5 software~

Developing Apama Applications

Version 10.11.2

January 2022

APAMA

This document applies to Apama 10.11.2 and to all subsequent releases.
Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 2013-2022 Software AG, Darmstadt, Germany and/or Software AG USA, Inc., Reston, VA, USA, and/or its subsidiaries
and/or its affiliates and/or their licensors.

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or
Software AG USA Inc. and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product names mentioned
herein may be trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
https://softwareag.com/licenses/.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product
documentation, located at https://softwareag.com/licenses/ and/or in the root installation directory of the licensed product(s).

This software may include portions of third-party products. For third-party copyright notices, license terms, additional rights or
restrictions, please refer to "License Texts, Copyright Notices and Disclaimers of Third Party Products". For certain specific third-party
license restrictions, please refer to section E of the Legal Notices available under "License Terms and Conditions for Use of Software
AG Products / Copyright and Trademark Notices of Software AG Products". These documents are part of the product documentation,
located at https://softwareag.com/licenses/ and/or in the root installation directory of the licensed product(s).

Document ID: PAM-DEV-10112-20220131

https://www.softwareag.com/licenses/default.html
https://www.softwareag.com/licenses/default.html
https://www.softwareag.com/licenses/default.html

Table of Contents

ADOUL this GUIE.....ceceetieetetetieeettteetees st ss s s s s s s b sses s sssassesassssenes 11
Documentation 10admap.........cccviiiiiiiiiiiiic e 12
Online Information and SUPPOTt.......cccouvueuiuiiririiiiiicc e 13
Data ProteCtion........cououiiiiiii s 14

I Developing Apama Applications in EPL........iiniininininiiniiniinniinienienicnseseens 15
1 Getting Started with Apama EPL..........c.cccooriiiiccccccccccc e 17

Introduction to Apama Event Processing Language...........cccocoeevveviriiininenccnenincncneeeene, 18
How EPL applications compare to applications in other languages...........ccccccovvvvnenenee. 19
About dynamic compilation in the correlator...........cooovviiiiiie, 20
About the Apama development environment in Software AG Designer....................... 20
TeIMINOLOZY ...cuovevirieiiie s 21
Defining eVent tyPeS.......coccieiiieieieieiciceeeeee s 26
Working With @VeNnts...........coiiiii 29
2 Defining MONILOTS........coviveieieiieieiee s 33
About MONItOr CONTENES.......oviiiiiiie e 34
Example of a simple MONItOT.........cccceviiiiiiiieieee s 37
Spawning monitor INStANCES..........c.cooveieiiiiiic s 39
Communication among monitor iNStANCES...........cccieieieieiiiiiieice 45
About Service MONITOTS.......ccviiiiiic s 52
Adding predefined annotations............ccceeveieieieieicieccce e 52
Subscribing to channels............cooviiiiii 54
Adding service monitor bundles to your project..........cceeviiiiiininininnne, 57
Utilities for operating on MONItOTS........ccovoviiiiiiii e 57
3 Defining QUETIES.........cooviveieiieieieieie s 59
Introduction t0 QUETIES.......coiiiiiiiicc s 60
Format of query definitions..........ccceueveieieieieieiiieeeccee e 68
Defining metadata in @ QUETIY........cccooeieiiiiiiiieiccce e 70
Partitioning qUETIES...........coiiiiiiiiiiiiicc s 71
Defining qUery iNPUt........cccveiiieiieeeeceee s 77
Finding and acting on event patterns..........cccocoovviiiiniiiinni 103
Implementing parameterized qUETIES..........ccoovviiiiiiiiiiiii 129
Restrictions iN QUETIES.........ciiiiieiiiiiectct e 134
Best practices for defining queTies............cccoeueveieieieciceicce e 135
Testing qUETy eXeCUION........ccociiiiiiii e 138
Communication between monitors and queries...........c.cocoeeveeeeeieeccceeee 140
4 Defining Event LiSteNers..........cccoeuiiiiiieiiiiieieieieeecece e 143
About event expressions and event templates...........ccooveveiiiiiiie, 144
Specifying the on statement...........ccooooviiiiiiiii 147
Using a stream source template to find events of interest...............ccccooeeeiiiieeennen 148
Defining event expressions with one event template.............cccocoeiiiiiinii 148
Terminating and changing event listeners...........ccooovovoiviiiiiinie, 153
Specifying multiple event listeners.........ccocoovoviiiiiiiii 155
Listening for events that do not match...........ccooove, 156
Specifying completion event listeners............ccoovoviiiiiiiiiiiie 157

