at a time. The delineation of messages into
batches does not carry any significance beyond the events are all available at the same time. This
is only an opportunity for optimizations, not for passing extra semantic information. Codecs are
not required to maintain the same batches and can re-batch messages if desired.

Messages are not copied between plug-ins and do not perform any locking or synchronization. If
a codec wants to keep hold of a pristine copy of a message, it should store a copy of the message.

Every chain will need to work with one of the supplied host plug-ins. Most chains will use the
apama.eventMap plug-in which allows events to be sent without needing to know the exact event
definition. See also “Map contents used by the apama.eventMap host plug-in” on page 56.

Requirements of a plug-in class

Java and C++ plug-ins are identified in the connectivityPlugins section of the configuration file
for the connectivity plug-ins. See “Configuration file for connectivity plug-ins” on page 26 for
detailed information.

The named class must be a descendent of either AbstractCodec or AbstractTransport, unless it
is a transport with a dynamic chain manager in which case the class must subclass
AbstractChainManager (see “Requirements of a transport chain manager plug-in class” on page 49
for more information about developing chain managers).

In most cases, the easiest way to write codec and transport classes is by subclassing
AbstractSimpleCodec Or AbstractSimpleTransport. However, in some cases, a plug-in can achieve
better performance by directly subclassing the base class AbstractCodec or AbstractTransport;
these classes support handling a batch of multiple messages in a single call.

The classes are summarized in the following table. They are all in the com. softwareag. connectivity
package (Java) or in the com: :softwareag: : connectivity namespace (C++). See the API Reference
for Java (Javadoc) and API Reference for C++ (Doxygen) for more information.

Base class Subclasses deal Minimum methods subclasses need to
in implement
AbstractCodec Batches of sendBatchTowardsTransport,
messages sendBatchTowardsHost
AbstractTransport Batches of sendBatchTowardsTransport
messages

Connecting Apama Applications to External Components 10.15.4 45

3 Developing Connectivity Plug-ins

Base class Subclasses deal Minimum methods subclasses need to
in implement

AbstractSimpleCodec Individual transformMessageTowardsHost,
messages transformMessageTowardsTransport

Note that every message results in at most one
message out.

AbstractSimpleTransport Individual deliverMessageTowardsTransport
messages

All of the above classes also provide members or default implementations of:
= Member chainId

m Member config

® Member logger for logging (see below)

® Member hostSide - the next component in the chain towards the host

® Member transportSide - the next component in the chain towards the transport (for codecs
only)

B start
B hostReady
B shutdown

The start, hostReady and shutdown methods can be overridden if required. See also “Lifetime of
connectivity plug-ins” on page 62.

Plug-in class constructor

Subclasses should provide a constructor like the following, for Java:

public <ClassName>(org.slf4j.Logger logger,
TransportConstructorParameters params) throws Exception,
IllegalArgumentException {
super (logger, params);

or for C++:

public:
<ClassName> (const TransportConstructorParameters ¶ms)
: AbstractSimpleTransport(params)
{

}

46 Connecting Apama Applications to External Components 10.15.4

3 Developing Connectivity Plug-ins

The constructors for codecs follow the same pattern as for transports. The
TransportConstructorParameters Or CodecConstructorParameters Object provides access to the
plug-in's configuration and other useful information and capabilities, some of which are also made
available as member fields for convenience.

Note that transports with an associated dynamic chain manager are created by the chain manager's
createTransport method (for Java) or must have a public constructor with signature (const
ManagedTransportConstructorParameters &, ...) where ... are any extra parameters passed in
the createChain call (for C++).

In both Java and C++, there is a logger available using the logger field (for Java, this is also passed
into the constructor). Note that all messages logged using the logger will include the chainId and
pluginName, so there is no need to explicitly add that information to each message. See the API
Reference for Java (Javadoc) and API Reference for C++ (Doxygen) for detailed information.

Using AbstractSimpleCodec and AbstractSimpleTransport

The AbstractSimpleCodec and AbstractSimpleTransport classes handle batches by iterating through
each message within a batch and calling one of the methods listed above for each message. For
Java codecs, the result of the transform method replaces that message in the batch. For C++ codecs,
the transform method passes a reference to a message which can be mutated or the message
discarded if the method returns false. By default, messages with a null payload are ignored by
the AbstractSimpleCodec and AbstractSimpleTransport classes, but subclasses may override
methods to handle them (see the API Reference for Java (Javadoc) and API Reference for C++ (Doxygen)
for details).

Exceptions from processing one message are logged by default (this behavior can be overridden
by implementing handleException) and the next message is then processed.

To deliver events to the correlator, transports call the sendBatchTowardsHost method on the hostSide
member of AbstractSimpleTransport, passing a batch of messages as a List<Message> (they can
use Collections.singletonList() if needed).

Using AbstractCodec and AbstractTransport

Chains are bidirectional, passing events to and from the correlator. The order of plug-ins within
a chain is defined by the configuration file: first the host plug-in, then codecs, and finally a transport.
Plug-ins are connected such that the hostSide and transportSide members of AbstractCodec point
to the previous and next plug-in in the chain; and for AbstractTransport, hostSide points to the
last codec (or the host plug-in if there are no codecs).

Events from the correlator are sent to the first codec (or transport if there are no codecs). Each
codec should pass the message through to the next component, invoking the
sendBatchTowardsTransport method on the transportSide member.

Events to the correlator originate from the transport and are delivered by invoking the
sendBatchTowardsHost method on the hostSide member which delivers the events to the last codec.
The last codec should invoke the sendBatchTowardsHost method on its hostSide object, thus
traversing plug-ins in the reverse order. For Java, transports must always provide hostSide a batch
of messages as a List<Message> (they can use Collections.singletonList() if needed). For C++
plug-ins, the batches are passed as a pair of start and end pointers to Message. The batch is defined

Connecting Apama Applications to External Components 10.15.4 47

3 Developing Connectivity Plug-ins

as starting from the message pointed to by start and up to just before the message pointed to by
end - similar to begin() and end() iterators on C++ containers. Thus, the messages in a batch can
be iterated with a loop such as:

for (Message it = start; it != end; ++it) {
handleMessage (*it);
}

Plug-ins are provided with a HostSide and (for codecs only) TransportSide interface view of the
next component in the chain (as members of AbstractTransport or AbstractCodec).

Codecs are not required to maintain a one-to-one mapping of events going in and out. They may
choose to discard or merge multiple messages or split a message into separate messages.

Exporting the required symbols from C++ plug-ins

C++ plug-ins also require a macro which exports the symbols that the correlator needs to create
and manage the plug-in object. The macro has one of the following names:

B SAG_DECLARE_CONNECTIVITY_TRANSPORT_CLASS(class-name)
This macro should not be used for transports with a chain manager.

B SAG_DECLARE_CONNECTIVITY_CODEC_CLASS(class-name)

B SAG_DECLARE_CONNECTIVITY_TRANSPORT_CHAIN_MANAGER_CLASS (class-name)
This macro is used for exporting a chain manager class.

The macro takes the base name of the class - the class's name excluding any package. Software
AG recommends declaring codecs and transports in a package to avoid name collisions, and using
the macro within the namespace declaration, or where a using statement applies. For example:

#include <sag_connectivity_plugins.hpp>
using namespace com::softwareag::connectivity;

namespace my_namespace {

class MyTransport: public AbstractSimpleTransport
{
public:
MyTransport(const TransportConstructorParameters ¶ms)
: AbstractSimpleTransport(params)

{
b
virtual void deliverMessageTowardsTransport(Message &m)
{
logger.info("deliverMessageTowardsTransport()");
b

+s

SAG_DECLARE_CONNECTIVITY_TRANSPORT_CLASS (MyTransport)
} // end my_namespace

48 Connecting Apama Applications to External Components 10.15.4

3 Developing Connectivity Plug-ins

Note:

For a chain manager, you should include the header file sag_connectivity_chain_managers.hpp
instead of sag_connectivity_plugins.hpp which is used in the above example.

Requirements of a transport chain manager plug-in
class

A transport plug-in can control the lifetime of chains involving that transport, by providing a
dynamic chain manager. The chain manager can decide when to create or destroy chains, and is
typically controlled by either listening to channel subscriptions from the correlator host, or by
listening to external connections.

For example, any topic or queue on a message bus can be exposed dynamically without having
to provide a list of the topics/queues to connect to. On a channel-created notification, the chain
manager would check if there is a topic/queue to which it can connect, and create a chain instance
to connect to that topic/queue on demand.

Alternatively, the chain manager may listen to accept new connections, and each new connection
can create a new chain instance. For example, new incoming connections could each create a new
chain instance, with the chain manager holding a server socket, and on accepting connections
creating a suitable chain instance to handle messages on that connection. In both cases, the chain
manager will typically hold some connection object, which it then needs to pass to transport
instances when they are created. Thus, the chain manager and transport are usually tightly coupled,
and a chain manager can only create chains using its own transport class.

A transport that uses a dynamic chain manager to create its instances consists of a subclass of
AbstractTransport (Or AbstractSimpleTransport), and a subclass of AbstractChainManager which
is the class that must be specified in the configuration file's connectivityPlugins section. See
“Configuration file for connectivity plug-ins” on page 26 and “Requirements of a plug-in class” on
page 45.

The chain manager is responsible for:

m Creating and destroying chains as needed, often in response to notifications about the channels
that the EPL application is using or to handle new connections initiated from another process.
Some managers will create a single chain for sending messages in both directions on a given
channel (towards host and towards transport), others may create separate chains for each
direction, or may only support one direction. For detailed information about this, see “Creating
dynamic chains from a chain manager plug-in” on page 64. In summary, there are two main
aspects to chain creation:

m Selecting which chain definition to use when creating a new chain instance, if there is more
than one chain definition available for this transport. For more information, see “Creating
dynamic chains from a chain manager plug-in” on page 64.

m Instantiating the transport plug-in during creation of the chain, by calling the transport's
constructor.

Connecting Apama Applications to External Components 10.15.4 49

3 Developing Connectivity Plug-ins

With Java, the chain manager can simply pass through the logger and params arguments
to a transport constructor with the same signature as the createTransport method, or can
pass additional information that the transport needs - such as a reference to the chain
manager or connection, or information about the host channel(s) the chain is sending
to/from.

With C++, the transport's constructor is invoked directly, with a signature of (const
ManagedTransportConstructorParameters &, ...) where ... ansarqzethiparanqeuﬂs
passed in the createChain call.

m Instantiating and managing the lifetime of any connection to an external server or other
resources that should be shared by all associated transports. Usually, it is undesirable for each
transport or chain to have its own separate connection to any external server that the transport
is using, as the number of chains may be large. In many protocols, connections are heavyweight
entities that you would not want to have lots of. The chain manager can create its connections
at any time, but it is recommended to create the initial connection in the chain manager's
start() method if it is desirable for the correlator to delay coming up until the connection is
established, and for the correlator to fail to start if an exception is thrown while making the
initial connection. If not, it should happen on a background thread created by the start()
method.

m Optionally, reporting status information that applies to the chain manager rather than to
individual transports. For example, status about a connection shared across all transports could
be reported by the chain manager, as could aggregated KPI statistics from all transport chains.

The transport class is responsible only for sending and/or receiving messages, often making use
of a connection owned by the chain manager. Transports can also report their own status values
if desired, though if it is likely there will be a large number of transports, individual status for
each may be less useful and more expensive to report than aggregated status for the whole chain
manager.

Every chain manager is required to implement the following:

® A public constructor that will be called during correlator startup for each configured
dynamicChainManager, with the same signature as the AbstractChainManager constructor.

® createTransport (Java only; for C++, the transport's constructor is invoked directly as described
above)

m start
B shutdown

The AbstractChainManager base class has a number of member fields that provide access to logging,
the configuration for all dynamic chain definitions associated with its transport, and a
ChainManagerHost interface which supports creating chains and registering channel listeners.

A typical chain manager would use its start () method to create any required connection(s) to
external servers, and to add a ChannelLifecycleListener providing notifications when channels
with a specific prefix are created or destroyed.

It is possible to listen for all channels regardless of prefix, but using a prefix to limit the subset of
channels monitored by each chain manager is recommended to improve performance. The

50 Connecting Apama Applications to External Components 10.15.4

3 Developing Connectivity Plug-ins

ChannellLifecycleListener will fire to indicate that a channel has been created when the channel
name is used for the first time, typically as a result of the Apama application calling
monitor.subscribe(channel) or send event to channel. When this happens, the manager must
first decide whether it needs to have a chain for the specified channel, as some managers may only
wish to take action if a channel with the specified name exists on the external system they are
connected to. The manager must also check if it already has a chain for this channel in the specified
direction, since in some situations the listener will notify about creation of the same channel more
than once (see flushChannelCache in "Shutting down and managing components" in Deploying and
Managing Apama Applications). If the manager has established that a chain is needed for this channel
and none already exists, it should create one before returning from the listener callback. Or if a
chain already exists for this channel, but is no longer needed, it should destroy it. In other cases,
it should do nothing.

The first EPL monitor.subscribe(channel) or send event to channel call to use a channel with a
registered listener will block until the listener returns to ensure that no messages are missed if the
manager does decide to create a chain for that channel. If an error occurs in the chain manager's
implementation of the listener callback, it will be logged but no exception is thrown in the EPL
application. See “Creating dynamic chains from a chain manager plug-in” on page 64 for more
details about how to create chains from a dynamic chain manager.

When the onChannelDestroyed method of the ChannellLifecycleListener is called to indicate that
a channel has been destroyed (that is, implies that there are no remaining EPL monitors using the
channel for the specified direction), the chain manager should call destroy on the chain to shut
down and disconnect all associated transport and codec plug-ins. Chain managers should not
implement reference counting, as the destroy notification will not be fired until all uses of the
channel have finished.

Note that at present, channel destroy notifications are only sent for the TOWARDS_HOST direction
(monitor.subscribe()) since in the TOWARDS_TRANSPORT direction (send event to channel) there is
no unambiguous way of determining when a channel is no longer needed.

If using correlator persistence, the required channel lifecycle notifications for channels in use by
any persistent monitors will be replayed to chain managers during recovery, so there is no need
for chain managers to persist any state across restarts to support correct operation of persistence.

For detailed information about the classes and interfaces involved in creating a chain manager,
including more detailed information about how to use the listener API correctly and safely, see
the API Reference for Java (Javadoc) on the com.softwareag.connectivity.chainmanagers package,
or see the API Reference for C++ (Doxygen) on the com: : softwareag: : connectivity: :chainmanagers
namespace.

For a complete example of a working Java chain manager and transport, see the Kafka sample in
the samples/connectivity_plugin/java/KafkaTransport directory of your Apama installation.

A skeleton sample for C++ is provided in the samples/connectivity_plugin/cpp/skeleton_
chainmanager directory of your Apama installation. You can use this sample as a starting point to
write your own C++ chain manager and transport.

Connecting Apama Applications to External Components 10.15.4 51

3 Developing Connectivity Plug-ins

Building plug-ins

See the samples/connectivity_plugin directory of your Apama installation for working samples
of connectivity plug-in source code, Ant build files, makefiles, or Microsoft Visual Studio projects
for building C++ plug-ins (note that the build instructions in the samples/connectivity_plugin
directory assume that you are using a recent version of Microsoft Visual Studio).

Building Java plug-ins

Java plug-ins require the connectivity-plugins-api.jar file in the 1ib directory of your Apama
installation to be on the compiler's classpath as it defines Message, AbstractCodec, AbstractTransport,
AbstractChainManager and associated classes. The classes are in the com. softwareag.connectivity.*
packages.

All code samples shown in this connectivity plug-ins documentation assume either that the
following lines of code are present in the source file, or that the classes are imported individually.

import com.softwareag.connectivity.x;
import java.util.x; // Map, HashMap, List, ArrayList
// are commonly used classes in these samples

You can develop Java-based connectivity plug-ins in Software AG Designer. To do so, you have
to add the Apama Java support to your Apama project. See "Creating Apama projects” in Using
Apama with Software AG Designer for more information. This will automatically take care of the
classpath for you.

Building C++ plug-ins

C++ plug-ins require the header files in the include directory of your Apama installation to be on
the compiler's include path. The plug-in should be linked as a shared library and it should link
against the apclient library in the 1ib directory of your Apama installation. The resultant library
will thus depend on the apclient library.

All code samples shown in this connectivity plug-ins documentation assume either that the
following lines of code are present in the source file, or that individual using statements are used
for each class.

#include <sag_connectivity_plugins.hpp>

using namespace com::softwareag::connectivity;

For chain manager classes, the following is also needed:

#include <sag_connectivity_chain_managers.hpp>
using namespace com::softwareag::connectivity::chainmanagers;

For information on the compilers had have been tested and are supported, refer to the Supported
Platforms document for the current Apama version. This document is available from https://
documentation.softwareag.com/apama/index.htm.

52 Connecting Apama Applications to External Components 10.15.4

https://documentation.softwareag.com/apama/index.htm
https://documentation.softwareag.com/apama/index.htm

3 Developing Connectivity Plug-ins

Connectivity plug-in headers are a wrapper around a C ABI. Unlike other plug-ins, the C++ plug-ins
are therefore not sensitive to which C++ compiler product, compiler version and compiler
configuration (for example, a debug or release build) is used. The C++ compiler used does need
to correctly support parts of the C++11 standard, and exact settings required for each compiler
will vary.

If you are building a shared library to be used by multiple plug-ins and using the plug-in-specific
data structures as part of your API between the library and the plug-ins, then you must ensure
that the library and all of the plug-ins are compiled using the same version of the Apama header
files. This means that if you upgrade Apama and want to recompile one of them, you must
recompile all of them. You can choose not to recompile anything and they will still work.

If you compile with headers from multiple service packs of Apama, then you may see errors similar
to the following when you try to link them.

®m Linux:
undefined reference to "Foo::test(com::softwareag::connectivityl0_5_3::data_t const&)'
m Windows:

testlib2.0obj : error LNK2019: unresolved external symbol "public: void __cdecl
Foo::test(class com::softwareag::connectivityl0_5_3::data_t const &)"
(?test@Foo0@EQEAAXAEBVdata_t@connectivityl0_5_3@softwareag@com@@@Z) referenced in
function "public: void __cdecl Bar::test(class

com: :softwareag: :connectivityl®_5_3::data_t const &)"
(?test@EBar@E@QEAAXAEBVdata_t@connectivityl0_5_3@softwareagfcom@@@Z)

testlib2.d1l : fatal error LNK1120: 1 unresolved externals

If you encounter a similar error, try recompiling all your components with the same version of
the headers.

If you are compiling a single plug-in, or multiple completely independent plug-ins, you can
recompile them in any combination at any time.

If you want to develop plug-ins in C++, you have to use your own C++ compiler/development
environment.

C++ data types

C++ plug-ins handle messages, which have a payload which can be any of the following:
m string (null terminated UTF-8) (const charx)

® integer (64 bit) (int64_t)

m float (64 bit) (double)

m decimal (64 bit) (decimal_t)

® boolean (bool)

Connecting Apama Applications to External Components 10.15.4 53

3 Developing Connectivity Plug-ins

map of any of these types to any of these types (map_t)

list of any of these types (list_t)

byte buffer (buffer_t)

a custom object - a pointer to a user-defined class (custom_t)

an empty or “null” value

To facilitate this, the payload member of a message is of the

com: :softwareag: :connectivity: :data_t class type. The data_t type is a “smart union” that holds
one of the above types, and knows which type it holds. It has a similar API to a boost variant. The
data_t class has constructors from each of the above types, and a no-argument constructor which
creates an empty value. Accessing the data contained in a data_t instance can be performed as
described below.

m Use the get free template function. For example:
data_t data("some text'");
const char *text = get<const charx>(data);
map_t map;
data_t mapdata(map) ;
map &mapref = get<map_t>(mapdata);
For compound types map_t, list_t, custom_t and buffer_t, this returns a reference to the
object.

® You can attempt to convert integer, boolean, string or float values inside a data_t to each other,
regardless of the underlying type. The following is an example for turning a string into its
numerical representation:

data_t data("10");
int64_t i = convert_to<int64_t>(data);
double f = convert_to<double>(data);

m Use a visitor and the apply_visitor free template function. A visitor is a class with operator ()
methods for each of the types (and no arguments for empty data_t). If you wish to use a visitor
that only handles a few types and throws an error on all other types, then sub-class the provided
visitor or const_visitor template and override one or more of the following methods:

visitEmpty
visitInteger
visitDouble
visitBoolean
visitDecimal
visitBuffer
visitList
visitMap
54 Connecting Apama Applications to External Components 10.15.4

3 Developing Connectivity Plug-ins

visitCustom

The result of apply_visitorisof type visitor: :result_type (typically a typedef), or the second
template argument of visitor/const_visitor. For example:

struct print_data: public const_visitor<print_config, void>

{
void visitString(const char *s) const { std::cout << s; }
void visitList(const list_t &l) const
{
std::cout << "[";
for (list_t::const_iterator it = l.begin(); it != l.end(); ++it) {
apply_visitor(print_data(), *it);
if (it+l != l.end()) std::cout << ", ";
b
std::cout << "]";
}
void visitMap(const map_t &m) const
{
std::cout << "{";
std::vector<std::string> keys;
for (map_t::const_iterator it = m.begin(); it != m.end(); ++it) {
keys.push_back(get<const charx>(it.key()));
b
std: :sort(keys.begin(), keys.end());
for (std::vector<std::string>::iterator it = keys.begin();
it != keys.end(); ++it) {
std::cout << *it << "=";
apply_visitor(print_data(),
m.find(data_t(it->c_str())).value());
if (it+l != keys.end()) std::cout << ", ";
b
std::cout << "}";
}
}s

data_t data;
apply_visitor(print_data(), data);

Containers and custom values

The list_t and map_t classes are containers that hold a list or unordered (hash) map of data_t
elements (and for map_t, keys). These are similar in behavior to the C++ standard library classes
std::vector and std: :unordered_map - with a subset of the methods available. 1ist_t maintains
order of the elements in them, and allows access with the operator[] overload or iterators returned
from begin and end (or rbegin and rend, or cbegin and cend). map_t does not maintain ordering,
and should give average O(1) cost for insertions and lookups. map_t does not permit a data_t
holding a custom_t value to be used as a key.

When using iterators over the map_t and list_t types, or references to entries within the container,
you must not modify the parent container while iterating over it, or before accessing those
references. Trying to use an iterator after modifying the parent container will assert, or throw an
exception if asserts are disabled. There is no such protection for references. Note that if you have
a non-const map_t, then the operator[] can count as a mutation - it will add an entry if the entry
does not already exist.

Connecting Apama Applications to External Components 10.15.4 55

3 Developing Connectivity Plug-ins

The buffer_tis similar to list_t, butits element type is byte (uint8_t). buffer_t can be translated
to and from a Java byte[], but not to host plug-ins as there is no correlator type that maps to or
from them.

The custom_t type behaves like a std: :unique_ptr to a user-specified class, with an explicit copy
method. The class must have a copy constructor and destructor that do not throw exceptions. It
is up to you to ensure that the correct type is used; but if all classes wrapped in custom_t are virtual,
then it is possible to use dynamic_cast or typeinfo to distinguish the types of the objects held by
custom_t. Note that visitors are called with a sag_underlying_custom_t reference; this needs to be
cast with static_cast to the expected custom_t<Type> reference. custom_t values can only be
passed between C++ plug-ins; they cannot be passed to host plug-ins or Java plug-ins (and you
need to ensure that the plug-ins share the same definition of the class).

Decimals

The Apama decimal type is converted to/from a decimal_t struct. Thishasasingle int64_t which
is the bit pattern of the IEE754 64-bit floating point decimal. This can be serialized, copied or
moved, but no facilities are provided for arithmetic or conversion to string or normal floating
point types; a third-party decimal library is required if such functionality is required.

Copying, moving and swapping

The data_t and compound types list_t, map_t, buffer_t and custom_t deliberately hide access
to the copy constructor and assignment operator to avoid accidental copies. Explicit copies are
possible with the copy () method, which performs a deep copy (that is, for a map or list value, it
copies each element, and each element of those if they are compound types). Rather than copying
values, consider if the move constructor or move assignment operator can be used (these leave the
object moved from as empty). To call these, the argument needs to be enclosed in the std: :move(

).

Map contents used by the apama.eventMap host plug-
in

The payloads that the apama.eventMap generates for transportward messages and that it requires
for hostward messages are maps. For Java chains, this is java.util.Map<Object, Object>. For C++
chains, this is a map_t.

Each key in the map is the name of a field in the EPL event definition and the value the
corresponding EPL value. Each event containing other events is represented as a Map value within
the top-level field, allowing nesting of events, dictionaries and sequences. For events sent from
chains into the correlator, all fields must have non-empty values and must be present as keys in
the map, unless the configuration setting allowMissingis set to true. Keys that do not correspond
to fields are ignored by default. There is an exception: an empty value that maps to an
optional<type> or any in EPL is permitted even if allowMissingis false (see also the descriptions
of the optional and any types in the API Reference for EPL (ApamaDoc)).

Events can be annotated with the com.softwareag.connectivity.ExtraFieldsDict annotation (see
"Adding predefined annotations" in Developing Apama Applications) which names a dictionary

56 Connecting Apama Applications to External Components 10.15.4

3 Developing Connectivity Plug-ins

field, in which case any unmapped keys are placed into this dictionary field. This can be disabled
with the extraFields configuration property. The dictionary must be one of:

B dictionary<string,string>-Keysand values are coerced into strings. Lists generate the string
form of sequence<string>. Maps generate the string form of dictionary<string,string>.

® dictionary<any,any> - Values are mapped to the corresponding EPL type, or sequence<any>
for lists and dictionary<any,any> for maps without names.

n

The types are converted as described below:

dictionary<string,any> - Keys are coerced into strings. Values are mapped as described above.

EPL type Transportward events will Hostward events can also
contain Java or C++ type convert from types
Event java.util.Map Or map_t

dictionary java.util.Map Or map_t

sequence java.util.Listor list_t

location java.util.Map Or map_t (keys

are x1, y1, x2, y2)

com.apama.Channel java.lang.String Or const

charx (if it is a string channel)

string java.lang.String or const all numeric types, boolean
charx
integer java.lang.Long Or int64_t all numeric types (except NaN
float values), strings if they can
be parsed as an integer
float java.lang.Double or double all numeric types, strings if they
can be parsed as a float
decimal java.math.BigDecimal (but see all numeric types, strings if they
the notes below) or decimal_t can be parsed as a float
boolean java.lang.Boolean Or bool string, if true or false
optional EPL values of type optional<T> A Java object or data_t that

translate into one of the
following:

® nullor corresponding Java
type (see the above

conversions), or

corresponds to an EPL value of
type optional<T> is translated
if

m the Java object is null or of

type T,

Connecting Apama Applications to External Components 10.15.4

57

3 Developing Connectivity Plug-ins

EPL type Transportward events will Hostward events can also
contain Java or C++ type convert from types

® adata_t thatiseither empty

or of type T (see the above ™ data_tisempty or of type T.

conversions).
any EPL values of type any translate A Java object or data_t that
into one of the following: corresponds to an EPL value of

. type any is translated if
® nullor corresponding Java

type (see the above = the Java object is null or of
conversions), or a concrete type (see above),

® adata_tthatiseitherempty m data_tis empty or of a
or of the underlying concrete type (see above).
concrete type (see the above

conversions). See also the note below for Event

mappings.
See also the note below for Event

mappings.

Note:

An any type containing an Event is represented as either com. softwareag. connectivity.NamedMap
or map_t and the name field is set to the event type.

Non-native conversions (a floating point to integer conversion or vice versa) may lose precision,
and conversions to/from strings or decimals are more expensive than float or integer conversions.
If anything other than an exact match is found, a debug-level log message is generated; you may
wish to verify that there are none if the conversion is performance-sensitive.

The following applies to Java only: an EPL decimal value which is NaN (not a number) or an
infinity is mapped to/from a Double representation of NaN or infinity, as the Bigbecimal Java type
does not support them.

Events containing the following types cannot be sent into the correlator, as they cannot be serialized:
B chunk

m listener

® action variables

Events containing the following can be sent in, provided allowMissing is set to true in the host
plug-in configuration and no value is provided for that field:

B context
H com.apama.exceptions.Exception

B com.apama.exceptions.StackTraceElement

58 Connecting Apama Applications to External Components 10.15.4

3 Developing Connectivity Plug-ins

Events containing cycles cannot be sent into or out of the correlator, but arbitrary nesting is
permitted. Aliases will be flattened.

For Java plug-ins, handling messages from the apama.eventMap plug-in thus involves casting the
payload of the message from Object to Map, and then accessing members of that, casting as necessary
(or, for flexibility, introspecting their types by using the instanceof operator). For example, for
the following event definition, the Customerorder is translated to a map with deliveryAddress,
userId and items keys, and items will be a list of maps containing itemId, price and qty.

event LineItem {
string itemId;
float price;
integer qty;

}

event CustomerOrder {
string deliveryAddress;
string userld;
sequence<LineItem> titems;

To print the total cost of an order (sum of product of qty and price for each item), the Java code
would be as follows:

public void deliverMessageTowardsTransport(Message message) {
MapExtractor mList = new MapExtractor ((Map)message.getPayload(),
"CustomerOrder") ;
List<MapExtractor> items = mList.getListOfMaps("items", false);
double total = 0.0;
for (MapExtractor -item : +ditems) {
double price = item.get("price", Double.class);
long qty = +ditem.get("qty", Long.class);
total = total + price * qty;
3
LOGGER.info("Order value 1is "+total);

Note that due to type erasure, the type parameters on Map or List are not checked or guaranteed.
In the above example, it is convenient to cast the list representing EPL field sequence<LineItems>
to List<Map> to avoid having to cast the entries within it. The Map, however, is still treated as a
map of objects as it has different types (String, Double, Long) in it.

For C++ plug-ins, handling messages from the apama. eventMap plug-in involves using the get<map_t>
function and accessing the members of that, using get<> as necessary. If code needs to be flexible
as to which type it accepts, then use the visitor pattern (see “C++ data types” on page 53). For
example, using the event definition above, the following C++ code will print the total cost of the
order:

virtual void deliverMessageTowardsTransport(Message &message) {

map_t &payload = get<map_t>(message.getPayload());

list_t &items = get<list_t>(payload[data_t("items")]);

double total = 0.0;

for(list_t::iterator it = dtems.begin(); it != ditems.end(); it++) {
MapExtractor m(get<map_t>(xit), "LineItem");
double price = m.get<double>("price");
long qty = m.get<inte4_t>("qty");
total = total + price * qty;

Connecting Apama Applications to External Components 10.15.4 59

3 Developing Connectivity Plug-ins

logger.info("Order value is %f'", total);

The following constructs and sends an order with one line item into the correlator:

Map<String,Object> payload = new HashMap<>();
payload.put("deliveryAddress", "1 Roadsworth Avenue");
payload.put("userId", "jbloggs");

List<Map> items = new ArrayList<>();

Map<String,Object> item = new HashMap<String,0bject>();
item.put("itemId", "diteml");

item.put("price", 3.14);

item.put("qty", 10);

items.add(item);

payload.put("items", items);

Map<String, String> metadata = new HashMap<String, String>();
metadata.put(Message.HOST_MESSAGE_TYPE, "CustomerOrder'");
Message msg = new Message(payload, metadata);
hostSide.sendBatchTowardsHost(Collections.singletonList(msg));

The above can also be written more compactly:

hostSide.sendBatchTowardsHost(Collections.singletonList(new
Message (payload) .putMetadataValue (Message.HOST_MESSAGE_TYPE, "CustomerOrder'")));

This would typically be done in a more automated fashion, translating data from some other form,
rather than laboriously setting each field as needed - though some combination will often be
needed.

The equivalent C++ code is:

map_t payload;

payload.insert(data_t("deliveryAddress'"), data_t("1l Roadsworth Avenue"));
payload.insert(data_t("userId"), data_t("jbloggs"));

list_t items;

map_t item;

item.insert(data_t("itemId"), data_t("iteml"));
item.insert(data_t("price"), data_t(3.14));

item.insert(data_t("qty"), data_t((int64_t) 10));
items.push_back(data_t(std::move(item)));

payload[data_t("items")] = data_t(std::move(items));

Message msg(data_t(std::move(payload)));
msg.putMetadataValue (Message: :HOST_MESSAGE_TYPE(), "CustomerOrder");
hostSide->sendBatchTowardsHost (&msg, (&msg)+1);

Metadata values

Every message has a metadata member, which for Java is a Map object containing String keys and
Object values. For C++, it is a map_t which by convention only contains const char x keys, but
any type as values.

The metadata holds information about the event:

60 Connecting Apama Applications to External Components 10.15.4

3 Developing Connectivity Plug-ins

Value Description

sag.type The name of the event type. This is required when sending events into
the apama.eventMap plug-in, unless the defaultEventType configuration
property is set. For the apama.eventString plug-in, the event type name
comes from the string form of the event itself.

sag.channel The name of the channel from which the event originated or to which it
is to be delivered. This is optional for hostwards messages.

Note:

If the transport uses the same channel through its lifetime, it is
recommended that you set the defaultChannel property in the
configuration file, rather than setting the sag.channel for every
message. See also “Host plug-ins and configuration” on page 30.

sag.messageld The message identifier. This is used for reliable receiving (that is, in
reliable messages going towards the host). The message identifier should
be unique within the scope of the chain and deployment and during the
lifetime of the application. Typically it will be generated by the message
bus to which the connectivity plug-in transport is connected. See also
“Using reliable transports” on page 33.

CAUTION:

If you are using a codec to make the message identifier visible as an
event field in EPL, it is important to copy the value from sag.messageId.
Moving the value (and thus removing it from sag.messageId) will
disrupt reliable receiving.

In Java, these values are available as constants on the Message class:
B Message.HOST_MESSAGE_TYPE

B Message.CHANNEL

B Message.MESSAGE_ID

In C++, these are the following methods:

B HOST_MESSAGE_TYPE()

H CHANNEL()

B MESSAGE_ID()

Plug-in components can use the metadata to pass other auxiliary data about a message between
chain components. These could be headers from an HTTP connection, authentication tokens, or

signalling for transaction boundaries. It is recommended that all metadata keys are namespaced.
The sag namespace is reserved for Software AG use. Host plug-ins currently only use the metadata
keys above.

Connecting Apama Applications to External Components 10.15.4 61

3 Developing Connectivity Plug-ins

The metadata contents can be manipulated directly by calling methods on the map returned by
Message.getMetadataMap (). A Message.getMetadata() is also available in order to manipulate the
stringified version of the metadata values. Values can be inserted into the metadata by using
Message.putMetadataValue(...).

Lifetime of connectivity plug-ins

Instances of connectivity chains can be created in different ways. See “Static and dynamic
connectivity chains” on page 26 for detailed information.

At correlator startup:

® Each codec, transport and dynamic chain manager class is loaded using the classpath or
libraryName.

m Each dynamic chain manager listed in dynamicChainManagers is instantiated using its public
constructor and passing the managerconfig from the configuration file.

® The start() method is called on any dynamic chain managers. Chain managers can create
dynamic chains at any point after this, though in practice, dynamic chains are usually created
after correlator startup, once the Apama application is injected and running.

m Each chain listed in startChains is created and started (see below).

The correlator is only pingable and available for external access after all of the above operations
have completed.

Whenever a new chain instance is created (either during correlator startup if listed in startchains,
or at any time dynamically by EPL or a chain manager):

® The correlator determines the list of codec and transport plug-ins in the chain and the
configuration for each as follows:

m [f the chain is statically configured, the plug-ins and plug-in configurations listed under
startChains are used.

m If the chain is being created dynamically, the chain manager implementation or EPL
createDynamicChain call specifies which of the chain definitions listed under dynamiccChains
is to be used, and the configuration for this chain instance is prepared by replacing any
@{varname} runtime substitution variables in the chain definition using the map passed in
to createCreate or supplied by the chain manager.

® A new instance of each transport and codec class in the chain is constructed using the public
constructor, as described in “Requirements of a plug-in class” on page 45. If the transport has
a dynamic chain manager, the manager's createTransport method is used instead of calling
the transport constructor directly (for Java) or extra parameters to the createChain call are
passed through to the constructor (C++), which gives the chain manager the opportunity to
pass extra information required by the managed transport (such a reference to itself).

B hostSide and transportSide members are set on all transport and codec plug-ins in the chain.

62 Connecting Apama Applications to External Components 10.15.4

3 Developing Connectivity Plug-ins

m Static and EPL-created chains are started automatically once created. Chain managers must
explicitly call start() on the newly created chain when they are ready.

m The start() method is first called on all codecs in the chain.
® Then the start() method is called on the transport.
® Messages may begin flowing.

If any of the constructors or start () methods invoked during correlator startup throw an exception,
that will be logged as an error and the correlator will fail to start. These methods should complete
quickly; delays here will delay the correlator starting up. Blocking or long running operations
should be handled by a separate thread.

After start() is called on all members of the chain, events may flow through the chain in either
direction (if an EPL application is emitting events to the chain, they will be delivered as messages
and delivered through the codecs towards the transport). The transport is permitted to send events
hostwards, but they will be queued by the correlator until the application is ready for them.

Soon after the EPL application has been injected (and, if necessary, it has performed initialization),
the EPL application should call ConnectivityPlugins.onApplicationInitialized(). At this point:

® hostReady () is called on every codec.
® hostReady () is called on the transport.

Dynamic chains that are created after onApplicationInitialized hasbeen called will have hostReady
called as soon as the chain is created.

If an exception is thrown by a plug-in's hostReady () method or by the start() method of a
dynamically instantiated plug-in, that will be logged as an error and the chain will be disconnected.
These methods should complete quickly; delays here will delay the EPL application. Blocking or
long running operations should be handled by a separate thread. Any events previously sent to
the host will now be delivered, but the order of all events from a chain will be maintained.

When the correlator is shut down (for example, via engine_management -s) or when the dynamic
chain is destroyed by EPL or a dynamic chain manager, chains will be stopped:

® shutdown() is called on all chain managers (if any exist)
® shutdown() is called on every codec.
® shutdown() is called on the transport.

The shutdown () method gives chain managers an opportunity to destroy any chains they are
managing in an orderly fashion.

The shutdown method on transports should make the transport discard any further messages sent
to the transport, and unblock if any threads are currently delivering messages to the transport and
are blocked. If possible, the sendEventsTowardsTransport method should be written to allow any
blocking behavior to be unblocked when a shutdown occurs. For example, if a socket is being used
by a transport, it should be shut down or closed so that any threads reading or writing on the
socket's streams terminate.

Connecting Apama Applications to External Components 10.15.4 63

3 Developing Connectivity Plug-ins

Any messages delivered to a plug-in once the shutdown method has been called may be discarded
by the plug-in. Messages may be delivered to a plug-in even after the shutdown call has completed,
and the plug-in should not crash if that occurs.

If threads are required by a transport to deliver events to the transport or read from a connection,
they would normally be started by the hostReady method and stopped and joined in the shutdown
method.

Note:
For C++ plug-ins only: the plug-in object of each plug-in is destroyed, so the plug-in class's
destructor (if defined) is called. No events should be flowing through a chain at this point.

Exceptions thrown from any of sendBatchTowards, transformEvent or deliverEvent will be logged
and not propagated to their callers. Exceptions are not a suitable means to provide information
between plug-ins as they are ambiguous if a large batch of events are being processed, and some
codecs may choose to send events on a separate thread. Use messages to send such events; these
can be null payload with information stored in the metadata, in which case most codecs will ignore
the messages and pass them through.

Creating dynamic chains from a chain manager plug-
in

If a transport has an associated chain manager, the chain manager is responsible for creating all
chains involving that transport. Note that this is the only way to create chains involving such a
transport, they cannot be created using startChains or from EPL's
ConnectivityPlugin.createDynamicChain action.

Chain managers may create chains at any time after start () has been called and before shutdown (),
and for any reason. However, most managers create chains in response to a notification that a
channel has been created, which means it is in use for the first time. See “Requirements of a
transport chain manager plug-in class” on page 49 for more information about how to do this.