Developing Apama Applications 10.11.2 ii

Table of Contents

Improving performance by ignoring some fields in matching events........................... 159
Defining event listeners for patterns of events............cccccoeeiiiiiicceccce 160
Specifying and/or/not logic in event listeners...........c.cccooveeieirinicneninicceccees 162
How the correlator executes event listeners............cocooovveiiiiiiiiiiiice, 168
Defining event listeners with temporal constraints............c.cocoeeeeiiiinicc 175
Understanding time in the correlator...........coooviiie, 180
Out of band connection Notifications............ccoveviiiiiiiiiiiiii 186
5 Working with Streams and Stream Queries............ccccoeveiiieiiiiiiiii 189
Introduction to streams and stream networks...........cccccoviiiiini 190
Defining StreamIS.......c.ccveieieieieieieieieiee e 191
Using output from Streams..........ccoooviiiiiiiiiic s 192
Defining Stream qUETIES...........cceueieieieieieicieiceeeee e 195
Defining custom aggregate functions..............ccooeueieiieiiicccccc e 223
Working with lots that contain multiple items..........ccccoovviiiiiie, 227
Stream network Lifetime..........ccooiiiiiiii 231
Using dynamic expressions in stream qUETIeS..........ccocoevviiiiiiniieniiiceee, 234
Troubleshooting and stream query coding guidelines...........ccccoovovviviiiiiiiiiiiiinnnen. 241
6 Defining What Happens When Matching Events Are Found...........cccccooinininicnnnnnes 247
Using variables...........oii e 248
Defining actionsS.........ccveieieieieieieieieieee e 252
Defining static aCtions.........cceueieieiiiiieicicc e 264
Getting the current time..........ccoooviiiiiii e 265
Generating @VeNTS. ... 266
Handling the any type.........oc s 271
Handling any values of different types with the switch statement.............cccccococeeeee. 274
ASSIGNING VAIUES.......oiiiiii s 275
Defining conditional logic with the if statement.............ccccooiniiini 275
Defining conditional logic with the ifpresent statement............cccccooovvoiiiiiiiinnnns 276
Defining 100PS......cueviiiiiiieieiiccie s 277
Exception handling...........cceeeiiiiiii s 278
Logging and Printing.........cccocoeiiiiiiiiii e 281
Sample financial aPPliCatioN..........coviueieviiiiciei 285
7 Implementing Parallel PrOCESSING...........cccoveveieieieieiiicieee s 287
Introduction to CONtEXES........coviiiiiiiiiiiiicc s 288
Creating CONEXES........civiiiieieieiieeeee e 290
How many contexts can you create?............ccoooiiiiiiiiiiiciic 291
Using channels to communicate between contexts............cccoccoviiiiinniiiinnicene 291
Obtaining context references...........cooiiiiiiiiiiiii s 292
Spawning t0 CONEEXES......viiiiiiii e 293
Channels and CONEXtS...........ccciiiiiiiiiiiiiiiiicc s 294
Sending an event to a channel.............ccccooiiiiiiiii 295
Sending an event to a particular context.............cooveiiiiiiii 296
Sending an event to a sequence of CONtEXLS..........cccovviiiiiiiiiiiiiiii e 297
Common use cases fOr CONEXES.........ccouuiuiiiiiniiiiiiiii s 299
Samples for implementing CONEXLS........c.ccvivirriieiririniiieiineereeeeeee s 299
Contexts and correlator determiniSm...........ccocoeiiiiiniiiiiii 306
How contexts affect other parts of your Apama application...........cccccceuvvriririnicininnnne 306
8 Using Correlator PersistenCe...........cocovvuiuiuiinirieieiiriiecciereeceee e 309
Description of state that can be persistent..........ccccoveeivinniciinniccecceeene 310
When persistence is USEfUl.........ccoovvuiuiiiiiiiiiiiiiccccc e 311

iv Developing Apama Applications 10.11.2

Table of Contents

When non-persistent monitors are useful............ccooovoiniiiiie, 311
How the correlator persists state...........ccoovviiiiiiiiie, 312
Enabling correlator persistence.............ccoeeveveieveieicieicicice 313
How the correlator 1ecovers state...........coooveviiiiiiiii, 316
Designing applications for persistence-enabled correlators...........cccoovvvviiiiinnnnnen. 318
Upgrading monitors in a persistence-enabled correlator............ccocoovovviiiiiiiinnnnen. 319
Sample code for persistence applications............ccooevveiiniiiniiniininie 320
Requesting snapshots from EPL..........cccooviiiiiiiii 322
Developing persistence applications...........ccoevviviiiiiiiiininii 322
Backing up the persistence database while the correlator is running............cccoo........ 323
Using EPL plug-ins when persistence is enabled...........cccoooiiine, 325
Using the MemoryStore when persistence is enabled...........cccooovine, 325
Comparison of correlator persistence with other persistence mechanisms.................. 327
Restrictions on correlator persistence..........cooviviiiiiiiiininii 328
9 Common EPL Patterns in MONItOTS..........ccoevrieieiiieicieiecccce s 329
Contrasting using a dictionary with Spawning.............ccccoeeeiiiiiiiicce 330
Factory pattern..........co 331
Using quit() to terminate event listeners...........coooovoiviiiiiiiiiiiie, 332
Combining the dictionary and factory patterns.............ccococevevviiiniiiccciiccenes 333
Testing UNIQUENESS........cocooviiiiiiiiic e 334
Reference COUNtING.........ccviiiiiiiriiiic s 334
Inline request-response PatteImN.........ccooveeiiiiiiii s 336
Writing echo monitors for debugging...........cooveiiviiiicniniic e 337
Versioning and upgrading mOnitors...........cccueieieeiciciciccicccece i 338
10 Using EPL PIUG-INS...c.cucuiiiieiiiciiicicteicictctctcctctciictcitcttctitsie sttt 341
Overhead of USING PIUG-INS.......coeviiiiiiciicc e 342
When to 1se PIUG-iNS........ccoviiiiiiiii 342
When not to use plug-ins..........ccceueiiiiiiiiiiii 343
Using the TimeFormat Event Library.........cccooovoiiiiiie, 343
Using the MemoOTyStOre........oviiiiiii e 375
Using the distributed MemoryStore...........coooviiiiiiii, 390
Using the Management interface...........c.cccooveeieiiiiciiniiccccec e 416
Using the JSON plug-in........ccoooiiiiiiiii e 420
Using MATLAB® products in an application...........cccoeveveiiiiiniiiiiine, 421
Using the R plug-iN......ccccoiiiiiiiiiiicc s 429
Interfacing with user-defined EPL plug-ins........cccccccevuiiiiiiiiiininininiiiciciicccccces 431
About the chuNK tyPe......oooiiii 431
11 Making Application Data Available to Clients..........c.ccooeiiiiiiiiicccce 433
Adding the DataView Service bundle to your project..........cccceeeiiiniiiinnncnnne. 435
Creating DataView definitions...........ccccovvviiiiiiiniiniiiii 435
Deleting DataView definitions............ccccceuiuiiiiiiiiiiniiiniiiiiies 436
Creating DataView items.........ccccocuviiiiiiiiniiiii s 436
Deleting DataView Items.........cccoiiviiiiiiiiiiiiiiiiici e 437
Updating DataView items..........ccccceviiiiiiiiiiiiniiiiiicicicccce e 438
Looking up field POSItIONS........ccccuvueueuiininiriiiieceecceee s 439
Using multiple COTrelators.........cooeiiniriiciininiiciieeeeeeeee e 439
12 Testing and Tuning EPL mMONItOrS.........ccoceiviiiiiiiiiiiiiiciccccee 441
Optimizing EPL programs............ccccciiiiiiiiniiiiiicicciccecesenec e 442
Best practices for writing EPL.........ccccoviiiiniiiiiicceccceeee s 442
Structure of a basic test frameWoOrK............ccooveieiiiiiciiii 4

Developing Apama Applications 10.11.2 v

Table of Contents

USINg @VeNt fIleS........cuouiiiieieieieieeee e 444
Handling runtime ITOTS........ccocooiiiiiiiiiiccc s 445
Capturing test OUtPUL.......ccueveiiicc s 447
Avoiding listeners and monitor instances that never terminate...........ccccoooveviennnnne. 447
Handling slow or blocked receivers..........cocooviiiiiiiiiiii, 448
Diagnosing infinite loops in the correlator..............ccoeeveeiieiccccce 448
TUNING CONEEXES ..ottt 449

13 Generating Documentation for Your EPL Code........c.cccoooeiiiiiiiiccccce 453
Code constructs that are documented..............coooeiiiii 454
Steps for using ApamabDOC...........ooviiiiiiii e 454
Inserting ApamaDoc COMMENTS........ccoouiiiiiiiiiiiiiic s 455
Inserting ApamaDoc tags........cooueuiiiiiiiiiiiicc 456
Inserting ApamaDoOC references..........ccoovvviiiiiiiiii 459
Inserting EPL source code examples...........cooviiiiiiiiiiii 460
Generating ApamaDoc from the command line...........ccoooiiie, 461
Generating ApamaDoc from an Ant SCIipt........coovoiiviiiiiiiiiiie, 463

II Developing Apama Applications in Java.....cniniii. 465
14 Overview of Apama JMon Applications..........cccvvuiiiiiniiiiiininiiciicccces 467
Introducing JMon API CONCEPLS......cooviiiiiiiiiii e 469
ADOUL @VENE LYPES....oviiiiiiiiiiiiicc s 470
ADOUL MONIEOTS....coiiiiiiiiiiiiciic s 476
About event listeners and match listeners...........ccocoovviiiiininine, 477
Description of the flow of execution in JMon applications...........c.ccccceeveeeieeeereinnnee. 479
Parallel processing in JMon applications...........cccouevvivivininininiiniiiiieee, 480
Identifying external @Vents...........ccoouvviiiiiiiii e 483
Optimizing eVeNnt tyPes.........coooieiiiiiiiiiiicc s 483
Logging in JMon applications............coveviiiiiiiiiniici e 485
Using EPL keywords as identifiers in J]Mon applications............ccccceeveveieeienieieierenennnn 486

15 Defining Event EXPressions............coccviiieinininininini s 487
About event templates..........cooviiiiiiiiii s 488
Specifying parameter constraints in event templates..........cccocoovvvivinininiininiinininiine, 490
Obtaining matching eVents..........ccoouviiiiiiiiii e 492
Emitting, routing, and enqueuing events.............ccccoeeveeieieinecccc 493
Specifying temporal SEQUENCING..........ccovviiriiiiiii e 495
Defining advanced event eXpressions.............ceecieieieieieieeeieee s 497
Optimizing event eXPresSiONS....... ...t 509
Validation of event eXpressions..........cooiiiiininiinini s 510

16 Concept of Time in the Correlator...........coiiiiiiiicccccccc e 511
Getting the current time..........coooviiiiiiii e 512
About timers and their trigger times..........ccocoovviiiiiinii 513

17 Developing and Deploying JMon Applications...........ccccccercccccccccicccccccccciennes 517
Steps for developing JMon applications in Software AG Designer..............ccccceeueunce. 518
Java prerequisites for using Apama's JMon APL.........cccooii 519
Steps for developing JMon applications manually..........cccccoovvivinnininnnnnine, 520
Deploying JMon applications..........ccoueeveviiiiiiniiii e 520
Removing JMon applications from the correlator...........cccoovvvvvvivvivininiiiiie, 521
Creating deployment descriptor files...........c.cocoeveieieieiniiineic e 521
Package names and namespaces in J]Mon applications............ccocoeevvveviviiveninininencncennnen. 529

Vi

Developing Apama Applications 10.11.2

Table of Contents

Sample JMon applications..........c.ccoviiiiiiiiii s 529

III Developing EPL PIUG-iNS.....ciininenininniiniinicinsenissiissiessisisssessssissssesssssssssssssssssssssssssscsss 531
18 Introduction to EPL PIUG-INS.......ccccviiiiiiiniiiiiiiniiiiicccscss s 533
19 Providing an EPL Event Wrapper for a PIug-in...........ccccoeiiiiiniccccccccccinne 535
20 Writing EPL Plug-ins in CH. ..o 537
Creating a plug-in using CH......ccooeiiiieeee s 538
Using plug-ins written in CH. ..o 549

21 Writing EPL Plug-ins in Java.......cccccoviiiininiiiiiiicicccsecssnnns 551
Creating a plug-in USING JaVa......ccceiiiiiiiiiiiiiici s 552
Using EPL plug-ins written in Java........c.cccccvviiiiininiiiiiccccccseees 554
Sample plug-ins iN JaVa.......cccccvviviiiiiiiiiiiii s 560