When a chain manager is ready to create a new chain, it does so by calling
ChainManagerHost.createChain(), usually making use of the host field on AbstractChainManager.
The following information must be supplied when creating a chain:

B chainInstanceIdSuffix - A string identifier which will be suffixed onto managerName”-" to
uniquely identify the new chain instance.

CAUTION:

A small amount of memory is allocated for each unique chain instance identifier. This
memory is not freed when the chain is destroyed. Therefore, if you are creating many chains,
consider reusing old chain instance identifiers. If you create more than 1000 unique identifiers,
a warning is written to the correlator log file to notify you of this. You cannot have two
active chains with the same chain instance identifier, so only reuse identifiers which are no
longer in use.

® dynamicChainDefinition - Specifies which of the chain definitions that contain this transport
should be used. The AbstractChainManager provides getChainDefinition() helper methods

64 Connecting Apama Applications to External Components 10.15.4

3 Developing Connectivity Plug-ins

to select a chain definition based on its identifier or by assuming that only one definition will
be configured. For more complex cases, a collection of all the chain definitions for this transport
is provided in the chainDefinitions field which a manger can iterate over to find the one with
the desired transport plug-in configuration. There are various possible approaches to selecting
which chain definition to use to create a chain:

® For some managers, it may not make sense to support multiple chain definitions and can
be written to just use a singleton chain definition.

® Some managers may allow the user to specify a chain definition by providing a chain
definition identifier as a configuration option for the manager in managerConfig.

® Another approach is for the manager to search through the available chain definitions and
use the transport plug-in's configuration of each one to decide which to use, for example,
by providing a channel prefix or regular expression pattern as part of the transport
configuration.

B substitutions-The chain manager can provide zero or more @{varname} variable replacement
values. This provides a way to use information from the manager or transport to configure
the host or codec plug-ins, for example, by having the Mapper codec set a field with details
about the manager's connection.

® defaultChannelTowardsHost and subscribeChannels - Used to specify the channel or channels
that this chain will send to (unless overridden in individual messages) or subscribe to. You
can either use a single chain to send messages in both directions, or have a separate chain for
each direction, that is, each transport instance will only be responsible for sending or receiving,
but not both.

The transport from the chain definition should match the transport that contains the chain manager
making the call. To create the transport object, the chain host will call createTransport rather than
the transport's constructor (for Java), or the transports constructor, passing through any extra
parameters passed to createChain (for C++). Once the chain has been created, it needs to be started
by calling the start() method on the returned chain object (a Chain pointer for C++).

For more detailed information about the classes and interfaces involved in creating a chain manager,
see the API Reference for Java (Javadoc) on the com. softwareag. connectivity.chainmanagers package,
or see the API Reference for C++ (Doxygen) on the com: : softwareag: : connectivity: :chainmanagers
namespace.

User-defined status reporting from connectivity plug-
Ins

Connectivity plug-ins can add any number of user-defined status values which are reported as
part of the correlator's status information from the REST API, Prometheus, the engine_watch tool,
the Engine Client APL, and from the EPL Management interface. Status values can be reported by
transports, codecs, or dynamic chain managers.

For example, a transport plug-in might report a status value to indicate whether it is currently
online and working correctly, or failed. Or it can report numeric KPIs indicating the number of
messages sent towards the host (correlator) and towards the transport. A dynamic chain manager

Connecting Apama Applications to External Components 10.15.4 65

3 Developing Connectivity Plug-ins

might report information about a connection it maintains, and perhaps provide some KPI statistics
aggregated across all the transport instances it is managing.

To report status information, create a status item by calling the
getStatusReporter().createStatusItem(...) method on your plug-in class, specifying the key
for this status item and its initial value, and store the resulting StatusItem object in a field so its
value can be updated as necessary. Status items are automatically removed when a transport or
codec plug-in is shut down or when the chain is destroyed (in C++, this assumes the StatusItem
isheld by a std: :unique_ptr in a member of the plug-in class, as we recommend). We recommend
using the pluginName as a prefix for transport and codec plug-ins and specifying the chainId as a
label, or the managerName for chain managers. Status keys will have leading and trailing whitespace
stripped. Keys cannot be empty. For example, in Java:

final StatusItem transportStatus =
getStatusReporter().createStatusItem("{chainId=" + chainName + "}."+pluginName
+ ".status", StatusReporter.STATUS_STARTING);

final StatusItem messagesTowardsHost =
getStatusReporter().createStatusItem("{chainId=" + chainName + "}."+pluginName
+" .messagesTowardsHost", 0);

transportStatus.setStatus(StatusReporter.STATUS_ONLINE) ;
messagesTowardsHost.increment() ;

Or in C++:

std::unique_ptr<StatusReporter::StatusItem> transportStatus;
std::unique_ptr<StatusReporter::StatusItem> messagesTowardsHost;

MyPluginConstructor(...):

°)

transportStatus(getStatusReporter().createStatusItem(
"{chainId=" + chainName + "}."+pluginName+".status",
StatusReporter: :STATUS_STARTING())),
messagesTowardsHost (getStatusReporter().createStatusItem(
"{chainId=" + chainName + "}."+pluginName+".messagesTowardsHost", 0))

-

transportStatus->setStatus(StatusReporter: :STATUS_ONLINE());
messagesTowardsHost->increment() ;

We recommend using the STATUS_x constants provided on StatusReporter for values of ".status"
items, to provide consistency.

In addition to the StatusItem interface, there is a separate method for atomically setting multiple
related items in a single call (for example, a status and an error message). But as the StatusItem
method is more efficient, it should be used in most cases, especially for items that might be updated
frequently such as message counters.

All user-defined status values are currently represented as strings, but for convenience when
reporting KPI numbers, an overload of setStatus exists that accepts an integer argument for the

66 Connecting Apama Applications to External Components 10.15.4

3 Developing Connectivity Plug-ins

value, which is automatically converted to a string by the method. There is also an increment ()
method.

For transports and codecs, status reporting is only permitted when your plug-in provides the
TransportConstructorParameters and CodecConstructorParameters constructors. It is not Supported
when using the older deprecated constructors.

For examples of how to report status information from a connectivity plug-in, see the samples\
connectivity_plugin\cpp\httpclient and samples\connectivity_plugin\java\HTTPServer
directories of your Apama installation.

See the statusReporter interface in the API Reference for Java (Javadoc) and API Reference for C++
(Doxygen) for more information about how to report status.

See also "Using the Management interface" in Developing Apama Applications for information about
how status values can be set and retrieved by EPL code.

For other ways to view the correlator's status, see "Managing and Monitoring over REST",
"Monitoring with Prometheus" and "Watching correlator runtime status", all in Deploying and
Managing Apama Applications

For examples of how to specify user status metrics with names containing labels, see "Monitoring
with Prometheus" in Deploying and Managing Apama Applications.

Logging and configuration

For Java plug-ins, the plug-in's constructor is passed a configuration object, the chain name and
a logger object. The Abstract classes supplied store these as members (the logger object is named

logger).

For C++ plug-ins, the Abstract classes have a logger member with methods to log at log levels
from TRACE to CRIT, with a printf format and variadic arguments. Expensive computations can
be predicated on a check of is<Level>Enabled().

Plug-ins should use the SLF4] logger object provided for logging. You should avoid using
System.out or System.err for logging. For both plug-ins written in C++ and Java, log messages are
prefixed with connectivity.PluginName.ChainName, which is also the category to configure log
levels using the correlatorLogging section in the YAML configuration file (see "Setting correlator
and plug-in log files and log levels in a YAML configuration file" in Deploying and Managing Apama
Applications). This means, it is not required to identify the plug-in or chain in every log statement.

If your plug-in uses a third-party library that logs with SLF4] or Log4j 2, then the log output goes
to the main correlator log file automatically. You can customize log levels as needed using
correlatorlLogging in the YAML configuration file (see "Setting correlator and plug-in log files
and log levels in a YAML configuration file" in Deploying and Managing Apama Applications). When
using a library which uses some other logging implementation, such as Log4j 1, the JDK logger,
or Apache Java commons logging (JCL), then add a bridging jar to convert it to SLF4] where
possible. Several bridges are available in the common/1ib/ext and common/lib/ext/log4j directories
of your Software AG installation.

Connecting Apama Applications to External Components 10.15.4 67

3 Developing Connectivity Plug-ins

The configuration contains the definitions from the configuration file for connectivity plug-ins
(any globalConfigis merged with the per-chain configuration so that the per-chain configuration
takes precedence). The configuration is a map with String keys. The values will be one of the
following classes:

B List<Object> (for C++, data_t of type list_t) for list YAML entries. Each element will be one
of these types.

B Map<String, Object> (for C++, data_t of type map_t) for map YAML entries. Each value will
be one of these types.

® string (for C++ data_t of type const char x). Even if the entry in the configuration file is
numeric or a boolean, it will be provided as a string.

Plug-ins should use the MapExtractor class to extract values from the configuration map which
makes it easy to check for invalid configuration options and produce helpful error messages if a
required value is missing or of the wrong type.

You can also use the Diagnostic codec to diagnose issues with connectivity plug-ins. See “The
Diagnostic codec connectivity plug-in” on page 254 for further information.

Threading

For events being delivered from the correlator to a chain towards the transport, the correlator will
only ever call sendBatchTowardsTransport from a single thread at a time. Most codecs will call the
next component in the chain in the thread that invoked them, but are not required to. A codec can
queue events and drain the queue from a separate thread if desired.

Transports and codecs should only make a single call at a time to the hostSide plug-in (and thus
only one thread at a time passes events towards the host) as the next plug-in may not be thread-safe.
Similarly, codecs should only make one call at a time to the transportSide plug-in, though one
codec may have threads invoking both hostSide and transportSide concurrently. Plug-ins should
not assume that they are called on the same thread each time (in particular, the correlator will use
different threads for sending batches of events), but they can assume that no more than one thread
at a time sends events to the transport.

Transports and codecs will typically be processing events towards the transport and towards the
host in different threads concurrently. The start, hostReady and shutdown methods will be called
from different threads to any other operation and while other calls are in progress.

When a chain is disconnected or when the correlator is shut down, the shutdown method on the
plug-in is called. This should ensure the following:

® Any threads calling into the plug-in which are blocked in the plug-in (particularly for transports)
should unblock and return.

® Any threads that the plug-in has started have been stopped and joined.
® The plug-in should ensure any in-progress calls out to other plug-ins have completed.

® The plug-in must ensure no more calls are made out of a plug-in to send messages to other
plug-ins.

68 Connecting Apama Applications to External Components 10.15.4

3 Developing Connectivity Plug-ins

This is particularly important for C++ plug-ins. Methods calling out after returning from shutdown,
or in progress at the point the shutdown method completes, could cause a crash. In practice, a
plug-in that starts a thread to read from a socket or other connection and send messages towards
the host should close the socket and join the thread (waiting for it to terminate) to meet these
requirements.

For C++ plug-ins, we recommend use of the standard libraries such as std: : thread and std: :mutex
for managing threads and locking in plug-ins. If not available, we provide some simple macros
in the sag_connectivity_threading.h header file. See the API Reference for C++ (Doxygen) for using
it.

Developing reliable transports

This section explains how to develop transports that support reliable messaging. For information
on how to use them, see “Using reliable transports” on page 33.

Reliable messaging uses control messages, which are special messages that are sent between the
host and the transport. They are used to signal actions that the host or transport should take as
well as the acknowledgments from these actions. The control messages have null (Java) or empty
(C++) payloads, and instead store all their information in the metadata.

The type of a control message is stored in a metadata field that can be accessed with the
CONTROL_TYPE constant of the com.softwareag.connectivity.Message (Java) or

com: :softwareag: :connectivity: :Message (C++) class. The value of this field should be one of the
type names listed below. These names are also accessed by constants. For more information, see
the Message class in the API Reference for Java (Javadoc) or API Reference for C++ (Doxygen).

Type Constant Description

AckRequired CONTROL_TYPE_ACK_REQUIRED This control message is sent from the
transport to the host. It is used to ask the
host to acknowledge all events that have
been sent towards the host before this
AckRequired.

AckUpTo CONTROL_TYPE_ACK_UPTO This control message is sent from the host
to the transport, and it is the
acknowledgment for the AckRequired
control message. It is used to inform the
transport that a particular AckRequired
request has been fulfilled.

Flush CONTROL_TYPE_FLUSH This control message is sent from the host
to the transport. It is used to ask the
transport to acknowledge all events that
have been sent towards the transport
before this Flush.

FlushAck CONTROL_TYPE_FLUSH_ACK This control message is sent from the
transport to the host, and it is the

Connecting Apama Applications to External Components 10.15.4 69

3 Developing Connectivity Plug-ins

Type Constant Description

acknowledgment for the Flush control
message. It is used to inform the host that
a particular Flush request has been
fulfilled.

The control message metadata also contains fields that can be accessed with the following constants:
B MESSAGE_ID

This constant names a metadata field used for uniquely identifying non-control messages (that
is, real events with payloads) that are being sent towards the host. This constant also names a
metadata field on the AckRequired and AckUpTo control messages that are used for reliable
receiving. In AckRequired, it contains the message identifier of the immediately preceding
non-control message. In AckUpTo, it contains the message identifier of the AckRequired that is
being responded to.

B REQUEST_ID

This constant names a metadata field on the Flush and FlushAck messages that are used for
reliable sending. The field denotes a unique identifier for matching up a Flush with its
corresponding FlushAck.

Transports receive and send the above-mentioned control messages. The exact logic of how they
should be processed depends on the exact nature of the external system that the transport connects
to. More information and examples are provided below.

Note:
The Java examples below are not intended to be used as a starting point. They only illustrate
the core concept of handling control messages.

Writing a transport for reliable receiving

This section describes the obligations of a transport that wishes to see acknowledgments of messages
that it is sending towards the host, in order that it can pass those acknowledgments to the reliable
messaging system that it is connected to. Such a transport must declare its reliability before any
messaging can take place, before the plug-in is fully started. This is achieved by calling the
enableReliability function on the PluginHost member of the transport, either from the constructor
or start() method.

public MyReliableTransport(Logger logger, TransportConstructorParameters params)
throws IllegalArgumentException, Exception

{

super (logger, params);
host.enableReliability(Direction.TOWARDS_HOST) ;
}

A transport must place unique identifiers on any non-control messages (that is, real events) that
it is sending towards the host. Ideally, these correspond to identifiers provided by the remote
messaging system that your code is receiving from. While not 100% necessary, it makes tracing a
message through the wider system much easier.

70 Connecting Apama Applications to External Components 10.15.4

3 Developing Connectivity Plug-ins

MyExternalMessage externalMessage = fictionalRemoteSystem.get();
Message msg = transformToMessage(externalMessage);
msg.putMetadataValue (Message.MESSAGE_ID,
externalMessage.getUniqueIdentifier());
hostside.sendBatchTowardsHost(Collections.singletonList(msg));

A transport must decide how regularly it wishes to receive acknowledgments (AckUpTo) from the
host application, by deciding when it sends AckRequired control messages towards the host. In
general, you should attempt to space these messages as widely as possible, so as not to put too
much burden on the EPL application. The steps taken to “commit” the effects of received events
may be quite expensive. However, the frequency of acknowledgments will probably also be
constrained by the nature of the remote messaging system your transport is connected to. For
example, it may only permit 1,000 unacknowledged messages to be outstanding before blocking
receipt of further messages. In this case, you will want to be sending out AckrRequired control
messages after every n real messages where 7 is a large fraction of 1,000.

Time is another factor to consider. In the worst case, for example, if acknowledgments are too
sparse, a reconnecting application may face 10 minutes of redelivered messages that did not get
acknowledged in a previous session. So in general, a transport should make sure to issue
AckRequired control messages at least every few seconds, assuming that any non-control messages
have been sent towards the host since the last AckRequ-ired.

An AckRequired control message must also contain the message identifier of the preceding
non-control message, in order to identify which tranche of previous messages is covered by a
corresponding acknowledgment.

Message ackRequired = new Message(null);

ackRequired.putMetadataValue (Message.CONTROL_TYPE,
Message.CONTROL_TYPE_ACK_REQUIRED) ;

ackRequired.putMetadataValue (Message.MESSAGE_ID, lastId);

Finally, a transport should be prepared to act on acknowledgments received from the EPL
application, that is, AckUpTo control messages from the host. Each AckUpTo corresponds exactly to
a previously issued AckRequired, with both containing the same MESSAGE_ID. AckUpTo messages
are seen in the exact same order that the AckRequired messages were issued.

public void deliverNullPayloadTowardsTransport(Message message)
throws Exception {

Map<String, Object> metadata = message.getMetadataMap()

if (metadata.containsKey(Message.CONTROL_TYPE))

{
String controlType = (String)metadata.get(Message.CONTROL_TYPE);
if(Message.CONTROL_TYPE_ACK_UPTO.equals(controlType))
{
String messageIld = metadata.get(Message.MESSAGE_ID);
fictionalRemoteSystem.ackUpToAndIncluding(messageld);
}
}

Connecting Apama Applications to External Components 10.15.4 71

3 Developing Connectivity Plug-ins

Writing a transport for reliable sending

This section describes the obligations of a transport that wishes to reliably acknowledge messages
that are being sent to it from an EPL application, that is, from the host. As before, the transport
should declare its reliable nature and direction.

public MyReliableTransport(Logger logger, TransportConstructorParameters params)
throws IllegalArgumentException, Exception

{
super (logger, params);
host.enableReliability(Direction.TOWARDS_TRANSPORT) ;

The transport should be prepared to act on Flush control messages, ensuring that all preceding
non-control messages are reliably delivered to a remote reliable messaging system. Once done,
the transport should respond with a FlushAck control message towards the host, with a REQUEST_ID
set to match it with the corresponding Flush.

Frequent Flush messages are automatically coalesced into individual messages that are more
widely spaced. So a transport need not be concerned with the performance impact of responding
to every Flush request. Also, Flush messages are subsumed by subsequent Flush messages and
their acknowledgments. For example, if a transport receives three Flush messages, a FlushAck
corresponding to the final Flush is interpreted as being a response to all three.

@Override
public void deliverNullPayloadTowardsTransport(Message message)
throws Exception {
Map<String, Object> metadata = message.getMetadataMap();
if (metadata.containsKey(Message.CONTROL_TYPE))
{
String controlType = (String)metadata.get(Message.CONTROL_TYPE);
if(Message.CONTROL_TYPE_FLUSH.equals(controlType))
{
fictionalRemoteSystem.commitEverythingSoFar();
Message response = new Message(null);
response.putMetadataValue(Message.CONTROL_TYPE,
Message.CONTROL_TYPE_FLUSH_ACK) ;
response.putMetadataValue(Message.REQUEST_ID,
Long.parselLong(metadata.get(Message.REQUEST)) ;
hostSide.sendBatchTowardsHost(Collections.singletonList(response));

Flushing background queues in connectivity plug-
Ins

For most connectivity plug-ins, the correlator's flushAllQueues management request waits until
all events have been processed by the plug-ins. However, some connectivity plug-ins implement
an internal queue, in which case events are only flushed onto the queue, and it does not wait for
them to actually complete. To extend flushAllQueues to any hidden queues, there is an additional

72 Connecting Apama Applications to External Components 10.15.4

3 Developing Connectivity Plug-ins

mechanism that can be implemented in a plug-in. This has been done for all the relevant plug-ins
shipped as part of the product.

This is done using a control message, which is a special type of message sent between the host
and the transport. Control messages have empty payloads and store all their information in the
metadata instead. To enable receiving these control messages, at least one plug-in in the chain
must call the enableQueueFlushMessages function on the host pointer:

void start() override {
host->enableQueueFlushMessages () ;

3

Note:
Flushing is only available for chains that do not use any of the Java-based connectivity plug-ins.

The control message for flushAllQueues has the sag.control. type metadata field set to QueueFlush.
It also has an opaque object in the sag. controlobject metadata field. These constants are available
as CONTROL_TYPE, CONTROL_TYPE_QUEUE_FLUSH, and CONTROL_OBJECT constants on the Message class.

The control message contains a custom_t object in the CONTROL_OBJECT metadata field. This is
completely opaque to the user, but its lifetime controls the flush. It can be copied if there are
multiple things to wait for. The flush is complete when all copies of the object have been destroyed.
If you do nothing, this happens when the message is fully processed down the chain. To wait for
an additional background queue to be flushed, store the object on the queue (either by moving or
copying it from the metadata, or by placing the QueueFlush message itself on the queue). When
all previous messages on the queue have been processed, then destroy the object that was on the

queue.

General notes for developing transports

OpenSSL

OpenSSL initialization and cleanup is handled internally by the correlator process itself.
User-developed transports must not perform these tasks.

Connecting Apama Applications to External Components 10.15.4 73

3 Developing Connectivity Plug-ins

74 Connecting Apama Applications to External Components 10.15.4

II Standard Connectivity Plug-ins

o oo N SN ot B

11

The Universal Messaging Transport Connectivity Plug-inccccviiiiiiiiieeeeeeeiinn. 77
The MQTT Transport Connectivity PIUG-INccooooiiiiiiiiiiiiceeeccece e 97
The Digital Event Services Transport Connectivity Plug-incccoovveveeiiiiiiiiiiieneeen. 105
The HTTP Server Transport Connectivity PIUG-iNooooiiiiiiieeceee 111
The HTTP Client Transport Connectivity PIUg-iN ... 137
The Kafka Transport Connectivity PIUG-iNccccooiiiiiiiiiiiiia s 173
The Cumulocity 10T Transport Connectivity PIUG-iNcccoooiiiiiiiiiiiiiicis 179
Codec CoNNECHIVILY PIUG-INS ...ccooiiiiiiiieiieee e 235

Connecting Apama Applications to External Components 10.15.4 75

[l Standard Connectivity Plug-ins

76 Connecting Apama Applications to External Components 10.15.4

4 The Universal Messaging Transport Connectivity

Plug-in

m About the Universal Messaging tranSPOIToiieeeriireeiiiiii e ee e e e e e e 78
m Overview of using Universal Messaging in Apama applications 78
B Setting up Universal Messaging for use by Apamaueevvvvvivveveerieeieeeieeereeereeeneennee 85
m Configuring the Universal Messaging connectivity plug-incccoovveeeerniniiiiineeeeennne 87
m EPL and Universal Messaging Channelsoooooiiiiiiiiiieciieeeee e 95
m Using Universal Messaging connectivity from EPL ..., 96
m Monitoring Apama application use of Universal Messagingcccccvvvvvieiiieeeeeeevnnvnnnnnnn 96

Connecting Apama Applications to External Components 10.15.4 77

4 The Universal Messaging Transport Connectivity Plug-in

About the Universal Messaging transport

Note:

The Universal Messaging transport connectivity plug-in is deprecated and will be removed in
a future release. It is recommended to instead either use the MQTT transport connectivity plug-in
or the correlator-integrated support for the Java Message Service (JMS).

Universal Messaging is Software AG's middleware service that delivers data across different
networks. It provides messaging functionality without the use of a web server or modifications
to firewall policy. In Apama applications, you can configure and use the connectivity provided
by Universal Messaging.

You can use the Apama integration to Universal Messaging as a simpler and more deeply integrated
alternative to connecting to a Universal Messaging realm via the Java Message Service (JMS). This
can be used both to connect different Apama components together using the internal Apama
message format and for integrating with non-Apama systems over Universal Messaging. The
Universal Messaging connectivity plug-in supports configurable mapping between Apama events
and whatever formats the non-Apama components are using.

Only Universal Messaging channels can be used with Apama.

This transport provides a dynamic chain manager which creates chains automatically when EPL
subscribes or sends to a correlator channel with the configured prefix, typically um:. The selection
of which dynamicChains definition to use is based on the channelPattern regular expression
configured in the Universal Messaging transport of each dynamic chain. See “Configuring the
Universal Messaging connectivity plug-in” on page 87 for more details on the mapping between
correlator channel names and the associated Universal Messaging channel or topic names.

Note:
Universal Messaging queues are not supported in this Apama release.

The Universal Messaging connectivity plug-in does not support reliable messaging.

Overview of using Universal Messaging in Apama
applications

In an Apama application, correlators can connect to Universal Messaging realms or clusters. A
correlator connected to a Universal Messaging realm or cluster uses Universal Messaging as a
message bus for sending Apama events between Apama components. Connecting a correlator to
Universal Messaging is an alternative to specifying a connection between two correlators by
executing the engine_connect correlator tool.

Using Universal Messaging can simplify an Apama application configuration. Instead of specifying
many point-to-point connections, you specify only the address (or addresses) of the Universal

Messaging realm or cluster. Apama components connected to the same Universal Messaging realm
can use Universal Messaging channels to send and receive events. (Universal Messaging channels

78 Connecting Apama Applications to External Components 10.15.4

4 The Universal Messaging Transport Connectivity Plug-in

are equivalent to JMS topics.) Connections to Universal Messaging are automatically made as
needed, giving extra flexibility in how the application is designed.

When an Apama application uses Universal Messaging, a correlator automatically connects to the
required Universal Messaging channels. There is no need to explicitly connect Universal Messaging
channels to individual correlators. A correlator automatically receives events on Universal
Messaging channels that monitors subscribe to and automatically sends events to Universal
Messaging channels.

When using the connectivity plug-in for Universal Messaging, you can also talk to non-Apama
applications which are connected to Universal Messaging and configure a chain definition to
translate those message payloads into ones suitable for Apama.

Comparison of Apama channels and Universal Messaging
channels

In an Apama application configured to use Universal Messaging, when an event is sent and a
channel name is specified, the default behavior is that Apama determines whether there is a
Universal Messaging channel with that name. If there is, then Apama uses the Universal Messaging
message bus and the specified Universal Messaging channel to deliver the event to any subscribers.
Subscribed contexts can be in either the originating correlator or other correlators connected to
the Universal Messaging broker.

If a Universal Messaging channel with the specified name does not exist, then the default is that
the channel is an Apama channel. An event sent on an Apama channel is delivered to any contexts
that are subscribed to that channel.

Regardless of whether the channel is a Universal Messaging channel or an Apama channel, events
are delivered directly to receivers that are connected directly to the correlator.

The following table compares the behavior of Apama channels and Universal Messaging channels.

Apama channels Universal Messaging channels
Configuration of multiple point-to-point Specification of the same Universal Messaging
connections. realm address or addresses.

Each execution of engine_connect specifies the Startup options for connected correlators specify

correlator to connect to. Each IAF adapter the same Universal Messaging realm to connect

configuration specifies each correlator that to. Each IAF adapter configuration specifies the

adapter connects to. same address for connecting to Universal
Messaging.

Correlators and IAF adapters require explicitly

set connections to communicate with each other. Correlators and IAF adapters automatically
connect to Universal Messaging to communicate
with each other.

Configuration changes are required when an No configuration change is needed when an
Apama component is moved to a different host. Apama component is moved to a different host

Connecting Apama Applications to External Components 10.15.4 79

4 The Universal Messaging Transport Connectivity Plug-in

Apama channels Universal Messaging channels

if both hosts are connected to the same Universal
Messaging realm.

Outside a correlator, channel subscriptions can Outside a correlator, channel subscriptions can
be from only explicitly connected Apama be from any Apama component connected to the
components. same Universal Messaging realm.

Events sent on an Apama channel go directly to Events sent on a Universal Messaging channel
subscribers. go to the Universal Messaging broker and then
to subscribers.

Connection configurations must be synchronized Connection to a Universal Messaging realm is
with application code. independent of application code.

Less efficient for sending the same event to many More efficient for sending the same event to

Apama components. many Apama components.

More efficient when sending an event to a Less efficient when sending an event to a context
context in the same correlator. The event stays in the same correlator. The event leaves the
inside the correlator. correlator, enters the Universal Messaging realm,

and then returns to the correlator.

Default channel, the empty string, is allowed. No default channel.

Choosing when to use Universal Messaging channels and when
to use Apama channels

Typically, you want to

m Use Universal Messaging channels to send events from one correlator to another correlator,
from adapters to correlators, or from correlators to external receivers. You also might want to
use Universal Messaging channels when your application needs the flexibility for a monitor
or context to be moved to another correlator. With Universal Messaging, you can re-deploy
monitors sending or subscribing to Universal Messaging channels among the correlators
connected to the same Universal Messaging realm without having to change any of the
configuration for the Universal Messaging connectivity.

m Use Apama channels to send events from one context to one or more contexts in the same
correlator.

Consider the case of multiple correlators connected to the same Universal Messaging realm.
Specification of a Universal Messaging channel lets events pass between a context sending events
on the channel and a context subscribed to that channel, regardless of whether the two contexts
are

®m in the same correlator, or

m in different correlators on the same host, or

80 Connecting Apama Applications to External Components 10.15.4

4 The Universal Messaging Transport Connectivity Plug-in

m in different correlators on different hosts.

The first time a channel is used, the default behavior is that Apama determines whether it is a
Universal Messaging channel or an Apama channel, and the designation is cached. After the first
use, the presence or not of the channel in the Universal Messaging broker is cached, so further use
of the channel is not impacted.

Using Universal Messaging channels lets you take advantage of some Universal Messaging features:

m Using a Universal Messaging cluster can guard against failure of an individual Universal
Messaging realm server. See the Universal Messaging documentation for more information
on clusters.

m Universal Messaging provides access control lists and other security features such as client
identity verification by means of certificates and on the wire encryption. Using these features,
you can control the components that each component is allowed to send events to.

Using a Universal Messaging channel rather than an Apama channel can have a lower throughput
and higher latency. If there is a Universal Messaging channel that contexts and plug-ins send to
and that other contexts and plug-ins in the same correlator (or in different correlators) subscribe
to, all events sent on that Universal Messaging channel are delivered by means of the Universal
Messaging broker. In some cases, this might mean that events leave a correlator and are then
returned to the same correlator. In this case, using an Apama channel is faster because events
would be delivered directly to the contexts and plug-ins subscribed to that channel.

General steps for using Universal Messaging in Apama
applications

Before you perform the steps required to use Universal Messaging in an Apama application,
consider how your application uses channels. You should know which components need to
communicate with each other, which events travel outside a correlator, and which events stay in
a single correlator. Understand what channels you need and decide which channels should be
Universal Messaging channels and which, if any, should be Apama channels.

For an Apama application to use Universal Messaging, the tasks you must accomplish are:

1. Use Software AG Installer to install both Apama and the Universal Messaging client libraries
in the same Software AG installation directory.

2. Plan and implement the configuration of the Universal Messaging cluster that Apama will
use. See the Universal Messaging documentation and “Setting up Universal Messaging for
use by Apama” on page 85.

3. Use Software AG Designer to add one of the Universal Messaging connectivity bundles to
your Apama project. For detailed information, see "Adding the Universal Messaging
connectivity plug-in to a project” in Using Apama with Software AG Designer.

Note:

Connecting Apama Applications to External Components 10.15.4 81

https://documentation.softwareag.com/universal_messaging/
https://documentation.softwareag.com/universal_messaging/

4 The Universal Messaging Transport Connectivity Plug-in

In addition to using Software AG Designer to add bundles, you can also do this using the
apama_project command-line tool. See "Creating and managing an Apama project from the
command line" in Deploying and Managing Apama Applications for more information.

4. Open the UM.properties file in your Apama project and specify the location of the Universal
Messaging realm server(s) you wish to connect to. You can optionally edit the UM.yam1 file if
you need to perform more advanced configuration tasks, such as enabling authentication or
customizing the way Universal Messaging messages are mapped to Apama events. See
“Configuring the Universal Messaging connectivity plug-in” on page 87 for detailed
information.

5. Inyour EPL code, subscribe to receive events delivered on Universal Messaging channels. See
"Subscribing to channels" in Developing Apama Applications.

As with all connectivity plug-ins, the EPL application is responsible for telling the system
when it is ready to start receiving events with onApplicationInitialized. See also “Sending
and receiving events with connectivity plug-ins” on page 38.

6. Inyour EPL code, specify Universal Messaging channels when sending events. See "Generating
events with the send statement" in Developing Apama Applications.

7. Monitor the Apama application's use of Universal Messaging. See “Monitoring Apama
application use of Universal Messaging” on page 96.

Using Universal Messaging channels instead of engine_connect

When you are using Universal Messaging channels in an Apama application, you connect multiple
correlators by specifying the same Universal Messaging realm when you start each correlator. By
using Universal Messaging channels, you probably do not need to use the engine_connect tool at
all.

While it is possible to configure an Apama application to use both Universal Messaging channels
and the engine_connect tool, this is not recommended.

Using Universal Messaging channels instead of configuring
IAF adapter connections

Note:

Use of Universal Messaging from the IAF is deprecated and will be removed in a future release.
It is recommended that you now change any IAF-based adapter configurations using Universal
Messaging with a <universal-messaging> element in the configuration file to use an <apama>
element to talk directly to the correlator. See “Apama correlator configuration” on page 380.

In an Apama application, you can use Universal Messaging as the communication mechanism
between an IAF adapter and one or more correlators. If you do, then keep in mind the following:

m [AF adapters must send events on named channels. IAF adapters cannot use the default (empty
string) channel.

82 Connecting Apama Applications to External Components 10.15.4

4 The Universal Messaging Transport Connectivity Plug-in

® A service monitor that communicates with an IAF adapter should either be run on only one
correlator, or be correctly designed to use multiple correlators. See “Considerations for using
Universal Messaging channels” on page 83.

When an IAF adapter needs to communicate with only one correlator, which is often the case for
a service monitor, an Apama channel might be a better choice than a Universal Messaging channel.
However, even in this situation, it is possible and might be preferable to use a Universal Messaging
channel. See “Comparison of Apama channels and Universal Messaging channels” on page 79.

See also “Configuring IAF adapters to use Universal Messaging” on page 383.

Considerations for using Universal Messaging channels

When using Universal Messaging channels in an Apama application, consider the following;:

® Injecting EPL affects only the correlator it is injected into. Be sure to inject into each correlator
the event definition for each event that correlator processes. If a correlator sends an event on
a channel or receives an event on a channel, the correlator must have a definition for that event.

m The Universal Messaging message bus can be configured to throttle or otherwise limit events,
in which case not all events sent to a channel will be processed.

® Only events can be sent or received by means of Universal Messaging. You cannot use Universal
Messaging for EPL injections, delete requests, engine send, receive, watch or inspection utilities,
nor engine_management -r requests.

m If you want events to go to only a single correlator, it is up to you to design your deployment
to accomplish that. If one or more contexts in a particular correlator are the only subscribers
to a particular Universal Messaging channel, then only that correlator receives events sent on
that channel. However, there is no automatic enforcement of this. In this situation, using the
engine_send correlator tool might be a better choice than using a Universal Messaging channel.

® Universal Messaging channels can be configured for fixed capacity, and that is the default
configuration used if the correlator creates a Universal Messaging channel. This does mean
that if a context is sending to a channel while the same context is subscribed to that channel,
then if the output queue, channel capacity and the context's input queue are all full, the send
can deadlock, as the send will hold up processing the next event, but not complete if all queues

are full. Similarly, avoid a cycle of contexts and Universal Messaging channels creating a
deadlock.

® When the Universal Messaging channel names are not escaped, it is possible to create or use
nested channels. In this case, the slash (/) and backslash (\) characters are treated as path
separators on both Windows and Linux.

CAUTION:

Apama treats slash (/) and backslash (\) as different characters while Universal Messaging
treats them as identical characters (Universal Messaging generally changes a slash to a
backslash). You must choose to use one of these characters in your application and
standardize on this. Use of both characters as path separators will result in undefined

Connecting Apama Applications to External Components 10.15.4 83

4 The Universal Messaging Transport Connectivity Plug-in

behavior. In some circumstances, an error message indicating that the user is already
subscribed to a channel may be logged when both slashes and backslashes are used.

It is possible to use the Universal Messaging client libraries (available for Java, C#, C++ and
other languages) to send events to or receive events from Apama correlators and adapters.

Universal Messaging is not used by the following;:
= Apama client library connections.
m Correlator tools such as engine_connect, engine_send and engine_receive.

m Adapter-to-correlator connections defined in the <apama> element of an adapter
configuration file.

While it is not recommended, it is possible to specify the name of a Universal Messaging
channel when you use these Apama interfaces. Even though you specify the name of a Universal
Messaging channel, Universal Messaging is not used. Events are delivered only to the Apama
components that they are directly sent to. This can useful for diagnostics, but mixing connection
types for a single channel is not recommended in production.

It is possible for third-party applications to use Universal Messaging channels to send events
to and receive events from Apama components.

Third-party applications sending and receiving is supported subject to having a suitable chain
definition to handle the third-party message format. This is recommended over the JMS
integration.

The name of an Apama channel can contain any UTF-8 character. However, the name of a
Universal Messaging channel is limited to the following character set:

0-9
a-Z
A-Z

/ (slash, used as path separator when escaping is disabled; do not use both slash and backslash
characters within the same application as this will result in undefined behavior - see also the
above information)

\ (backslash, used as path separator when escaping is disabled)
#

_ (underscore)

- (hyphen)

Consequently, some escaping is required if Universal Messaging needs to work with an Apama
channel name that contains characters that are not supported in Universal Messaging channel
names.

When writing EPL, you do not need to be concerned about escape characters in channel names.
Apama takes care of this for you.

84

Connecting Apama Applications to External Components 10.15.4

4 The Universal Messaging Transport Connectivity Plug-in

When interfacing directly with Universal Messaging, for example in a Universal Messaging
client application for Java, you will need to consider escaping.

When creating Universal Messaging channels to be used by an Apama application, you might
need to consider escaping. For example, you might already be using Apama channels whose
names contain characters that are unsupported in Universal Messaging channel names. To
use those same channels with Universal Messaging, you need to create the channels in Universal
Messaging, and when you do, you must escape the unsupported characters.

The escape sequence is the hash (#) symbol, followed by the UTF-8 character number in
hexadecimal (lowercase) which again is followed by the hash (#) symbol. For example, the
following sequence would be used to escape a period in a channel name:

#2e#

Suppose that in Universal Messaging you want to create a channel whose name in Apama is
My .Channel. In Universal Messaging, you need to create a channel with the following name:

My#2e#Channel

m Universal Messaging supports different protocols. Lower latency can be achieved by using
the shm (Shared Memory) protocol if both the correlator and the broker are running on the
same host. See the Universal Messaging documentation for information on how to configure
the SHM driver.

Note that the SHM driver keeps a CPU core busy for each end of a connection as it uses spin
loops rather than network I/O, which means that two CPU cores are used for each session. As
a result, it is recommended to carefully consider and experiment with how many sessions
should be used. The default number of sessions is 8, which will typically reduce throughput
as it will use too much CPU for Universal Messaging connections.

Setting up Universal Messaging for use by Apama

For Apama to use the Universal Messaging message bus, there are some required Universal
Messaging tasks. These steps will be familiar to experienced Universal Messaging users.

Plan and implement the configuration of the Universal Messaging cluster that Apama will use.
The recommendation is to have at least three Universal Messaging realms in a cluster because this
supports Universal Messaging quorum rules for ensuring that there is never more than one master
in a cluster. However, if you can have only two Universal Messaging realms, you can use the
isPrime flag to correctly configure a two-realm cluster. For details about configuring a Universal
Messaging cluster, see the topics in the Universal Messaging documentation that describe the
following:

B Quorum
® Clusters with Sites, which describes an exception to the quorum rule.

To set up Universal Messaging for use by Apama, do the following for each Universal Messaging
realm to be used by Apama:

Connecting Apama Applications to External Components 10.15.4 85

https://documentation.softwareag.com/universal_messaging/
https://documentation.softwareag.com/universal_messaging/

4 The Universal Messaging Transport Connectivity Plug-in

1.

Use the Software AG Installer to install Universal Messaging. Make sure to select the option
to install the Universal Messaging client libraries.

The Universal Messaging server can be installed on any machine (not necessarily on the same
machine as Apama), but you must ensure that the Universal Messaging client libraries are
present in the same Software AG installation directory as Apama, as these libraries are required
by the Universal Messaging transport connectivity plug-in.