22 Writing EPL Plug-ins in Python.........cccccoiiiiiiiiiiiicces 563
Creating a plug-in using Python..........cccocooiiiic 564
Using Python plug-ins..........ccccviiiiiiiniiiiiiiiciccc s 568
Installing Python modules............cccccoiviniiiininiiiiii s 570
Sample plug-ins written in Python...........ccoiiiiniice 571

IV Protecting Personal Data in Apama Applications..........iiieninniriinininnisienesniseiisnssisennnes 573
23 INtrOAUCHON. ...t s 575
24 Where personal data is held within the Apama platform...........ccccccevvviiiinniiinnnne. 577
25 Documenting personal data flows within an Apama application...........cccccccecvevvviucuecnnne. 581
26 Handling personal data in the "in-memory" state of the correlator............ccccccceevunnnenee. 583
27 Handling personal data "at rest" in the correlator persistence and JMS datastores........ 587
28 Handling personal data "in motion" from dashboards...........ccccceceeiiiniiiinininiiinnnnnee. 589
29 Handling personal data "at rest” in 1og files...........ccccoeuiuiivininiiiinnniiiiniccicccne, 591
Example log messages containing personal data..........c.ccccevueiinininiiinniiinnicene, 592
Protecting and erasing data from Apama log files.........ccccoceeiiviniiiinniiiinnicnne, 593
Recommended 10g leVels..........cociiiiiiiiiiniiiiiiiccce s 594
Recommendations for logging by Apama application code...........ccccccvvvviiiiiinniinnne. 594

30 Handling personal data "at rest" in the correlator input log file..........c.ccceeiiiinnnnnnnn. 597
31 Handling personal data "at rest" in containerization environments.............ccccccceeuruennne. 599
V EPL ReEfEICNCE.....ucueiiiiiiriiiiiinnsnsisssasasaes 601
32 INErOAUCHON. ... 603
Hello World example..........coooiiiiiiiiii e 604

B3 TP ettt bbb 607
Primitive and String tyPes.......cccocouiiiiiiiiii 608
RefErenCe tYPeS.....cuiviiiiiiiteieiiicte it 608
Default values fOr tyPes.........ccoviiieiiiiiiiniiiccccc 610
Type properties SUMMATY........cccooiiiiiiieiiiiiic s 611
Timestamps, dates, and times............ccccoeuiiiiiiiiiiiii 614
Type methods and instance methods...........coovoviiiiiiie, 615
TYPE CONVEISION......ciitiiiiiiitci s 616
Comparable tyPes........cocuiiieiiii e 617
Cloneable tyPes.......coviiiiiiiiiiiiii s 618
Potentially Cyclic tyPes.......coiiiiiiiiiiiiiicccc s 619
Support for IEEE 754 special ValUues..........ccccoovuiueirinininiciiinccieecceeee s 622

Developing Apama Applications 10.11.2 vii

Table of Contents

34 Events and Event LiSteners..........cccccoviiiiiiiiiiiiiiicccc 625
Event definitions.........ccoeiiiiiiiiiiiiiiccc e 626
Event templates.........coooviiiee s 628
Event listener definitions..........ccooiiiiiiiiiiiiiii s 633
Event Lifecycle.......o e 633
Event listener lifecycle...........ooiii 634
Event processing order for moONitors..........ccceeveieieieieieiieceee e 635
Event processing order fOr qUETIes...........cccoeueieieieieieieieieieceeee e 636
EVENt @XPIeSSIONS.......ccoiuiiiiiiiiiiiiicici s 637
Event channels..........cccoooiiiiiii s 642

35 MOMIEOTS. ...ttt a e 643
MONItor LEECYCle.. ..o 644
MONILOT fIl@S.....viiiiiiiiic s 645
PaCKAZES.....iiii e 645
The using declaration...........cocooiiiiiiiii e 646
Monitor declarations.............ccccvviiiiiiininiiiii s 646
The import declaration............c.oiiiii 646
MONItOT ACHONS.viuiiiiiictiictct e 647
CONEEXES. ..ttt 648
PIUZINS ettt 649
Garbage COIlECION.........oiiiiii e 649

36 QUETIES....uviceieeeieeeieeie et teste st e s te et e st e e aesreestteetaessaeasaessaessaesssessseassesssesseessaesseessaeasaesseesseesens 651
Query Lfetime. ..o 652
Query definition.........ooocuiiiiii s 654
Metadata SeCHON.........coiiiiiiiiiicc s 655
Parameters SeCHON.......c.ociviiiieiiec e 656
INPULS SECHIOMN. ...ttt e 656
Query input definition..........cooiiiiii 656
Find statement............ccocooiiiiiiii s 658

37 Aggregate FUNCHONS. ...t 665
Built-in aggregate funcCtions.............ccoeueieiiiiiiniiicc 666
CUustom aggregates........cciieieieiiieieieiee s 666

38 StateMEeNtS.......cucuiiiiiiiiic e 669
Simple StatemMeNts..........cooooiiiiiii s 670
Compound statements.............ccueveieieiiiiiiic s 675
Transfer of control statements.............ccccvviiiiiiiiiiiiii 680