Note:

If you are using JMS or Digital Event Services to access Universal Messaging, installing the
client libraries is not required.

Start a Universal Messaging server.

Use Universal Messaging's Enterprise Manager or Universal Messaging client APIs to set the
access control lists of the Universal Messaging server to allow the user that the correlator is
running on. See the Universal Messaging documentation for details.

By default, Apama automatically creates channels on the Universal Messaging server (that is,
the configuration option missingChannelMode is set to create; see “Configuring the connection
to Universal Messaging (dynamicChainManagers)” on page 88).

In production, it is usually better to change missingChannelMode to error and then add the
channels that Apama will use explicitly using Universal Messaging's Enterprise Manager (or
the client APIs). In this case, configure the following Universal Messaging channel attributes.
Together, these attributes provide behavior similar to that provided by using the Apama
correlator tool engine_connect.

m Set Channel Capacity to 20000 or some suitable number, at least 2000 events. A number
higher than 20,000 would allow larger bursts of events to be processed before applying
flow control but would not affect overall throughput.

m Select Use JMS engine. See also the information on engine differences in the Universal
Messaging documentation.

m Set Honour Capacity when channel is full to true.

These channel attributes provide automatic flow control. If a receiver is slow, then event
publishers block until the receivers have consumed events.

Other channel attributes are allowed. However, it is possible to set Universal Messaging channel
attributes in a way that might prevent all events from being delivered to all intended receivers,
which includes correlators. For example, Universal Messaging can be configured to conflate
or throttle the number of events going through a channel, which might cause some events to
not be delivered. Remember that delivery of events is subject to the configuration of the
Universal Messaging channel. Consult the Universal Messaging documentation for more
details before you set channel attributes that are different from the recommended attributes.

86

Connecting Apama Applications to External Components 10.15.4

4 The Universal Messaging Transport Connectivity Plug-in

Configuring the Universal Messaging connectivity
plug-in

When you have added the Universal Messaging connectivity plug-in to your Apama project in
Software AG Designer (see also “General steps for using Universal Messaging in Apama
applications” on page 81), you can edit the YAML configuration file that comes with the plug-in.

The YAML file is configured to do the following:
1. Load the Universal Messaging transport from the UMConnectivity library.

2. Under dynamicChainManagers, configure one Universal Messaging chain manager to connect
to different Universal Messaging realms. Keep in mind that you can have only one chain
manager here.

3. Configure one or more dynamicChains to handle transforming messages from Universal
Messaging into the correlator.

Detailed information for this and much more is given in the topics below.

You can have different dynamicChains processing messages on different channels in different
formats.

Connection-related configuration is specified in the managercConfig stanza on the
dynamicChainManagers instance, including the rnames connection string for Universal Messaging.

Per-channel configuration of how to parse received messages is configured via the individual
dynamicChains

Selection of which chain a manager is to use for a given channel name is done via a channelPattern
stanza on the UMTransport for each chain.

By default, the uM chain manager listens for subscribe and send-to requests in your EPL. It subscribes
to channels with a specific prefix in Apama (by default, this is um:) and connect that to the
corresponding Universal Messaging channel without the prefix. Therefore, EPL subscribing or
sending to um: channelName will subscribe or send to the Universal Messaging channel channelName.
The prefix and whether it is included on Universal Messaging can be configured via the
managerConfig

For more information on YAML configuration files, see “Using Connectivity Plug-ins” on page 23
and "Configuring the correlator" in Deploying and Managing Apama Applications.

Loading the Universal Messaging transport

The Universal Messaging transport is loaded with the following connectivityPlugins stanza:

connectivityPlugins:
UMTransport:
libraryName: UMConnectivity
class: UMTransport

Connecting Apama Applications to External Components 10.15.4 87

4 The Universal Messaging Transport Connectivity Plug-in

Configuring the connection to Universal Messaging
(dynamicChainManagers)

The Universal Messaging dynamic chain manager monitors channels that are subscribed to or
sent-to within the correlator and, as per its configuration, connects these to Universal Messaging
channels as needed. This is where you specify how to connect to Universal Messaging. When the
dynamic chain manager identifies a channel that should be connected to a Universal Messaging
channel, it will create a chain using one of the templates in the dynamicChains section of the YAML
configuration (see also “ Configuring message transformations (dynamicChains)” on page 91).

One uM dynamic chain manager is created under dynamicChainManagers which specifies the Universal
Messaging realm or cluster of realms you are connecting to. The managerConfig stanza contains
all of the configuration for connecting to that Universal Messaging realm.

dynamicChainManagers:
UM:
transport: UMTransport
managerConfig:
rnames: nsp://127.0.0.1:9000
session:
poolSize: 8
certificateAuthorityFile: /mypath/my_UM_certificate
authentication:
username: me
certificateFile: /mypath/my_client_certificate
certificatePassword: mycertificatepassword
channel:
prefix: "um:"
missingChannelMode: create
escapeNamesOnUM: true
includePrefixOnUM: false
createChannelPermissions:

user@host:
- Manage ACL
- Full
ll*@*ll :
- Publish
- Subscribe
- Last EID
Everyone:
- Purge

The following table describes the options that can be used in the managerconfig section:

Option Description

rnames Required. The Universal Messaging connection string of
realm names to connect to.

You can specify one or more Universal Messaging realm
names (RNAME) separated by commas or semicolons.

Commas indicate that you want the correlator to try to
connect to the Universal Messaging realms in the order in

88 Connecting Apama Applications to External Components 10.15.4

4 The Universal Messaging Transport Connectivity Plug-in

Option

Description

session/poolSize

certificateAuthorityFile

authentication/username

authentication/certificateFile

which you specify them here. For example, if you have a
preferred local server you could specify its associated realm
name first and then use commas as separators between
specifications of other realm names, which would be
connected to if the local server is down.

Semicolons indicate that the correlator can try to connect
to the specified Universal Messaging realms in any order.
For example, use semicolons when you have a cluster of
equally powered machines in the same location and you
want to load balance a large number of clients.

You can specify multiple Universal Messaging realms only
when they are connected in a single Universal Messaging
cluster. That is, all realm names you specify must belong
to the same Universal Messaging cluster. Since channels
are shared across a cluster, connecting to more than one
Universal Messaging realm lets you take advantage of
Universal Messaging's failover capability.

For additional information on communication protocols
and realm names, and on clusters, see the Universal
Messaging documentation.

Default value: none.

The number of sessions (connections) to create to the
Universal Messaging realm. Either a number of sessions or
a string of the form /N which indicates a divisor applied to
the number of CPUs to obtain the number of sessions.
Channels are allocated to sessions in a round-robin style.

Default value: 8.

The path to a CA certificate for the Universal Messaging
realm. This is used by the Apama to confirm the identity
of the Universal Messaging realm server.

Default value: none.

The username that is to be used to connect to the Universal
Messaging realm. The default is the user which the
correlator is running as.

Default value: none.

The path to a certificate that is used by the Universal
Messaging realm server to authenticate this client.

Default value: none.

Connecting Apama Applications to External Components 10.15.4 89

https://documentation.softwareag.com/universal_messaging/
https://documentation.softwareag.com/universal_messaging/

4 The Universal Messaging Transport Connectivity Plug-in

Option

Description

authentication/certificatePassword The password for the certificate.

channel/prefix

channel/includePrefix0OnuUM

channel/escapeNamesOnUM

channel/missingChannelMode

createChannelPermissions

Default value: none.

A prefix for the channel. Only channels with this prefix will
be considered as Universal Messaging channels. If the prefix
ends with a colon (:), it needs to be enclosed in quotation
marks (see also "Using YAML configuration files" in
Deploying and Managing Apama Applications).

Default value: "um:".

If set to false, the channel prefix is stripped from the
Apama channel name before it is looked up on Universal
Messaging.

Default value: false.

If set to true, non-alphanumeric characters in the Apama
channel name are escaped on Universal Messaging. Set this
to false if you want to use the slash (/) for hierarchical
channels on Universal Messaging.

Default value: true.

Defines the behavior when subscribing to channels which
do not exist. You can define one of the following options:

® error - Print an error to the correlator log file. The
channel remains only accessible within the correlator.

® dgnore - Silently ignore the failure and therefore do not
print an error to the correlator log. The channel remains
only accessible within the correlator.

® create - Create the channel on the Universal Messaging
realm, then subscribe/send to it. See also “Subscribing
to automatically created Universal Messaging
channels” on page 93.

Default value: create.

Defines the ACL (access control list) permissions for
automatically created channels in the following format:

client:
- permissionl
- permission2

The client can be either a subject (of the format user@host)
or a group. Universal Messaging supports the » wildcard

90

Connecting Apama Applications to External Components 10.15.4

4 The Universal Messaging Transport Connectivity Plug-in

Option Description

for representing all users/hosts. You can specify the
following permissions:

B Manage ACL
® Full

B Publish

B Subscribe
B Purge

B Last EID

For additional information on subject, group, wildcards
and permission ACLs, see the Universal Messaging
documentation.

Default:

creating-user@s:
- Subscribe
- Publish
- Last EID

Note:

Apama clients require Last EID permission in addition
to Subscribe permission for a client to subscribe to a
channel.

Setting channel permissions correctly is important to protect
the security of your application, and also to protect any
personal data included in the messages. For more
information, see "Protecting Personal Data in Apama
Applications" in Developing Apama Applications.

Configuring message transformations (dynamicChains)

dynamicChains contains templates of chains. The Universal Messaging manager will pick a chain
template that ends with the UMTransport plug-in, and use that configuration. The manager also
provides configuration from the channel which the chain can use with e{varname} substitutions
(see “ Using dynamic replacement variables” on page 93). The manager uses the channelPattern
property of the UMTransport configuration to decide which chain template should be used for a
given channel.

With either the apama.eventMap or apama.eventString host plug-ins, we recommend use of the
suppresslLoopback configuration property to avoid messages which are sent to that channel being
delivered internally as well as being sent to and received from Universal Messaging. We also

Connecting Apama Applications to External Components 10.15.4 91

4 The Universal Messaging Transport Connectivity Plug-in

recommend setting the description and remoteAddress properties in order to improve logging
and debugging. See “Host plug-ins and configuration” on page 30 for more information.

The following chain sends and receives events with the members of the event being set in the
nEventProperties of the Universal Messaging events and an empty payload.

dynamicChains:
UMChain:

- apama.eventMap:
suppressLoopback: true

description: "@{um.rnames}"

remoteAddress:
- UMTransport:

setTypeFromTag: true

channelPattern:

"@{um.rnames}"

The following options can be used with UMTransport:

Option

Description

setTypeFromTag

channelPattern

If set to true, the Universal Messaging message tag is translated
to the sag. type metadata field, if the Universal Messaging tag
is present.

If desired, the Mapper codec (see “The Mapper codec
connectivity plug-in” on page 243) can be used to set a different
value for metadata.sag. type when sending messages towards
the Universal Messaging transport in order to use a string other
than the Apama event type for the Universal Messaging tag.
When receiving messages from the Universal Messaging
transport, the Classifier codec (see “The Classifier codec
connectivity plug-in” on page 242) can be used to set the Apama
event type to be used if the incoming Universal Messaging
messages do not specify an Apama event type in their “tag”.

For performance-critical applications where the event type is
known or can be set in the chain, we recommend setting this
option to false.

Default value: true.

Required. A regular expression that is used to select which
chain is used for which channel.

Only one chain definition may match any channel, except for
the “fallback” definition with the channel pattern ".x", which
will be used if no other patterns match.

Default value: none.

92

Connecting Apama Applications to External Components 10.15.4

4 The Universal Messaging Transport Connectivity Plug-in

Using dynamic replacement variables

The UMTransport provides the following dynamic replacement variables which can be used with
the @{varname} replacement syntax:

Variable Description

um.channelName The name of the Universal Messaging channel.

um. rnames The address of the Universal Messaging realm.
um.channelCapacity The maximum capacity of the Universal Messaging channel.

For example, for using all channels as mapping directly to nEventProperties:

UMMessagePropertiesChain:

- apama.eventMap:
suppresslLoopback: true
description: "@{um.rnames}"
remoteAddress: "@{um.rnames}"

- UMTransport:
channelPattern: ".x"

Subscribing to automatically created Universal Messaging
channels

By default, the configuration option missingChannelMode is set to create so that a Universal
Messaging channel can be automatically created if it does not already exist when an Apama
application needs to use it. See also “Configuring the connection to Universal Messaging
(dynamicChainManagers)” on page 88.

When a Universal Messaging channel is automatically created, which is helpful for getting started,
it has the attributes described in “Setting up Universal Messaging for use by Apama” on page 85.
If you want a Universal Messaging channel to have any other attributes, then you must create the
channel in Universal Messaging before any Apama component sends to or subscribes to the
channel.

In production, it is usually better to change missingChannelMode to error and to configure the
channels explicitly as described in “Setting up Universal Messaging for use by Apama” on page 85.

You can specify the ACL (access control list) permissions for the channel being created in a YAML
configuration file using the createChannelPermissions option. See “Configuring the connection
to Universal Messaging (dynamicChainManagers)” on page 88.

Channel lookup caching

After Apama looks up a channel name to determine whether it is a Universal Messaging channel,
Apama caches the result and does not look it up again. Consequently, the following situation is
possible:

Connecting Apama Applications to External Components 10.15.4 93

4 The Universal Messaging Transport Connectivity Plug-in

1. You use Universal Messaging interfaces to create channels.
2. You start a correlator with missingChannelMode set to ignore.

3. Apama looks up, for example, channelA and determines that it is not a Universal Messaging
channel.

4. You use Universal Messaging interfaces to create, for example, channelA.

For Apama to recognize channelA as a Universal Messaging channel, you must either restart the
correlator or issue a flushChannelCache request using the engine_management tool (see also "Shutting
down and managing components" in Deploying and Managing Apama Applications):

engine_management -r flushChannelCache

This operation may take a long time since it verifies the existence of every channel subscribed to
in the correlator on Universal Messaging. Therefore, we recommend that you ensure all your
channels have been created on Universal Messaging before starting your Apama application.

Supported payloads

The Universal Messaging transport supports different types of Apama message payload:

= Binary payloads (Java byte[] or C++ buffer_t) . Apama messages with binary payloads
are mapped to the data payload of a Universal Messaging message. Optionally, Universal
Messaging message properties/headers (nEventProperties) may be mapped using metadata
values in string form with the prefix um.properties. You can also map all of the Universal
Messaging message properties to an EPL dictionary with a Mapper codec rule that moves
metadata.um.properties in its entirety; see also “The Mapper codec connectivity plug-in” on
page 243. If you wish to put a string into the Universal Messaging message data payload, use
the String codec to convert it into binary form (as UTF-8); see also “The String codec connectivity
plug-in” on page 236.

= Map payloads (Java Map or C++ map_t) . Apama messages with a map payload are mapped
to the Universal Messaging message properties/headers (nEventProperties), and the Universal
Messaging message data payload is empty.

If you are sending and receiving using the eventMap host plug-in (see also “Translating EPL events
using the apama.eventMap host plug-in” on page 32), you probably want to make use of the
Mapper and Classifier codecs (see “Codec Connectivity Plug-ins” on page 235), unless the Apama
event type name is stored in the “tag” of the Universal Messaging messages. Typically, the Apama
event format does not match exactly to the format you want in the nEventProperties, and the
Mapper codec allows you to fix that.

When setting nEventProperties either from the map payload or via um. properties metadata values,

the following EPL types are unsupported and sending events to Universal Messaging will therefore
fail:

B dictionary<> types with keys which are not Apama primitives (that is, anything except integer,
boolean, decimal, float, string). For example, dictionary<Sequence<some type>, String>is
not supported, but dictionary<decimal, <sometype>>is supported.

94 Connecting Apama Applications to External Components 10.15.4

4 The Universal Messaging Transport Connectivity Plug-in

® Apamadecimaltype and dictionary<> keys are stringified when sending the events. That also
means that sequence <decimal> is sent as a sequence of strings.

® Sequences within sequences . For example, sequence<sequence<any type>>. Note that sequence
<Apama Event> Or sequence <dictionary<some primitive, any type>>aresupp0rhﬁi

The binary payload may represent a string. If this is a case, then the binary payload must be
converted to a string payload before further processing can happen as a string. To do this, use the
String codec. This converts binary payloads to string payloads for hostward messages and string
payloads to binary payloads for transportward messages. The String codec should be the last
codec in the chain. See “The String codec connectivity plug-in” on page 236 for detailed information.

You can also use other codecs such as the JSON codec (see “Codec Connectivity Plug-ins” on
page 235 for more information). For example:

dynamicChains:
UMJsonChain:

- apama.eventMap:
suppressLoopback: true
description: "@{um.rnames}"
remoteAddress: "@{um.rnames}"

- jsonCodec

- stringCodec

- UMTransport:
channelPattern: ".x*"

EPL and Universal Messaging channels

In an Apama application that is configured to use Universal Messaging, you write EPL code to
subscribe to channels and to send events to channels as you usually do. The only difference is that
you cannot specify the default channel (the empty string) when you want to use a Universal
Messaging channel. You must specify a Universal Messaging channel name to use Universal
Messaging.

As with all connectivity plug-ins, the EPL application is responsible for telling the system when
itisready to start receiving events with onApplicationInitialized. See also “Sending and receiving
events with connectivity plug-ins” on page 38.

A monitor that subscribes to a Universal Messaging channel causes its containing context to receive
events delivered to that channel. There is nothing special you need to add to your EPL code.

Using Universal Messaging channels makes it easier to scale an application across multiple
correlators because Universal Messaging channels can automatically connect parts of the application
asrequired. If you use the EPL integer.incrementCounter ("UM") method, remember that the return
value is unique for only a single correlator. If a globally unique number is required, you can
concatenate the result of integer.incrementCounter ("UM") with the correlator's physical ID. Obtain
the physical ID from Apama's Management interface with a call to the getComponentPhysicalId()
method. For further information, see "Using the Management interface" in Developing Apama
Applications.

Connecting Apama Applications to External Components 10.15.4 95

4 The Universal Messaging Transport Connectivity Plug-in

Using Universal Messaging connectivity from EPL

In EPL, in order to receive events from a Universal Messaging channel, you just need to subscribe
to a channel with the appropriate prefix:

on all EventTypeOnUM() { ... }
monitor.subscribe("um:UMChannelName") ;

This creates a chain with a channel pattern matching um:UMChanne1Name and subscribe to
UMChannelName on the connected realm. Events from that channel are delivered to the context after
being parsed by the chain.

To send to a Universal Messaging channel, you just need to use the send. . . to statement to deliver
an event to that channel name:

send EventTypeOnUM() to "um:UMChannelName";

This will use the same chain definition as above to deliver the mapped event to the Universal
Messaging channel uMChannelName.

The samples/connectivity_plugin/application/genericsendreceive directory of your Apama
installation includes a simple sample which provides an easy way to get started with sending and
receiving messages to or from any connectivity plug-in. For more information, see the README. txt
file in the above directory and “Sending and receiving events with connectivity plug-ins” on
page 38.

Monitoring Apama application use of Universal
Messaging

You can use the Universal Messaging Enterprise Manager or Universal Messaging APIs to find
out about the following;:

= Which correlators are subscribed to which Universal Messaging channels.

® The number of events flowing through a Universal Messaging channel.

® The contents of the events going through a Universal Messaging channel.

See the Universal Messaging documentation for more information on the Enterprise Manager.

To monitor and manage Apama components, you must use Apama tools and APIs.

96 Connecting Apama Applications to External Components 10.15.4

https://documentation.softwareag.com/universal_messaging/

5 The MQTT Transport Connectivity Plug-in

About the MQTT raNSPOIT ...eeeeiiiii e e e e e e e e e e e et e e e eeeaeenes 98
Using MQTT connectivity from EPL ... 98
Loading the MQTT tranSPOItooviviiiiiiieeeee e, 99
Configuring the connection 10 MQTTuuiiiiiiiiiii e 99
Mapping events between MQTT messages and EPLcccovvvviiiiiiiiiiiiiiiiiiiiceeeeee 101
Payload for the MQTT MESSAGEceeieeiieeieeee e essnnnenne 102
LVAVA1 Lo [oF= o I (o] o Toa Y W] o LT od o] 1o 1 1= 102
Metadata for the MQTT MESSAGEiiieiiiiiicii i eannaennrnane 102
RESIIICHONS ...eeieiieii ettt e et e e e e e et e e e 103

Connecting Apama Applications to External Components 10.15.4 97

5 The MQTT Transport Connectivity Plug-in

About the MQTT transport

MQTT is a publish/subscribe-based "lightweight" message protocol designed for communication
between constrained devices, for example, devices with limited network bandwidth or unreliable
networks. See http://mqtt.org/ for detailed information.

Note:

While it is possible to use MQTT to communicate between Apama and Cumulocity IoT, we
recommend using the Cumulocity IoT transport connectivity plug-in provided with Apama.
See “The Cumulocity IoT Transport Connectivity Plug-in” on page 179 for detailed information.

Apama provides a connectivity plug-in, the MQTT transport, which can be used to communicate
between the correlator and an MQTT broker, where the MQTT broker uses topics to filter the
messages. MQTT messages can be transformed to and from Apama events by listening for and
sending events to channels such as prefix:topic (Where the prefix is configurable).

The MQTT transport automatically reconnects in case of a connection failure. The transport will
retry sending any messages sent after the connection has been lost when reconnection has succeeded

You configure the MQTT connectivity plug-in by editing the files that come with the MQTT bundle.
The properties file defines the substitution variables that are used in the YAML configuration file
which also comes with the bundle. See "Adding the MQTT connectivity plug-in to a project” in
Using Apama with Software AG Designer for further information.

Note:

In addition to using Software AG Designer to add bundles, you can also do this using the
apama_project command-line tool. See "Creating and managing an Apama project from the
command line" in Deploying and Managing Apama Applications for more information.

This transport provides a dynamic chain manager which creates chains automatically when EPL
subscribes or sends to a correlator channel with the configured prefix, typically mqtt:. For the
MQTT transport, there must be exactly one chain definition provided in the dynamicChains section
of the YAML configuration file.

For more information on YAML configuration files, see “Using Connectivity Plug-ins” on page 23
and especially “Configuration file for connectivity plug-ins” on page 26.

Note:

The MQTT connectivity plug-in does not support reliable messaging.

Using MQTT connectivity from EPL

The MQTT transport can either subscribe to or send to a particular topic, depending on whether
your EPL is subscribing to or sending to a particular channel.

98 Connecting Apama Applications to External Components 10.15.4

http://mqtt.org/

5 The MQTT Transport Connectivity Plug-in

In EPL, in order to receive an MQTT message, you just need to subscribe to an MQTT topic with
the appropriate prefix. For example:

monitor.subscribe("mqtt:topic_a");

on all A() as a {

print a.toString();
}

To send an Apama event to the MQTT broker, you just need to use the send. . . to statement to
deliver the event to the MQTT topic. For example:

send A("hello world") to "mqtt:topic_a";

As with all connectivity plug-ins, the EPL application is responsible for telling the system when
itis ready to start receiving events with onApplicationInitialized. See also “Sending and receiving
events with connectivity plug-ins” on page 38.

TTKBsamples/connectivity_plugin/application/genericsendreceive(ihectory()fyourz\panla
installation includes a simple sample which provides an easy way to get started with sending and
receiving messages to or from any connectivity plug-in. For more information, see the README . txt
file in the above directory and “Sending and receiving events with connectivity plug-ins” on
page 38.

Loading the MQTT transport

The MQTT transport is loaded with the following connectivityPlugins stanza:

mgttTransport:
libraryName: connectivity-mqtt
class: MQTTTransport

Configuring the connection to MQTT

You configure one or more dynamicChainManagers to connect to different MQTT brokers. For
example:

dynamicChainManagers:
mgttManager:
transport: mgttTransport
managerConfig:
brokerURL: tcp://localhost:1883

Connection-related configuration is specified in the managerconfig stanza on the
dynamicChainManagers instance. The following configuration options are available for managerConfig:

Configuration option Description

brokerURL URL for the MQTT broker.

For example, you can use the following URL for
non-TLS connections:

Connecting Apama Applications to External Components 10.15.4 99

5 The MQTT Transport Connectivity Plug-in

Configuration option

Description

channelPrefix

mgttClientId

cleanSession

acceptUnrecognizedCertificates

certificateAuthorityFile

tcp://localhost:1883

To enable SSL/TLS, you simply indicate this in the
broker URL. For example:

ssl://localhost:8883
Type: string.

Prefix for dynamic mapping. If the prefix ends with
a colon (3), it needs to be enclosed in quotation
marks (see also "Using YAML configuration files"
in Deploying and Managing Apama Applications).

When the channel is mapped to an MQTT topic,
the prefix is not used. For example, if the prefix is
"mqtt:", then the channel mqtt:test/amaps to the
MQIT topic test/a.

Type: string.
Default: "mqtt:".

Optional. By default, a random client identifier is
generated during startup. If you do not want to
use this random identifier, you can set this option
to configure your own client identifier. This can be
any alphanumerical value.

Type: string.

Starts a clean session with the MQTT broker. Set
this to false if the previous session is to be
resumed. You should only do this in conjunction
with setting the mgqttClientId.

Type: bool.
Default: true.

Used with TLS. By default, connections to
unrecognized certificates are terminated. Set this
to true if non-validated server certificates are to
be accepted.

Type: bool.
Default: false.

Used with TLS. By default, server certifications
signed by all standard Certificate Authorities are

100

Connecting Apama Applications to External Components 10.15.4

5 The MQTT Transport Connectivity Plug-in

Configuration option Description

validated. Optionally, you can set this option to
provide a path to a CA certificate file in PEM
format to authenticate the host with.

Type: string.
authentication/username User name for authentication.
Type: string.
authentication/password Password for authentication.
Type: string.

authentication/certificateFile Used by TLS. Optionally, you can set this option
to provide a path to a CA certificate file in PEM
format to authenticate the client with.

Type: string.

authentication/certificatePassword Used by TLS. Optional password used to decrypt
the client private key file, if encrypted.

Type: string.

authentication/privateKeyFile Used by TLS. Optional path to a PEM file
containing the private key, if not already included
in the certificate file.

Type: string.
Important:
If you provide a password for authentication via the configuration file, you must ensure to

protect the configuration file against any unauthorized access, since the password will be
readable in plain text.

Mapping events between MQTT messages and EPL

You can use the apama.eventMap host plug-in in a dynamic chain to translate events to or from
nested messages like JSON data. You configure exactly one dynamicChains section to handle
transforming messages from the MQTT broker into the correlator, and vice versa.

The following description shows how to configure the genericsendreceive sample to send/receive
data to/from an MQTT broker. The advantage of this sample is that all required EPL code is already
available (see also “Writing EPL” on page 21). The sample is located in the samples/connectivity_
plugin/application/genericsendreceive directory of your Apama installation. To use the sample,
do the following;:

1. Import the sample into Software AG Designer as an existing project (make sure to create a
copy)-
Connecting Apama Applications to External Components 10.15.4 101

5 The MQTT Transport Connectivity Plug-in

2. Add the MQTT connectivity plug-in to that project (see also "Adding the MQTT connectivity
plug-in to a project” in Using Apama with Software AG Designer) and edit the MQTT.yam1 file as
per your application.

3. Configure both the input and output channels to apamax by sending the Configuresample event
(in order to send continuous data, keepSending must be set to true).

4. Send the AppReady event to start the application.

We recommend use of the suppressLoopback configuration property to prevent undesirable
behavior. See “Host plug-ins and configuration” on page 30 for further information.

Payload for the MQTT message

As with all other transports, the translation between EPL events and MQTT payloads is based on
the choice of host plug-in and codecs. See “Host plug-ins and configuration” on page 30 and
“Codec Connectivity Plug-ins” on page 235 for further information.

The payload for the MQTT message is a byte array. Therefore, the String codec should usually be
used to convert a byte[] (Java) or buffer_t (C++) type payload into a hostward string event. The
same String codec can also be used to convert a string event to a transportward message with a
byte[] or buffer_t type.

Wildcard topic subscriptions

MQTT supports a hierarchical topic namespace and allows you to subscribe to every topic in a
namespace using a wildcard symbol such as #. Any MQTT messages that are sent to the broker
and that satisfy the topic namespace are sent to the correlator.

A potential result of this may be that a single MQTT message that is sent to the broker is received
more than once by the correlator. For example, assume that Apama subscribes to both of the
following channels:

"mgtt:SENSOR/#"
"mgtt:SENSOR/1"

If a single MQTT message is sent to the broker using the topic name SENSOR/1, then this MQTT

message will be received twice by the correlator. You should be aware of such situations and write
your EPL accordingly to handle this.

Metadata for the MQTT message

Messages coming from the transport have useful pieces of information inserted into their metadata.
This information is stored as a map associated with the mgtt key. This map contains the following
information:

102 Connecting Apama Applications to External Components 10.15.4

5 The MQTT Transport Connectivity Plug-in

Field Description

metadata.mqtt.topic Contains the full name of the topic from which the
message originated. This allows you to differentiate
between messages coming from different sources in the
case of a transport subscribed with a wildcard.

Restrictions

Not all MQTT features are supported by the MQTT transport. The following features are not
supported:

m Reliable messaging, that is, session persistency and QoS (Quality of Service) level greater than
0.

m Retained messages.

= Last will and testament options.

Connecting Apama Applications to External Components 10.15.4 103

5 The MQTT Transport Connectivity Plug-in

104 Connecting Apama Applications to External Components 10.15.4

6 The Digital Event Services Transport Connectivity

Plug-in

m About the Digital Event ServiCes tranSPOItccoieeeviiieeiiiiiii e e 106
m Using Digital Event Services connectivity from EPLcooooiiiiiiiiiiiicceccccccecce 107
m Reliable messaging with Digital EVENt SEIVICESceviiiiiiiiiiiiiiiiiieee e 108

Connecting Apama Applications to External Components 10.15.4 105

6 The Digital Event Services Transport Connectivity Plug-in

About the Digital Event Services transport

Note:

Digital Event Services integration is deprecated and the Digital Event Services transport
connectivity plug-in will therefore be removed in a future release. It is recommended to instead
use the correlator-integrated support for the Java Message Service (JMS).

Software AG Digital Event Services is a messaging system for communicating between different
Software AG products using events. Digital Event Services allows event definitions to be converted
between a product's internal event or document definition to digital event types and vice versa,
so participating products can share a set of event definitions. When you develop Apama applications
that make use of Digital Event Services, the translation between digital event type definitions and
Apama event types is done automatically. When digital events are sent to or received from Digital
Event Services, they are converted to or from Apama events.

For details of the event mapping, see the .mon source file that is generated into the autogenerated
node of your Apama project in Software AG Designer. Note that digital event types that contain
nested events (or sequences of nested events) are converted to Apama event definitions that have
an optional member (or sequence of optionals) for that event type. See the description of the
optional type in the API Reference for EPL (ApamaDoc) for more information. When digital events
are converted to Apama events, fields of other types with no value set are set to the default value
for that type (see also "Default values for types" in Developing Apama Applications).

To use digital event types in your Apama application, proceed as follows:

1. Use Software AG Installer to install Digital Event Services. See Installing Software AG Products
for more information.

2. Configure Digital Event Services as described in Using Digital Event Services to Communicate
between Software AG Products. This guide also explains how to use SSL with Digital Event
Services.

3. Use Software AG Designer to add the Digital Event Services connectivity bundle to your
Apama project. For detailed information, see "Using the Digital Event Services connectivity
bundle" in Using Apama with Software AG Designer.

Note:

In addition to using Software AG Designer to add bundles, you can also do this using the
apama_project command-line tool. See "Creating and managing an Apama project from the
command line" in Deploying and Managing Apama Applications for more information.

4. Use the Digital Event Types editor to turn digital event types into Apama event types and
existing Apama event types into digital event types. Apama event types that correspond to
digital event types can be used just like ordinary Apama events. You can create digital events,
create event expressions for them, set and get their contents, pass them around internally
between monitors and contexts, and much more. See the above-mentioned topic for more
information.

106 Connecting Apama Applications to External Components 10.15.4

6 The Digital Event Services Transport Connectivity Plug-in

5. This transport provides a dynamic chain manager which creates chains automatically when
EPL subscribes or sends to a correlator channel with a name corresponding to the . CHANNEL
constant on a Digital Event Services event. For this transport, there is no need to customize
the chain configuration in the YAML configuration file in any way.

For more information on YAML configuration files, see “Using Connectivity Plug-ins” on
page 23 and especially “Configuration file for connectivity plug-ins” on page 26.

6. Edit the DigitalEventServices.properties file to configure the Digital Event Services
connectivity plug-in which defines the Apama connection to Digital Event Services. See the
above-mentioned topic for more information.

Using Digital Event Services connectivity from EPL

As with all connectivity plug-ins, the EPL application is responsible for telling the system when
itisready to start receiving events with onApplicationInitialized. See also “Sending and receiving
events with connectivity plug-ins” on page 38.

Each Digital Event Services event type maps to its own dedicated Apama channel. The channel
name is accessed via the static CHANNEL constant on the EPL type. With CHANNEL, you can send,
subscribe and unsubscribe in the same way as any other Apama channel.

For example, you have a digital event type called pkgl.pkg2.MyEvent, with fields anInteger and
astring on it. If you select this type in Software AG Designer, you are able to write EPL such as
the following;:

using com.softwareag.connectivity.ConnectivityPlugins;
using pkgl.pkg2.MyEvent;

ConnectivityPlugins.onApplicationInitialized();
monitor.subscribe(MyEvent.CHANNEL); // This context will now receive digital
// events of type 'pkgl.pkg2.MyEvent'

on all MyEvent() as e {
print "Got an event from DES: " + e.toString();

}

MyEvent e2 := new MyEvent;
e2.anlnteger := 100;
e2.aString := "Hello world!";

send e2 to MyEvent.CHANNEL; // Sends this event out to Digital Event Services

There is one thing about digital events that is totally different from Apama events. Digital events
of different types are not guaranteed to be received by Digital Event Services in the same order
as they were sent. When you are sending Apama events as shown in the following example, then
it is guaranteed that the destination context (ctx) can see the A and B events in the same order as
they were sent.

send A(1l) to ctx;
send B(1) to ctx;
send A(2) to ctx;
send B(2) to ctx;

Connecting Apama Applications to External Components 10.15.4 107

6 The Digital Event Services Transport Connectivity Plug-in

If you are sending digital events as shown in the example below, any other product (or even
Apama) that is receiving these events from Digital Event Services is guaranteed to see A(2) after
A(1), and B(2) after B(1). These A and B events, however, might (or might not) be interleaved
differently.

send A(1) to A.CHANNEL;
send B(1l) to B.CHANNEL;
send A(2) to A.CHANNEL;
send B(2) to B.CHANNEL;

If you want to deploy or export an Apama application which uses digital events (for example,
using an Ant script) to another machine (for example, from development to production), keep in
mind that you also have to deploy the digital event type repository from one machine to the other.
The same type repository on which you have developed your application needs to be available in
all the places in which you run your application. For more information, see Using Digital Event
Services to Communicate between Software AG Products.

Reliable messaging with Digital Event Services

Digital Event Services offers reliability with only a couple of small requirements:

m Reliable sending. The delivery mode of the Digital Event Services event type must be persistent.
This allows you to perform flush operations for that event type.

m Reliable receiving. The delivery mode of the Digital Event Services event type must be persistent.
In addition, a subscriberId mustbe setin the configuration file. This requires that you perform
acknowledgments for events of that type.

For detailed information on how to configure the delivery mode, see Using Digital Event Services
to Communicate between Software AG Products.

See the properties file DigitalEventServices.properties for information on the subscriberId and
other configuration options. For more detailed information on using reliable messaging in general,
see “Using reliable transports” on page 33.

Shared durable subscribers

The Digital Event Services transport makes use of shared durable subscribers for reliable receiving.
When a single correlator is connected with a particular subscriberId, the correlator will receive
and acknowledge events. Events are resent after a failure once the failed component has been
restarted/reconnected. With multiple correlators sharing the same subscriberId, events are delivered
in a round-robin fashion to each available receiver.

If all subscribed monitor instances explicitly unsubscribe from a type, or if those monitor instances
terminate, then that does not count as a failure. Any events of this type that are sent afterwards
will not be received, and will not be resent upon resubscription.

CAUTION:

In a system with multiple correlators sharing the same subscriberId, an explicit unsubscribe
from one correlator will unsubscribe the other correlators from that type.

108 Connecting Apama Applications to External Components 10.15.4

6 The Digital Event Services Transport Connectivity Plug-in

Reliable receiving

The CHANNEL constant on the auto-generated EPL type allows you to find the connectivity chain

(Chain) used for receiving events of this type, so that the Chain can be used for reliable messaging
operations.

Example:

using com.softwareag.connectivity.Chain;

using com.softwareag.connectivity.ConnectivityPlugins;

using com.softwareag.connectivity.Direction;

using com.softwareag.connectivity.control.AckRequired;

using a.pkg.myEvent; // our auto-generated EPL type from DES

monitor receiver

{
action onload()
{
monitor.subscribe(myEvent.CHANNEL) ;
Chain ¢ := ConnectivityPlugins.getChainByChannel(myEvent.CHANNEL,
Direction.TOWARDS_HOST) ;
on all myEvent() as ev
{
// process ev
3
on all AckRequired(chainId=c.getId()) as ar
{
// make sure all events before the AckRequired have been fully processed
// and only acknowledge them once that 1is done
ar.ackUpTo();
3
3
3

If you need the message identifier of an event for doing per-event acknowledgment (Chain.ackUpTo),
then it will be available as a field on the event. The specific field will be called out in the MessageId
annotation of the auto-generated EPL representation of the Digital Event Services type.

Reliable sending

Again, the CHANNEL constant allows you to find the connectivity chain (Chain) used for sending
events of this type, so that the Chain can be used for reliable messaging operations.

Important:

When using reliable sending, the Digital Event Services storage location must be in a safe place,
as events are acknowledged after they have been persisted to disk, but before they are sent to
the remote system. This does not apply if the store-and-forward queue has been disabled, in
which case events are acknowledged only once they have been committed to the remote system.

Example:

using com.softwareag.connectivity.Chain;
using com.softwareag.connectivity.ConnectivityPlugins;

Connecting Apama Applications to External Components 10.15.4 109

6 The Digital Event Services Transport Connectivity Plug-in

using com.softwareag.connectivity.Direction;
using com.softwareag.connectivity.control.FlushAck;
using a.pkg.myEvent; // our auto-generated EPL type from DES

monitor sender
{
action onload()
{
Chain c¢ := ConnectivityPlugins.getChainByChannel(myEvent.CHANNEL,
Direction.TOWARDS_TRANSPORT) ;
on all wait (0.1)
{
send myEvent("hello") to myEvent.CHANNEL;
// flush after each send and listen for the acknowledgment
on FlushAck(requestId = c.flush()) as fa
{

}
}

// event acknowledged, we no longer need to hold on to it

}
}

110 Connecting Apama Applications to External Components 10.15.4

7 The HTTP Server Transport Connectivity Plug-in

B About the HTTP SErver tranSPOItcooviiiiiiiii e e e e 112
B Loading the HTTP SErver tranSPOITuueeeeeieeeeereeisesesesressssessssssesssssssesssesseeesseeeee— 114
B Configuring the HTTP Server tranSPOortcooooviiiiie oo 114
m Handling requests to different paths with different chainscccccccvvviviiiiiiiiiieiiennnee. 118
B Handling reSPONSES iN EPLouiiiiiiiiiiiii et e e 120
B Serving StatiC filleS ... ennee 121
m Mapping events between EPL and HTTP Server reqUESESccuuveeiiieeeereeevinininneeeenn 122
B HTTP SEIVEI SECUILY oo 132
B Monitoring status for the HTTP SEIVENccccciiiii e 134

Connecting Apama Applications to External Components 10.15.4 111

7 The HTTP Server Transport Connectivity Plug-in

About the HTTP server transport

The HTTP server is a transport for use in connectivity plug-ins which external services can connect
to over HTTP/REST. It can handle both an HTTP submission-only API which delivers events to
the correlator and a REST request/response API where the responses are controlled from EPL. In
addition to this, it can serve static files. It also allows support for TLS alongside HTTP basic
authentication.

The HTTP server transport can decode HTTP requests and encode EPL responses or static files
with gzip or deflate compression format. It also supports HTML form decoding and can decode
multipart/form-dataor application/x-www-form-urlencoded media types to a dictionary payload.

This transport provides a dynamic chain manager (the chain manager for each host/port is
configured by an entry under dynamicChainManagers in the YAML configuration file) which creates
chains automatically whenever an HTTP client connects to that host/port. There must be at least
one chain definition provided in the dynamicChains section of the YAML configuration file. If
providing more than one definition, the matchPathPrefix configuration option must be used to
distinguish them. For more details, see “Handling requests to different paths with different
chains” on page 118. The EPL channel that incoming requests are sent to is specified in the
configuration of the dynamicChains, by rules in the mappercCodec section that set the
metadata.sag.channel.

HTTP requests are received by the transport and sent to the chain where they are mapped to EPL
events as described in “Mapping events between EPL and HTTP server requests” on page 122.
Whether the response to the HTTP request is generated automatically or by the EPL application
is controlled as described in “Handling responses in EPL” on page 120.

For more information on YAML configuration files, see “Using Connectivity Plug-ins” on page 23
and especially “Configuration file for connectivity plug-ins” on page 26.

Persistent connections to the server are supported for multiple requests. Details of the individual
requests are configured through the events sent to the chain. The HTTP server supports HTTP
version 1.1 and TLS version 1.2 and above.

The HTTP server is designed to listen for REST services and supports all GET, POST, PUT and DELETE
operations which have been specified in the configuration file. Other than GET requests served by
static files, all requests are treated identically.

The samples/connectivity_plugin/application/httpserver directory of your Apama installation
includes a sample which demonstrate how to use the HTTP server connectivity plug-in to send
and receive HTTP requests containing events into the correlator through various configurations.
See the README . txt file included with the sample for complete instructions on how to run the
sample application.

Note:
The HTTP server connectivity plug-in does not support reliable messaging.

12 Connecting Apama Applications to External Components 10.15.4

7 The HTTP Server Transport Connectivity Plug-in

OpenAPI definitions

OpenAPlis an open description format for REST APIs. The OpenAPI Specification (OAS), and
the related tools available from Swagger (https://swagger.io), can be used to design, document,
deploy and test the REST API for an application. The specification allows for API definitions to
be written in either YAML or JSON.

Apama API definitions are supplied in JSON format to the OpenAPI/Swagger 3.0 specification.

HTTP response codes

The transport returns a response to the client. If responses are automatically generated, we return
a 202 Accepted” response after HTTP parsing, but before processing by the correlator, to indicate
that a failure may still occur later in processing the event. If the response is handled by EPL, the
response code is defined by the EPL application and configuration. If there is a failure in parsing
the HTTP part of the request, an error code is returned instead.

The various response codes that we currently support are described below.

Code Reason

202 Accepted Success response code for automatic responses. On a
successful submission, this indicates that while we have
accepted it, processing will occur later and we cannot
guarantee completion.

400 Bad Request Any other error we can conclusively say is due to a malformed
request.

401 Unauthorized We have enabled HTTP basic authentication and the user
either does not supply an Authorization header or it is
incorrect.

405 Method Not Allowed The request has a method we do not support (depending on

what is configured in the configuration file).

413 Request Entity Too Large The uncompressed payload is larger than defined with the
maxRequestBytes configuration option. See “Configuring the
HTTP server transport” on page 114 for more information on
this configuration option.

415 Unsupported Media Type The client has sent an unsupported Content-Encoding header.

429 Too Many Requests If too many authentication failures occur (maxAttempts), then
requests are throttled for the defined cool-down period
(coolDownSecs) to protect the running correlator. See
“Configuring the HTTP server transport” on page 114 for
more information on the configuration options maxAttempts
and coolDownSecs.

Connecting Apama Applications to External Components 10.15.4 113

https://swagger.io

7 The HTTP Server Transport Connectivity Plug-in

Code Reason

500 Internal Server Error Any other error which occurs before we send the event into
the correlator.

503 Host Not Ready The HTTP server received a request before the application
called onApplicationInitialized() in the correlator. See
“Sending and receiving events with connectivity plug-ins” on
page 38 for more information on this method.

504 Gateway Timeout The EPL application did not respond within the configured
timeout.
Other HTTP response codes As defined by the EPL application and configuration.

Loading the HTTP server transport

You can load the HTTP server transport by adding the HTTP Server connectivity bundle to your
project in Software AG Designer (see "Adding the HTTP server connectivity plug-in to a project”
in Using Apama with Software AG Designer) or using the apama_project tool (see "Creating and
managing an Apama project from the command line" in Deploying and Managing Apama Applications).
Alternatively, you can load the transport with the following connectivityPlugins stanza in your
YAML configuration file:

connectivityPlugins:
HTTPServerTransport:
libraryName: connectivity-http-server
class: HTTPServer

Configuring the HTTP server transport

The HTTP server has a manager that deals with connections and one or more chains that deal with
mapping events into the correlator. All chains defined are used by all managers. If you require
multiple ports (that is, with different options), then you need multiple managers. The HTTP server
should be added to a manager and chain containing the appropriate mapping rules (see “Mapping
events between EPL and HTTP server requests” on page 122 for detailed information).

Manager

Example:

dynamicChainManagers:
HTTPServerManager:
transport: HTTPServerTransport
managerConfig:
port: 15910
bindAddress: 10.13.23.125
tls: false
tlsKeyFile: ${PARENT_DIR}/servername.key.pem
tlsCertificateFile: ${PARENT_DIR}/servername.cert.pem

114 Connecting Apama Applications to External Components 10.15.4

7 The HTTP Server Transport Connectivity Plug-in

connectionTimeoutSecs: 60
maxConnections: 16
keepAliveTimeSecs: 120
concurrentChains: true
staticFiles:
/swagger.json:
file: ${PARENT_DIR}/swaggerDefault.json
contentType: application/json
charset: utf-8

The following configuration options are available for the manager on the HTTP server:

Configuration option Description
port Required. The user-defined port on which the server is
accessible.

Type: integer.

bindAddress Optional. Binds to specific interfaces, potentially on multiple
ports. Each entry is either a host, or a host:port combination.
If a port is provided, it is used. Otherwise, the port option
applies. The default is to bind to all interfaces on the
configured port.

Type: string or list<string>.
Default: blank.
tls Optional. Set this to true to enable TLS (https).
Type: bool.
Default: fatse.

tlsKeyFile The private key for the certificate in PEM format. Required
if TLS is enabled.

Type: path.

tlsCertificateFile The server certificate file in PEM format. Required if TLS is
enabled.

Type: path.

connectionTimeoutSecs Maximum time to handle a single request before returning
a timeout (in seconds).

Type: integer.
Default: 60.

maxConnections Maximum number of simultaneous connections which can
be handled.

Connecting Apama Applications to External Components 10.15.4 115

7 The HTTP Server Transport Connectivity Plug-in

Configuration option

Description

keepAliveTimeSecs

concurrentChains

staticFiles

Chain

Example:

dynamicChains:

HTTPServerChain:
- apama.eventMap
mapping rules...
- HTTPServerTransport:
authentication:

Type: integer.
Default: 16.

Optional. Set this to the maximum idle time in seconds
between requests on a persistent connection before it is
closed. If not set, the default value is used.

Type: integer.
Default: 15.

Optional. Set this to true to enable concurrent chains where
each connection uses a different chain into the HTTP server
to process requests and responses, up to a maximum of
maxConnections. Requests on the same connection are
processed in order.

If set to false (default), concurrent chains are disabled. A
single chain is used for all connections, and it only processes
a single request at a time.

Type: bool.
Default: false.

Optional. Map of static files. Elements are of the form:

Jurl:
file: ${PARENT_DIR}/source_file.txt
contentType: text/plain
charset: utf-8

file and contentType are required, charset is optional.
Type: Map.
Default: undefined.

authenticationType: none
allowedUsersFile: ${PARENT_DIR}/userfile.txt

maxAttempts: 5
coolDownSecs:

116

Connecting Apama Applications to External Components 10.15.4

7 The HTTP Server Transport Connectivity Plug-in

automaticResponses: false
responseCompression: "ifRequested"
responseTimeoutMs: 5000
matchPathPrefixes: [""]
allowedMethods: [PUT]

The following configuration options are available for the chain on the HTTP server:

Configuration option Description
authentication/authenticationType Set this to HTTP_BASIC if you require HTTP basic
authentication.

Type: HTTP_BASIC or none.
Default: none.

authentication/allowedUsersFile Path to the password file (see
“Authentication” on page 133). Required if the
authentication type is HTTP_BASIC.

Type: path.

authentication/maxAttempts Maximum number of failed login attempts
before throttling the requests for that user. See
“Authentication” on page 133 for more
information.

Type: integer.
Default: 3.

authentication/coolDownSecs The number of seconds after the maximum
number of failed login attempts before the HTTP
server attempts authentication of the user again.
See “Authentication” on page 133 for more
information.

Type: integer.
Default: 20.

automaticResponses Set this to true if you want a submission-only
API where the responses are generated
automatically by the transport. If set to false,
the transport will wait for a response from the
EPL application, subject to a timeout.

Type: bool.

responseCompression The Accept-Encoding header is used for
negotiating content encoding. Set this to
ifRequested if you want to encode an EPL

Connecting Apama Applications to External Components 10.15.4 117

7 The HTTP Server Transport Connectivity Plug-in

Configuration option Description

response or a static file. If set to never, no
encoding is applied to the entity-body.

Type: string.
Default: never.

responseTimeoutMs The number of milliseconds we wait for a
response from the EPL application before
returning to the client.

Type: integer.
Default: 5000 (5s).

matchPathPrefixes If providing multiple chains in the
dynamicChains section, you must provide a
matchPathPrefixes option on all of them to
specify which chain should handle each request.
This specifies a list of prefixes to the HTTP
request path. The longest matching prefix is
used to handle a given request. Required if
using multiple chains. See “Handling requests
to different paths with different chains” on
page 118 for more information.

Type: string or list<string>.

allowedMethods Required. List of permitted HTTP verbs (for
example, PUT or GET).

Type: string or list<string>.

maxRequestBytes Maximum permitted HTTP payload size in
bytes.

Type: integer.
Default: 1048576 (1MB).

Handling requests to different paths with different
chains

You can provide the HTTP server with multiple chain configurations specifying different mapping
rules for different requests. These rules are differentiated based on the path of the HTTP request.
To do this, provide more than one entry in the dynamicChains section of your YAML configuration
file, each finishing with an instance of the HTTP server transport. To use this feature, you must

provide a distinct matchPathPrefixes configuration option on each of the transports. This is a list

18 Connecting Apama Applications to External Components 10.15.4

7 The HTTP Server Transport Connectivity Plug-in

of string prefixes which are handled by the given chain. Typically, one of the chains has a default
entry of "" (the empty string) which handles all requests not handled by any other chain.

For example:

dynamicChains:
DefaultHTTPServerChain:
- apama.eventMap
mapping rules...
- HTTPServerTransport:
allowedMethods: [GET]
automaticResponses: false
matchPathPrefixes: ""
RESTHTTPServerChain:
- apama.eventMap
mapping rules...
- HTTPServerTransport:
allowedMethods: [GET]
automaticResponses: false
matchPathPrefixes: ["/rest", "/api"]
CRUDHTTPServerChain:
- apama.eventMap
mapping rules...
- HTTPServerTransport:
allowedMethods: [GET,PUT,DELETE,POST]
automaticResponses: false
matchPathPrefixes: ["/rest/objects"]

In the above example, requests to /rest/objects are handled by the CRUD chain. Requests to
other places under /rest or /api are handled by the REST chain. Anything else is handled by the
default chain. Each chain can provide different mapping rules for different formats of request,
mapping to different EPL events and delivering to different channels.

The HTTP server lazily instantiates chains of each type for each incoming thread (if using the
concurrentChains option), so they are not created until a matching request comes in on a given
thread.

If there are two chains with overlapping prefixes, the prefix with the longest match is chosen. For
example, if the first chain specifies /data and the second chain specifies /data/instances, then a
request to /data/global uses the first chain, but a request to /data/instances/12345 uses the second
chain.

Queueing behavior

You can configure each chain to deliver to separate channels. This potentially allows that if requests
to one of the channels are backed up or blocked, requests to independent paths can still be
processed. It also means that ordering is not guaranteed across different chains. Each chain has
its own response channel, which is mapped into the chain using the @{httpServer.responseChannel}
variable when it is created.

If you want to ensure that requests using one chain do not block requests using another chain,
then you must do the following;:

1. Ensure requests on each chain are delivered to a different channel, possibly by setting a different
defaultChannel configuration property on each host plug-in.

Connecting Apama Applications to External Components 10.15.4 119

7 The HTTP Server Transport Connectivity Plug-in

2. Subscribe different contexts to each channel.

Logging and metrics

In order to distinguish the different chains in log message and Prometheus metrics, a label of
{template=name0fDynamicChain} is added to the name of the chain and any metrics in that chain.

Handling responses in EPL

In order to have the response to an HTTP request handled by your EPL application, you need to
configure the HTTP server chain correctly and then respond to the event delivered to your
application. The transport must have automaticResponses set to false in the configuration (see
also “Configuring the HTTP server transport” on page 114), and it must map the following variables
into the message to be able to send responses.

B metadata.requestId

This variable is set by the transport for every message. Responses must also have the same
metadata.requestId set. Thisis normally done by mapping it to a payload field in your request
for the message sent to the host and then back into the metadata for the response.

B @{httpServer.responseChannel}

This variable is set when creating the chain. This should be set in your request messages. It
tells the EPL application to which channel responses should be sent back. Responding messages
should also set metadata.http.statusCode correctly.

Note:

You must send the response to the channel specified in the corresponding request event.
The channel name is not guaranteed to be constant even within a single manager.

For example:

dynamicChains:
HTTPServerChain:
- apama.eventMap:
defaultEventType: RequestEvent
defaultChannel: requests
- mapperCodec:
ll*ll:
towardsHost:
mapFrom:
- payload.requestId: metadata.requestId
defaultValue:
- payload.responseChannel: "@{httpServer.responseChannel}"
towardsTransport:
mapFrom:
- metadata.requestId: payload.requestId
defaultValue:
- metadata.http.statusCode: 200
- jsonCodec
- stringCodec

120 Connecting Apama Applications to External Components 10.15.4

7 The HTTP Server Transport Connectivity Plug-in

- HTTPServerTransport:
automaticResponses: false
allowedMethods: [PUT]

Your EPL application must then respond to messages, preserving the requestId and responding
on the correct channel. For example:
on all RequestEvent() as re {

any data := // do something to get the response data
send ResponseEvent(re.requestId, data) to re.responseChannel;

}

Note:

The request and response events given here are examples. You must define your own events
appropriate to your application. For more examples, see “Examples” on page 128.

If a response is not received by the transport within the configured timeout, then the transport
returns a “504 Gateway Timeout” response. This timeout can be configured with the
responseTimeoutMs configuration option (see also “Configuring the HTTP server transport” on
page 114).

The response messages must be converted and mapped using the chain configuration to meet the
following requirements:

m Theresponse payload is a binary message. This will probably be created using the String codec
from the event.

® The metadata.http.statusCode variable is set. This will usually be set to 200 by the Mapper
codec.

® The metadata.contentType and metadata.charset variables are set. These will usually be set
by the JSON codec and String codecs when in use, but can also be set by the Mapper codec.

In addition, you can set other HTTP headers. For more details, see “Mapping events between EPL
and HTTP server requests” on page 122.

Serving static files

The HTTP server allows you to serve static files from disk. You can list the static file URI which
will be available using a GET request, and it will be served by that file. GET requests that match a
static file do not get passed into the correlator.

Static file requests do not go through the checks that all other requests go through, which are:
m Transport status (host ready)

= HTTP basic authentication

m Allowed methods

® Maximum request size

Connecting Apama Applications to External Components 10.15.4 121

7 The HTTP Server Transport Connectivity Plug-in

You must list static files individually in the configuration file, and you must provide the MIME
type of the file being served. Optionally, you can also provide the charset type.

staticFiles:
/swagger.json:
file: ${PARENT_DIR}/swagger.json
contentType: application/json
charset: utf-8

Mapping events between EPL and HTTP server
requests

The HTTP server can either be used as a general event submission API or as a general

request/response API. A request to the HTTP server contains either a binary payload or a dictionary
payload if the request had either an application/x-www-form-urlencoded or multipart/form-data
content type. In the latter case, there will also be additional metadata fields. For the requests to be
useful to EPL, they must be converted into the format expected by Apama. This is done using the
Classifier codec, Mapper codec and other codecs (see “Codec Connectivity Plug-ins” on page 235).
For request/response APIs, the same process is used in reverse to turn EPL events into the responses.

The event types used in EPL should be specific to your application and then mapped in the chain
from the fields produced by the HTTP server. The following fields are created in each event by
the HTTP server. Field names containing periods (.) indicate nested map structures within the
metadata. This nesting is automatically handled by the Mapper codec, and fields can be referred
to there just using these names (see also “The Mapper codec connectivity plug-in” on page 243).

The fields for requests from the transport to EPL are:

Field Description
payload The binary payload of the request.
metadata.requestId A unique integer identifier which must be preserved

in the response when using EPL-supplied responses.

metadata.contentType The MIME type of the payload (string), taken from
the first parameter of the HTTP Content-Type header,
converted to lower case and with spaces trimmed off.
See also “Handling HTTP headers” on page 125.

metadata.charset The charset parameter of the Content-Type header
(string), converted to lower case, with spaces trimmed
off. See also “Handling HTTP headers” on page 125.

metadata.http.path The path component (string) of the URIL.

metadata.http.method The HTTP method of the request: PUT, POST, GET, or
DELETE.

metadata.http.user When HTTP basic authentication is enabled, the

authenticated user name (string).

122 Connecting Apama Applications to External Components 10.15.4

7 The HTTP Server Transport Connectivity Plug-in

Field

Description

metadata

metadata

metadata

metadata

The fields for EPL-supplied responses are:

Field

.http.cookies

.http.queryString

.http.headers

.http.source

A key-value map of cookies from the request (map).
See also “Dealing with cookies” on page 127.

A key-value map of the options in the query-string
component of the request URI (map). This field is only
set in the request when the query string is not empty.
See also “Providing HTTP query parameters” on
page 127.

A key-value map of the HTTP headers sent by the
request (map). Key names are converted to lower case

regardless of original capitalization. See also
“Handling HTTP headers” on page 125.

The address and port of the client connection which
generated this request.

Description

payload

metadata

metadata

metadata

metadata

metadata

metadata

.requestId

.contentType

.charset

.http.statusCode

.http.cookies

.http.headers

The binary or dictionary payload of the
response.

The requestId of the corresponding request.
Must be correctly set in responses.

The MIME type of the payload (string). This
is used to construct the HTTP Content-Type
header. See also “Handling HTTP headers” on
page 125.

The charset of the payload, for text-format
payloads. This is used to construct the HTTP
Content-Type header. See also “Handling
HTTP headers” on page 125.

The HTTP status code (integer). Must be set
in responses.

A key-value map of cookies to set on the
client. See also “Dealing with cookies” on
page 127.

A key-value map of additional HTTP headers
to send in the response. See also “Handling
HTTP headers” on page 125.

Connecting Apama Applications to External Components 10.15.4 123

7 The HTTP Server Transport Connectivity Plug-in

Field Description

metadata.http.form.name.contentType The media type of the form data. See also
“Handling HTTP form decoding” on page 125.

metadata.http.form.name.charset The encoding of the form data. See also
“Handling HTTP form decoding” on page 125.

metadata.http.form.name.filename The filename of the form data. See also
“Handling HTTP form decoding” on page 125.

Distinguishing request types

A single chain will often deal with multiple event types received within requests. For messages
towards the host, the event type will not yet have been set. The Mapper and Classifier codecs can
use fields in the message (payload or metadata) to set the event type.

You can write the configuration to behave in whatever way you like. There are several ways of
determining to which event type the request corresponds. In the default configuration that we
supply, the event type is provided as part of the request, but it is also possible to infer the event
type from the content of the request.

Below are some examples of what is possible.

You can use the Mapper codec to set the type and channel from the payload as shown below. The
type is part of the request. The Mapper code assigns it to metadata.sag. type.

- mapperCodec:
"*":
towardsHost:
mapFrom:
- metadata.sag.type: payload.type
- metadata.sag.channel: payload.channel
- payload: payload.data

You can use the Classifier codec to determine the event type based on incidental fields in the event,
such as the method and path:

- classifierCodec:
rules:

- KickEvent:
- metadata.http.method: GET
- metadata.http.path: /kick

- DocumentSubmissionEvent:
- metadata.http.method: PUT
- metadata.http.path: /submit

- DocumentUpdateEvent:
- metadata.http.method: PUT
- metadata.http.path: /update

The default event type is generally used if all events received in requests are the same:

- apama.eventMap:
defaultEventType: TestEvent

124 Connecting Apama Applications to External Components 10.15.4

7 The HTTP Server Transport Connectivity Plug-in

You can use regular expressions with the Classifier codec to match more than one REST URL to
a single event type. The following example shows a rule that matches two different REST URLs
such as /database/emptable/78451339 and /database/managertable/50044897:
- classifierCodec:

rules:

- com.apama.swagger.ISSPositionResponse:
- regex:metadata.http.path: /database/[a-zA-Z0-9]x/[0-9]*

For detailed information on these codecs, see “The Mapper codec connectivity plug-in” on page 243
and “The Classifier codec connectivity plug-in” on page 242.

Handling HTTP headers

The HTTP server reads any number of headers from the received request and puts them into
metadata.http.headers. Similarly, when using EPL-supplied responses, headers are read from
metadata.http.headers and written into the response as individual HTTP header lines. Some
special handling is applied as described below.

All HTTP headers are converted from ISO-8859-1 (the character set for HTTP headers as defined
in the RFC publications) to UTF-8 in the metadata and vice-versa.

All HTTP header keys are converted to lowercase (since HTTP header keys are defined to be
case-insensitive). You should use lowercase in all of your mapping and classification rules.

Any HTTP headers for which multiple values have been provided for a single key (after
normalization of case) are dropped.

The content type and charset in requests, which are parsed from the Content-Type header, are
provided in metadata.contentType and metadata.charset respectively. For responses, the two
metadata fields are combined into the Content-Type header.

If HTTP basic authentication is enabled, then the authorization header is removed from
metadata.http.headers, but in this case the user name is still available in metadata.http.user. If
authorization is none, then the authorization type is passed through verbatim.

All cookies in requests are put into the metadata.http.cookies field and that field is used to
generate Set-Cookie headers in responses. See also “Dealing with cookies” on page 127.

To protect the security of personal data, see "Protecting Personal Data in Apama Applications” in
Developing Apama Applications.

Handling HTTP form decoding

The HTTP server transport decodes multipart/form-data or application/x-www-form-urlencoded
media types to a dictionary payload.

If the Content-Type header field contains the application/x-www-form-urlencoded media type, the
request payload is decoded to a dictionary payload with string keys and string values.

If the Content-type header field contains the multipart/form-data media type, the request payload
is decoded to a dictionary payload with string keys and either string or binary values.

Connecting Apama Applications to External Components 10.15.4 125

7 The HTTP Server Transport Connectivity Plug-in

For the parts that have binary data, additional metadata is created. This metadata contains the
contentType, charset and filename information for each binary part.

You can get the metadata as follows:

metadata.http.form.name.contentType
metadata.http.form.name.charset
metadata.http.form.name. filename

where name corresponds to the data in payload.name.

Simple example

In this example, a client sends HTTP PoST requests to the HTTP server transport and the
Content-Type header is set to multipart/form-data. The request payload contains two form fields,
one field has both a string key and string value, and the other field has a string key and binary
value.

Simple raw HTTP POST request:

POST http://localhost:80/

Content-Length: 737

Content-Type: multipart/form-data; boundary=--123456789
--123456789

Content-Disposition: form-data; name="foo"

bar

--123456789

Content-Disposition: form-data; name="file"; filename="file.txt"
Content-Type: text/plain; charset=utf-8

File data

--123456789--

For the above request, the HTTP server transport sends a dictionary payload({"foo":"bar",
"file":File data}) to EPL.

Metadata created for the file parts have text/plain as the content type, utf-8 as the character
set, and file.txt as the filename. You can map the metadata using the Mapper codec:

- mapperCodec:
"*":
towardsHost:
mapFrom:
- payload.contentType: metadata.http.form.file.contentType
- payload.charset: metadata.http.form.file.charset
- payload.filename: metadata.http.form.file.filename

Parts metadata is only created for binary or file-upload form-data.

Mapping the body

The HTTP server accepts the payload as a binary object. What the payload consists of depends on
the service you wish to provide. Many services use string-based protocols (such as JSON). For
these types of payload, you can use the String codec (see “The String codec connectivity plug-
in” on page 236). For messages towards the host, the String codec takes a byte array and decodes

126 Connecting Apama Applications to External Components 10.15.4

7 The HTTP Server Transport Connectivity Plug-in

it to a string using the UTF-8 encoding. If you are using the String codec, you should put it as the
last codec before the HTTP server.

The resulting string can then be mapped directly into a field in an EPL event, or it can be further
processed by other codecs (such as the JSON codec, as used in our default configuration) before
the resulting fields are mapped into the Apama event.

If you need to vary your processing depending on the type of the data received, you may need to
write a custom codec in order to handle this. To help with distinguishing different payload types,
the HTTP server sets top-level fields to indicate the type of the payload. The HTTP header indicates
the MIME type populated into metadata.http.contentType. If present, then the character set from
the same HTTP header is copied into metadata.http.charset.

When using EPL-supplied responses, the mapping rules must be bidirectional to map both the
request and the response.

Dealing with cookies

The HTTP server stores cookies in metadata.http.cookies.keyname entries.

In requests, the HTTP server takes any number of HTTP Cookie headers and turns them into
corresponding metadata.http.cookies entries. You can either map the entire set of cookies to a
dictionary field in an event, or you can map a specific cookie key to a field in an event.

In responses, the HTTP server adds Set-Cookie headers for each entry in metadata.http.cookies.
You must use the Mapper codec to map things from your response events into the metadata entries.

Providing HTTP query parameters

HTTP requests can be set to contain request parameters, which are encoded at the end of the URL
in the following form:

/path?key=value&key=value

The request parameters are decoded and added to the metadata.http.queryString map as key-value
pairs. The parameters can either be mapped to a dictionary field in an event, or a specific named
parameter can be mapped to a single field. For example:

- mapperCodec:
Request:
towardsHost:
mapFrom:
set one query parameter individually
payload.paramValue: metadata.http.queryString.param
alternatively set all query parameters in an EPL dictionary
payload.parameters: metadata.http.queryString

[S|

The metadata.http.queryString field is only set in the request when the query string is not empty.
If you wish to map the query string to an event field and there is a chance it could be empty, add
a defaultvalue for it in your mapperCodec rules. See also “The Mapper codec connectivity plug-
in” on page 243.

Connecting Apama Applications to External Components 10.15.4 127

7 The HTTP Server Transport Connectivity Plug-in

Examples

Generic engine_send HTTP service
This example is the same as the default configuration supplied with Apama.

YAML dynamic chain:

dynamicChains:
HTTPServerChain:
- apama.eventMap
- mapperCodec:
ll*ll:
towardsHost:
mapFrom:
- metadata.sag.type: payload.type
- metadata.sag.channel: payload.channel
- payload: payload.data
jsonCodec
stringCodec
- HTTPServerTransport:
authentication:
authenticationType: none
allowedUsersFile: ${PARENT_DIR}/userfile.txt
automaticResponses: true
allowedMethods: [PUT]

EPL:

event Temperature
{
integer sensorId;
string sensorName;
float temperature;
dictionary<string,any> extra;

}

monitor.subscribe("myChannel") ;
on all Temperature() as e {

//
1

Curl example:

curl -X PUT http://localhost:8080/ -d '{"type":"Temperature",
"channel":"myChannel", data:{"sensorId":666, "sensorName":"FooBar",
"temperature":3.14" ,{"A":"alpha"}} }' -H "Content-Type:application/json"

Event type and channel information is specified in headers

YAML dynamic chain:

dynamicChains:
HTTPServerChain:
- apama.eventMap
- mapperCodec:

128 Connecting Apama Applications to External Components 10.15.4

7 The HTTP Server Transport Connectivity Plug-in

ll*ll:
towardsHost:
mapFrom:
- metadata.sag.type : metadata.http.headers.x-apamaeventtype
- metadata.sag.channel : metadata.http.headers.x-apamachannel
- jsonCodec
- stringCodec
- HTTPServerTransport:

authenticationType: none

allowedUsersFile: ${PARENT_DIR}/userfile.txt
automaticResponses: true

allowedMethods: [PUT]

EPL:

event Temperature
{
integer sensorId;
string sensorName;
float temperature;
dictionary<string,any> extra;

}

monitor.subscribe("myChannel") ;
on all Temperature() as e {

//
}

Curl example:

curl -X PUT -H "X-ApamaEventType:Temperature" -H "X-ApamaChannel:myChannel"
http://localhost:8080/ -d '{"sensorId":666, "sensorName":'"FooBar",
"temperature":3.14" ,{"A":"alpha"} }' -H "Content-Type:application/json"

Event type and channel information is specified in the query string

YAML dynamic chain:

dynamicChains:
HTTPServerChain:
- apama.eventMap
- mapperCodec:
Wit
towardsHost:
mapFrom:
- metadata.sag.type : metadata.http.queryString.eventType
- metadata.sag.channel : metadata.http.queryString.channel
- jsonCodec
- stringCodec
HTTPServerTransport:
authenticationType: none
allowedUsersFile: ${PARENT_DIR}/userfile.txt
automaticResponses: true
allowedMethods: [PUT]

EPL events:

event Temperature

{

Connecting Apama Applications to External Components 10.15.4 129

7 The HTTP Server Transport Connectivity Plug-in

integer sensorId;

string sensorName;

float temperature;
dictionary<string,any> extra;

3

monitor.subscribe("myChannel");
on all Temperature() as e {

/1
}

Curl example:

curl -X PUT 'http://host:port/submit?eventType=Temperature&channel=myChannel'
-d '"{"sensorId":666, "sensorName'":"FooBar'", "temperature":3.14",{"A":"alpha"} }'

Event types are tied to the method and path and the channel is defaulted

YAML dynamic chain:

dynamicChains:
HTTPServerChain:
- apama.eventMap
- mapperCodec:
KickEvent:
towardsHost:
- metadata.sag.channel: kickEvents
DocumentSubmissionEvent:
towardsHost:
mapFrom:
- payload.data: payload
defaultValue:
- metadata.sag.channel: submissionEvents
DocumentUpdateEvent:
towardsHost:
mapFrom:
- payload.data: payload
defaultValue:
- metadata.sag.channel: updateEvents
- classifierCodec:
rules:
- KickEvent:
- metadata.http.method: GET
- metadata.http.path: /kick
- DocumentSubmissionEvent:
- metadata.http.method: PUT
- metadata.http.path: /submit
- DocumentUpdateEvent:
- metadata.http.method: PUT
- metadata.http.path: /update
- stringCodec
- HTTPServerTransport:
authenticationType: none
allowedUsersFile: ${PARENT_DIR}/userfile.txt
automaticResponses: true
allowedMethods: [PUT, GET]

EPL events:

130 Connecting Apama Applications to External Components 10.15.4

7 The HTTP Server Transport Connectivity Plug-in

event KickEvent { }
event DocumentSubmissionEvent { string data; }
event DocumentUpdateEvent { string data; }

Delivering Apama event strings

This example is using the string form of the event native to Apama. You should only use this
example if you have a system that encodes events in that format.

YAML dynamic chain:

dynamicChains:
HTTPServerChain:
- apama.eventString
- mapperCodec:
Il*ll:
towardsHost:
mapFrom:
- metadata.sag.channel: metadata.http.path

- stringCodec
- HTTPServerTransport:

authenticationType: none

allowedUsersFile: ${PARENT_DIR}/userfile.txt

automaticResponses: true

allowedMethods: [PUT]

EPL.:
monitor.subscribe("/channel/ChannelName") ;
on all Temperature() as e { ... }

Curl example:

curl -X PUT http://host:port/channel/ChannelName -d 'Temperature(10, "Baz",
6.022e23)"

EPL-controlled responses

This example generates responses to the HTTP requests in EPL. Requests should be JSON objects
containing objectId and requestType. Responses are arbitrary JSON objects. See also “Handling

responses in EPL” on page 120.
YAML dynamic chain:

dynamicChains:
HTTPServerChain:
- apama.eventMap:
defaultChannel: requests
defaultEventType: HTTPRequest
- mapperCodec:
ll*ll:
towardsHost:
mapFrom:
- payload.requestId: metadata.requestId

defaultValue:
- payload.channel: "@{httpServer.responseChannel}"

towardsTransport:

Connecting Apama Applications to External Components 10.15.4 131

7 The HTTP Server Transport Connectivity Plug-in

mapFrom:
- metadata.requestId: payload.requestId
- payload: payload.responseData
defaultValue:
- metadata.http.statusCode: 200
- jsonCodec
- stringCodec
- HTTPServerTransport:
automaticResponses: false
allowedMethods: [PUT]

EPL:

monitor.subscribe("requests");
on all HTTPRequest() as r {
send HTTPResponse(r.requestId, getResponseData(r.requestType, r.objectId))
to r.channel;

EPL events:

event HTTPRequest {
integer requestId;
integer objectId;
string requestType;
string channel;

}

event HTTPResponse {
integer requestlId;
any responseData;

HTTP server security

TLS

We provide TLS-based security with the HTTP server and we recommend that you use this in
production. In order to be compatible with our system, you must use TLS version 1.2 or above.

We also recommend that your internet deployment is behind a reverse proxy for optimum security.

In order to use this, you must enable TLS in the YAML configuration file and supply a TLS server
certificate file and corresponding key file, as shown in the following example:

dynamicChainManagers:
HTTPServerManager:

transport: HTTPServerTransport

managerConfig:
port: 443
tls: true
tlsKeyFile: ${PARENT_DIR}/servername.key.pem
tlsCertificateFile: ${PARENT_DIR}/servername.cert.pem

132 Connecting Apama Applications to External Components 10.15.4

7 The HTTP Server Transport Connectivity Plug-in

Authentication
Note:

HTTP basic authentication is not applied to static file requests. See “Serving static files” on
page 121.

HTTP basic authentication support is provided by comparing the request authentication contents
against an authentication password file supplied during configuration. We recommend that you
only use this if you also have TLS enabled. For more complex use cases, webMethods Integration
Server should be used.

If you are using HTTP basic authentication, you must provide a valid authentication password
file using the allowedUsersF1ile configuration option.

This password file expected by the HTTP server for HTTP basic authentication is compatible with
the output of Apache's htpasswd -B. There is also a bundled application called httpserver_passman
which can create and update password files. You can find the executable for this tool in the bin
folder of your Apama installation. The syntax for this is:

httpserver_passman password_file [options] username [password]

If you only provide a username and no password, then the password is prompted for interactively.
This adds the specified user with the given password, or replaces the password if the user already
exists in the password file.

The options are:

Option Description

-h | --help Displays usage information.

-c | --createNew Creates a new file and overwrites anything currently there.

-D | --delete Deletes the given user, rather than updating or adding the user.

-- Does not treat subsequent arguments as options. Thus, it is possible
to enter a username that starts with one or two minus signs.

If HTTP basic authentication is enabled, then the authorization header is removed from
metadata.http.headers, but in this case the user name is still available in metadata.http.user. If
authorization is none, then the authorization type is passed through verbatim.

Note:

Enabling authentication significantly reduces the maximum achievable throughput on a single
connection since HTTP_BASIC requires verifying credentials on every request. It is not suitable
for high-throughput applications.

Using the configuration options maxAttempts and coolDownSecs, you can protect against brute force
attacks on users and passwords (see also “Configuring the HTTP server transport” on page 114).

Connecting Apama Applications to External Components 10.15.4 133

7 The HTTP Server Transport Connectivity Plug-in

The initial response to a failed authentication attempt is a “401 Unauthorized” response. This
response occurs until the defined number of failed login attempts (maxAttempts) has been reached.
After this, the HTTP server ignores authentication attempts for the defined cool-down period
(coolbownSecs). During that period, the HTTP server returns “429 Too Many Requests” with a
reason of “Too many failed authentication requests, please try again later.”. When the cool-down
period has expired, the HTTP server attempts to authenticate any further request. If it fails that
attempt, the user is immediately placed back into a cool-down period without retries.

Note:

Requests from unknown users are treated in the same way as requests from allowed users to
avoid user information leakage.

To protect the security of personal data, see "Protecting Personal Data in Apama Applications" in
Developing Apama Applications.

Monitoring status for the HTTP server

The HTTP server component provides status values via the user status mechanism. It provides
the following metrics (where prefix is the name of the dynamic chain manager, typically
HTTPServerManager):

Key Description

prefix.status Moves from STARTING to ONLINE when
hostReady is called.

prefix.eventsTowardsHost Number of requests resulting in events being
sent to the correlator. This is the primary KPI
for this component.

prefix.failedRequests Number of non-2xx responses sent to clients,
including errors generated from EPL. This is
expected to be 0 and is a KPI with a warning

threshold at 1.

prefix.staticFileRequests Number of static files served to clients. This
is a KPL

prefix.authenticationFailures Number of requests with invalid credentials.

This KPI is not shown in Command Central
by default. It has a warning threshold at 1.

Note:

Command Central integration is
deprecated and will be removed in a later
release.

134 Connecting Apama Applications to External Components 10.15.4

7 The HTTP Server Transport Connectivity Plug-in

Key Description

prefix.numChains Number of active chains for connections into
this HTTP server instance. The chains can be
reused between connections, but a single
connection only uses one chain. This is
expected to be between 0 and the maximum
number of simultaneous connections which
can be handled (see also maxConnections in
“Configuring the HTTP server transport” on
page 114).

prefix.requestSizeEWMAShortBytes A quickly-evolving exponentially-weighted
moving average of request sizes, in bytes.

prefix.requestSizeEWMALongBytes A longer-term exponentially-weighted
moving average of request sizes, in bytes.

prefix.requestSizeMaxInLastHourBytes The maximum request size in bytes since the
start of the last 1 hour measurement period.

prefix.responseSizeEWMAShortBytes A quickly-evolving exponentially-weighted
moving average of response sizes, in bytes.

prefix.responseSizeEWMALongBytes A longer-term exponentially-weighted
moving average of response sizes, in bytes.

prefix.responseSizeMaxInlLastHourBytes The maximum response size in bytes since
the start of the last 1 hour measurement
period.

For each request/response that is processed, the above MaxInLastHour values are updated if either
of the following conditions is true:

m The size of the current message is greater than the existing maximum.

® The existing maximum value was set more than 1 hour ago.

Automatic responses are not included in the response size metrics.

Error responses are not included in the response size metrics. The request size metrics are calculated
before compression and the response size metrics are calculated after decompression.

For more information about monitor status information published by the correlator, see "Managing
and Monitoring over REST" and "Watching correlator runtime status", both in Deploying and
Managing Apama Applications.

When using Software AG Command Central to manage your correlator, see also "Monitoring the
KPIs for EPL applications and connectivity plug-ins" in Deploying and Managing Apama Applications.

Note:

Connecting Apama Applications to External Components 10.15.4 135

7 The HTTP Server Transport Connectivity Plug-in

Command Central integration is deprecated and will be removed in a later release.