39 EXPIOSSIONS.....cviuiiiietititiiietet bbb 683
Introduction t0 @XPreSSIONS..........coviiiiiiiiii s 684
Using an expression as a statement...........c.coooiiiiiiiiiniicc 684
Primary @XPreSSIONS.......cccccuiiiiiiieiiiiiieet s 685
Bitwise logical OPerators..........coouiiiiiiiiii s 685
Logical OPeratorS.........coiiiiiiiiii s 687
Shift OPETAtOTS. ..o 688
ComPAariSON OPETALOTS.......ccviviviiiiiiiiiiieie e 689
Additive OPerators........ccciviiiiiiiiiiicc s 690
Multiplicative OPerators........cccoiiviiiiiiiiiiiiiicic e 691
Unary additive Operators.........ccociviiiiiiiiiiiiiiiicic e 692
EXPIession OPeratOrS........ccciiiiiiiiiiiiiiiiiii s 692
Expression operator Precedence....... ..o ueuiiririeieueinieeiieeineeeeeeere et eeas 693
POSHIIX @XPTESSIONS.....ovviiiiieieiieieieet et es 694

viii

Developing Apama Applications 10.11.2

Table of Contents

SE@AM UETIES.....ceoeieieiiice s 695
Stream source temMplates..........ooooviiiiiiii s 699

40 Variables...... ..o 701
Variable declarations.............ccccoeiiiiiiininiiiiiiic s 702
Variable SCOPE.........cooviiiiicc s 702
Provided variables...........cccooiiiiiiiiiii s 703
Specifying named constant values...........cccooviiiiiiiiinii 705

41 Lexical EIemMeNts........ccoouiiiiiiiiiiiiiiciiic e 707
Program teXt.......coooiiii s 708
COMMENES.....oviviiiiiicic et 708
WHRIte SPACE......oiiiii s 709
Line terminatorS.......ccoooiiiiiiiiiiiiicec e 710
SYMDOIS. ... s 711
TA@NtIICTS. ...t 711
KeYWOTIdS....ooi s 711
OPIALOTS. ...t 712
SEPATALOTS. ...ttt s 713
LAtTAlS. .ottt 713
INAINES. ..ot 717
ANNOTATIONS. ...ttt 718

A2 LAIMNIES oottt 719
A EPL Naming CONVeNtiONS........ccieereirunininsisinisisesissisissiissisissssssssscssssissssesssssssssessssssssssssssssasssess 721
B Testing Apama Applications Using PySys.......nniiiniinsn. 725

Developing Apama Applications 10.11.2 [

Table of Contents

X Developing Apama Applications 10.11.2

About this Guide

B DOCUMENtAtION FOAAIMEP ..coiiiiiiiiiiiee e e ettt ettt e e e e e e e e e e e e e e s ans e e e e e e e e aannes 12
B Online Information and SUPPOIToii e e e e e e 13
LT = = e 0= ox 1T o 14
Developing Apama Applications 10.11.2 1

Developing Apama Applications describes different technologies for developing Apama applications:
EPL monitors, Apama queries, and Java. You can use one or several of these technologies to
implement a single Apama application. In addition, there are C++ and Java APIs for developing
components that plug in to a correlator. You can use these components from EPL.

Documentation roadmap

Apama provides documentation in the following formats:

» HTML (available from both the documentation website and the doc folder of the Apama

installation)

m PDF (available from the documentation website)

® Eclipse help (accessible from Software AG Designer)

You can access the HTML documentation on your machine after Apama has been installed:

® Windows. Select Start > All Programs > Software AG >Tools > Apama n.n > Apama
Documentation n.n. Note that Software AG is the default group name that can be changed

during the installation.

= UNIX. Display the index.html file, which is in the doc/apama-onlinehelp directory of your

Apama installation directory.

The following guides are available:

Title

Description

Release Notes

Installing Apama

Introduction to Apama

Using Apama with Software AG

Designer

Developing Apama Applications

Describes new features and changes introduced with the current
Apama release as well as earlier releases.

Summarizes all important installation information and is
intended for use with other Software AG installation guides
such as Using Software AG Installer.

Provides a high-level overview of Apama, describes the Apama
architecture, discusses Apama concepts and introduces Software
AG Designer, which is the main development tool for Apama.

Explains how to develop Apama applications in Software AG
Designer, which is an Eclipse-based integrated development
environment.

Describes the different technologies for developing Apama
applications: EPL monitors, Apama queries, and Java. You can
use one or several of these technologies to implement a single
Apama application. In addition, there are C++ and Java APIs
for developing components that plug in to a correlator. You can
use these components from EPL.

12

Developing Apama Applications 10.11.2

Title Description

Connecting Apama Applications to Describes how to connect Apama applications to any event data

External Components source, database, messaging infrastructure, or application.
Building and Using Apama Describes how to build and use an Apama dashboard, which
Dashboards provides the ability to view and interact with DataViews. An

Apama project typically uses one or more dashboards, which
are created in the Dashboard Builder. The Dashboard Viewer
provides the ability to use dashboards created in the Dashboard
Builder. Dashboards can also be deployed as simple web pages.
Deployed dashboards connect to one or more correlators by
means of a dashboard data server or display server.

Deploying and Managing Apama Describes how to deploy components with Software AG

Applications Command Central, how to deploy and manage queries, and
how to deploy Apama applications using Docker and
Kubernetes. It also provides information for improving Apama
application performance by using multiple correlators, for
managing and monitoring Apama components over REST
(Representational State Transfer), and for using correlator
utilities and configuration files.

In addition to the above guides, Apama also provides the following API reference information:
m API Reference for EPL (ApamaDoc)

m API Reference for Java (Javadoc)

m API Reference for C++ (Doxygen)

m API Reference for NET

m API Reference for Python

m API Reference for Component Management REST APIs

Online Information and Support

Product Documentation

You can find the product documentation on our documentation website at https://
documentation.softwareag.com.

In addition, you can also access the cloud product documentation via https://www.softwareag.cloud.
Navigate to the desired product and then, depending on your solution, go to “Developer Center”,
“User Center” or “Documentation”.

Developing Apama Applications 10.11.2 13

https://documentation.softwareag.com/
https://documentation.softwareag.com/
https://www.softwareag.cloud/

Product Training

You can find helpful product training material on our Learning Portal at https://
knowledge.softwareag.com.