136 Connecting Apama Applications to External Components 10.15.4

8 The HTTP Client Transport Connectivity Plug-in

B About the HTTP Client tranSPOITcvvveiiii i e e e e e e e e eeneens 138
B Loading the HTTP client tranSPOItuuuiiiiiiiiiiii s snneaane 139
B Configuring the HTTP client tranSPOItovviviiiiiiiiiiiiieeeeeeeeeeeeee et 139
m Mapping events between EPL and HTTP client requestscccccevveeiiieiiiee 143
m Monitoring status for the HTTP CHENtcccuviiiiiiie e 161
m Configuring dynamic cONNECtIONS 0 SEIVICEScoeviiiiiiieiiiieieeieee e 163

m Using predefined generic event definitions to invoke HTTP services with JISON and string
PAYIOAAS .. 163

B Executing HTTP requests CONCUITENTIYcccoiiiiiiiiiii e e e e e e e eeeenes 165

Connecting Apama Applications to External Components 10.15.4 137

8 The HTTP Client Transport Connectivity Plug-in

About the HTTP client transport

The HTTP client is a transport for use in connectivity plug-ins which can connect to external
services over HTTP/REST, perform requests on them and return the response as an event. It can
be used by either customizing what codec to use (for example, the JSON codec) and what events
to map to, or it can be used using “generic” events and a predefined chain using a JSON codec,
where instances are managed via an EPL API and JSON payloads are sent and received. Mapping
to events requires more preparation, but gives a powerful type-safe interface for accessing the
results and can support more complex mappings and codecs other than JSON, while the generic
events allow quick access to simple services over JSON.

The HTTP client transport can encode HTTP requests and decode HTTP responses with gzip or
deflate compression format. It also supports HTML form encoding and can encode a dictionary
payload to either multipart/form-data or application/x-www-form-urlencoded media types.

When using the event mappings, for each service (host and port combination) that you want to
connect to, you must create a new instance of a connectivity chain in your configuration file. To
use the service, you send events to that chain, where the events are correctly mapped as described
in “Mapping events between EPL and HTTP client requests” on page 143. The response is sent
back by the same chain instance, with the configured mapping rules.

This transport does not provide a dynamic chain manager. So chains are created either dynamically
from EPL using ConnectivityPlugins.createDynamicChainand anamed chain definition specified
in the dynamicChains section of the YAML configuration file, or statically using the startChains
section of the YAML configuration file. For more information on YAML configuration files, see
“Using Connectivity Plug-ins” on page 23 and especially “Configuration file for connectivity
plug-ins” on page 26.

Note:

When you are using the “generic” event definitions, dynamic chains are always used. See “Using
predefined generic event definitions to invoke HTTP services with JSON and string payloads” on
page 163 for further information.

Persistent connections to the server are used for multiple requests if this is supported by the service.
Connection details to the service are part of the configuration of the transport in the configuration
file. Details of the individual requests are configured through the events sent to the chain. The
HTTP client supports HTTP version 1.1 and TLS version 1.2 and above.

The HTTP client is designed to talk to REST services and supports GET, POST, PUT and DELETE
operations.

Note:

The HTTP client connectivity plug-in does not support reliable messaging.

138 Connecting Apama Applications to External Components 10.15.4

8 The HTTP Client Transport Connectivity Plug-in

Loading the HTTP client transport

You can load the HTTP client transport by adding the HTTP Client connectivity bundle to your
project in Software AG Designer (see "Adding the HTTP client connectivity plug-in to a project”
in Using Apama with Software AG Designer) or using the apama_project tool (see "Creating and
managing an Apama project from the command line" in Deploying and Managing Apama Applications).
Alternatively, you can load the transport with the following connectivityPlugins stanza in your
YAML configuration file:

connectivityPlugins:
HTTPClientTransport:
libraryName: connectivity-http-client
class: HTTPClient

Configuring the HTTP client transport

The HTTP client should be added to a chain containing the appropriate mapping rules (see
“Mapping events between EPL and HTTP client requests” on page 143 for detailed information).
Connection information is configured through the HTTPClientTransport element in each chain.
For example:

startChains:
HTTPClientChain:
- apama.eventMap
codecs. ..
- HTTPClientTransport:
host: www.google.com
basePath: "/myapi/v123"
port: 80
timeoutSecs: 120
tls: false
tlsAcceptUnrecognizedCertificates: false
tlsCertificateAuthorityFile: ""
followRedirects: true
cookieJar: true
numClients: 1
authentication:
authenticationType: none
username: ""
password: ""
proxy:
host: ""
port: nn
authentication:
authenticationType: none
username: ""
password: ""

The configuration options below can either be configured statically in the configuration file, or
via replacement variables. Variables of the form ${varname} are replaced at correlator startup time
either from a provided . properties file or from the correlator command line. Variables of the form
@{varname} are replaced at chain creation time if using dynamic connections to services (see also
“Configuring dynamic connections to services” on page 163).

Connecting Apama Applications to External Components 10.15.4 139

8 The HTTP Client Transport Connectivity Plug-in

Note:

When you have selected the “generic” option when adding the HTTP Client connectivity bundle
in Software AG Designer or using the apama_project tool (see "Creating and managing an
Apama project from the command line" in Deploying and Managing Apama Applications), variables
of the form @{varname} are passed from EPL. See “Using predefined generic event definitions
to invoke HTTP services with JSON and string payloads” on page 163 for further information.

The following configuration options are available for the HTTP client:

Configuration option Description

host Required. The name of the host to connect to.
Type: string.

basePath Optional path to be prefixed to the
metadata.http.path for all messages sent to this
transport. If you have multiple remote
applications on a single host but with different
base paths, you will need to create multiple
transport instances with different basePath
values. The metadata.http.path in responses
will include the prefix, if any.

Type: string.
port The port number to connect to.
Type: integer.

Default: 443 if the t1s configuration option is
true, otherwise 80.

timeoutSecs Client TCP timeout in seconds.
Type: integer.
Default: 120.

tls If true, TLS is used for the connection to the
host.

Type: bool.
Default: false.

tlsAcceptUnrecognizedCertificates By default, connections to unrecognized
certificates are terminated. Set this to true if
non-validated server certificates are to be
accepted.

Type: bool.

140 Connecting Apama Applications to External Components 10.15.4

8 The HTTP Client Transport Connectivity Plug-in

Configuration option Description

Default: false.

tlsCertificateAuthorityFile By default, server certifications signed by all
standard Certificate Authorities are validated.
Optionally, you can set this option to provide
a path to a CA certificate file in PEM format to
authenticate the host with.

Type: string.

followRedirects If set to true, HTTP redirects are to be followed
transparently to the new URL. This pertains to
responses with status codes for permanent
redirections (301 and 308) and temporary
redirections (302, 303 and 307). If set to false,
the responses with the above status codes are
delivered to EPL and must be handled there.

In some cases, following a redirect will result
in the server responding with one or more
further redirects. To prevent redirect loops, the
total number of automatic redirects is limited.
An error status code (400) will be sent to the
EPL application when the limit has been
reached.

For security reasons, redirects to a different host
or to a different protocol (for example, from
HTTP to HTTPS) are not followed.

Type: bool.
Default: true.

cookielar If set to true, cookies are to be stored in memory
and added to subsequent outgoing requests. If
set to false, cookies are placed in the metadata
and must be handled by EPL. For more
information, see “Dealing with cookies” on
page 155.

Type: bool.
Default: true.

numClients The number of simultaneous threads and HTTP
client connections to use for requests. This
allows requests to be processed concurrently,
to improve performance. For more details, and
how to avoid races where requests cannot be

Connecting Apama Applications to External Components 10.15.4 141

8 The HTTP Client Transport Connectivity Plug-in

Configuration option Description

processed concurrently, see “Executing HTTP
requests concurrently” on page 165.

Type: integer.
Default: 1.

authentication/authenticationType Set this to HTTP_BASIC if you want to
authenticate using HTTP basic authentication.

Type: HTTP_BASIC or none.
Default: none.

authentication/username Optional user name for HTTP basic
authentication.

Type: string.

authentication/password Optional password for HTTP basic
authentication.

Type: string.
Important:

If you provide the password for HTTP_BASIC
authentication via the configuration file, you
must ensure to protect the configuration file
against any unauthorized access, since the
password will be readable in plain text. To
avoid this, you can provide the password via
a replacement variable from EPL (see also
“Configuring dynamic connections to
services” on page 163).

proxy/host The name of the proxy server to connect to.
Type: string.

proxy/port The port number of the proxy server to connect
to.

Required if proxy/host is configured.
Type: integer.

proxy/authentication/authenticationType Set this to HTTP_BASIC if you want to
authenticate the proxy server using HTTP basic
authentication.

142 Connecting Apama Applications to External Components 10.15.4

8 The HTTP Client Transport Connectivity Plug-in

Configuration option

Description

proxy/authentication/username

proxy/authentication/password

maxResponseKB

maxResponsePolicy

Type: HTTP_BASIC or none.
Default: none.

Optional proxy user name for HTTP basic
authentication.

Type: string.

Optional proxy password for HTTP basic
authentication.

Type: string.

The maximum size (in kilobytes) of the response
payload. For compressed responses, this is the
decompressed size.

Type: integer (-1 means unlimited).
Default: -1.

The policy to follow if the response exceeds
maxResponseKB. If set to REJECT, responses from
the server above maxResponseKB are discarded,
and the EPL receives a response with HTTP
error code 413. If set to TRUNCATE_END, the
response is read until it reaches maxResponseKs,
at which point all other data is discarded. If set
to TRUNCATE_START, the last maxResponseKB
kilobytes of the request are returned. For both
TRUNCATE_START and TRUNCATE_END, the returned
data is decompressed for a compressed return
payload.

Type: REJECT Or TRUNCATE_START Or TRUNCATE_END.

Default: REJECT.

Mapping events between EPL and HTTP client

requests

The information in this section applies when you have added the HTTP Client connectivity bundle
with the JSON with application-specific event definitions option in Software AG Designer.

Note:

Connecting Apama Applications to External Components 10.15.4

143

8 The HTTP Client Transport Connectivity Plug-in

The JSON with generic request/response event definitions option provides predefined
configurations and events for the HTTP client transport which already define the mapping
between EPL and the HTTP client requests, and you need not do anything. See “Using predefined
generic event definitions to invoke HTTP services with JSON and string payloads” on page 163
for further information.

The HTTP client accepts requests with metadata fields indicating how to make the request and a
binary or dictionary payload to be submitted as the body of the request. Each entry in the dictionary
payload should have a string key and either a string or a binary value. If the payload is a dictionary,
then metadata.contentType must be set to either multipart/form-data or
application/x-www-form-urlencoded. A response contains a binary payload which is the body of
the response and further metadata fields describing the response. For the responses to be useful
to EPL, they must be converted into the format expected by Apama. This is done using the Classifier
codec, Mapper codec and other codecs (see “Codec Connectivity Plug-ins” on page 235).

In order for EPL to connect a response event to the correct request event, each request contains a
top-level requestId field in the metadata. This is returned verbatim in the corresponding response
event along with the path and method copied from the request. If these are mapped to or from
EPL, then they can be used for a request-response protocol in EPL. For example:

integer id := dinteger.incrementCounter ("HTTPClient.requestId"); // get a
// unique ID to differentiate different responses
// listen for success and failure responses
on Response(id=id) as response and not Error(id=id) {
// handle successful requests

}
on Error(id=id) as error and not Response(id=id) {
// handle unsuccessful requests

3
send Request(id, .../*x more request data here x/) to "httpchannel";
// send the request

The event types used in EPL should be specific to your application and then mapped in the chain
to the fields expected by the HTTP client.

The following fields in each event are read by the HTTP client. Field names containing periods (.)
indicate nested map structures within the metadata. This nesting is automatically handled by the
Mapper codec, and fields can be referred to there just using these names (see also “The Mapper
codec connectivity plug-in” on page 243).

Field Description

payload Binary or dictionary payload to submit with
the request.

metadata.requestId Required. A request ID (string) to include in
the response.

metadata.http.method Required. The HTTP method to use: GET, POST,
PUT or DELETE.

metadata.http.path Required. URI (string) on the host to submit
the request to.

144 Connecting Apama Applications to External Components 10.15.4

8 The HTTP Client Transport Connectivity Plug-in

Field

Description

metadata.concurrencyControlKey

metadata.concurrencyControlFlush

metadata.maxResponseKB

Only used when the numClients configuration
option is greater than 1 for this instance of the
HTTP client transport.

Serializes all requests with the given key. The
key can be set to one of the following:

® Empty, unset or the empty string (""): no
waiting for any other requests to complete
(default).

® Any other value: this request waits until
any earlier requests with the same key
have completed and causes any later
requests with the same key to wait until
it has completed. This means that only
one request can be in-progress at a time
for a given concurrency control key.

Note:

While any type of value is supported in the
concurrencyControlKey, it is recommended
to only use string or integer types.

For examples and use in conjunction with
concurrencyControlFlush, see also “Executing
HTTP requests concurrently” on page 165.

Evaluates to true or false:

= false (or empty, unset, empty string (""),
"false" string): no waiting for any other
requests to complete (default).

® Any other value: delays this request from
starting until all earlier requests have
completed (regardless of
concurrencyControlKey). Note that later
requests are permitted to start while the
flush-enabled request is still executing.

For examples and use in conjunction with
concurrencyControlKey, see also “Executing
HTTP requests concurrently” on page 165.

Defines the maximum size of the response
payload, in kilobytes. For compressed
responses, this is the decompressed size.

Connecting Apama Applications to External Components 10.15.4

145

8 The HTTP Client Transport Connectivity Plug-in

Field

Description

metadata.

metadata.

metadata.

metadata.

metadata.

metadata.

metadata

maxResponsePolicy

http.headers.content-encoding

http.headers.keyname

http.cookies.keyname

http.queryString.keyname

charset

.contentType

Defines the behavior when
metadata.maxResponseKB is exceeded. This can
be set to one of the following:

® REJECT (default): responses from the server
above maxResponseKB are discarded, and
the EPL receives a response with HTTP
error code 413.

® TRUNCATE_END: the response is read until
it reaches maxResponsekB, at which point
all other data are discarded. If the
response is compressed, this is the
decompressed content.

B TRUNCATE_START: the last maxResponseKB
kilobytes of the request are returned. If
the response is compressed, this is the
decompressed content.

The Content-Encoding to be applied to the
entity-body. This can be one of the following:
gzip, deflate or identity. When an
unsupported content encoding is specified,
the HTTP request is ignored and an error
message is logged.

An HTTP header (string) to setin the request.
See also “Handling HTTP headers” on
page 149.

An HTTP cookie (string) to set in the request.
See also “Dealing with cookies” on page 155.

An HTTP query parameter (string) to be
encoded as part of the path in the URI. See
also “Providing HTTP query parameters” on
page 155.

Describes the format of the payload (string).
See also “Handling HTTP headers” on
page 149.

Describes the format of the payload (string).
See also “Handling HTTP headers” on
page 149.

146

Connecting Apama Applications to External Components 10.15.4

8 The HTTP Client Transport Connectivity Plug-in

Field

Description

metadata.http.form.name.contentType

metadata.http.form.name.charset

metadata.http.form.name. filename

The media type of the form data. See also
“Handling HTML form encoding” on
page 151.

The encoding of the form data. See also
“Handling HTML form encoding” on
page 151.

The file name of the form data. See also
“Handling HTML form encoding” on
page 151.

The responses returned from the HTTP client contain the following fields:

Field

Description

payload

metadata.

metadata.

metadata

metadata.

metadata

metadata.

metadata.

metadata.

requestId

http.method

.http.path

http.statusCode

.http.statusReason

http.headers.keyname

http.cookies.keyname

charset

Binary payload received in the response. May be
an empty buffer if no response, or null in some
eITor cases.

TherequestID (string) from the request. Always
present in the response.

The HTTP method from the request: GET, POST,
PUT or DELETE. Always present in the response.

The HTTP path (string) from the request. Always
present in the response.

HTTP status code (integer). Code 200 indicates
success. All other codes indicate errors. Always
present in the response. See also “Distinguishing
response types” on page 148.

HTTP status reason (string). Always present in
the response.

The HTTP header (string) returned by the
response. See also “Handling HTTP headers” on
page 149.

An HTTP cookie (string) being set by the
response. Only present if this is in the response
headers. See also “Dealing with cookies” on
page 155.

Describes the format of the payload (string). Only
present if this is in the response headers. See also
“Handling HTTP headers” on page 149.

Connecting Apama Applications to External Components 10.15.4 147

8 The HTTP Client Transport Connectivity Plug-in

Field Description

Describes the format of the payload (string). Only
present if this is in the response headers. See also
“Handling HTTP headers” on page 149.

metadata.contentType

You can use the Mapper codec to move things between the payload and the metadata, and vice
versa. For example:

startChains:

HTTPClientChain:
- apama.eventMap
- mapperCodec:
MyRequest:
towardsTransport:
mapFrom:
- metadata.http.path: payload.path
- metadata.requestId: payload.id
- payload: payload.body
defaultValue:
- metadata.http.method: GET
- metadata.http.headers.accept: application/json
MyResponse:
towardsHost:
mapFrom:
- payload.body: payload
- payload.path: metadata.http.path
- payload.id: metadata.requestId
Error:
towardsHost:
mapFrom:
- payload.message: metadata.http.statusReason
- payload.id: metadata.requestId
- payload.path: metadata.http.path
- payload.code: metadata.http.statusCode
- classifierCodec:
rules:
- MyResponse:
- metadata.http.statusCode: 200
- Error:
- metadata.http.statusCode:
- stringCodec
- HTTPClientTransport

The above example also demonstrates how to use the Classifier codec to split responses into normal
responses and error responses based on the status code (see also “Distinguishing response types” on
page 148).

Examples of using the Mapper and Classifier codecs to set these fields can be found in “Example
mapping rules” on page 156.
Distinguishing response types

A single chain will often deal with multiple event types in either direction. In the direction towards
the transport, the type is already known and can be used to create multiple stanzas in the Mapper

148 Connecting Apama Applications to External Components 10.15.4

8 The HTTP Client Transport Connectivity Plug-in

codec. For messages towards the host, the event type will not yet have been set. The Classifier
codec can use fields in the message (payload or metadata) to set the event type.

For the HTTP client, one of the major distinctions is between success replies and various types of
failure. The HTTP status code (metadata.http.statusCode) is used to determine whether or not
the response is a success. Typically, a response code of 200 indicates that the request was a success,
and anything else would be some kind of error. Both errors returned by the remote host and issues
which occur within the client itself are returned as messages with a status code other than 200.

For example, a Classifier codec which wants to just distinguish errors and success would look as
follows:

- classifierCodec:
rules:
- MyResponse:
- metadata.http.statusCode: 200
- Error:
- metadata.http.statusCode:

There may also be multiple types of success response, possibly from requests to different URLs
in the same host. You can use other fields from the metadata or the payload to set the event type.
For example:

- classifierCodec:
rules:

- LoginSuccess: # OK response with a session cookie set
- metadata.http.statusCode: 200
- metadata.http.cookies.session:

- DataResponsel:
- metadata.http.statusCode: 200
- payload.datatype: foo

- DataResponse2:
- metadata.http.statusCode: 200
- metadata.http.path: /data2

- Error:
- metadata.http.statusCode:

Handling HTTP headers

The HTTP client reads any number of metadata.http.headers.keyname variables from your event
and puts them into the HTTP request. Similarly, any headers returned in the response are mapped
to the same variables in the response. Some special handling is applied as described below.

All HTTP headers are converted from ISO-8859-1 (the character set for HTTP headers as defined
in the RFC publications) to UTF-8 in the metadata (and vice versa for requests).

All HTTP header keys are converted to lowercase in both directions (since HTTP header keys are
defined to be case-insensitive). You should use lowercase in all of your mapping and classification
rules.

Any HTTP headers for which multiple values have been provided for a single key (after
normalization of case) are dropped in either direction.

The following HTTP headers are handled specially in requests:

Connecting Apama Applications to External Components 10.15.4 149

8 The HTTP Client Transport Connectivity Plug-in

Field Value Description

accept from contentType If not provided in the request, but
contentType is set, this is set to the contents
of metadata. contentType.

accept-charset utf-8 Set to utf-8 if not set in the request.
accept-encoding identity Set to identity if not set in the request.
authorization from configuration Always overridden if the authentication type

HTTP_BASIC is defined in the configuration.
Otherwise, the value from the request
metadata is used.

connection keep-alive Always overridden.

content-length length of the payload Always overridden.

content-type from contentType and Set from contentType and charset if not set
charset in the request. Content types starting with

text/ will have a charset parameter
appended from the charset field. Other
content types will only have the type from
the contentType with no parameters.

This field will not be added if the body is
empty and the content-type header is not set
explicitly in the request.

date current date and time Set to the current date and time if not set in
the request.

host from configuration Always overridden.
user-agent Apama/$VERSION ($PLATFORM Set if not set in the request.
$ARCH)

The following HTTP header is handled specially in responses:

Field Value Description

Content-Length length of the payload Always overridden.

In addition, the top-level fields metadata.charset and metadata.contentType are set in the response
from the HTTP content-type header.

Cookie and Set-Cookie headers are handled specially. See “Dealing with cookies” on page 155.

150 Connecting Apama Applications to External Components 10.15.4

8 The HTTP Client Transport Connectivity Plug-in

Handling HTML form encoding

If the body of the request is a dictionary payload having a string key and either a string or binary
value, the request body is then encoded to either multipart/form-data or
application/x-www-form-urlencoded media types, depending on metadata.contentType.

If metadata.contentType is set to application/x-www-form-urlencoded, then the dictionary payload
must have string keys and string values and is transmitted as URL-encoded form data.

If metadata.contentType is set to multipart/form-data, then the dictionary payload is encoded to
multi-part form data. This method must be used to send non-ASCII text or binary data. The binary
data form fields should have the following additional metadata: filename, contentType and charset.
filename is a required parameter.

You can put these metadata items in a form dictionary as follows:

metadata.http.form.name.contentType
metadata.http.form.name.charset
metadata.http.form.name. filename

where name corresponds to the data in payload.name.

Simple example

Send a dictionary payload request body which has both key and value strings using the
application/x-www-form-urlencoded method:

event HTTPRequestURLEncoding {
integer id;
string method;
string path;
string contentType;
dictionary<string, string> data;

Send a dictionary payload request body which has a string key and either a string or binary value
using the multipart/form-data method; provide the metadata for binary form data using
formMetadata:

event HTTPRequestMultiPartForm {
integer 1id;
string method;
string path;
string contentType;
dictionary<string, string> data;
dictionary<string, dictionary<string,string>> formMetadata;

Send a request:

monitor TestFormEncoding {
action onload() {
dictionary<string, string> dataURL :=
{"string":"Hello World", "foo":"bar"};
dictionary<string, string> dataMultiPart :=

Connecting Apama Applications to External Components 10.15.4 151

8 The HTTP Client Transport Connectivity Plug-in

{"string":"Hello World", "binary": Binary Data};

//Metadata for form data filed
dictionary<string,dictionary<string,string>> formMetadata := {
"binary":{
"filename":"file.txt",
"charset":"utf-8",
"contentType":"text/plain"
}
s

integer id := dinteger.incrementCounter ("HTTPClient.requestId");

//Using application/x-www-form-urlencoded media type
send HTTPRequestURLEncoding(id, "POST", "/",
"application/x-www-form-urlencoded", dataURL) to "http";

id := dnteger.incrementCounter ("HTTPClient.requestId");

//Using multipart/form-data media type

send HTTPRequestMultiPartForm(id, "POST", "/", "multipart/form-data",
dataMultiPart, formMetadata) to "http";

Map the metadata of binary form data using the Mapper codec:

- mapperCodec:
HTTPRequestMultiPartForm:
towardsTransport:
mapFrom:

- metadata.requestId: payload.id

- metadata.http.method: payload.method

- metadata.http.path: payload.path

- metadata.contentType: payload.contentType

- metadata.http.form.binary.contentType:
payload. formMetadata.binary.contentType

- metadata.http.form.binary.filename:
payload. formMetadata.binary.filename

- metadata.http.form.binary.charset:
payload. formMetadata.binary.charset

- payload: payload.data

Handling HTML form encoding using a predefined generic event
definition

You can invoke an HTTP service with a payload encoded to either multipart/form-data or
application/x-www-form-urlencoded media types using the predefined FormRequest event definition.
For detailed information about this event definition, see the API Reference for EPL (ApamaDoc).

The FormRequest event definition must be used if metadata.contentType is set to either
multipart/form-data or application/x-www-form-urlencoded. The request payload must be a
dictionary having a string key and string value.

If metadata.contentType is set to application/x-www-form-urlencoded, then the dictionary payload
is transmitted as URL-encoded form data.

152 Connecting Apama Applications to External Components 10.15.4

8 The HTTP Client Transport Connectivity Plug-in

If metadata.contentType is set to multipart/form-data, then the dictionary payload is encoded to
multi-part form data.

Note:

Binary data cannot be read in Apama EPL. Hence it is only possible to send non-ASCII text data
form fields with a standard HTTPClientGenericJISONChain.

Simple example

Use multipart/form-data and application/x-www-form-urlencoded media types with non-ASCII
text data form fields:

monitor TestHtmlEncoding

{
action onload()
{
dictionary<string, string> payload := {"foo":"bar", "abc":"def"};
dictionary<string, dictionary<string, string>> formMetadata :=
new dictionary<string, dictionary<string, string>>;
HttpTransport transport :=
HttpTransport.getOrCreateWithConfigurations("my_host",
8080, new dictionary<string, string>);
HttpOptions httpOptions := new HttpOptions;
// Using application/x-www-form-urlencoded media type
httpOptions.headers["content-type"] := "application/x-www-form-urlencoded";
FormRequest (
transport.createRequest(RequestType.POST, "/", payload, httpOptions),
formMetadata) .execute(handleResponse) ;
// Using multipart/form-data media type
httpOptions.headers["content-type"] := "multipart/form-data";
FormRequest (
transport.createRequest(RequestType.POST, "/", payload, httpOptions),
formMetadata) .execute(handleResponse) ;
3
action handleResponse(Response resp)
{
log "Got response: " + resp.toString() at INFO;
3
3

For multipart/form-data, you can still encode binary data form fields. But to do that, you need
to develop a custom plug-in which introduces binary data in your customized chain. In that case,
the binary data form fields must have the following additional metadata:

B filename
B contentType
B charset

filename is a required parameter. You can provide this metadata as follows:

monitor TestHtmlEncodingBinaryFields

{

action onload()

{

Connecting Apama Applications to External Components 10.15.4 153

8 The HTTP Client Transport Connectivity Plug-in

dictionary<string, string> payload :=
{"foo":"bar", "binary_field": ...binary_data};
dictionary<string, dictionary<string, string>> formMetadata := {
"binary_field":{
"filename":"filel.txt",
"charset":"utf-8",
"contentType":"text/plain"
}
s
HttpTransport transport :=
HttpTransport.getOrCreateWithConfigurations("my_host",
8080, new dictionary<string, string>);
HttpOptions httpOptions := new HttpOptions;
// Using multipart/form-data media type
httpOptions.headers["content-type"] := "multipart/form-data";
FormRequest(transport.createRequest(RequestType.POST, "/", payload,
httpOptions), formMetadata).execute(handleResponse);

}

action handleResponse(Response resp)
{ log "Got response: " + resp.toString() at INFO; }

Mapping the body

The HTTP client accepts and returns the payload as a binary object. What the payload consists of
depends on the service to which you are connecting. Many services use string-based protocols
(such as JSON). For these types of payload, you can use the String codec (see “The String codec
connectivity plug-in” on page 236). On messages towards the transport, the String codec takes a
string and encodes it in UTF-8 bytes. For messages towards the host, the String codec takes a byte
array and decodes it to a string using the UTF-8 encoding. If you are using the String codec, you
should put it as the last codec before the HTTP client.

To create a request with no payload (such as a GET request), you should pass an empty string to
the String codec, which it will convert to a zero-byte payload. If you are using the “generic” JSON
option (see also “Using predefined generic event definitions to invoke HTTP services with JSON
and string payloads” on page 163), then you can do the same by sending a new any as the payload.
For example:

transport.createRequest(RequestType.GET, "/path", new any, new HttpOptions);

The createGETRequest action will do this for you. In order to recreate this with your own custom
chain using the JSON codec, then you need to have an empty payload (which will skip the JSON
codec) and then use a second Mapper codec to add an empty string to the payload before the
String codec:

- jsonCodec
- mapperCodec:

"*":
towardsTransport:
defaultValue:
payload: ""

- stringCodec

154 Connecting Apama Applications to External Components 10.15.4

8 The HTTP Client Transport Connectivity Plug-in

The resulting string can then be mapped directly into a field in an EPL event, or it can be further
processed by other codecs (such as the JSON codec) before the resulting fields are mapped into
the Apama event.

If you need to vary your processing depending on the type of the returned data, you may need
to write a custom codec in order to handle this. To help with distinguishing different payload
types, the HT'TP client sets top-level fields to indicate the type of the payload. metadata.contentType
contains the MIME type indicated in the Content-Type HTTP header. If present, then
metadata.charset indicates the character set from the same HTTP header.

Dealing with cookies

Some HTTP services set cookies and require them to be set in further requests.

When the configuration option cookieJar is true (default), cookies received from the server are
stored in memory and added to subsequent outgoing requests. Cookies forwarded using
metadata.http.cookies are honored and not overwritten. The HTTP client also honors additional
cookie attributes such as path, expiry and max-age. Expired cookies are automatically removed
from the internal cache. See also “Configuring the HTTP client transport” on page 139.

When the configuration option cookieJar is false and if you need to take a specific cookie in a
response and return it in future requests, you need to map it out into a field in the response event,
and then map it back from future request events. The HTTP client stores cookies in
metadata.http.cookies.keyname entries. In requests, the HTTP client reads all of the
metadata.http.cookies entries and combines them into a single HTTP Cookies header to send to
the server. In responses, the HTTP client takes any number of HTTP set-Cookie headers and turns
them into corresponding metadata.http.cookies entries.

Providing HTTP query parameters

HTTP requests can contain request parameters, which are encoded at the end of the URL in the
following form:

/path?key=value&key=value

The request parameters can be provided as part of the metadata.http.path element in a request.
In this case, however, they must be correctly encoded within the request.

A better solution is to provide the request parameters as part of the metadata.http.queryString
element. This is a map of key/value pairs which will be correctly HTTP encoded and appended
to the end of the metadata.http.path in the request. The parameters can either be set as a map
directly out of the payload, or they can be set individually via the Mapper codec. For example:

- mapperCodec:
Request:
towardsTransport:
mapFrom:
set one query parameter individually
- metadata.http.queryString.param: payload.paramValue
alternatively set all query parameters from an EPL dictionary
- metadata.http.queryString: payload.parameters

Connecting Apama Applications to External Components 10.15.4 155

8 The HTTP Client Transport Connectivity Plug-in

Example mapping rules

A full example configuration can be found in the samples directory of your Apama installation.
The monitoring sample, found in samples/connectivity_plugin/app/monitoring, can be run both
with this pre-compiled HTTP client or with the simple HTTP client sample under samples/
connectivity_plugin/cpp/httpclient.

Simple example

The following is a simple REST service with a single URL that is not interested in dealing with
error cases:

event PutData {
integer requestId;
string requestString;

}

event PutDataResponse {
integer requestId;
string responseString;

3

Each PUT request contains a request string which performs an action on the server and returns
another string in the response.

startChains:
simpleRestService:
- apama.eventMap:
Channel that responses are delivered on
defaultChannel: SRS-response
- mapperCodec:
PutData: # requests
towardsTransport:
mapFrom:
- metadata.requestId: payload.requestId
- payload: payload.requestString
defaultValue:
- metadata.http.method: PUT
- metadata.http.path: /path/to/service
PutDataResponse:
towardsHost:
mapFrom:
- payload.responseString: payload
- payload.requestId: metadata.requestId
- classifierCodec:
rules:
- PutDataResponse:
- stringCodec
- HTTPClientTransport:
host: foo.com

CRUD service example

The following is a more complex service that implements a full CRUD (create, read, update, delete)
service, with different types of request on different objects. There are several different request

156 Connecting Apama Applications to External Components 10.15.4

8 The HTTP Client Transport Connectivity Plug-in

types with individual mapping rules. The create request is implemented with these events and
mapping rules:

event CreateResource {
integer id;
string value;

}

event ResourceCreated {
integer id;
string resource;

There is one URL for adding new resources which returns the resource identifier which can be
used to manipulate it in future via a redirection header.

- mapperCodec:
CreateResource: # requests
towardsTransport:
mapFrom:

- metadata.requestId: payload.id
- payload: payload.value

defaultValue:
- metadata.http.path: /newResource
- metadata.http.method: PUT

ResourceCreated:
towardsHost:

mapFrom:
redirects us to the new resource
- payload.resource: metadata.http.headers.location

- payload.id: metadata.requestId

The full example is provided below:

event GetValue {
integer id;
string resource;

}

event CurrentValue {
integer id;
string value;

}

event UpdateValue {
integer id;
string resource;
string newValue;

}

event CreateResource {
integer id;
string value;

}

event ResourceCreated {
integer id;
string resource;

}

event DestroyResource {
integer id;
string resource;

Connecting Apama Applications to External Components 10.15.4 157

8 The HTTP Client Transport Connectivity Plug-in

event ResourceDestroyed {
integer id;

b

event ResourceNotFound {
integer id;
string resource;

b

event InternalError {
integer id;
string error;

startChains:
storageService:
- apama.eventMap:
Channel that responses are delivered on

defaultChannel: storageResponses
- mapperCodec:
CreateResource: # requests
towardsTransport:
mapFrom:

- metadata.requestId: payload.id

- payload: payload.value
defaultValue:

- metadata.http.path:

- metadata.http.method:

/newResource
PUT

DestroyResource: # requests
towardsTransport:
mapFrom:
- metadata.requestId: payload.id
- metadata.path: payload.resource
defaultValue:
- metadata.http.method: DELETE
UpdateValue: # requests
towardsTransport:
mapFrom:
- metadata.requestId: payload.id
- metadata.path: payload.resource
- payload: payload.newValue
defaultValue:
- metadata.http.method: PUT
GetValue: # requests
towardsTransport:
mapFrom:
- metadata.requestId: payload.id
- metadata.path: payload.resource
defaultValue:
- metadata.http.method: GET
ResourceCreated:
towardsHost:
mapFrom:
redirects us to the new resource

- payload.resource: metadata.http.headers.location
- payload.id: metadata.requestId
ResourceDestroyed:
towardsHost:
mapFrom:
- payload.id: metadata.requestId

158 Connecting Apama Applications to External Components 10.15.4

8 The HTTP Client Transport Connectivity Plug-in

CurrentValue:
towardsHost:
mapFrom:
- payload.value: payload
- payload.id: metadata.requestId
ResourceNotFound:
towardsHost:
mapFrom:
- payload.resource: metadata.http.path
- payload.id: metadata.requestId
InternalError:
towardsHost:
mapFrom:
- payload.error: metadata.statusReason
- payload.id: metadata.requestId
- classifierCodec:
rules:
- ResourceCreated:
- metadata.http.
- metadata.http.
CurrentValue:

statusCode: 200
path: /newResource

- metadata.http.statusCode: 200
- metadata.http.method: GET

- ResourceDestroyed:
- metadata.http.statusCode: 200

- metadata.http.method: DELETE
- ResourceNotFound:
- metadata.http.
InternalError:
- metadata.http.
- stringCodec
- HTTPClientTransport:
host: foo.com

statusCode: 404

statusCode:

Login example

An example with a login request that has to manage cookies might look like this when the service

uses JSON:

event Command {
string command;
sequence<string> arguments;
}
event Login {
string username;
string password;
}
event LoginSuccess {
dictionary<string, string> sessionCookies;
}
event ExecuteCommand {
integer id;
Command command;
dictionary<string, string> sessionCookies;
}
event CommandResponse {
integer id;
string response;

3

Connecting Apama Applications to External Components 10.15.4

159

8 The HTTP Client Transport Connectivity Plug-in

The Login command sends a password and sets a cookie which must be set in all the following
requests. In practice this may need to be repeated on startup, after some timeout period or certain

errors.

startChains:

remoteAccessService:
- apama.eventMap:

Channel that you send requests to
subscribeChannels: remoteAccess

Channel that responses are delivered on
defaultChannel: remoteAccess

- mapperCodec:

Login: # requests
towardsTransport:
mapFrom:
payload.user and payload.password will be converted
into a JSON document
defaultValue:
- metadata.http.path: /login
- metadata.http.method: PUT
- metadata.requestId: "" # qdgnored
ExecuteCommand: # requests
towardsTransport:
mapFrom:
- metadata.requestId: payload.id
set the whole map of any cookies set by the server
- metadata.http.cookies: payload.sessionCookies
a JSON object made from this event
- payload: payload.command
defaultValue:
- metadata.http.method: PUT
- metadata.path: /execute
LoginSuccess:
towardsHost:
mapFrom:
store all cookies set by the server,
no matter what they are
- payload.sessionCookies: metadata.http.cookies
CommandResponse:
towardsHost:
mapFrom:
payload.response already parsed from the JSON response
- payload.id: metadata.requestId

classifierCodec:

rules:
- LoginSuccess:
- metadata.http.statusCode: 200
- metadata.http.cookies.session:
- CommandResponse:
- metadata.http.statusCode: 200

jsonCodec
stringCodec
HTTPClientTransport:

host: foo.com
tls: true

160

Connecting Apama Applications to External Components 10.15.4

8 The HTTP Client Transport Connectivity Plug-in

Content-encoding example

The following example shows how to define content encoding for an HTTP request:

event HTTPRequest

{

integer id;

string path;

string data;

string method;

string contentEncoding;
}

You can use the Mapper codec to map the encoding method as follows:

- mapperCodec:
HTTPRequest:
towardsTransport:
mapFrom:

- metadata.http.path: payload.path
- metadata.requestId: payload.id
- metadata.http.method: payload.method
- metadata.http.headers.content-encoding: payload.contentEncoding
- payload: payload.data

Monitoring status for the HTTP client

The HTTP client component provides status values via the user status mechanism. It provides the
following metrics (where prefix consists of the chain identifier and plug-in name, typically
{chaﬁnId=HTTPC1ientChain}.HTTPClientTransport)

Key Description

prefix.status FAILED if the most recent request has
failed, otherwise ONLINE.

prefix.errorsTowardsHost Number of error responses to requests
which have been sent.

prefix.responsesTowardsHost PJunnberofsuccessrespor&estorequests
which have been sent.

prefix.requestlLatencyEWMAShortMillis A quickly-evolving
exponentially-weighted moving average
of request latencies, in milliseconds.

prefix.requestLatencyEWMALongMillis A longer-term exponentially-weighted
moving average of request latencies, in
milliseconds.

prefix.requestSizeEWMAShortBytes A quickly-evolving

exponentially-weighted moving average
of request sizes, in bytes.

Connecting Apama Applications to External Components 10.15.4 161

8 The HTTP Client Transport Connectivity Plug-in

Key Description

prefix.requestSizeEWMALongBytes A longer-term exponentially-weighted
moving average of request sizes, in bytes.

prefix.requestSizeMaxInLastHourBytes The maximum request size in bytes since
the start of the last 1 hour measurement
period.

prefix.responseSizeEWMAShortBytes A quickly-evolving

exponentially-weighted moving average
of response sizes, in bytes.

prefix.responseSizeEWMALongBytes A longer-term exponentially-weighted
moving average of response sizes, in
bytes.

prefix.responseSizeMaxInLastHourBytes The maximum response size in bytes

since the start of the last 1 hour
measurement period.

prefix.numClients Number of configured clients.

prefix.serializedRequests Number of requests received with
metadata.concurrencyControlFlush set
and evaluated to true.

prefix.concurrencyUtilizationPercent A percentage representing how fully the
capacity of the number of clients is being
used. 0 if only one client is being used.
100 if all clients are being used. If the
transport throughput is too low and this
metric is also low, see “Executing HTTP
requests concurrently” on page 165 for
information on how to tune your data
for better performance.

prefix.queueSize The current size of the client request
queue in the HTTP transport.

For each request/response that is processed, the above MaxInLastHour values are updated if either

of the following conditions is true:

® The size of the current message is greater than the existing maximum.

® The existing maximum value was set more than 1 hour ago.

Error responses are not included in the response size metrics. The request size metrics are calculated
before compression and the response size metrics are calculated after decompression.

162 Connecting Apama Applications to External Components 10.15.4

8 The HTTP Client Transport Connectivity Plug-in

For more information about monitor status information published by the correlator, see "Managing
and Monitoring over REST" and "Watching correlator runtime status", both in Deploying and
Managing Apama Applications.

When using Software AG Command Central to manage your correlator, see also "Monitoring the
KPIs for EPL applications and connectivity plug-ins" in Deploying and Managing Apama Applications.

Note:

Command Central integration is deprecated and will be removed in a later release.

Configuring dynamic connections to services

Many applications have a single or small number of statically configured connections to services.
For other applications, the connections can be configured dynamically at runtime. To configure
the connections dynamically, define your chain under dynamicChains rather than staticChains
with the configuration details using dynamic chain replacement variables (@{varname}):

dynamicChains:
HTTPClientChain:
- apama.eventMap
mapping rules. ..
- HTTPClientTransport:
host: "@{HOST}"
port: "@{PORT}"

Then you can create instances of that chain configured for specific hosts and ports using the
createDynamicChain method on ConnectivityPlugins:

action connectToNewHost(string channelName, string host, integer port,
string defaultChannelTowardsHost)
returns Chain

{
return ConnectivityPlugins.createDynamicChain(
"http-"+host+":"+port.toString(), [channelName],
"http", {"HOST":host,"PORT:"port.toString()}, defaultChannelTowardsHost) ;
b

Events can be sent to the chain via the supplied channelName. When the connection is no longer
needed, it can be destroyed via the returned chain object.

Using predefined generic event definitions to invoke
HTTP services with JSON and string payloads

JSON payloads

You can invoke an HTTP service with a JSON payload by using predefined generic Apama event
definitions. To do so, you have to use the JSON with generic request/response event definitions
option when adding the HTTP client connectivity plug-in. See also "Adding the HTTP client
connectivity plug-in to a project” in Using Apama with Software AG Designer.

Connecting Apama Applications to External Components 10.15.4 163

8 The HTTP Client Transport Connectivity Plug-in

This “generic” option uses a predefined chain definition with dynamic chain instances to invoke
multiple HTTP services, and it uses event types in the com.softwareag.connectivity.httpclient
package. For detailed information about the available event types, see the API Reference for EPL
(ApamaDoc).

The following example shows how to invoke an HTTP service using the generic events:

action performRequest() {
// 1) Get the transport +instance
HttpTransport transport := HttpTransport.getOrCreate("www.example.com", 80);
// 2) Create the request event
Request req:= transport.createGETRequest("/geo/");
// 3) Execute the request and pass the callback action
req.execute(handleResponse) ;
3
action handleResponse(Response res) {
// 4) Handle the response
if res.isSuccess() {
// 5) Extract data from the payload
log res.payload.getString("location.city") at INFO;
} else {
log "Failed: " + res.statusMessage at ERROR;
3

Overriding the content-type header of an HTTP request to allow non-JSON string
payloads

You can override the content-type header of an HTTP request to allow for non-JSON string
payloads.

Whenever the content-type header of a request is not overridden, the payloads are encoded as
JSON (this is the default setting). When you override the content-type header, the JSON codec is
skipped and the payload is not encoded as JSON, allowing string data to be passed through. The
decoding of the response to the request depends on the content type provided by the server.

The following example demonstrates how to override an HTTP request's content-type header to
send string data:

// 1) HTTP PUT request with string ("example string payload") payload

req := transport.createPUTRequest("/plain_string", "example string payload");
// 2) Override the request's content-type header

req.setHeader ("content-type", "text/plain");

// 3) Execute the request, passing the callback action handleResponse
req.execute(handleResponse) ;

Enabling and controlling concurrency

You can create an instance of a transport which uses multiple clients by providing the number of
clients when creating it:

HttpTransport transport :=
HttpTransport.getOrCreateWithConfigurations ("www.example.com", 80,
{ HttpTransport.CONFIG_NUM_CLIENTS: "3" });

164 Connecting Apama Applications to External Components 10.15.4

8 The HTTP Client Transport Connectivity Plug-in

When creating a request, you can specify the concurrency control key or flush behavior for requests
that have some dependencies:

Request req:= transport.createGETRequest("/geo/");
req.setConcurrencyControlKey("geo");
req.setConcurrencyControlFlush(true);
req.execute(handleResponse) ;

For more information on concurrency in the HTTP client, see “Executing HTTP requests
concurrently” on page 165.

Restricting the response size

You can create an instance of a transport which limits the response size when creating it:

HttpTransport transport :=

HttpTransport.getOrCreateWithConfigurations ("www.example.com", 80,

{ HttpTransport.CONFIG_MAX_RESPONSE_KB: "3", HttpTransport.CONFIG_MAX_RESPONSE_POLICY:
"TRUNCATE_END" });

When creating a request, you can limit the maximum response size and the policy to apply:

Request req:= transport.createGETRequest("/logs");
req.setMaxResponseKB(10) ;

req.setMaxResponsePolicy ("REJECT");
req.execute(handleResponse) ;

For more information on restricting response sizes, see “Configuring the HTTP client transport” on
page 139.

Executing HTTP requests concurrently

Enabling concurrency

By default, the HTTP client executes requests serially and in order. As a result, the maximum
throughput that can be achieved is limited by the latency of the round-trip to the server. In order
to achieve higher throughput if the request processing time cannot be reduced, the HTTP client
can start multiple simultaneous connections to the server. These multiple connections can overlap
processing of multiple requests, which gives higher throughput.

To enable multiple connections, you must set the numClients configuration option on the HTTP
transport. If you are writing your own chain, you would set it as follows in the YAML configuration
file:

- HTTPClientTransport:
host: "hostname"
numClients: 3

If you are using the generic event definitions, then you can pass the number of clients as an option
to getOrCreateWithConfigurations:

HttpTransport transport :=
HttpTransport.getOrCreateWithConfigurations ("www.example.com", 80,

Connecting Apama Applications to External Components 10.15.4 165

8 The HTTP Client Transport Connectivity Plug-in

{ HttpTransport.CONFIG_NUM_CLIENTS: "3" });

This causes the HTTP transport to create three threads and three persistent connections to the
target server. Any idle connection can execute the next request, unless specified otherwise (see
below).

Controlling concurrency

Having requests processed concurrently means that responses to those requests may not come
back in order. It also means that a later request can begin before an earlier request is complete.
This is necessary to get the improved throughput, however, it may be that not all requests are
eligible to be processed in any order with respect to each other. For example, two updates to the
same entity in a REST API may need to be processed in the correct order to have the correct value
afterwards. Alternatively, creating an entity followed by searching for all entities of that type
should return the just-created entity.

To allow applications to get the behavior they expect, they can also specify a key on each request
called the “concurrency control key”. A concurrency control key serializes all requests with the
given key. If set, a request with a concurrency control key waits until any earlier requests with the
same key have completed and causes any later requests with the same key to wait until it has
completed. This means that only one request can be in-progress at a time for a given concurrency
control key. Requests with different keys or no key can be processed concurrently to this request.

For example, in a REST API, the concurrency control key could be set to the item ID when doing
a create/read/update/delete on a specific item, to prevent multiple operations on the same item
from racing with each other.

Note:
Although any value is permitted here, we recommend using strings or integers to avoid equality
issues with special values in other types.

In addition, there is a second option called “concurrency control flush” that can be set on each
request. This is a Boolean flag that delays this request from starting until all earlier requests have
completed (regardless of the concurrency control key). Note that later requests are permitted to
start while the flush-enabled request is still executing.

For example, in a REST API, you might set flush on a request that lists or queries multiple items,
since you would not want such an operation to start until all earlier create/update/delete operations
affecting individual items had completed.

In general, when performing operations on multiple items, flush on the first get after a
create/delete/update and vice-versa.

See also the description of the fields metadata.concurrencyControlkey and
metadata.concurrencyControlFlushin “Mapping events between EPL and HTTP client requests” on
page 143.

These two metadata items can be used together as follows:

Metadata concurrencyControlKey is empty, |concurrencyControlKey is set to any
unset or the empty string (") other value

166 Connecting Apama Applications to External Components 10.15.4

8 The HTTP Client Transport Connectivity Plug-in

concurrencyControlFlush| Do not wait for any requests. Wait for all prior requests with the

is false same concurrencyControlKey to

This request can be executed complete before starting this
concurrently with any other request. request.

This request can be executed
concurrently with other requests
which do not have the same
concurrencyControlKey value.

concurrencyControlFlush| Wait for all prior requests to Wait for all prior requests to

is true complete before starting this complete before starting this
request. request.
This request can be executed This request can be executed
concurrently with any subsequent |concurrently with subsequent
request. requests which do not have the

SanleconcurrencyControlKey\mﬂue.

concurrencyControlFlush evaluates to true or false, but does not necessarily have to be a Boolean
type:

m false (or empty, unset, empty string (""), "false" string) evaluates to false.

® Any other value evaluates to true.

For best performance, we recommend one of the following options:

®m The number of distinct concurrency control keys used in the system is much larger than the
number of clients.

® Or there is a much larger proportion of requests without concurrencyControlKey set than with
it.

To set the concurrencyControlkey via the YAML configuration file, you typically need to map it
from a field in your event. For example:

- mapperCodec:
HTTPRequest:
towardsTransport:
copyFrom:
- metadata.concurrencyControlKey: payload.id

Alternatively, if you are using the generic event definitions:

Request req:= transport.createGETRequest("/geo/");
req.setConcurrencyControlKey("geo");
req.setConcurrencyControlFlush(true);
req.execute(handleResponse) ;

Connecting Apama Applications to External Components 10.15.4 167

8 The HTTP Client Transport Connectivity Plug-in

Example of controlling concurrency

Below is an example of when it may be appropriate to use concurrencyControlkey and
concurrencyControlFlush in a simplified sequence for demonstration purpose.

This is using the following custom connectivity YAML file with an event
MyHTTPRequestWithKeyAndFlush to map to the HTTP request:

startChains:
http:
- mapperCodec:
MyHTTPRequestWithKeyAndFlush:
towardsTransport:
mapFrom:

- metadata.requestId: payload.requestId
- metadata.http.path: payload.path
- metadata.http.method: payload.method
- metadata.concurrencyControlKey: payload.concurrencyControlKey
- metadata.concurrencyControlFlush: payload.concurrencyControlFlush
- payload: payload.data

The monitor file used in this example uses a custom event to map to the HTTP request API:

event MyHTTPRequestWithKeyAndFlush
{
// Standard HTTP request payload fields
integer requestId;
string path;
string data;
string method;

// Fields for concurrency control
any concurrencyControlKey;
boolean concurrencyControlFlush;

You can then proceed as described in the following steps.

Step 1: Create two devices using the device name as the concurrency control key:

send MyHTTPRequestWithKeyAndFlush(0, "/devices/myDevicel", "example data",
"POST", "myDevicel", false) to chain;

send MyHTTPRequestWithKeyAndFlush(l, "/devices/myDevice2", "example data",
"POST", "myDevice2", false) to chain;

Step 2: Get myDevicel information, synchronized on the concurrency control key to ensure that
the device has already been created before GET is processed:

send MyHTTPRequestWithKeyAndFlush(2, "/devices", "=myDevicel",
"GET", "myDevicel", false) to chain;

Step 3: Create two further devices:

send MyHTTPRequestWithKeyAndFlush(3, "/devices/myDevice3", "example data",
"POST", "myDevice3", false) to chain;

send MyHTTPRequestWithKeyAndFlush(4, "/devices/myDevice4'", "example data",
"POST", "myDevice4'", false) to chain;

168 Connecting Apama Applications to External Components 10.15.4

8 The HTTP Client Transport Connectivity Plug-in

Step 4: Get information for all existing devices, set concurrency control flush to true to ensure that
all prior requests have been processed and recently created devices are returned.

send MyHTTPRequestWithKeyAndFlush(5, "/devices", "=x" "GET", "", true) to chain;

Step 5: Create multiple devices later. This does not depend on anything prior, so no concurrency
control flush or concurrency control key is required.

send MyHTTPRequestWithKeyAndFlush(6, "/devices/myDevice[5,6,7,8]",
"example data", "POST", "", false) to chain;

Step 6: A concurrency control key was not specified in the prior POST, but you may want to act on
the result of the next query. Find myDevices and then update it. Send with concurrency control
flush set to true to ensure that the device is created, and set the concurrency control key to the
expected name to ensure that the PUT occurs serially.

send MyHTTPRequestWithKeyAndFlush(7, "/devices", "=myDevice6", "GET",
"myDevice6", true) to chain;

send MyHTTPRequestWithKeyAndFlush(8, "/devices/myDevice6", "example data", "PUT",
"myDevice6", false) to chain;

Example of incoming requests

The diagram below shows an example of incoming requests added to the queue as seen on the
left, ordered from top to bottom, and one possible example of how the requests may be handled
on the three available clients top to bottom.

The numbers represent the order in which the requests were sent.
The solid green line indicates a flush, ensuring all prior events complete before proceeding.

Notice how all requests with the same key are handled in order, requests with a different key are
handled concurrently on another client, and requests with no key (empty string "") are handled
concurrently on any available client.

Connecting Apama Applications to External Components 10.15.4 169

8 The HTTP Client Transport Connectivity Plug-in

Queue

Key: A
Flush: false

1

Key: "
Flush: false

Key: A
Flush: false

Key: B
Flush: false

5 Key:
Flush: false

Key: ™"
6 Flush: true

7 Key: B
Flush: false

Key: A
Flush: false

9 Key: B
Flush: false

Earlier

Client 1

Client 2

Client 3

Earlier

Key: A
Flush: false

Key: B
Flush: false

Key:
Flush: false

Key: A
Flush: false

Key: ™"
Flush: false

Key: A
Flush: false

Key: B
Flush: false

Key: ™"
Flush: true

Key: B
Flush: false

10
Key: A
Flush: true

12
Key: C

Flush: false

Key: A
Flush: true

10

1
11 Key: A Key: A
Flush: false Flush: false

12 Key: C A 4 A 4

Flush: false

Later Later

The example shown in the above diagram runs as follows:
1. Requests 1 to 12 are sent.

2. Requests 1 and 3 have the same key, therefore they must be handled in order (for example, an
updated measurement on a device where key A represents a device A). Requests 2 and 4 can
be handled concurrently to request 1 in the meantime, since they do not affect the device A.

3. Request 6 has flush set to true, also indicated by the solid green line. This means that requests
1 to 5 must finish before any further requests can be processed (for example, requesting current
measurement values for all devices). Without the flush, there is no guarantee that any of the
prior requests have already completed. For example, if the application sent batch 1 to 5, you
can query with request 6 whether these return the expected values; without flush, any number
of the prior requests might be excluded.

4. Once the queue has flushed, requests 6, 7 and 8 can be processed concurrently.

170 Connecting Apama Applications to External Components 10.15.4

8 The HTTP Client Transport Connectivity Plug-in

5. Request 10 has flush set to true and the key set to A. This flushes the queue and ensures that
the next request with the key set to A is processed after this one. You may want to update
device A, but ensure to have known state before proceeding (for example, that any existing
queries have completed).

Monitoring concurrency

The HTTP client publishes the following concurrency-related status items:

B numClients

B serializedRequests

B concurrencyUtilizationPercent

For more information on these metrics, see “Monitoring status for the HTTP client” on page 161.

Connecting Apama Applications to External Components 10.15.4 171

8 The HTTP Client Transport Connectivity Plug-in

172 Connecting Apama Applications to External Components 10.15.4

9 The Kafka Transport Connectivity Plug-in

B About the Kafka tranSPOrtcooiiiiiiiiiiiie e e e e e e e e e eeaanes 174
B Loading the Kafka tranSport ..., 174
m Configuring the connection to Kafka (dynamicChainManagers)cccoucvvvveeeeeennnnnns 175
m Configuring message transformations (dynamicChains)cccccevveeeiiiniiiiiiiieeeennnes 177
B Payload for the Kafka MESSAQEcc.uuiiiiiiiiiiiiie e 177
B Metadata for the Kafka MeSSAQgecoiiiiiiiiiiiiii e 178
Connecting Apama Applications to External Components 10.15.4 173

9 The Kafka Transport Connectivity Plug-in

About the Kafka transport

Kafka is a distributed streaming platform. See https://kafka.apache.org/ for detailed information.

Apama provides a connectivity plug-in, the Kafka transport, which can be used to communicate
with the Kafka distributed streaming platform. Kafka messages can be transformed to and from
Apama events by listening for and sending events to channels such as prefix:topic (Where the
prefix is configurable).

You configure the Kafka connectivity plug-in by editing the files that come with the Kafka bundle.
The properties file defines the substitution variables that are used in the YAML configuration file
which also comes with the bundle. See "Adding the Kafka connectivity plug-in to a project” in
Using Apama with Software AG Designer for further information.

Note:

In addition to using Software AG Designer to add bundles, you can also do this using the
apama_project command-line tool. See "Creating and managing an Apama project from the
command line" in Deploying and Managing Apama Applications for more information.

This transport provides a dynamic chain manager which creates chains automatically when EPL
subscribes or sends to a correlator channel with the configured prefix, typically kafka:. For the
Kafka transport, there must be exactly one chain definition provided in the dynamicChains section
of the YAML configuration file.

For more information on YAML configuration files, see “Using Connectivity Plug-ins” on page 23
and especially “Configuration file for connectivity plug-ins” on page 26.

Note:

The Kafka connectivity plug-in does not support reliable messaging.

Loading the Kafka transport

You can load the Kafka transport by adding the Kafka connectivity bundle to your project in
Software AG Designer (see "Adding the Kafka connectivity plug-in to a project"” in Using Apama
with Software AG Designer). Alternatively, you can load the transport with the following
connectivityPlugins stanza in your YAML configuration file:

kafkaTransport:
classpath:

S{APAMA_HOME}/lib/kafka-clients.jar; ${APAMA_HOME}/lib/connectivity-kafka.jar
class: com.apama.kafka.ChainManager

174 Connecting Apama Applications to External Components 10.15.4

https://kafka.apache.org/

9 The Kafka Transport Connectivity Plug-in

Configuring the connection to Kafka
(dynamicChainManagers)

You configure one or more dynamicChainManagers to connect to different Kafka brokers. For
example:

dynamicChainManagers:
kafkaManager:
transport: kafkaTransport
managerConfig:
channelPrefix: "kafka:"
bootstrap.servers: "localhost:9092"

Connection-related configuration is specified in the managercConfig stanza on the
dynamicChainManagers instance. The following configuration options are available for managercConfig:

Configuration option Description

bootstrap.servers This is the only option in the Kafka configuration for which
you must specify a value. You can either set it under
managerConfig (to be used as the default for all consumers and
producers) or in the configuration of a specific consumer or
producer (which overrides any default given in the parent
chain manager).

When this option is set under managercConfig, it is used as the
default. It needs to be enclosed in quotation marks. Example:

bootstrap.servers: "localhost:62618"
Type: string.

channelPrefix Prefix for dynamic mapping. If the prefix ends with a colon
(1), it needs to be enclosed in quotation marks (see also "Using
YAML configuration files" in Deploying and Managing Apama
Applications).

When the channel is mapped to a Kafka topic, the prefix is not
used. For example, if the prefix is "kafka: ", then the channel
kafka:test/a maps to the Kafka topic test/a.

Type: string.
Default: "kafka:".

consumerConfig Keys and values of the consumer configuration options in
Kafka. See the Kafka documentation at https://
kafka.apache.org/documentation/ for detailed information on
the consumer configs.

Connecting Apama Applications to External Components 10.15.4 175

https://kafka.apache.org/documentation/
https://kafka.apache.org/documentation/

9 The Kafka Transport Connectivity Plug-in

Configuration option

Description

producerConfig

Some default values are provided by the Kafka transport, but
you can override them by specifying different values.

The default values are:
® group.id: A unique identifier for every instance.
B session.timeout.ms: "30000"

B key.deserializer:
"org.apache.kafka.common.serialization.
StringDeserializer"

B value.deserializer:
"org.apache.kafka.common.serialization.
StringDeserializer"

Type: map.

Keys and values of the producer configuration options in
Kafka. See the Kafka documentation at https://
kafka.apache.org/documentation/ for detailed information on
the producer configs.

Some default values are provided by the Kafka transport, but
you can override them by specifying different values.

The default values are:
B linger.ms: 0

B key.serializer:
"org.apache.kafka.common.serialization.
StringSerializer"

B value.serializer:
"org.apache.kafka.common.serialization.
StringSerializer"

Type: map.

Kafka allows clients to connect over SSL. You use the consumerConfig and producerConfig
configuration options of the Kafka transport to specify the SSL configuration. See the Kafka
documentation at https://kafka.apache.org/ for detailed information on how to configure Kafka

clients to use SSL.

176

Connecting Apama Applications to External Components 10.15.4

https://kafka.apache.org/documentation/
https://kafka.apache.org/documentation/
https://kafka.apache.org/

9 The Kafka Transport Connectivity Plug-in

Configuring message transformations
(dynamicChains)

You configure exactly one dynamicChains section to handle transforming messages from the Kafka
broker into the correlator, and vice versa. For example:

dynamicChains:
kafkaChain:

- apama.eventMap:
defaultEventType: Evt
suppresslLoopback: true

- jsonCodec

- kafkaTransport

We recommend use of the suppressLoopback configuration property to prevent undesirable
behavior. See “Host plug-ins and configuration” on page 30 for further information.

Payload for the Kafka message

As with all other transports, the translation between EPL events and Kafka payloads is based on
the choice of host plug-in and codecs. See “Host plug-ins and configuration” on page 30 and
“Codec Connectivity Plug-ins” on page 235 for further information.

The default payload for the Kafka message is a string (with conversion from the underlying bytes
using the classes StringDeserializer and StringSerializer from the
org.apache.kafka.common.serialization package).

The following is a simple example of a YAML configuration file where the payload of the Kafka
message will be the string form of the Apama event:

dynamicChainManagers:
kafkaManager:
transport: kafkaTransport
managerConfig:
bootstrap.servers: "localhost:9092"

dynamicChains:
myChain:
- apama.eventString:
- kafkaTransport:

You can configure alternative serializers and deserializers using the consumercConfig and
producerConfig options of the Kafka connectivity plug-in (see also “Configuring the connection
to Kafka (dynamicChainManagers)” on page 175. You can use a third-party serializer/deserializer
implementation or you can create your own. You just need to include the relevant classes in the
same classpath of the Kafka plug-in itself so that it can locate them. See the Kafka documentation
for more information about Kafka serializers and deserializers. Additional transformations (for
example, from a string containing JSON to a map) can be performed after the Kafka transport
using connectivity codec plug-ins.

Connecting Apama Applications to External Components 10.15.4 177

9 The Kafka Transport Connectivity Plug-in

Metadata for the Kafka message

Messages going from/to the transport have useful pieces of information inserted into their metadata.
This information is stored as a map associated with the kafka key. This map contains the following
information:

Field Description

key Contains the Kafka record key. This works in both directions. If a message
from Kafka has a key, then the metadata will contain it. If a message that
is being sent to Kafka has the key in the metadata, then the Kafka record
key will be set with it.

178 Connecting Apama Applications to External Components 10.15.4

10 The Cumulocity loT Transport Connectivity Plug-

in

m About the Cumulocity 10T traNSPOITcii i e e e 181
B Configuring the Cumulocity 10T traNSPOITuuvuvrriiiiiiiiiiiiiiiieiireeirererereere e 182
B Loading the CumulocCity 10T traNSPOITccceeeeiiieiicee e 188
B USiNg MANAQed ODJECESeiiiiiiiiiiiiie et 188
T U ST o = 1 = g 01 PP 193
T U S g o == o PP 197
B USING MEASUIEIMENLSciiiiiiiiiiii i e e e e ee ettt s s e e e e e e e eettt e e e e e e eeeeetasn s aeeeeeeesssnnnnnsaeeeaeeeennes 202
B Using measurement fragmMeNntScccoooioiiiiiiiiiii e 206
B USING OPEIatiIONS ...ccoiieiiieieeeeeee e, 209
B Receiving update NOLICAtIONScoiiiiiiiiiiiiiie e 214
B Paging CUMUIOCIY 0T QUETIESoiiiiiiiiiiiiie ettt e e e e 216
m Invoking other parts of the Cumulocity 10T REST APl ..., 217
L T 0\ V7o) (] o T 1o 0 1 Y= Yo = 219
B Monitoring status for CUMUIOCILY 10Tueeiiiiiiiiiiiiiiiiieeieeeseeee e eeeeeeeeeees 220
B Finding tenant OptioNSoooiiiiiiii 222
B Getting USEr DeTAIISeeiieiieee e e e 222
m Optimizing requests to Cumulocity 0T with concurrent connectionscccceeveee.... 224
m Working with multi-tenant deploymentscccuuviiiiiii e 227

Connecting Apama Applications to External Components 10.15.4 179

10 The Cumulocity loT Transport Connectivity Plug-in

B SAMPIE EPL .o e e aaaaaara 230

180 Connecting Apama Applications to External Components 10.15.4

10 The Cumulocity loT Transport Connectivity Plug-in

About the Cumulocity 10T transport

Cumulocity IoT is used for communication with connected IoT devices. See http://cumulocity.com/
for detailed information.

Apama provides a connectivity plug-in, the Cumulocity IoT transport, which allows you to
communicate with the IoT devices connected to Cumulocity IoT. For example, you can receive
events from the devices and send operations to the devices.

Note:

For details on the support lifetime of the connectivity to Cumulocity IoT, refer to the Release
Availability document for the current Apama version, which is available from the following web
page: https://documentation.softwareag.com/apama/index.htm.

You configure the Cumulocity IoT connectivity plug-in by editing the .properties file that comes
with the Cumulocity Client connectivity bundle. See "Adding the Cumulocity IoT connectivity
plug-in to a project” in Using Apama with Software AG Designer for further information.

In addition to the Cumulocity Client connectivity bundle, the following EPL bundles are also
available (see also "Adding EPL bundles to projects” in Using Apama with Software AG Designer):

m Event Definitions for Cumulocity. This EPL bundle defines all events that can be used for
interacting with Cumulocity IoT. This includes definitions for events that you receive from
Cumulocity IoT, events that you can send to Cumulocity IoT, and event APIs that you can use
for requesting data from Cumulocity [oT. For more information, see the com.apama. cumulocity
package in the API Reference for EPL (ApamaDoc).

m Utilities for Cumulocity. This EPL bundle contains useful utilities for EPL code that is
interacting with Cumulocity IoT. It also contains a geofence helper utility for determining
whether a location is part of a geofence or not. For more information, see the
com.apama.cumulocity.Util and the com.apama.cumulocity.GeoFenceContainer events in the

API Reference for EPL (ApamaDoc).

Note:

In addition to using Software AG Designer to add the above mentioned connectivity and EPL
bundles, you can also do this using the apama_project command-line tool. See "Creating and
managing an Apama project from the command line" in Deploying and Managing Apama
Applications for more information.

As with other connectivity plug-ins, the EPL application should call
com.softwareag.connectivity.ConnectivityPlugins.onApplicationInitialized(). For more
information, see “Sending and receiving events with connectivity plug-ins” on page 38.

The samples/cumulocity directory of your Apama installation includes samples which show how
to use the Cumulocity IoT transport. For more information, see the README. txt file in the
corresponding samples folder.

Note:

Connecting Apama Applications to External Components 10.15.4 181

http://cumulocity.com/
https://documentation.softwareag.com/apama/index.htm

10 The Cumulocity loT Transport Connectivity Plug-in

The Cumulocity IoT connectivity plug-in does not support reliable messaging.

Configuring the Cumulocity loT transport

When you add the Cumulocity Client connectivity bundle in Software AG Designer, a .properties
configuration file is created. You have to provide all required information in that file in order to
connect to Cumulocity IoT.

Note:

It is strongly recommended that you do not change the YAML configuration file which also
comes with the bundle. You should always set the properties in the .properties configuration
file, which defines the substitution variables to be used in the YAML configuration file.

The following is an example of a filled out .properties configuration file:

Username and password must be provided for authentication
CUMULOCITY_USERNAME=MYNAME

CUMULOCITY_PASSWORD=MYPW

Application key and the URL of the application
CUMULOCITY_APPKEY=MYAPP
CUMULOCITY_SERVER_URL=https://myserver.cumulocity.com

TLS certificate authority file

CUMULOCITY_AUTHORITY_FILE=

Allow connection to Cumulocity IoT +instance with unknown certificate
CUMULOCITY_ALLOW_UNAUTHORIZED_SERVER=false

Set this to the tenant ID if you don't have a per-tenant hostname
CUMULOCITY_TENANT=

Set Cumulocity IoT measurement format
CUMULOCITY_MEASUREMENT_FORMAT=BOTH
CUMULOCITY_FORCE_INITIAL_HOST=true

Proxy server host and port to start using HTTP proxy
CUMULOCITY_PROXY_HOST=proxy_host

CUMULOCITY_PROXY_PORT=

Proxy username and password must be provided for basic authentication
CUMULOCITY_PROXY_USERNAME=ProxyUser

CUMULOCITY_PROXY_PASSWORD=ProxyPW

Number of concurrent REST connections to use

CUMULOCITY_NUM_CLIENTS=3

In order to connect to Cumulocity IoT, it is required that you set the following properties.

Property Description

CUMULOCITY_USERNAME Username for authentication. This can be specified
either as a username alone or in the form of
tenantID/username. In recent versions of Cumulocity
IoT, the tenant ID is visible in the web applications in
the user menu in the top right.

Type: string.

182 Connecting Apama Applications to External Components 10.15.4

10 The Cumulocity loT Transport Connectivity Plug-in

Property

Description

CUMULOCITY_PASSWORD

CUMULOCITY_APPKEY

CUMULOCITY_SERVER_URL

Password for authentication.
Type: string.

Unique key for the application defined on the
Cumulocity IoT instance.

The application key is defined in Cumulocity IoT. Log
in to your account in Cumulocity IoT, and use the
Administration application to add an external
application. You can then specify the application key
and the URL of the application. See the Cumulocity
IoT documentation at http://cumulocity.com/guides/
for more information.

Type: string.
URL of the Cumulocity IoT tenant.

Type: string.

Under normal conditions in the cloud, the above properties are all you need to set. The properties
listed below may be useful for custom on-premises installations of Cumulocity IoT or for

Cumulocity IoT Edge.

Property

Description

CUMULOCITY_AUTHORITY_FILE

CUMULOCITY_ALLOW_UNAUTHORIZED_SERVER

CUMULOCITY_TENANT

CUMULOCITY_MEASUREMENT_FORMAT

The TLS certificate authority file. If you are using your
own server and it is not signed by a trusted Certificate
Authority (CA), provide the certificate of your signing
authority here.

Type: string.

Set this to true when the user is connecting to a
Cumulocity IoT platform whose certificate is not
signed by a trusted CA authority. This generally
happens in the Cumulocity IoT Edge instance where
the installation is using a self-signed certificate.

Default: false.

Unique name of the application tenant. This
configuration option is useful in the case of Cumulocity
IoT Edge.

Type: string.

The measurement format mode used by the tenant.
Two modes are available: MEASUREMENT_ONLY and BOTH.

Connecting Apama Applications to External Components 10.15.4 183

http://cumulocity.com/guides/

10 The Cumulocity loT Transport Connectivity Plug-in

Property

Description

CUMULOCITY_FORCE_INITIAL_HOST

CUMULOCITY_PROXY_HOST

CUMULOCITY_PROXY_PORT

CUMULOCITY_PROXY_USERNAME

CUMULOCITY_PROXY_PASSWORD

CUMULOCITY_NUM_CLIENTS

CUMULOCITY_REQUEST_ALL_DEVICES

For more information, see “Turning measurement
fragments on/off” on page 208.

Type: string.
Default: BOTH.

If set to false, the endpoint details returned by the
Cumulocity IoT platform are used. If set to true, the
Cumulocity IoT SDK always uses the URL provided
during session initialization instead of the endpoint
details. This is helpful in deployment scenarios where
the Cumulocity IoT instance is reachable only with an
IP address.

Type: boolean.

Default: true.

The name of the proxy server to connect to.

Type: string.

The port number of the proxy server to connect to.

Both host and port are required to enable an HTTP
proxy.
Type: integer.

Optional proxy user name for HTTP basic
authentication.

Type: string.

Optional proxy password for HTTP basic
authentication.

Provide both user name and password if the proxy
server has basic authentication enabled.

Type: string.

The number of simultaneous client connections to use
for handling queries to the platform.

Type: integer.
Default: 3.
Deprecated. Request all assets at startup.

Type: boolean.

184

Connecting Apama Applications to External Components 10.15.4

10 The Cumulocity loT Transport Connectivity Plug-in

Property

Description

CUMULOCITY_SUBSCRIBE_ALL_MEASUREMENTS

CUMULOCITY_SUBSCRIBE_DEVICES

CUMULOCITY_SUBSCRIBE_OPERATIONS

CUMULOCITY_MULTI_TENANT_APPLICATION

Default: false.

Note:

You should explicitly request for all available
devices on startup using the
com.apama.cumulocity.FindManagedobject APL. For
more information, see “Sample EPL” on page 230.

Subscribe to measurements, events and alarms of all
devices during startup.

Type: boolean.

Default: true.

Subscribe to all device-related updates.
Type: boolean.

Default: true.

Subscribe to all device operations.
Type: boolean.

Default: true.

Set this to true when developing an application that
will be deployed using MULTI_TENANT isolation in
Cumulocity IoT. It is used only when running as an
external project and connecting to remote Cumulocity
IoT. See also “Working with multi-tenant
deployments” on page 227.

Type: boolean.

Default: false.

CUMULOCITY_MULTI_TENANT_MICROSERVICE_NAME The name of the multi-tenant microservice to use. It

is used only when running as an external multi-tenant
project and connecting to remote Cumulocity IoT. It
is required when developing a MULTI_TENANT
microservice application and is ignored if the
CUMULOCITY_MULTI_TENANT_APPLICATION property is not
already set.

If a multi-tenant microservice does not already exist,
either upload a multi-tenant microservice or create a
microservice with a valid manifest. Subscribe the

Connecting Apama Applications to External Components 10.15.4 185

10 The Cumulocity loT Transport Connectivity Plug-in

Property

Description

microservice to tenants for which you want to run the
project.

See also “Working with multi-tenant deployments” on
page 227.

Type: string.

The following properties are not provided by default in the . properties configuration file. If you

add them, they will be used.

Property

Description

CUMULOCITY_INITIAL_DELAY_SECS

CUMULOCITY_MAX_BATCH_SIZE

CUMULOCITY_LATENCY_SLOW_THRESHOLD_SECS

CUMULOCITY_LATENCY_LOG_THRESHOLD_SECS

The initial delay (in seconds) that can be
set for querying tenant subscriptions.

Type: float.
Default: 0 seconds.

The maximum number of Apama events
that can be batched as a single request
before sending to Cumulocity IoT. The only
event type that supports batching is
com.apama.cumulocity.Measurement.

Type: integer.
Default: 1000.

Update the mostRecentSlowRequestDetails
status (see “Monitoring status for
Cumulocity IoT” on page 220) if the time
for fetching one page of response
multiplied by the number of total pages is
greater than this threshold.

Set this to 0 to disable updates.
Type: integer.
Default: 1 second.

Log a warning if a single-paged or
multi-paged request takes more time to
complete than defined by this threshold.

Set this to 0 to disable logging.

Type: integer.

186

Connecting Apama Applications to External Components 10.15.4

10 The Cumulocity loT Transport Connectivity Plug-in

Property

Description

CUMULOCITY_LATENCY_BATCH_THRESHOLD_SECS

CUMULOCITY_SMS_SENDER_NAME

CUMULOCITY_SMS_SENDER_ADDRESS

Default: 10 seconds.

Log a warning if a batch of requests takes
more time to complete than defined by this
threshold. If a warning for an individual
request of the batch has already been
logged with
CUMULOCITY_LATENCY_LOG_THRESHOLD_SECS,
then a warning for this batch is not logged.

Set this to 0 to disable logging.
Type: integer.
Default: 50 seconds.

The sender name to be used as the default
if it is not specified in the Sendsms event and
not configured in the
messaging/sms.senderName tenant option
of Cumulocity IoT.

The tenant option is given preference over
the value of CUMULOCITY_SMS_SENDER_NAME.
The tenant option is checked for every
Sendsms event. If the check does not find it
in Cumulocity IoT, then only the value of
CUMULOCITY_SMS_SENDER_NAME is used as the
default sender name.

Type: string.
Default: Apama.

The sender address to be used as the
default if it is not specified in the Sendsms
event and not configured in the
messaging/sms.senderAddress tenant option
of Cumulocity IoT.

The tenant option is given preference over
the value of
CUMULOCITY_SMS_SENDER_ADDRESS. The tenant
option is checked for every SendsMs event.
If the check does not find it in Cumulocity
IoT, then only the value of
CUMULOCITY_SMS_SENDER_ADDRESS is used as
the default sender address.

Connecting Apama Applications to External Components 10.15.4

187

10 The Cumulocity loT Transport Connectivity Plug-in

Property

Description

CUMULOCITY_CONCURRENCY_MODE

You can provide a sender address in the

following formats: PROTOCOL : NUMBER or just
NUMBER. Valid protocols include tel, SHORT,
1cCID and ACR. If the protocol is missing or
invalid, telis used as the default protocol.

Type: string.
Default: apama.

If set to auto (default), the transport tries
to order requests across multiple clients to
avoid races between multiple updates
relating to the same managed object. For
more information, see “Optimizing requests
to Cumulocity IoT with concurrent
connections” on page 224. If set to always,
no attempt to preserve order is made.

Type: string.

Default: auto.

See also “Receiving update notifications” on page 214.

Loading the Cumulocity IoT transport

You can load the Cumulocity IoT transport by adding the Cumulocity Client bundle to your
project in Software AG Designer (see "Adding the Cumulocity IoT connectivity plug-in to a project”
in Using Apama with Software AG Designer). Alternatively, you can load the transport with the
following connectivityPlugins stanza in your YAML configuration file:

cumulocityTransport:

classpath: ${APAMA_HOME}/lib/cumulocity/connectivity-cumulocity.jar

class: com.apama.cumulocity.Transport
cumulocityCodec:

libraryName: connectivity-cumulocity-codec

class: CumulocityCodec

Using managed objects

During application initialization (onApplicationInitialized), if the requestAllDevices configuration
option is enabled, the adapter sends all device/asset related information using the

com.apama.cumulocity.ManagedObject event on the

com.apama.cumulocity.ManagedObject.SUBSCRIBE_CHANNEL (same as cumulocity.devi ces) channel.
After all devices/assets have been sent, the adapter sends a
com.apama.cumulocity.RequestAllDevicesComplete(-1) event.

188 Connecting Apama Applications to External Components 10.15.4

10 The Cumulocity loT Transport Connectivity Plug-in

Note:

Use of the above-mentioned requestAllDevices configuration option is deprecated. Instead you
should use the com.apama.cumulocity.FindManagedobject API to cause the adapter to send the
device events when the application is ready. This will also work for applications deployed in
Cumulocity IoT directly.

Example of a device event:

com.apama.cumulocity.ManagedObject ("44578836","","Device_1",
["c8y_Restart",'"c8y_Meassage","c8y_Relay"],
["c8y_TemperatureMeasurement","c8y_LightMeasurement"],

(1, 01,01, 0,4},

{"c8y_IsDevice":any(dictionary<any,any>,new dictionary<any,any>),
"owner":any (string,"Cumulocity_User")})

If the subscribeToDevices configuration option is enabled (true by default), any devices added to
Cumulocity IoT after application initialization will be sent to the
com.apama.cumulocity.ManagedObject.SUBSCRIBE_CHANNEL channel.

To fetch a list of all existing managed objects, use the FindManagedobjects APIL For more
information, see “Querying for managed objects” on page 191.