Tech Community

You can collaborate with Software AG experts on our Tech Community website at https://
techcommunity.softwareag.com. From here you can, for example:

®m Browse through our vast knowledge base.

m Ask questions and find answers in our discussion forums.
® Get the latest Software AG news and announcements.

® Explore our communities.

= Go to our public GitHub and Docker repositories at https://github.com/softwareag and https://
hub.docker.com/publishers/softwareag and discover additional Software AG resources.

Product Support

Support for Software AG products is provided to licensed customers via our Empower Portal at
https://empower.softwareag.com. Many services on this portal require that you have an account.
If you do not yet have one, you can request it at https://empower.softwareag.com/register. Once

you have an account, you can, for example:

® Download products, updates and fixes.

m Search the Knowledge Center for technical information and tips.
m Subscribe to early warnings and critical alerts.

® Open and update support incidents.

® Add product feature requests.

Data Protection

Software AG products provide functionality with respect to processing of personal data according
to the EU General Data Protection Regulation (GDPR). Where applicable, appropriate steps are
documented in the respective administration documentation.

14 Developing Apama Applications 10.11.2

https://knowledge.softwareag.com/
https://knowledge.softwareag.com/
https://techcommunity.softwareag.com/
https://techcommunity.softwareag.com/
https://github.com/softwareag/
https://hub.docker.com/publishers/softwareag/
https://hub.docker.com/publishers/softwareag/
https://empower.softwareag.com/
https://empower.softwareag.com/register/

I Developing Apama Applications in EPL

1 Getting Started with Apama EPLooooiiiiiii e e e e e e 17
2 DEfiNING MONITOIS ..uuutiiiiiiiiiieiiiiiresiieeesseeeeetseeaesseassessssesssssssessssssssssssssasssssssssssssssnssnnnssnnenes 33
G I B 1Y {1 T o To @ LU= =TSP 59
4 DefiniNg EVENT LISTENEISuuuiiiiiiiiiiiiiiiiiiiiiiieiieetieeeeeeeeeeeeeeseesseesseessseseeessesseneseeesseseeeeeees 143
5 Working with Streams and Stream QUEIIEScuuviiiiiieeiieieiiis e e ee e e e e eeeenes 189
6 Defining What Happens When Matching Events Are Foundcccvvvvvvvviieviieneeennen, 247
7 Implementing Parallel ProCesSSINgccoooiiiiiiiiii e, 287
8 Using Correlator PErSiSIENCEccciiieieei e nnsnnennnes 309
9 Common EPL Patterns iN IMONITOISuiieniiii i s e e s s s eaa s e e e eaas 329
10 USING EPL PIUG-INS ..ottt e e ettt s e e e e e e e e et n e e e e e e e eenannn s 341
11 Making Application Data Available to CHents ... 433
12 Testing and TuNING EPL MONITOTSeiiiiiiiiiiiiiiiiiee et 441
13 Generating Documentation for Your EPL COUEcvvviiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeee 453
Developing Apama Applications 10.11.2 15

| Developing Apama Applications in EPL

16 Developing Apama Applications 10.11.2

1 Getting Started with Apama EPL

m Introduction to Apama Event Processing LanQUAagEccevveeuruuiiieieeeeeeeniiiinseeeeeeeennnns 18
m How EPL applications compare to applications in other languagescccccvvvvvvvnenee. 19
m About dynamic compilation in the correlatorcooooeiiiiiiiii e 20
m About the Apama development environment in Software AG Designercccccvvveeee... 20
L I =14 00 1T aTo] (o)T PP PP TP PPPPPPPRPTTN 21
B Defining @VENT tYPES oo 26
B WOrKiNg WIth @VENLS ... e e e e e e et e e e e e e e eeaenes 29

Developing Apama Applications 10.11.2 17

1 Getting Started with Apama EPL

The correlator is Apama's core event processing and correlation engine. The interface to the
correlator lets you inject events that the correlator analyzes. You can configure the correlator to
watch for particular events or patterns of interest. In addition, you specify the actions to undertake
when the correlator identifies such patterns. Identification of events of interest plus what to do
when such events are found constitute an Apama application's logic.

To deploy an application on the correlator, you can use either the correlator's native Apama Event
Processing Language (EPL) or the Apama in-process API for Java (JMon). The information presented
in this part focuses exclusively on EPL.

This part teaches you how to write EPL programs. While some programming experience is assumed,
no prior knowledge of EPL is assumed.

Apama EPL is an event-driven programming language. It lets you write applications that:
®m Monitor streams of events to find particular events or patterns of events of interest.

® Analyze events (or patterns of events) of interest to determine whether some action is
appropriate.

m Perform actions based on particular events or patterns of events.
This section discusses the main concepts you must understand to write applications in EPL.

Software AG Designer provides tutorials that can help you get started with EPL. On the Welcome
page of Software AG Designer, click Tutorials under the Apama heading.

Note:
MonitorScript is the old name for EPL. You might still see the old name in the product
documentation.

Introduction to Apama Event Processing Language

EPL is a flexible and powerful "curly-brace", domain-specific language designed for writing
programs that process events. In EPL, an event is a data object that contains a notification of
something that has happened, such as a customer order was shipped, a shipment was delivered,
a sensor state change occurred, a stock trade took place, or myriad other things. Each kind of event
has a type name and one or more data elements (called fields) associated with it. External events
are received by one or more adapters, which receive events from the event source and translate
them from a source-specific format into Apama's internal canonical format. Derived events can
be created as needed by EPL programs.