Example

The following is a simple example of how to receive, update and send managed objects:

// Subscribe to receive all the devices from Cumulocity IoT
monitor.subscribe(ManagedObject.SUBSCRIBE_CHANNEL) ;

// Consume all the devices from Cumulocity IoT
on all ManagedObject() as mo {

log mo.toString() at INFO;

// Update a managed object

mo.params.add("CustomMetadata", {"metadata": "Adding custom data"});
send mo to ManagedObject.SEND_CHANNEL;

Updating a managed object

To enable use cases where information related to a managed object can be persisted, you can
update any metadata information (such as the state) as properties of a managed object.

managedObject.params.add("<CUSTOM_PROPERTY>", <PROPERTY_VALUE>);
send managedObject to com.apama.cumulocity.ManagedObject.SEND_CHANNEL

Where
B <CUSTOM_PROPERTY> is the property that is to be added.

M <PROPERTY_VALUE> is the value for the newly added property.

Connecting Apama Applications to External Components 10.15.4 189

10 The Cumulocity loT Transport Connectivity Plug-in

Sending managed objects requesting response and setting headers

When creating a new object or updating an existing one, it is recommended that you use the
withChannelResponse action. This allows your application to receive a response on completion on
the ManagedObject.SUBSCRIBE_CHANNEL channel. You will need to subscribe to the
ManagedObject.SUBSCRIBE_CHANNEL channel first. The response can be one of two possibilities:

B ObjectCommitted

This includes the req1d which is the identifier of the original request, the 1d which is the
identifier of the newly created or updated object, and the actual object in JSON form.

B ObjectCommitFailed

This includes the reqid which is the identifier of the original request, the statusCode which is
the HTTP status code of the failure, and the body which is the content of the response from the
API (this might be in HTML format).

When using withChannelResponse, it allows the ability to set headers. This can be used, for example,
to determine what processing mode Cumulocity IoT will use as shown in the example below.

Example of creating a managed object:

using com.apama.cumulocity.ManagedObject;
using com.apama.cumulocity.ObjectCommitFailed;
using com.apama.cumulocity.ObjectCommitted;

monitor Test_ManagedObjects {

action onload {
monitor.subscribe(ManagedObject.SUBSCRIBE_CHANNEL) ;
ManagedObject mo := new ManagedObject;
mo.params.add("c8y_IsDevice", new dictionary<any, any>);

mo.name := "MyManagedObject";
mo.type := "DeviceType";
integer reqIld := com.apama.cumulocity.Util.generateReqId();

// Create a new ManagedObject in Cumulocity, ensuring that a

// response is returned.

send mo.withChannelResponse(reqId, new dictionary<string, string>) to
ManagedObject.SEND_CHANNEL;

// If the ManagedObject creation succeeded do something with the
// returned object or 1d.
on ObjectCommitted(reqld=reqld) as c and not
ObjectCommitFailed(reqId=reqld) {
log "New managed object successfully created " + c.toString()
at INFO;
}

// If the ManagedObject creation failed, log an error.
on ObjectCommitFailed(reqId=reqId) as cfail and not
ObjectCommitted(reqId=reqld) {
log "Creating a new event failed " + cfail.toString() at ERROR;

190 Connecting Apama Applications to External Components 10.15.4

10 The Cumulocity loT Transport Connectivity Plug-in

Note:

The following ManagedoObject reference fields cannot be set using Managedobject events and are
useful for read-only purposes in these events: childDevicelds, childAssetIds, deviceParentIds,
and assetParentIds. However, this can be done using the Cumulocity IoT REST API, which
can be invoked in EPL by using GenericRequest events. For more information, see “ Invoking
other parts of the Cumulocity IoT REST API” on page 217 in this documentation and Child
operations in the Cumulocity IoT OpenAPI documentation.

The position field can be used to clear individual position elements, but it cannot be used to
delete the entire position fragment c8y_Position. Similarly, the params dictionary cannot be
manipulated to delete fragments in the Managedobject. However, both of these can be deleted
using the Cumulocity IoT REST API, which can be invoked in EPL by using GenericRequest
events. For more information, see “ Invoking other parts of the Cumulocity IoT REST API” on
page 217 in this documentation and REST usage in the Cumulocity IoT OpenAPI documentation.

Querying for managed objects

To search for a managed object or a collection of managed objects, send the
com.apama.cumulocity.FindManagedobject event to Cumulocity IoT, with a unique reqId to the
com.apama.cumulocity.FindManagedObject.SEND_CHANNEL channel.

The transport will then respond with zero or more
com.apama.cumulocity.FindManagedObjectResponse events and then one
com.apama.cumulocity.FindManagedObjectResponseAck event on the
com.apama.cumulocity.FindManagedObjectResponse.SUBSCRIBE_CHANNEL channel.

Example:

integer reqIld := com.apama.cumulocity.Util.generateReqId();

com.apama.cumulocity.FindManagedObject request :=
new com.apama.cumulocity.FindManagedObject;
request.reqld := reqld;

// Optionally provide the 'id' of the managed object
//request.deviceld := "<DEVICE_ID>";

// Filter based on fragmentType
request.params.add("fragmentType", "c8y_IsDevice");

// Subscribe to com.apama.cumulocity.FindManagedObjectResponse.SUBSCRIBE_CHANNEL to
// listen for responses
monitor.subscribe(com.apama.cumulocity.FindManagedObjectResponse.SUBSCRIBE_CHANNEL) ;

// Listen for responses based on reqId

on all com.apama.cumulocity.FindManagedObjectResponse(reqld=reqld) as response
// Avoid listener leaks by terminating the listener on completion of the request
and not com.apama.cumulocity.FindManagedObjectResponseAck(reqld=reqId)

{
}

log "Received ManagedObject " + response.toString() at INFO;

Connecting Apama Applications to External Components 10.15.4 191

https://cumulocity.com/api/core/#tag/Child-operations
https://cumulocity.com/api/core/#tag/Child-operations
https://cumulocity.com/api/core/#section/REST-implementation/REST-usage

10 The Cumulocity loT Transport Connectivity Plug-in

// Listen for com.apama.cumulocity.FindManagedObjectResponseAck,

// this dindicates that all responses have been received

on com.apama.cumulocity.FindManagedObjectResponseAck(reqIld=reqId)
as requestCompleted

{
log "Received all ManagedObject(s) for request "
+ requestCompleted.reqld.toString() at INFO;
// Request is completed and we can unsubscribe from this channel

monitor.unsubscribe(com.apama.cumulocity.FindManagedObjectResponse.SUBSCRIBE_CHANNEL) ;
}

// Send request to find available managed objects
send request to com.apama.cumulocity.FindManagedObject.SEND_CHANNEL;

Supported query parameters

You can provide the following query parameters with the request:

Parameter Description

deviceId Search for a managed object based on deviceId. When devicelIdis
populated in a FindManagedObject request, all the query parameters listed
below are ignored.

fragmentType Search for managed objects based on the fragment type.

type Search for managed objects based on the type.

owner Search for managed objects based on the owner.

childAssetId Search for managed objects based on the asset identifier of the child.

childDeviceld Search for managed objects based on the device identifier of the child.

ids Search for managed objects based a comma-separated list of device
identifiers.

pageSize Indicates how many entries of the collection are to be retrieved from

Cumulocity IoT. This is a batching parameter for getting multiple
responses from Cumulocity IoT. A larger pageSize does fewer requests
to Cumulocity IoT to retrieve all the managed objects, but each request
is larger. By default, 1000 managed objects are in each page and there is
an upper limit of 2000.

currentPage Retrieve a specific page of results for the given pageSize. If currentPage
is set, then only a single page is requested. If currentPage is not set
(default), all the pages are requested.

For a comprehensive list of allowed query parameters, see the Cumulocity IoT OpenAPI
Specification at https://cumulocity.com/api/#operation/getManagedObjectCollectionResource.

192 Connecting Apama Applications to External Components 10.15.4

https://cumulocity.com/api/#operation/getManagedObjectCollectionResource

10 The Cumulocity loT Transport Connectivity Plug-in

Query result paging

Cumulocity IoT queries support paging of data for requesting a specific range of the responses
received. For more information, see “Paging Cumulocity [oT queries” on page 216.

Using alarms

The com.apama.cumulocity.Alarmis sent on an alarm from a device. This event is sent to the
com.apama.cumulocity.Alarm.SUBSCRIBE_CHANNEL (same as cumulocity.alarms) channel. This event
contains the identifier of the source, a timestamp (same form as currentTime), message text, and
optional parameters.

Example of an alarm:

com.apama.cumulocity.Alarm("44578840","c8y_UnavailabilityAlarm","44578839",
1529496204.346,"No data received from device within required interval",
Alarm.STATUS_ACTIVE,Alarm.SEVERITY_MAJOR,1,{"creationTime":any(float,1529496204.067)})

Example

The following is a simple example of how to receive, update, create and send alarms:

// Subscribe to receive all the alarms published from Cumulocity IoT
monitor.subscribe(Alarm.SUBSCRIBE_CHANNEL) ;

// Consume all the alarms from Cumulocity IoT
on all Alarm() as alarm {
log alarm.toString() at INFO;

// Example for updating an alarm
// Set alarm severity to MAJOR

alarm.severity := Alarm.SEVERITY_MAJOR;
send alarm to Alarm.SEND_CHANNEL;

}

// Create a new alarm

Alarm alarm := new Alarm;

alarm.source := "<MANAGED_OBJECT_ID>";
alarm.type := "TestAlarm";

alarm.severity := Alarm.SEVERITY_MINOR;
alarm.status := Alarm.STATUS_ACTIVE;
alarm.time := currentTime;

alarm.text := "This is a sample alarm";
send alarm to Alarm.SEND_CHANNEL;

Creating a new alarm
send Alarm("","c8y_SampleAlarm","<SOURCE>" ,<TIME>,

"Alarm text", Alarm.STATUS_<STATUS>,Alarm.SEVERITY_<SEVERITY>,1,new
dictionary<string,any>) to Alarm.SEND_CHANNEL;

Where

Connecting Apama Applications to External Components 10.15.4 193

10 The Cumulocity loT Transport Connectivity Plug-in

B <SOURCE> is the source of the alarm (same as the ManagedObject identifier).
® <TIME>is the time at which the alarm was generated.
B <STATUS> is the status of the alarm. This can be ACTIVE, ACKNOWLEDGED or CLEARED.

B <SEVERITY> is the severity of the alarm. This can be CRITICAL, MAJOR, MINOR Or WARNING.

Sending alarms requesting response and setting headers

When creating a new object or updating an existing one, it is recommended that you use the
withChannelResponse action. This allows your application to receive a response on completion on
the Alarm. SUBSCRIBE_CHANNEL channel. You will need to subscribe to the
Alarm.SUBSCRIBE_CHANNEL channel first. The response can be one of two possibilities:

B ObjectCommitted

This includes the req1d which is the identifier of the original request, the 1d which is the
identifier of the newly created or updated object, and the actual object in JSON form.

B ObjectCommitFailed

This includes the reqid which is the identifier of the original request, the statusCode which is
the HTTP status code of the failure, and the body which is the content of the response from the
API (this might be in HTML format).

When using withChannelResponse, it allows the ability to set headers. This can be used, for example,
to determine what processing mode Cumulocity IoT will use as shown in the example below.

Example of creating an alarm:

using com.apama.cumulocity.Alarm;
using com.apama.cumulocity.ObjectCommitFailed;
using com.apama.cumulocity.ObjectCommitted;

monitor TestCreatingAlarm {
string deviceId; // Where this is populated from the actual device Id.
string timestamp; // Where this is populated from the timestamp of
// the device.

action onload {
monitor.subscribe(Alarm.SUBSCRIBE_CHANNEL) ;
Alarm al := new Alarm;
string name := "MyTestAlarm";
al.status := Alarm.STATUS_ACTIVE;
al.severity := Alarm.SEVERITY_CRITICAL;
al.source := deviceld;

al.type := "c8y_TestAlarm";

al.text := "test alarm";

al.time := currentTime;

integer reqIld := com.apama.cumulocity.Util.generateReqId();

// Create a new Alarm in Cumulocity, ensuring that a response is
// returned

// and the processing mode, indicating how to process the request,
// sent to Cumulocity is Transient.

194 Connecting Apama Applications to External Components 10.15.4

10 The Cumulocity loT Transport Connectivity Plug-in

send al.withChannelResponse(reqId, { "X-Cumulocity-Processing-Mode":
"Transient" }) to Alarm.SEND_CHANNEL;

// If the Alarm creation succeeded do something with the returned
// object or -d.
on ObjectCommitted(reqld=reqld) as c and not
ObjectCommitFailed(reqId=reqld) {
log "New alarm successfully created " + c.toString() at INFO;
}

// If the Alarm creation failed, log an error.
on ObjectCommitFailed(reqId=reqId) as cfail and not
ObjectCommitted(reqId=reqld) {
log "Creating a new event failed " + cfail.toString() at ERROR;

Alarm de-duplication

If an active or acknowledged alarm (does not work for the CLEARED status) with the same source
and type exists, no new alarm is created. Instead, the existing alarm is updated by incrementing
the count property, and the time property is also updated. Any other changes are ignored, and
the alarm history is not updated. The first occurrence of the alarm is recorded in
firstOccurenceTime

Updating an existing alarm

You can update the text, status and severity fields.

send Alarm("<ALARM_ID>","c8y_SampleAlarm","<SOURCE>",<TIME>,
"Alarm Updated", Alarm.STATUS_<STATUS>,Alarm.SEVERITY_<SEVERITY>,1l,new
dictionary<string,any>) to Alarm.SEND_CHANNEL;

Where

® <ALARM_ID>is the identifier of the previously created alarm. The presence of <ALARM_ID> indicates
that the request is for updating an existing alarm.

Note:

The params dictionary cannot be manipulated to delete fragments in the Alarm. However, the
fragments in the Alarm can be deleted using the Cumulocity IoT REST API, which can be invoked
in EPL by using GenericRequest events. For more information, see “ Invoking other parts of the
Cumulocity IoT REST API” on page 217 in this documentation and REST usage in the Cumulocity
IoT OpenAPI documentation.

Querying for alarms

To search for an alarm or a collection of alarms, send the com.apama.cumulocity.FindAlarm event
to Cumulocity IoT, with a unique reqid to the com.apama.cumulocity.FindAlarm.SEND_CHANNEL
channel.

Connecting Apama Applications to External Components 10.15.4 195

https://cumulocity.com/api/core/#section/REST-implementation/REST-usage

10 The Cumulocity loT Transport Connectivity Plug-in

The transport will then respond with zero or more com.apama.cumulocity.FindAlarmResponse
events and then one com.apama.cumulocity.FindAlarmResponseAck event on the
com.apama.cumulocity.FindAlarmResponse.SUBSCRIBE_CHANNEL channel.

Example:
integer reqIld := com.apama.cumulocity.Util.generateReqId();
com.apama.cumulocity.FindAlarm request := new com.apama.cumulocity.FindAlarm;

request.reqld := reqld;

// Filter based on alarms type
request.params.add("type", "c8y_UnavailabilityAlarm");

// Subscribe to com.apama.cumulocity.FindAlarmResponse.SUBSCRIBE_CHANNEL to listen
// for responses
monitor.subscribe(com.apama.cumulocity.FindAlarmResponse.SUBSCRIBE_CHANNEL) ;

// Listen for responses based on reqId

on all com.apama.cumulocity.FindAlarmResponse(reqld=reqId) as response

// Avoid listener leaks by terminating the listener on completion of the request
and not com.apama.cumulocity.FindAlarmResponseAck(reqId=reqId)

{
}

log "Received Alarm " + response.toString() at INFO;

// Listen for com.apama.cumulocity.FindAlarmResponseAck,
// this dindicates that all responses have been received
on com.apama.cumulocity.FindAlarmResponseAck(reqId=reqld) as requestCompleted

{
log "Received all Alarm(s) for request " +
requestCompleted.reqld.toString() at INFO;

// Request is completed and we can unsubscribe from this channel
monitor.unsubscribe(com.apama.cumulocity.FindAlarmResponse.SUBSCRIBE_CHANNEL) ;
}

// Send request to find available alarms
send request to com.apama.cumulocity.FindAlarm.SEND_CHANNEL;

Supported query parameters

You can provide the following query parameters with the request:

Parameter Description

id Search for an alarm based on alarmId. When searching for an alarm based
on Id, all the query parameters listed below are ignored.

source Search for alarms based on the device identifier or asset identifier of the
source.
status Search for alarms based on the status. The status can be any of ACTIVE,

ACKNOWLEDGED or CLEARED.

196 Connecting Apama Applications to External Components 10.15.4

10 The Cumulocity loT Transport Connectivity Plug-in

Parameter Description

severit Search for alarms based on the severity. The severity can be any of CRITICAL,
y y y
MAJOR, MINOR Or WARNING.

type Search for alarms based on the type.

dateFrom Search for alarms from a start date. The date and time is provided as seconds
since the epoch.

dateTo Search for alarms within a time range. This is to be used in combination
with dateFrom. The date and time is provided as seconds since the epoch.

resolved A boolean parameter used for filtering, based on the resolved state.

pageSize Indicates how many entries of the collection are to be retrieved from
Cumulocity IoT. This is a batching parameter for getting multiple responses
from Cumulocity IoT. A larger pageSize does fewer requests to Cumulocity
IoT to retrieve all the alarms, but each request is larger. By default, 1000
alarms are in each page and there is an upper limit of 2000.

currentPage Retrieve a specific page of results for the given pageSize. If currentPage is
set, then only a single page is requested. If currentPage is not set (default),
all the pages are requested.

Query result paging

Cumulocity IoT queries support paging of data for requesting a specific range of the responses
received. For more information, see “Paging Cumulocity loT queries” on page 216.

Using events

The com.apama.cumulocity.Event is sent on an event from a device. This event is sent to the
com.apama.cumulocity.Event.SUBSCRIBE_CHANNEL (same as cumulocity.events) channel. This event
contains the identifier of the source, a timestamp (same form as currentTime), message text, and
optional parameters.

Example of an event:

com.apama.cumulocity.Event("48073557","c8y_EntranceEvent",
"'12346082",1519838833.6,
"Entrance event triggered.",
{"creationTime":any(float,1519838834.706)1})

Example

The following is a simple example of how to receive, update, create and send events:

// Subscribe to receive all the events published from Cumulocity IoT
monitor.subscribe(Event.SUBSCRIBE_CHANNEL) ;

Connecting Apama Applications to External Components 10.15.4 197

10 The Cumulocity loT Transport Connectivity Plug-in

// Consume all the events from Cumulocity IoT
on all Event() as e {
log e.toString() at INFO;

// Example for updating an event
// Update text

e.text := "This 1is an updated text";
send e to Event.SEND_CHANNEL;

}

// Create a new event

Event evt := new Event;

evt.source := "<MANAGED_OBJECT_ID>";
evt.type := "TestEvent";

evt.time := currentTime;

evt.text := "This is a sample event";

send evt to Event.SEND_CHANNEL;

Creating a new event

send Event("","c8y_SampleEvent'","<SOURCE>", <TIME>,
"Event text",new dictionary<string,any>) to Event.SEND_CHANNEL;

Where
B <SOURCE> is the source of the event (same as the ManagedObject identifier).

® <TIME>is the time at which the event was generated.

Sending events requesting response and setting headers

When creating a new object or updating an existing one, it is recommended that you use the
withChannelResponse action. This allows your application to receive a response on completion on
the Event.SUBSCRIBE_CHANNEL channel. You will need to subscribe to the
Event.SUBSCRIBE_CHANNEL channel first. The response can be one of two possibilities:

B ObjectCommitted

This includes the req1d which is the identifier of the original request, the 1d which is the
identifier of the newly created or updated object, and the actual object in JSON form.

B ObjectCommitFailed

This includes the reqid which is the identifier of the original request, the statusCode which is
the HTTP status code of the failure, and the body which is the content of the response from the
API (this might be in HTML format).

When using withChannelResponse, it allows the ability to set headers. This can be used, for example,
to determine what processing mode Cumulocity IoT will use as shown in the example below.
Example of creating an event:

using com.apama.cumulocity.Event;
using com.apama.cumulocity.ObjectCommitFailed;

198 Connecting Apama Applications to External Components 10.15.4

10 The Cumulocity loT Transport Connectivity Plug-in

using com.apama.cumulocity.ObjectCommitted;

monitor Test_CumulocityEvents {
string timestamp; // Where this is populated from the timestamp of the
// device.

action onload {
monitor.subscribe(Event.SUBSCRIBE_CHANNEL) ;

Event ev := new Event;

string name := "MyEvent";

ev.type := "DoorSensor";

ev.source := '"7104838";

ev.text := "Door sensor was triggered";

ev.time := currentTime;

integer reqIld := com.apama.cumulocity.Util.generateReqId();

// Create a new Event in Cumulocity, ensuring that a response is

// returned

// and the processing mode, indicating how to process the request, sent

// to Cumulocity 1is Transient.

send ev.withChannelResponse(reqId, { "X-Cumulocity-Processing-Mode":
"Transient" }) to Event.SEND_CHANNEL;

// If the Event creation succeeded do something with the returned
// object or -d.
on ObjectCommitted(reqld=reqld) as c and not
ObjectCommitFailed(reqId=reqld) {
log "New event successfully created " + c.toString() at INFO;

3

// If the Event creation failed, log an error.
on ObjectCommitFailed(reqId=reqId) as cfail and not
ObjectCommitted(reqId=reqld) {
log "Creating a new event failed " + cfail.toString() at ERROR;

Updating an existing event

You can update the text field.

send Event("<EVENT_ID>","c8y_SampleEvent","<SOURCE>",<TIME>,
"Event Updated",new dictionary<string,any>) to Event.SEND_CHANNEL;

Where

® <EVENT_ID> istheidentifier of the previously created event. The presence of <EVENT_ID> indicates
that the request is for updating an existing event.

Note:

The params dictionary cannot be manipulated to delete fragments in the Event. However, the
fragments in the Event can be deleted using the Cumulocity IoT REST API, which can be invoked
in EPL by using GenericRequest events. For more information, see “ Invoking other parts of the

Connecting Apama Applications to External Components 10.15.4 199

10 The Cumulocity loT Transport Connectivity Plug-in

Cumulocity IoT REST API” on page 217 in this documentation and REST usage in the Cumulocity
IoT OpenAPI documentation.

Querying for events

To search for an event or a collection of events, send the com.apama.cumulocity.FindEvent event
to Cumulocity IoT, with a unique reqId to the com.apama.cumulocity.FindEvent.SEND_CHANNEL
channel.

The transport will then respond with zero or more com.apama.cumulocity.FindEventResponse
events and then one com.apama.cumulocity.FindEventResponseAck event on the
com.apama.cumulocity.FindEventResponse.SUBSCRIBE_CHANNEL channel.

Note:

Cumulocity IoT returns the oldest events first. However, in case of a range query (that is, when
the query includes at least one of the dateFrom or dateTo parameters), the latest events are
returned first. This is different from measurements and operations where the oldest items are
always returned first, regardless of whether the query is a range query or not. If you want to
reverse the order, see the description of the revert parameter below.

Example:
integer reqIld := com.apama.cumulocity.Util.generateReqId();
com.apama.cumulocity.FindEvent request := new com.apama.cumulocity.FindEvent;

request.reqld := reqld;

// Filter based on event type
request.params.add("type", "c8y_DoorOpenedEvent");

// Subscribe to com.apama.cumulocity.FindEventResponse.SUBSCRIBE_CHANNEL to listen
// for responses
monitor.subscribe(com.apama.cumulocity.FindEventResponse.SUBSCRIBE_CHANNEL) ;

// Listen for responses based on reqId

on all com.apama.cumulocity.FindEventResponse(reqld=reqId) as response

// Avoid listener leaks by terminating the listener on completion of the request
and not com.apama.cumulocity.FindEventResponseAck(reqId=reqId)

{
}

log "Received Event " + response.toString() at INFO;

// Listen for com.apama.cumulocity.FindEventResponseAck,
// this dindicates that all responses have been received
on com.apama.cumulocity.FindEventResponseAck(reqId=reqId) as requestCompleted
{
log "Received all Event(s) for request " +
requestCompleted.reqld.toString() at INFO;

// Request is completed and we can unsubscribe from this channel
monitor.unsubscribe(com.apama.cumulocity.FindEventResponse.SUBSCRIBE_CHANNEL) ;
}

// Send request to find available events

200 Connecting Apama Applications to External Components 10.15.4

https://cumulocity.com/api/core/#section/REST-implementation/REST-usage

10 The Cumulocity loT Transport Connectivity Plug-in

send request to com.apama.cumulocity.FindEvent.SEND_CHANNEL;

Supported query parameters

You can provide the following query parameters with the request:

Parameter Description

id Search for an event based on eventId. When searching for an event based
on Id, all the query parameters listed below are ignored.

source Search for events based on the device identifier or asset identifier of the
source.

type Search for events based on the type.

dateFrom Search for events from a start date. The date and time is provided as
seconds since the epoch.

dateTo Search for events within a time range. This is to be used in combination
with dateFrom. The date and time is provided as seconds since the epoch.

fromCreationDate Similar to dateFrom, but fetches the events based on the creation date. The

toCreationDate

pageSize

currentPage

revert

Query result paging

date and time is provided as seconds since the epoch.

Search for events that have been created within a date range. This is to
be used in combination with fromCreationDate. The date and time is
provided as seconds since the epoch.

Indicates how many entries of the collection are to be retrieved from
Cumulocity IoT. This is a batching parameter for getting multiple
responses from Cumulocity IoT. A larger pageSize does fewer requests
to Cumulocity IoT to retrieve all the events, but each request is larger. By
default, 1000 events are in each page and there is an upper limit of 2000.

Retrieve a specific page of results for the given pageSize. If currentPage
is set, then only a single page is requested. If currentpPage is not set
(default), all the pages are requested.

Boolean parameter. If a range query is used (that is, the query includes
at least one of the dateFrom or dateTo parameters), Cumulocity IoT, by
default, returns the latest events first. You can reverse the order in which
the matching events are returned by adding the query parameter
revert=true. This returns the oldest events first. (Cumulocity IoT returns
the oldest events first by default when neither the dateFromnor the dateTo
parameter is supplied.)

Cumulocity IoT queries support paging of data for requesting a specific range of the responses
received. For more information, see “Paging Cumulocity IoT queries” on page 216.

Connecting Apama Applications to External Components 10.15.4 201

10 The Cumulocity loT Transport Connectivity Plug-in

Using measurements

During application initialization (onApplicationInitialized), if subscribeToAllMeasurements is
enabled (true by default), the adapter sends all measurements using the
com.apama.cumulocity.Measurement event on the
com.apama.cumulocity.Measurement.SUBSCRIBE_CHANNEL (same as cumulocity.measurements)
channel.

These events may be sent before all assets are sent. Measurement events contain the identifier of
the source of the measurement, the type of measurement, timestamp, and a dictionary of values
which contain the numeric value, units and optional type, quantity and state.

Examples of measurement events:

Measurement ("1001","c8y_LightMeasurement",'"12346081",1464359004.89,
{"c8y_LightMeasurement": {"e'":com.apama.cumulocity.MeasurementValue(168.1,
"lux", new dictionary<string, any>)}},new dictionary<string, any>)

Measurement ("1002","c8y_DistanceMeasurement","12346082",1464359005.396,
{"c8y_DistanceMeasurement": {"distance'":com.apama.cumulocity.MeasurementValue
(344, "mm" "o onmn b dictionary<string, any>)}}, dictionary<string, any>)

Example

The following is a simple example of how to receive, create and send measurements:

// Subscribe to receive all the measurements published from Cumulocity IoT
monitor.subscribe(Measurement.SUBSCRIBE_CHANNEL) ;

// Consume all the measurements from Cumulocity IoT
on all Measurement() as m {

log m.toString() at INFO;
}

// Create a new measurement

Measurement m := new Measurement;

m.source := "<MANAGED_OBJECT_ID>";

m.time := currentTime;

m.type := "TemperatureMeasurement";

MeasurementValue mv := new MeasurementValue;

mv.value := 100.0;

dictionary<string, MeasurementValue> fragment
:= new dictionary<string, MeasurementValue>;

fragment.add("temperature", mv);

m.measurements.add("TemperatureMeasurement", fragment);

send m to Measurement.SEND_CHANNEL;

Creating a new measurement

Measurement m := new Measurement;
m.type := <MEASUREMENT_TYPE>;
m.source := <SOURCE>;

m.time := currentTime;

202 Connecting Apama Applications to External Components 10.15.4

10 The Cumulocity loT Transport Connectivity Plug-in

MeasurementValue mv := new MeasurementValue;

mv.value := 1.0;

mv.unit := "V";

dictionary<string, MeasurementValue> dict := {"voltage": mv};

m.measurements.add(m.type, dict);
send m to Measurement.SEND_CHANNEL;

Where
B <SOURCE> is the source of the measurement (same as the Managedobject identifier).

B <MEASUREMENT_TYPE> is the type of the measurement. For example, c8y_VoltageMeasurement.

Sending measurements requesting response and setting headers

When creating a new object, it is recommended that you use the withChannelResponse action. This
allows your application to receive a response on completion on the
Measurement.SUBSCRIBE_CHANNEL channel. You will need to subscribe to the
Measurement.SUBSCRIBE_CHANNEL channel first. The response can be one of two possibilities:

B ObjectCommitted

This includes the reqid which is the identifier of the original request, the 1d which is the
identifier of the newly created or updated object, and the actual object in JSON form.

B ObjectCommitFailed

This includes the reqid which is the identifier of the original request, the statusCode which is
the HTTP status code of the failure, and the body which is the content of the response from the
API (this might be in HTML format).

When using withChannelResponse, it allows the ability to set headers. This can be used, for example,
to determine what processing mode Cumulocity IoT will use as shown in the example below.

It is worth noting that when using withChannelResponse for measurements, it is not able to achieve
the same throughput as sending them without a response. As they are not batched into a single
HTTP request, there are just individual create/update requests sent to Cumulocity IoT.

Example of creating a measurement:

using com.apama.cumulocity.Measurement;
using com.apama.cumulocity.MeasurementValue;

using com.apama.cumulocity.ObjectCommitFailed;
using com.apama.cumulocity.ObjectCommitted;

monitor Test {
string deviceId; // Where this is populated from the actual device Id.
float timestamp; // Where this is populated from the timestamp of the
// device.

action onload {
monitor.subscribe(Measurement.SUBSCRIBE_CHANNEL) ;

Measurement mo := new Measurement;
mo.type := "test_measurement";

Connecting Apama Applications to External Components 10.15.4 203

10 The Cumulocity loT Transport Connectivity Plug-in

mo.source := deviceld;
mo.time := timestamp;

//Create a Measurement with two Measurement fragments.

MeasurementValue mvl := new MeasurementValue;
mvl.value := 10.2;

mvl.unit := "km/hr";

MeasurementValue mv2 := new MeasurementValue;
mv2.value := 11.7;

mv2.unit := "km/hr";

dictionary<string, MeasurementValue> dict :=
{"speedX": mvl, "speedY": mv2};
mo.measurements.add("c8y_speed", dict);

integer reqIld := com.apama.cumulocity.Util.generateReqId();

// Create a new Measurement in Cumulocity, ensuring that a response s

// returned

// and the processing mode, indicating how to process the request,

// sent to Cumulocity is Transient.

send mo.withChannelResponse(reqId, { "X-Cumulocity-Processing-Mode":
"Transient" }) to Measurement.SEND_CHANNEL;

// If the Measurement creation succeeded do something with the returned
// object or -d.
on ObjectCommitted(reqld=reqld) as c and not
ObjectCommitFailed(reqId=reqld) {
log "New measurement successfully created " + c.toString() at INFO;

3

// If the Measurement creation failed, log an error.
on ObjectCommitFailed(reqId=reqId) as cfail and not
ObjectCommitted(reqId=reqld){

log "Creating a new event failed " + cfail.toString() at ERROR;
}

Querying for measurements

To search for a measurement or a collection of measurements, send the
com.apama.cumulocity.FindMeasurement event to Cumulocity IoT, with a unique reqId to the
com.apama.cumulocity.FindMeasurement.SEND_CHANNEL channel.

The transport will then respond with zero or more com. apama.cumulocity.FindMeasurementResponse
events and then one com.apama.cumulocity.FindMeasurementResponseAck event on the
com.apama.cumulocity.FindMeasurementResponse.SUBSCRIBE_CHANNEL channel.

Example:
integer reqIld := com.apama.cumulocity.Util.generateReqId();
com.apama.cumulocity.FindMeasurement request :=

new com.apama.cumulocity.FindMeasurement;
request.reqld := reqld;

204 Connecting Apama Applications to External Components 10.15.4

10 The Cumulocity loT Transport Connectivity Plug-in

// Filter based on measurement fragment type and series
request.params.add("valueFragmentType", "c8y_MotionMeasurement");
request.params.add("valueFragmentSeries", "motionDetected");

// Subscribe to com.apama.cumulocity.FindMeasurementResponse.SUBSCRIBE_CHANNEL
// to listen for responses
monitor.subscribe(com.apama.cumulocity.FindMeasurementResponse.SUBSCRIBE_CHANNEL) ;

// Listen for responses based on reqId

on all com.apama.cumulocity.FindMeasurementResponse(reqId=reqId) as response

// Avoid listener leaks by terminating the listener on completion of the request
and not com.apama.cumulocity.FindMeasurementResponseAck(reqId=reqId)

{
}

log "Received Measurement " + response.toString() at INFO;

// Listen for com.apama.cumulocity.FindMeasurementResponseAck,

// this dindicates that all responses have been received

on com.apama.cumulocity.FindMeasurementResponseAck(reqId=reqId)
as requestCompleted

{
log "Received all Measurement(s) for request "
+ requestCompleted.reqld.toString() at INFO;
// Request is completed and we can unsubscribe from this channel
monitor.unsubscribe(com.apama.cumulocity.FindMeasurementResponse.SUBSCRIBE_CHANNEL) ;
}

// Send request to find available measurements
send request to com.apama.cumulocity.FindMeasurement.SEND_CHANNEL;

Supported query parameters

You can provide the following query parameters with the request:

Parameter Description

id Search for a measurement based on measurementId. When searching for a
measurement based on 1d, all the query parameters listed below are ignored.

source Search for measurements based on the device identifier or asset identifier
of the source.

type Search for measurements based on the type.

valueFragmentType Search for measurements based on fragment type (should be used with
valueFragmentSeries).

valueFragmentSeries Search for measurements based on fragment series (should be used with
valueFragmentType)

dateFrom Search for measurements from a start date. The date and time is provided
as seconds since the epoch.

Connecting Apama Applications to External Components 10.15.4 205

10 The Cumulocity loT Transport Connectivity Plug-in

Parameter Description

dateTo Search for measurements within a time range. This is to be used in
combination with dateFrom. The date and time is provided as seconds since
the epoch.

pageSize Indicates how many entries of the collection are to be retrieved from

Cumulocity IoT. This is a batching parameter for getting multiple responses
from Cumulocity IoT. A larger pageSize does fewer requests to Cumulocity
IoT to retrieve all the measurements, but each request is larger. By default,
1000 measurements are in each page and there is an upper limit of 2000.

currentPage Retrieve a specific page of results for the given pageSize. If currentPage is
set, then only a single page is requested. If currentPage is not set (default),
all the pages are requested.

revert Boolean parameter. If a range query is used (that is, the query includes at
least one of the dateFrom or dateTo parameters), you can reverse the order
in which the matching measurements are returned by adding the query
parameter revert=true. This returns the latest measurements first. By
default, Cumulocity IoT returns the oldest measurements first.

Query result paging

Cumulocity IoT queries support paging of data for requesting a specific range of the responses
received. For more information, see “Paging Cumulocity IoT queries” on page 216.

Using measurement fragments

A MeasurementFragment event represents a single fragment/series on a measurement.

Creating measurement fragments

You can send a single fragment to Cumulocity IoT to create a single-fragment measurement.

Example of creating a measurement fragment:

using com.apama.cumulocity.MeasurementFragment;
using com.apama.cumulocity.ObjectCommitFailed;
using com.apama.cumulocity.ObjectCommitted;

monitor Test {
string deviceld; // Where this is populated from the actual device Id.
float timestamp; // Where this is populated from the timestamp of the

// device.
action onload {
MeasurementFragment mf := new MeasurementFragment;
mf.type := "test_measurement";
mf.source := deviceld;
mf.time := timestamp;

206 Connecting Apama Applications to External Components 10.15.4

10 The Cumulocity loT Transport Connectivity Plug-in

mf.valueFragment := "c8y_speed";

mf.valueSeries := "speedX";

mf.value := 12.0;

mf.unit := "km/hr";

integer reqIld := com.apama.cumulocity.Util.generateReqId();

send mf to MeasurementFragment.SEND_CHANNEL;

3

Where

B source is the source of the measurement.

® time is the time at which the measurement was taken.

® type is the type of the measurement.

® valueFragment is the name of the fragment of the measurement fragment.
® valueSeries is the name of the series of the measurement fragment.

® value is the value from the sensor.

® unitis the units the reading is in, for example, mm, lux, km/hr.

Sending measurement fragments requesting a response and setting headers

When creating a new object, it is recommended that you use the withChannelResponse action. This
allows your application to receive a response on completion on the
MeasurementFragment.SUBSCRIBE_CHANNEL channel. You will need to subscribe to the
MeasurementFragment.SUBSCRIBE_CHANNEL channel first. The response can be one of two possibilities:

B ObjectCommitted

This includes the req1d which is the identifier of the original request, the 1d which is the
identifier of the newly created or updated object, and the actual object in JSON form.

B ObjectCommitFailed

This includes the reqId which is the identifier of the original request, the statusCode which is
the HTTP status code of the failure, and the body which is the content of the response from the
API (this might be in HTML format).

When using withChannelResponse, it allows the ability to set headers. This can be used, for example,
to determine what processing mode Cumulocity IoT will use as shown in the example below.
Example of creating a measurement fragment:

using com.apama.cumulocity.MeasurementFragment;
using com.apama.cumulocity.ObjectCommitFailed;
using com.apama.cumulocity.ObjectCommitted;

monitor Test {

Connecting Apama Applications to External Components 10.15.4 207

10 The Cumulocity loT Transport Connectivity Plug-in

string deviceId; // Where this is populated from the actual device Id.
string timestamp; // Where this is populated from the timestamp of the

// device.

action onload {
monitor.subscribe(MeasurementFragment.SUBSCRIBE_CHANNEL) ;

MeasurementFragment mf := new MeasurementFragment;

mf.type := "test_measurement";

mf.source := deviceld;

mf.time := timestamp;

mf.valueFragment := "c8y_speed";

mf.valueSeries := "speedX";

mf.value := 12.0;

mf.unit := "km/hr";

integer reqIld := com.apama.cumulocity.Util.generateReqId();

// Create a new Measurement in Cumulocity from a single

// MeasurementFragment, ensuring that a response 1is returned

// and the processing mode, indicating how to process the request, sent

// to Cumulocity 1is Transient.

send mf.withChannelResponse(reqId, { "X-Cumulocity-Processing-Mode":

"Transient" }) to MeasurementFragment.SEND_CHANNEL;

// If the Measurement creation succeeded do something with the returned

// object or -d.
on ObjectCommitted(reqld=reqld) as c and not
ObjectCommitFailed(reqId=reqld) {

log "New measurement successfully created " + c.toString() at INFO;

3

// If the Measurement creation failed, log an error.
on ObjectCommitFailed(reqId=reqId) as cfail and not
ObjectCommitted(reqId=reqld) {

log "Creating a new measurement failed " + cfail.toString()

at ERROR;

Listening for measurement fragments

The Apama mapping codec can turn measurements into measurement fragments, and listeners

in EPL can match on the elements of measurement fragments rather than measurements.