Though it contains many of the familiar constructs and features found in general-purpose
programming languages like Python or Java, EPL also has special features to make it easy to
aggregate, filter, correlate, transform, act on, and create events in a concise manner. Here is the
canonical “Hello world” example written in EPL:

monitor HelloWorld
{

action onload()

{
print "Hello world!";

18 Developing Apama Applications 10.11.2

1 Getting Started with Apama EPL

}

The Apama event processor, called the correlator, receives events of various types from external
sources. The EPL programs that process these events are monitors or queries.

Monitors have registered event handlers, called listeners, for events of particular types with specific
combinations of data values or ranges of values. When a listener detects an event of interest, it
triggers a particular action. If there are no listeners for an event, the correlator either discards it
or passes it to a listener specifically for events that have no handler. A monitor instance processes
events on one correlator and can send events to communicate with other monitors on the same
correlator or remote correlators.

Queries are scalable across multiple correlators. An Apama query operates on only the input event
types you specify and you can filter which instances of those events should be processed. Apama
partitions these incoming events according to a key field that you specify, for example, there might
be a partition for each credit card number. The query processes the events in each partition
independently of the events in every other partition. As events are added to partitions, the query
checks for a set of events that matches the event pattern you specified, which can optionally specify
complex conditions for there to be a match. When a match is found the query executes procedural
code that you have defined, which can include sending events.

Event handlers in EPL are conceptually similar to methods or functions used for handling
user-interface events in other languages, such as Java Swing or SWT applications. In EPL, the
correlator executes code only in response to events.

The correlator is capable of looking for hundreds of thousands of different events or different
event patterns concurrently. When you write an EPL application, you write a set of monitors
and/or one or more queries and then you inject or load them into a running correlator. As streams
of events pass into a correlator, the monitors and their listeners and/or the queries watch for the
events or patterns of events that you have specified as being of interest. There are a variety of
actions that you can specify that you want the correlator to perform when a listener or query
detects an event or event pattern of interest. For example, the most common action for a monitor
is to generate and dispatch a message to an external receiver.

EPL is case-sensitive.

How EPL applications compare to applications in
other languages

EPL is an event-oriented programming language, as opposed to an object-oriented language.
Because EPL is part of an event-processing framework, it requires a different approach to
decomposing the problem you want to solve.

EPL syntax is similar to other scripting languages. EPL has variables, data structures, conditions,
and procedures (called actions in EPL). But EPL supports a paradigm that is different from that
supported by other scripting languages:

= A monitor or a query is the basic module in EPL programs.

® All communication is by means of message passing.

Developing Apama Applications 10.11.2 19

1 Getting Started with Apama EPL

m All processing is triggered in response to events.

® Monitors spawn instances of themselves to generate multiple units of execution and/or to
initiate parallel processing. A query uses a key to partition incoming events and can share the
same data across multiple correlators.

EPL requires a different way of developing applications.

About dynamic compilation in the correlator

EPL is dynamically compiled. You inject (load) EPL source files into a running correlator. The
correlator compiles the files into optimized byte-code representations.

The EPL compiler is strict. There is no implicit type conversion. You cannot discard return values.
To minimize the chance of runtime errors, your code must be explicit and not make assumptions.
The correlator terminates execution of a program at the first runtime error.

The dynamic compilation approach removes the need for a byte code interpreter that supports
older versions of byte code. Also, the correlator can apply new optimization techniques during
byte code generation.

About the Apama development environment in
Software AG Designer

Software AG Designer provides an integrated environment for developing Apama applications.
The process of developing an Apama application is centered around an Apama project. In Software
AG Designer, you create a project and then you use Software AG Designer to:

® Add and manage the component files that make up the application.

m Write the EPL for your application.

m Specify the adapters and dashboards that are necessary for the application.

m Specify the configuration properties necessary for launching the application.
® Run and monitor the application.

m Export the initialization information necessary for deploying the application.
m Export your EPL files to a correlator deployment package (CDP).

See Using Apama with Software AG Designer for detailed information.

In addition to using Software AG Designer to create Apama projects, you can also do this using
the apama_project command-line tool. See "Creating and managing an Apama project from the
command line" in Deploying and Managing Apama Applications for more information.

As you add components to your application, Software AG Designer automatically generates the
boilerplate EPL code for the application's standard features and launches the appropriate editor
where you add the code to implement the component's behavior.

20 Developing Apama Applications 10.11.2

1 Getting Started with Apama EPL

A central Apama feature in Software AG Designer is the EPL editor. The EPL editor provides
support for writing EPL, for example:

m Automatic EPL validation

m Content assistance

= Auto-completion

= Hovering over an event declaration displays the event's type definition

® Automatic indenting and bracketing

® A separate panel shows the hierarchy of the EPL that appears in the editor

® Ability to define templates for frequently-used fragments of EPL

In Software AG Designer, you can examine the EPL files that are part of the Apama demo

applications.

See "Overview of Developing Apama Applications" in Using Apama with Software AG Designer for

more information.

Terminology

This topic provides a definition of each important EPL term. The definitions are organized into

several groups.

Basic modules

EPL Term Definition

Application An Apama application consists of one or more collaborating monitors
and/or one or more queries.

Package A mechanism for qualifying monitor, query and event names. Monitors,
queries and global events in the same package must each have a unique
name within the package.

Context Contexts allow EPL applications to organize work into threads that the
correlator can concurrently execute.

Monitor A monitor is a basic unit of program execution. Monitors have both

data and logic. Monitors communicate by sending and receiving events.
A monitor is defined in a .mon file.

In a monitor, you can create multiple contexts and divide processing
among multiple contexts.

A monitor cannot contain an Apama query.

Developing Apama Applications 10.11.2 21

1 Getting Started with Apama EPL

EPL Term

Definition

Query

Channel

Event (type)

Field
Method

Data types

EPL Term

An Apama query is a basic unit of program execution. It partitions
incoming events according to a key and then independently processes
the events in each partition. Processing involves watching for an event
pattern and then executing a block of procedural code when that pattern
is found. A query is defined in a .qry file.