Example - matching on measurement fragments:

on all MeasurementFragment(valueFragment = 'c8y_speed', valueSeries
value > SPEED_LIMIT) as mf {
3

Turning measurement fragments on/off

'speedX',

To be able to match based on measurement fragments, you must ensure they are returned by
setting the correct measurement format. There are two modes available, MEASUREMENT__ONLY and

208

Connecting Apama Applications to External Components 10.15.4

10 The Cumulocity loT Transport Connectivity Plug-in

BOTH. The default, if it is not set or set incorrectly, is MEASUREMENT_ONLY. Set the mode to BOTH if you
require filtering based on fragments or series.

If you are deploying a custom microservice, connecting to Cumulocity IoT from an external
correlator, or using Software AG Designer, you can set the mode in the CumulocityIoT.properties
file (see also “Configuring the Cumulocity [oT transport” on page 182) or directly on the command
line to start the correlator by setting the CUMULOCITY_MEASUREMENT_FORMAT value.

The recommended approach is to set the mode from the .properties file. For example, to turn
measurement fragments on:

CUMULOCITY_MEASUREMENT_FORMAT=BOTH

Alternatively, you can set the mode using the command line. For example, to turn measurement
fragments off:

-DCUMULOCITY_MEASUREMENT_FORMAT=MEASUREMENT_ONLY

Note:

As of Apama 10.5, new Apama projects in Software AG Designer have the default set to BOTH,
but existing projects will retain their previous configuration. If you want to enable fragments
in an existing project, you may need to remove and re-add the bundle.

When you deploy (activate) an EPL app directly in Cumulocity IoT using the Streaming Analytics
application, both measurements and measurement fragments are always available (this is always
BOTH). See the Streaming Analytics guide at http://cumulocity.com/guides/ for more information.

Handling measurement fragments

It is possible to separate the individual fragments from the contents of a Measurement into
MeasurementFragment objects, which can allow better performance matching in searches. You
achieve this by using the sequence<MeasurementFragment> getFragments () action on the Measurement
event. This returns a sequence of MeasurementFragment objects.

You can generate a Measurement event based on MeasurementFragment objects. You can achieve this
by using the static Measurement createFromFragments(sequence<MeasurementFragment> fragments)
action on the Measurement event, where fragments is the sequence of MeasurementFragment objects
to create it from, and it returns the created Measurement.

Using operations

The com.apama.cumulocity.Operation event represents a device operation. If the configuration
option subscribeToOperations is enabled (see “Configuring the Cumulocity IoT transport” on
page 182) or if you Subscribe to the operations stream, this event is sent to the
com.apama.cumulocity.Operation.SUBSCRIBE_CHANNEL (same as cumulocity.operations) channel.
This event contains the unique identifier of the operation (id), the identifier of the source (deviceId),
a status, and optional parameters.

Example of an operation:

Connecting Apama Applications to External Components 10.15.4 209

http://cumulocity.com/guides/

10 The Cumulocity loT Transport Connectivity Plug-in

Operation("12345", "deviceId", Operation.STATUS_EXECUTING, params)

where params is a dictionary of string keys and any values (dictionary<string, any>).

Make sure to set the deviceId field to the identifier of a managed object which has the
com_cumulocity_model_Agent fragment. The com_cumulocity_model_Agent marks devices running
a Cumulocity IoT agent. Such devices receive all operations targeted to themselves and their
children for routing (see also Device integration using REST in Cumulocity IoT's Device SDK guide).

When creating a new operation, do not supply the id field (that is, supply an empty string for the
operation identifier).

It is not possible to set the params field of an operation to an empty dictionary.

Example

The following is a simple example of how to receive, create and send operations:

// Subscribe to receive all the operations published from Cumulocity IoT
monitor.subscribe (Operation.SUBSCRIBE_CHANNEL) ;

on all Operation() as o {
log o.toString() at INFO;

// Update an operation
o.status := Operation.STATUS_EXECUTING;
send o to Operation.SEND_CHANNEL;

}

// Create an operation

Operation operation := new Operation;

operation.source := "<MANAGED_OBJECT_ID>";

operation.status := Operation.STATUS_PENDING;
operation.params.add("c8y_Message", {"text": "Device Operation"});

send operation to Operation.SEND_CHANNEL;

Creating a new operation

send com.apama.cumulocity.Operation("","<SOURCE>" ,Operation.STATUS_<STATUS>,
{"c8y_Message":<any> {<any>"text":<any>"Hello Cumulocity device"}})
to com.apama.cumulocity.Operation.SEND_CHANNEL;

Where
B <SOURCE> is the source of the operation (same as the Managedobject identifier).

B <STATUS> is the status of the operation. This can be PENDING.

Sending operations requesting response and setting headers

When creating a new object or updating an existing one, it is recommended that you use the
withChannelResponse action. This allows your application to receive a response on completion on

210 Connecting Apama Applications to External Components 10.15.4

https://cumulocity.com/guides/device-sdk/rest/

10 The Cumulocity loT Transport Connectivity Plug-in

the Operation.SUBSCRIBE_CHANNEL channel. You will need to subscribe to the
Operation.SUBSCRIBE_CHANNEL channel first. The response can be one of two possibilities:

B ObjectCommitted

This includes the reqid which is the identifier of the original request, the 1d which is the
identifier of the newly created or updated object, and the actual object in JSON form.

B ObjectCommitFailed

This includes the reqId which is the identifier of the original request, the statusCode which is
the HTTP status code of the failure, and the body which is the content of the response from the
API (this might be in HTML format).

When using withChannelResponse, it allows the ability to set headers. This can be used, for example,
to determine what processing mode Cumulocity IoT will use as shown in the example below.
Example of creating an operation:

using com.apama.cumulocity.Operation;
using com.apama.cumulocity.ObjectCommitFailed;
using com.apama.cumulocity.ObjectCommitted;

monitor Test_Operations {

action onload {
monitor.subscribe(Operation.SUBSCRIBE_CHANNEL) ;

Operation op := new Operation;

string name := "CreateOperation";
op.source := "7104835";

op.status := Operation.STATUS_PENDING;
op.params :=

{"c8y_Meassage'":any(dictionary<any,any>,
{any(string,"text"):
any(string,"Hello Cumulocity device")
1)
}s

integer reqId := com.apama.cumulocity.Util.generateReqId();

// Create a new Operation in Cumulocity, ensuring that a response is

// returned.

send op.withChannelResponse(reqld, new dictionary<string, string>) to
Operation.SEND_CHANNEL;

// If the Operation creation succeeded do something with the returned
// object or -d.
on ObjectCommitted(reqld=reqld) as c and not
ObjectCommitFailed(reqld=reqld) {
log "New operation successfully created " + c.toString() at INFO;

}

// If the Operation creation failed, log an error.
on ObjectCommitFailed(reqId=reqId) as cfail and not
ObjectCommitted(reqId=reqld){
log "Creating a new event failed " + cfail.toString() at ERROR;

Connecting Apama Applications to External Components 10.15.4 211

10 The Cumulocity loT Transport Connectivity Plug-in

Updating an existing operation

You can update the status field.

send

com.apama.cumulocity.Operation("<OPERATION_ID>","<SOURCE>" ,Operation.STATUS_<STATUS>,
{"c8y_Message'":<any> {<any>"text'":<any>"Updated Cumulocity device"}})

to com.apama.cumulocity.Operation.SEND_CHANNEL;

Where

B <OPERATION_ID> is the identifier of the previously created operation. The presence of
<OPERATION_ID> indicates that the request is for updating an existing operation.

B <SOURCE> is the source of the operation (same as the ManagedObject identifier).

B <STATUS> is the status of the operation. This can be PENDING, EXECUTING, SUCCESSFUL or FAILED.

Note:

The params dictionary cannot be manipulated to delete fragments in the operation. However,
the fragments in the Operation can be deleted using the Cumulocity IoT REST API, which can
be invoked in EPL by using GenericRequest events. For more information, see “ Invoking other
parts of the Cumulocity IoT REST API” on page 217 in this documentation and REST usage in
the Cumulocity IoT OpenAPI documentation.

Querying for operations

To search for an operation or a collection of operations, send the
com.apama.cumulocity.FindOperation event to Cumulocity IoT, with a unique reqId to the
com.apama.cumulocity.FindOperation.SEND_CHANNEL channel.

The transport will then respond with zero or more com.apama.cumulocity.FindOperationResponse
events and then one com.apama.cumulocity.FindOperationResponseAck event on the
com.apama.cumulocity.FindOperationResponse.SUBSCRIBE_CHANNEL channel.

Example:

integer reqIld := com.apama.cumulocity.Util.generateReqId();

com.apama.cumulocity.FindOperation request :=
new com.apama.cumulocity.FindOperation;
request.reqld := reqld;

// Filter based on operation status
request.params.add("status", Operation.STATUS_PENDING) ;

// Subscribe to com.apama.cumulocity.FindOperationResponse.SUBSCRIBE_CHANNEL
// to listen for responses
monitor.subscribe(com.apama.cumulocity.FindOperationResponse.SUBSCRIBE_CHANNEL) ;

// Listen for responses based on reqId
on all com.apama.cumulocity.FindOperationResponse(reqld=reqId) as response
// Avoid listener leaks by terminating the listener on completion of the request

212 Connecting Apama Applications to External Components 10.15.4

https://cumulocity.com/api/core/#section/REST-implementation/REST-usage

10 The Cumulocity loT Transport Connectivity Plug-in

and not com.apama.cumulocity.FindOperationResponseAck(reqld=reqId)

{

log "Received Operation " + response.toString() at INFO;

3

// Listen for com.apama.cumulocity.FindOperationResponseAck,

// this dindicates that all responses have been received

on com.apama.cumulocity.FindOperationResponseAck(reqIld=reqId)
as requestCompleted

{

log "Received all Operation(s) for request "
+ requestCompleted.reqld.toString() at INFO;

// Request is completed and we can unsubscribe from this channel
monitor.unsubscribe(com.apama.cumulocity.FindOperationResponse.SUBSCRIBE_CHANNEL) ;

3

// Send request to find available operations
send request to com.apama.cumulocity.FindOperation.SEND_CHANNEL;

Supported query parameters

You can provide the following query parameters with the request:

Parameter Description

id Search for an operation based on operationid. When searching for an
operation based on 1d, all the query parameters listed below are ignored.

source Search for operations based on the device identifier or asset identifier of
the source.

status Search for operations based on the status. The status can be any of
SUCCESSFUL, FATLED, EXECUTING Or PENDING.

agent Search for operations based on the agent identifier.

fragmentType Search for operations based on the fragment type.

pageSize Indicates how many entries of the collection are to be retrieved from
Cumulocity IoT. This is a batching parameter for getting multiple responses
from Cumulocity IoT. A larger pageSize does fewer requests to Cumulocity
IoT to retrieve all the operations, but each request is larger. By default, 1000
operations are in each page and there is an upper limit of 2000.

currentPage Retrieve a specific page of results for the given pageSize. If currentPage is
set, then only a single page is requested. If currentPage is not set (default),
all the pages are requested.

dateFrom Search for operations from a start date. The date and time is provided as
seconds since the epoch.

dateTo Search for operations within a time range. This is to be used in combination

with dateFrom. The date and time is provided as seconds since the epoch.

Connecting Apama Applications to External Components 10.15.4 213

10 The Cumulocity loT Transport Connectivity Plug-in

Parameter Description

revert Boolean parameter. If a range query is used (that is, the query includes at
least one of the dateFrom or dateTo parameters), you can reverse the order
in which the matching operations are returned by adding the query
parameter revert=true. This returns the latest operations first. By default,
Cumulocity IoT returns the oldest operations first.

Query result paging

Cumulocity IoT queries support paging of data for requesting a specific range of the responses
received. For more information, see “Paging Cumulocity loT queries” on page 216.

Receiving update notifications

The Cumulocity IoT transport can receive update notifications on new measurements, events,
alarms, managed objects and operations that are processed by the Cumulocity IoT platform. By
default, all of these updates are sent. However, using the YAML configuration file, you can
configure whether you want to subscribe to them; see “Configuring the Cumulocity loT
transport” on page 182.

Notifications about measurements are only received by the Cumulocity IoT transport if the
processing mode in Cumulocity IoT is PERSISTENT or TRANSIENT (and not QUIESCENT or CEP).

When a notification about a managed object, operation, alarm or event is sent, the params dictionary
member will contain a property which signals whether the notification is a new object or an update
to an existing object. The property name is in the constant PARAM_NOTIFICATION and has the value
corresponding to the value of the constants NOTIFICATION_CREATED or NOTIFICATION_UPDATED. The
recommended way to distinguish between create and update events is to use the isCreate() and
isUpdate() actions which are available on these events, as shown in the example below.

Measurements are not modifiable in Cumulocity IoT, so all measurement notifications are
newly-created objects.

Note:

This subscription makes use of the long-polling real-time notifications feature of Cumulocity
IoT. Note that this is not recommended for high-throughput use cases. See also the information
on real-time notifications in the Cumulocity IoT - API Specifications at https://cumulocity.com/
api/.

Example:

using com.apama.cumulocity.ManagedObject;

using com.apama.cumulocity.ManagedObjectDeleted;
using com.apama.cumulocity.Measurement;

using com.apama.cumulocity.MeasurementDeleted;
using com.apama.cumulocity.Event;

using com.apama.cumulocity.EventDeleted;

using com.apama.cumulocity.Alarm;

214 Connecting Apama Applications to External Components 10.15.4

https://cumulocity.com/api/
https://cumulocity.com/api/

10 The Cumulocity loT Transport Connectivity Plug-in

using com.apama.cumulocity.Operation;
monitor NotificationListener {
action onload {
// Subscribe for notification for managed objects
monitor.subscribe(ManagedObject.SUBSCRIBE_CHANNEL) ;
// Subscribe for notification for measurements
monitor.subscribe(Measurement.SUBSCRIBE_CHANNEL) ;
// Subscribe for notification for events
monitor.subscribe(Event.SUBSCRIBE_CHANNEL) ;
// Subscribe for notification for alarms
monitor.subscribe(Alarm.SUBSCRIBE_CHANNEL) ;
// Subscribe for notification for operations
monitor.subscribe(Operation.SUBSCRIBE_CHANNEL) ;
// Listen for notifications for managed objects
on all ManagedObject() as managedObject {
if managedObject.isCreate() {
log "ManagedObject created" at INFO;
b
else if managedObject.isUpdate() {
log "ManagedObject updated" at INFO;
b
b
// Listen for notifications on deleted managed objects
on all ManagedObjectDeleted() as managedObjectDeleted {
log "ManagedObject deleted" at INFO;
b
// Listen for notifications for measurements
on all Measurement() as measurement {
// Measurements can only be created
log "Measurement created" at INFO;
b
// Listen for notifications on deleted measurements
on all MeasurementDeleted() as measurementDeleted {
log "Measurement deleted" at INFO;
b
// Listen for notifications for events
on all Event() as evt {
if evt.isCreate() {
log "Event created" at INFO;
b
else if evt.isUpdate() {
log "Event updated" at INFO;
b
b
// Listen for notifications on deleted events
on all EventDeleted() as eventDeleted {
log "Event deleted" at INFO;
b
// Listen for notifications for alarms
on all Alarm() as alarm {
if alarm.isCreate() {
log "Alarm created" at INFO;
b
else if alarm.isUpdate() {
log "Alarm updated" at INFO;
b
b
// Listen for notifications for operations
on all Operation() as operation {
if operation.isCreate() {

Connecting Apama Applications to External Components 10.15.4 215

10 The Cumulocity loT Transport Connectivity Plug-in

log "Operation created" at INFO;

}

else if operation.isUpdate() {
log "Operation updated" at INFO;

}

}
}
}

Paging Cumulocity lIoT queries

Queries support paging when requesting multiple responses from Cumulocity IoT. The number
of objects requested by queries are controlled using the following query parameters:

B pageSize represents a batching parameter for getting multiple responses from Cumulocity
IoT. A larger pageSize does fewer requests to Cumulocity IoT to retrieve all the objects, but
each request is larger. By default, pageSize is set to 1000. There is an upper limit of 2000.

B currentPage can be set to retrieve a specific page of results for a given pageSize. If you set
currentPage, then only a single page is requested. If currentPage is not set (default), all the
pages are requested.

Note:

It is not recommended to set a small pageSize unless you are requesting a single page. To
do this, you must set currentPage. Set currentPage to 1 to retrieve the first pageSize results.
A warning is logged if pageSize is below 50 and currentPage is not set.

® withTotalPages is optional because it defaults to true, which means that a query includes full
page statistics. If you set withTotalPages to false, only a single page is requested.

Note:

If you do not want to receive all pages, you can set withTotalPages to false, which can
improve performance by ensuring that only a single page is requested. With this setting, it
is not required to also set currentPage on a request.

For more details on query result paging and the above query parameters, see the information on
the REST implementation in the Cumulocity IoT - API Specifications at https://cumulocity.com/api/.

Examples

The following example shows a FindEvent query where the first 50 events are requested:

// Example 1: A FindEvent query where the first 50 responses are requested.
com.apama.cumulocity.FindEvent request := new com.apama.cumulocity.FindEvent;
// ... adding other query params ...

request.params.add("pageSize", "50");

request.params.add("currentPage", "1");

send request to com.apama.cumulocity.FindEvent.CHANNEL;

216 Connecting Apama Applications to External Components 10.15.4

https://cumulocity.com/api/

10 The Cumulocity loT Transport Connectivity Plug-in

The next two examples demonstrate how to request a range of events where we are not just
interested in the first page of results.

In the second example, pageSize is also set to 50, but currentPage is set to 3, thus requesting the
101st to 150th events:

// Example 2: A FindEvent query where the 101st-150th responses are requested
com.apama.cumulocity.FindEvent request := new com.apama.cumulocity.FindEvent;
//... adding other query params ...

request.params.add("pageSize", "50");

request.params.add("currentPage", "3");

send request to com.apama.cumulocity.FindEvent.CHANNEL;

As a general rule, if currentPage is greater than 1 and the number of objects you require is not a
factor of the start of the range (or if the number of responses required is greater than the upper
limit of pageSize), multiple requests are needed to retrieve the objects of interest. As the second
example above retrieves 50 events starting after the 100th response (and as 50 is a factor of 100),
only 1 request is required.

The third example illustrates a situation where multiple queries are required. 40 events are to be
retrieved, starting after the 60th response. As 40 is not a factor of 60, you should set pageSize to
20 (the largest common factor of 60 and 40) and send two requests: one where currentPage is set
to 4 (this retrieves the 61st-80th events), and another where currentPage is set to 5 (this retrieves
the 81st-100th events).

// Example 3: Two FindEvent queries retrieving the 61st-100th events

// First request retrieves 61st-80th events

com.apama.cumulocity.FindEvent requestl := new com.apama.cumulocity.FindEvent;
// ... adding other query params

requestl.params.add("pageSize", "20");

requestl.params.add("currentPage", "4");

send requestl to com.apama.cumulocity.FindEvent.CHANNEL;

// Second request retrieves 81st-100th events

com.apama.cumulocity.FindEvent request2 := new com.apama.cumulocity.FindEvent;
// ... adding other query params

request2.params.add("pageSize", "20");

request2.params.add("currentPage", "5");

send request2 to com.apama.cumulocity.FindEvent.CHANNEL;

Invoking other parts of the Cumulocity lIoT REST API

For individual event types, Apama provides event-specific interfaces for performing actions. See
“Using managed objects” on page 188, “Using alarms” on page 193, “Using events” on page 197,
“Using measurements” on page 202, or “Using operations” on page 209 for more information. This
topic covers how to interact with the remaining Cumulocity IoT REST APL

Typically, interacting with the REST API or making HTTP requests through the Cumulocity IoT
platform requires manual setup, including configuring tenant information and authentication
methods. The generic request/response interface described below does this for you. This is also
the case for users creating EPL apps with the Streaming Analytics application in Cumulocity IoT.

Note:

Connecting Apama Applications to External Components 10.15.4 217

10 The Cumulocity loT Transport Connectivity Plug-in

While the GenericRequest/GenericResponse interface can be used for any request to the platform,
it makes several assumptions about the request and response format that the Cumulocity IoT
REST API guarantees. The CumulocityRequestInterface event described in “Invoking
microservices” on page 219 is more appropriate for low-level requests, such as making requests
to other microservices.

Create a new com.apama.cumulocity.GenericRequest using new GenericRequest and then
individually set whichever fields are needed by name. You must always set the reqId (which is
used to tie requests and responses together) to a unique identifier generated by the
com.apama.cumulocity.Util.generateReqId() action. You will also need to set the HTTP method
(also known as the verb) and path. For some APIs, you will also need the queryParams (which
populates the query string), body (typically a sequence or dictionary that will be converted to JSON
by the plug-in) and/or additional HTTP headers. The GenericRequest event should be sent to the
channel specified by the GenericRequest.SEND_CHANNEL constant.

To receive responses, you must subscribe to the channel given in the

GenericResponse . SUBSCRIBE_CHANNEL constant. The response events will contain the reqId identifier
specified in the request, as well as a body in a dictionary<any,any> where the AnyExtractor can
be used to extract the expected content. This dictionary contains a structure which is equivalent
to the JSON payload returned by Cumulocity IoT. For the cases where no body is expected in the
response (for example, for a DELETE request), only a GenericResponseComplete event will be received
for the request identifier.

When using an API which returns a collection, the results are automatically split into multiple
GenericResponse events, followed by a GenericResponseComplete, all with the reqId identifier
provided in the request.

Here is a simple example of using the API:

GenericRequest request := new GenericRequest;

request.reqId := com.apama.cumulocity.Util.generateReqId();

request.method := "GET";

request.isPaging := true;

request.path := "/measurement/measurements";

monitor.subscribe(GenericResponse.SUBSCRIBE_CHANNEL) ;

on all GenericResponse(reqId=request.reqld) as response
and not GenericResponseComplete(reqId=request.reqld)

{
AnyExtractor dict := AnyExtractor (response.getBody());
AnyExtractor source := AnyExtractor(dict.getDictionary("source"));
try{
AnyExtractor speed :=
AnyExtractor(dict.getDictionary("c8y_SpeedMeasurement") ["speed"]);
log "Found measurement of type: c8y_SpeedMeasurement with id : " +
dict.getString("id") + " and source id :" + source.getString("id") +
" and speed "+speed.getFloat("value").toString()+
" "t+speed.getString("unit")
at INFO;
}
catch(Exception e){
log "Failed to parse unexpected measurement : " +
dict.toString() at WARN;
}
}

218 Connecting Apama Applications to External Components 10.15.4

10 The Cumulocity loT Transport Connectivity Plug-in

on GenericResponseComplete(reqId=request.reqld)

{

}
send request to GenericRequest.SEND_CHANNEL;

monitor.unsubscribe(GenericResponse.SUBSCRIBE_CHANNEL) ;

Invoking microservices

The Cumulocity IoT transport has a CumulocityRequestInterface event that allows you to invoke
microservices (or other HTTP requests) within Cumulocity IoT. This interface automatically handles
authentication. It can be used from an Apama instance outside of Cumulocity IoT and from within
Cumulocity IoT, either as an EPL app within the Streaming Analytics application or in a custom
microservice.

Note:

While the CumulocityRequestInterface can be used to interact with the REST API, we recommend
that you use the GenericRequest/GenericResponse interface described in “ Invoking other parts
of the Cumulocity IoT REST API” on page 217.

Before you can create an HTTP request, you need to call a static connectToCumulocity () action in
order to connect (as shown in the later example). The following is the format of the action on the
helper class that you call to create a request:

action createRequest(string method, string path, any payload) returns Request

Pass the following;:
m The specific type of HTTP request that is to be created, such as GET or PUT.

® A specific path that you want to append to your request. For example, the path for a
microservice that is running on your desired tenant:
/service/myMicroService/path/under/microservice.

® The payload will be encoded as JSON. For example, a dictionary will be converted to a JSON
object.

This action will return an instance of a Request from the generic HTTP API (see also “Using
predefined generic event definitions to invoke HTTP services with JSON and string payloads” on
page 163) with configuration set up on the request. You can later call execute on this request,
passing in a handler to deal with any response.

The following example shows how to make use of this class, that is, how to make an HTTP request
in order to retrieve information from a running microservice:

monitor CumulocityTestMonitor {
action onload() {
try{

CumulocityRequestInterface cInterface :=
CumulocityRequestInterface.connectToCumulocity();

Request req := cInterface.createRequest("GET",
"/service/myMicroService/path/under/microservice",
{"request":"data"});

Connecting Apama Applications to External Components 10.15.4 219

10 The Cumulocity loT Transport Connectivity Plug-in

req.execute(getHandler);

}
catch (com.apama.exceptions.Exception e) {
log "Error thrown trying to create a Cumulocity Request " +
e.toString() at ERROR;

}

action getHandler (Response resp) {
AnyExtractor d := resp.payload;
log "Response output: " + d.toString() at INFO;
log "Test Done";

3

The CumulocityRequestInterface will automatically detect if it is running inside or outside of
Cumulocity IoT and will automatically connect. If running remotely, it will rely on properties
being set, which will be the connection details provided for the transport. You can do this by
creating a . properties file in your project and specifying it with the --config option when starting
a correlator (see "Starting the correlator" in Deploying and Managing Apama Applications).

Optionally, you can set the following if you are connecting to a Cumulocity IoT server with a
self-signed or private certificate. Set this to the path to the certificate authority file by which the
server's certificate was signed:

CUMULOCITY_TLS_CERT_AUTH_FILE

The helper class is included in the Utilities for Cumulocity bundle in Software AG Designer. You
can also find it in the monitor/cumulocity directory of your Apama installation.

Monitoring status for Cumulocity loT

The Cumulocity IoT component provides status values via the user status mechanism. It provides
the following metrics (Where prefix is user-CumulocityIoTGenericChain.cumulocityCodec):

Key Description

prefix.maxLatencyInlLastHourMillis Maximum request latency observed
during the last hour, in milliseconds.

prefix.maxLatencyInLastHourDetails Details of the maximum latency request.
Consists of a tab-separated string
containing the following;:

m [SO format timestamp in UTC,

= method, path and parameters
truncated to 100 characters (in URL
format), and

® an optional count of the number of
objects if this is a batched request (only

220 Connecting Apama Applications to External Components 10.15.4

10 The Cumulocity loT Transport Connectivity Plug-in

Key Description

com.apama.cumulocity.Measurement
requests can be batched).

prefix.mostRecentSlowRequestDetails Details of the most recent slow request. A
request is slow if the request-response
multiplied by the number of pages (or 1)
is above
CUMULOCITY_LATENCY_SLOW_THRESHOLD_SECS
(see “Configuring the Cumulocity IoT
transport” on page 182). Consists of a
tab-separated string containing the
following:

=[SO format timestamp in UTC,

= method, path and parameters
truncated to 100 characters (in URL
format), and

® an optional count of the number of
objects if this is a batched request (only
com.apama.cumulocity.Measurement
requests can be batched).

prefix.requestLatencyEWMAShortMillis A quickly-evolving
exponentially-weighted moving average
of request latencies, in milliseconds. Uses
0.5 as the weight to calculate this. This
puts more importance on recent latencies
than requestLatencyEWMALongMillis.

prefix.requestLatencyEWMALongMillis A longer-term exponentially-weighted
moving average of request latencies, in
milliseconds. Uses 0.1 as the weight to
calculate this.

You can find additional status information relating to the Cumulocity IoT transport in the status
elements from the HTTP client. These start with the prefix
user-CumulocityIoTGenericChain.httpClient. For a description of these status elements, see
“Monitoring status for the HTTP client” on page 161.

For more information about monitor status information published by the correlator, see "Managing
and Monitoring over REST" and "Watching correlator runtime status", both in Deploying and
Managing Apama Applications.

When using Software AG Command Central to manage your correlator, see also "Monitoring the
KPIs for EPL applications and connectivity plug-ins" in Deploying and Managing Apama Applications.

Note:

Connecting Apama Applications to External Components 10.15.4 221

10 The Cumulocity loT Transport Connectivity Plug-in

Command Central integration is deprecated and will be removed in a later release.

Finding tenant options

In order to find the available tenant options on a tenant, you can send the event
com.apama.cumulocity.FindTenantOptions to FindTenantOptions.SEND_CHANNEL. This results in
events of type com.apama.cumulocity.FindTenantOptionsResponse being returned on
com.apama.cumulocity.FindTenantOptionsResponse.SUBSCRIBE_CHANNEL.

The returned event includes a sequence of com.apama. cumulocity.TenantOption, which individually
include the key/value combinations that represent the available tenant option.

In order to filter the tenant options returned, you can specify values in the category and key fields
of the find request. If only the key is specified, then Cumulocity IoT returns all the available tenant
options and the correlator filters them by the key.

Getting user details

You can get the details of the current user by sending the event
com.apama.cumulocity.GetCurrentUser to com.apama.cumulocity.GetCurrentUser.SEND_CHANNEL.
This results in events of type com.apama.cumulocity.GetCurrentUserResponse being returned on
com.apama.cumulocity.GetCurrentUserResponse.SUBSCRIBE_CHANNEL.

The com.apama.cumulocity.GetCurrentUserResponse returned contains a
com.apama.cumulocity.CurrentUser event, which in turn contains the -id of the user, the userName,
a sequence of effectiveRoles for the user and a dictionary of useroptions.

By default, this is the user which the Apama application is running as. This is either the user
configured in the Cumulocity IoT connection if it is not running within Cumulocity IoT or the
service user of the microservice if it is running in Cumulocity IoT.

The ability to request details of permissions for another user can be done by overriding the
authorization or cookies headers in the com.apama.cumulocity.GetCurrentUser event. This would
normally be used if you are taking the authentication details from a request to your application
and using them to determine the roles that user has.

Example - checking a user based on information in a received request:

/** Event containing extracted information retrieved from a
* http request where we want to check the validity of the user x/
event ActionRequest {

string authorization;

string actionToTake;

string requestId;

string channel;
}
/** Response for the HTTP request */
event ActionResponse {

string requestId;

string actionResult;

}

/** Response 1if authorization failed %/

222 Connecting Apama Applications to External Components 10.15.4

10 The Cumulocity loT Transport Connectivity Plug-in

event ActionNotAllowed {
string requestId;

}
monitor.subscribe(GetCurrentUserResponse.SUBSCRIBE_CHANNEL) ;

// Listen for incoming HTTP requests

on all ActionRequest() as ar {
integer reqIld := com.apama.cumulocity.Util.generateReqId();
// Send a request to check the user from the incoming request
GetCurrentUser checkUser := new GetCurrentUser;
checkUser.reqId := reqld;
checkUser.authorization := ar.authorization;
send checkUser to GetCurrentUser.SEND_CHANNEL;

// if authentication passed, check authorization
on GetCurrentUserResponse(reqId=reqId) as res and not
GetCurrentUserResponseFailed(reqld=reqId) {
if checkHasRoles("ActionAllowed", res.user.effectiveRoles) {
send ActionResponse(ar.requestId, performAction(ar.actionToTake))
to ar.channel;
} else {
send ActionNotAllowed(ar.requestId) to ar.channel;
}
}

// if authentication failed, return an error
on GetCurrentUserResponseFailed(reqld=reqId) as err and not
GetCurrentUserResponse(reqId=reqId) {
send ActionNotAllowed(ar.requestId) to ar.channel;
}
}
action performAction(string actiontoTake) returns string{
// do some action
return "";

3

action checkHasRoles(string role,sequence<Role> effectiveRoles) returns boolean {
Role r;
for r in effectiveRoles {
if r.id = role{
return true;
}
}

return false;

You can override the current user in one of the following ways:

® By setting the authorization header of the other user. This would be used for basic
authentication and returns details of that other user.

If this is invalid, then GetCurrentUserResponseFailed is returned.

m By setting both authCookie and xsrfToken to valid values for another user. This returns details
of that other user.

Connecting Apama Applications to External Components 10.15.4 223

10 The Cumulocity loT Transport Connectivity Plug-in

If either authCookie or xsrfToken are incorrect or not set, then GetCurrentUserResponseFailed
is returned.

® Not setting all of authorization, authCookie or xsrfToken returns details of the current user.

Optimizing requests to Cumulocity IoT with
concurrent connections

In order to provide better performance in requests to the Cumulocity IoT platform, you can
configure the transport to use multiple client connections to perform requests concurrently. This
can provide improved performance, but may also change the ordering in which requests are
executed and responses are returned. By default, the Cumulocity IoT transport tries to use multiple
connections and restricts ordering to avoid races that may affect your EPL application. However,
this may be either insufficiently concurrent or insufficiently ordered for your specific use case. In
that case, there are several options on how to control the concurrency used. These are described
below.

Default behavior

By default, three concurrent connections are created for handling requests to the Cumulocity IoT
platform for a given correlator process (a given tenant, for applications running inside the
Cumulocity IoT platform).

To avoid obvious races, the following rules apply for concurrency:
m All read (GET) requests can be performed concurrently with each other.

m All update (PUT/POST) requests relating to different managed objects (for example, a
ManagedObject update, a new Measurement for a second Managedobject and an Alarm with a
third ManagedObject as a source) can be performed concurrently with each other.

m All updates to a single managed object (based on id, or source as appropriate) are performed
serially in the order they were sent to the transport.

® Measurement updates sent without the withChannelResponse option that may be batched can
be processed concurrently with any other request.

® Any read request waits for all outstanding update requests before starting.
® Any update request waits for all outstanding read requests before starting.

B GenericRequest update (PUT/POST/DELETE) operations cannot be automatically tied to a
ManagedObject, so they are never processed concurrently with any other request.

Changing the default behavior

There are two options to change the default behavior through the CumulocityIoT.properties file.
These changes apply to the entire correlator. When running as an EPL application in the Cumulocity
IoT platform, this setting can be changed for your whole tenant as a tenant option.

224 Connecting Apama Applications to External Components 10.15.4

10 The Cumulocity loT Transport Connectivity Plug-in

® You can set the CUMULOCITY_NUM_CLIENTS property to control the number of clients used. If it
is set to 1, then all requests are sent serially using a single connection (disables concurrency).
If it is set to another number, then that number of concurrent connections to the platform is
created.

® You can add the CUMULOCITY_CONCURRENCY_MODE property to the properties file. By default, this
has the value of auto which has the behavior described above to limit the concurrency to
preserve some ordering. You can set the value to always instead, in which case requests of all
types may be processed concurrently and any ordering consequences must be handled in EPL
instead.

See also “Configuring the Cumulocity IoT transport” on page 182.

Creating a new connection with specific behavior

The following table lists the event types from the com.apama.cumulocity package that you can use
to either create new connections for sending events independently of the default transport or use
the default shared connection. In this way, multiple different configurations can be used at the
same time. You can use these event types to separate the requests for different EPL applications,
or different types of requests within the system. Each of these event types corresponds to a particular
combination of settings that can be configured for the default transport. These events can be created
using either the create or the createForTenant actions. The create action is used when an
application needs to work only with per-tenant deployment. The create action may take an
argument to configure the number of clients to use for the connection depending on the connection
type. The createForTenant action should be used when an application needs to work with
multi-tenant deployment or both multi-tenant and per-tenant deployment. The createForTenant
action takes a TenantDetails event asits first argument and may also take an argument to configure
the number of clients to use for the connection depending on the connection type. The TenantDetails
event provides details of the subscribed tenant to the connection object so that it can provide
information that is specific to the provided tenant. The TenantDetails events can be obtained by
using tenant subscription events. See “Working with multi-tenant deployments” on page 227 for
more details.

Event type Description

FullyConcurrentConnection A connection with multiple clients and no restriction on ordering.

The additional argument to the create() or createForTenant()
method on that event type is:

integer numClients

Configuration equivalents:

CUMULOCITY_NUM_CLIENTS=numClients
CUMULOCITY_CONCURRENCY_MODE=always

SerialConnection A completely serial connection with no concurrency:.

There isno argument to the create () or createForTenant () method
on that event type.

Connecting Apama Applications to External Components 10.15.4 225

10 The Cumulocity loT Transport Connectivity Plug-in

Event type Description

Configuration equivalent:

CUMULOCITY_NUM_CLIENTS=1

AutoConcurrentConnection A connection with multiple clients but with the standard ordering
restrictions.

The additional argument to the create() or createForTenant()
method on that event type is:

integer numClients

Configuration equivalents:

CUMULOCITY_NUM_CLIENTS=numClients
CUMULOCITY_CONCURRENCY_MODE=auto

SharedConnection A connection to Cumulocity IoT which is configured to handle
all requests using a shared default client.

All of the above event types have the same API to use them, which looks like this:

FullyConcurrentConnection conn := FullyConcurrentConnection.create(5);

monitor.subscribe(conn.getChannel(FindManagedObjectResponse.SUBSCRIBE_CHANNEL)) ;
FindManagedObject fmo := // create a request
send fmo to conn.getChannel(FindManagedObject.SEND_CHANNEL)) ;

on FindManagedObjectResponse(reqld=fmo.reqld) {
// do something
monitor.unsubscribe(conn.getChannel (FindManagedObjectResponse.SUBSCRIBE_CHANNEL)) ;
conn.destroy(); // can't use it after this

The connection object provides a getChannel method which can be used to convert the standard
channels used into the correct channels for events to go to this connection instead of the default
transport.

For more details, see the com.apama.cumulocity package in the API Reference for EPL (ApamaDoc).

Writing your EPL to avoid races

If there are ordering issues due to concurrency, particularly if you want to use a fully-concurrent
connection, then you may need to write your EPL to explicitly cater for the possible reordering.
This is normally done by listening for the response events that each request has to ensure that it
is fully completed before doing any requests which depend on the first one having completed.

For sending a creation or update event to an object that means using the withchannelResponse API
and listening for the com.apama.cumulocity.0ObjectCommitted or
com.apama.cumulocity.ObjectCommitFailed response. For example:

monitor.subscribe(Measurement.SUBSCRIBE_CHANNEL) ;
Measurement m := // create measurement

226 Connecting Apama Applications to External Components 10.15.4

10 The Cumulocity loT Transport Connectivity Plug-in

integer reqIld := Util.generateReqId();
send m.withChannelResponse(reqld) to Measurement.SEND_CHANNEL;
on ObjectCommitted(reqld=reqld) and not ObjectCommitFailed(reqId=reqId) {
// do whatever must wait until the Measurement request has been fully completed
}
on ObjectCommitFailed(reqId=reqId) and not ObjectCommitted(reqId=reqId) {
// handle the fact that this failed
}

Working with multi-tenant deployments

When developing an application which can work in multi-tenant deployments, the application
needs to handle subscription/unsubscription of tenants and sending/receiving events to/from
subscribed tenants.

The preferred approach is to use the com.apama.cumulocity.TenantSubscriptionNotifier event,
which provides a callback-based API for notifications about tenant subscriptions and
unsubscriptions. It automatically handles spawning new monitor instances for each subscribed
tenant and terminating the instance when the tenant is unsubscribed. The monitor instances are
spawned in a private context for each tenant. The callback actions are called for all currently
subscribed tenants and for any future tenant subscriptions and unsubscriptions from the monitor
instances spawned for those tenants. This keeps the state and processing for each tenant separate
from other tenants and cleans up the monitor instances and listeners when tenants are unsubscribed.

The subscription callback provides a com.apama.cumulocity.TenantDetails event, which is used
to create connection objects for that tenant. The connection objects provide getChannel actions to
get tenant-specific channels to send events to and receive events from that tenant. See the
documentation of the FullyConcurrentConnection, SerialConnection, AutoConcurrentConnection,
and SharedConnection events in the com.apama.cumulocity package for more details.

Alternatively, the application can use the
com.apama.cumulocity.GetAllTenantsSubscribedToApplication event to get all tenants that are
currently subscribed to the current application and listen for the
com.apama.cumulocity.ApplicationSubscribedForTenant and the
com.apama.cumulocity.ApplicationUnsubscribedForTenanteventsh)getfuturetenantsubscrqﬁjon
and unsubscription notifications. The ApplicationSubscribedForTenant event provides a
com.apama.cumulocity.TenantDetails event, which is used to create connection objects for that
tenant. The ApplicationSubscribedForTenant event also provides a context that is a private context
only for the tenant and can be used for spawning new monitor instances. When using