In a query, you do not create contexts. Apama automatically uses
multiple contexts as needed to process your query.

An Apama query cannot contain a monitor.

A string name that monitor instances and receivers can subscribe to in
order to receive particular events. Adapter and client configurations
can specify the channel to deliver events to. In EPL, you can send an
event to a specified channel.

Queries do not subscribe to channels.

An event is a data object. All events have an event type and an ordered
set of event fields. An event type might also have zero or more defined
event actions that operate on the event fields.

A data element of an event.

A method is a predefined action. A given EPL type has a given set of
methods that it supports.

Definition

Data type

sequence

dictionary

Usually referred to as simply type. EPL supports the following value
types: boolean, decimal, float, integer, and the following reference
types: action, Channel, chunk, context, dictionary, event, Exception,
listener, location, optional, sequence, StackTraceElement, stream,
string. Also, monitor is a very limited pseudo-type.

An EPL type used to hold an ordered set of objects (referenced by
position).

An EPL type used to hold a keyed set of objects (referenced by key).

optional An EPL type used to hold either zero elements or one element.

location An EPL type that represents a rectangular area in a two-dimensional
unitless Cartesian coordinate plane.

chunk An EPL type that references an opaque data set, the data items of which
are manipulated only in an EPL plug-in.

22 Developing Apama Applications 10.11.2

1 Getting Started with Apama EPL

EPL Term

Definition

listener

action

context

stream

Channel

Exception

StackTrace Element

Monitors

EPL Term

You can assign an event listener or a stream listener to a variable of this
type and then subsequently call quit() on the listener to remove the
listener from the correlator.

An EPL type that references an action. Actions in EPL are the equivalent
of methods in object-oriented languages. Actions are user-defined
methods that you can define in monitor and query definitions, event
type definitions, and custom aggregate function definitions.

An EPL type that provides a reference to a context. A context lets the
correlator concurrently process events.

An EPL type that refers to a stream object. Each stream is a conduit
through which items flow. A stream transports items of only one type,
which can be any Apama type. Streams are internal to a monitor.

An EPL type that contains a string or a context. A contained string is
the name of a channel. A contained context lets you send an event to
that context. Defined in the com.apama namespace.

Values of Exception type are objects that contain information about
runtime errors. Defined in the com.apama namespace.

A stackTraceElement type value is an object that contains information
about one entry in the stack trace.

Definition

Monitor name

Monitor definition

Monitor instance

Sub-monitor

Queries

Each monitor has a name that can be used to delete the monitor from
the correlator.

The set of source statements that define a monitor.

A monitor instance is created whenever a monitor is loaded into the
correlator. Subsequent monitor instances are created whenever a
monitor instance spawns. As one time, a monitor instance was referred
to as a sub-monitor.

A monitor instance was previously referred to as a sub-monitor.

See also “Query terminology” on page 63.

Developing Apama Applications 10.11.2 23

1 Getting Started with Apama EPL

EPL Term

Definition

Query name

Query definition

Query instance

Query key

Query partition

Events

EPL Term

Each Apama query has a name that can be used to delete the query
from the correlator.

The set of source statements that define an Apama query.

A query instance is created whenever a non-parameterized query is
loaded into the correlator. When a parameterized query is loaded, no
instances are created until parameter values are provided. After
specification of parameter values, Apama creates an instance of the
query, which is referred to as a parameterization. A query definition
supports multiple parameterizations.

A query key identifies one or more fields in the event types that the
query specifies as input event types. Each query input event type must
specify the same key.

A partition contains a set of events that all have the same key value.
One or more windows contain the events added to each partition.

Definition

Event name

Event definition

Event type

Event field

Event action

Listeners

EPL Term

Every event must identify its event type. Event types are identified by
a unique event name. The event name can also be used to remove the
event definition from the correlator.

The set of source statements that define an event type.

All events of a given event type have the same structure. An event type
defines the event name, the ordered set of event fields and the set of
event actions that can be called on the event fields.

A data element of an event.

An action defined within an event definition. The action can operate
only on the fields of the event and any arguments passed into the action
call.

Definition

Event listener

A construct that monitors the events passed to, or routed within, a
correlator context. When the event pattern matches the event pattern
specified in an event listener, the correlator invokes the event listener's
code block.

24

Developing Apama Applications 10.11.2

1 Getting Started with Apama EPL

EPL Term

Definition

on statement

Stream listener

from statement

Listener action

Listener handle

Event template

Event operator

Event expression

Streams

In monitors, it is up to you to define event listeners. In queries, Apama
defines event listeners for you.

EPL statement that defines an event listener. An on statement specifies
an event expression and a listener action.

A construct that continuously watches for items from a stream and
invokes the listener code block each time new items are available.

EPL statement that defines a stream listener. A from statement specifies
a source stream, a variable, and a code block. The from statement
coassigns each stream output item to the specified variable and executes
the statement or block once for each output item.

The action, statement or block part of a listener.

It is possible to assign the handle (reference) to a listener to a listener
variable. This variable can then be used to quit the listener.

Specifies an event type and the set of (or set of ranges of) event field
values to match.

Relational, logical, or temporal operator that applies to an event
template and that you specify in an event expression.

An expression, constructed using event operators and event templates,
that identifies an event or pattern of events to match.

See also the above definitions for the stream data type, stream listener, and the from statement.

EPL Term

Definition

Stream query

Stream source template

Stream network

A stream query is defined in a monitor. A stream query is a query that
the correlator applies continuously to one or two streams. The output
of a stream query is one continuous stream of derived items.

A stream query is a completely different construct than an Apama
query.

An event template preceded by the a1l keyword. It uses no other event
operators. A stream source template creates a stream that contains
events that match the event template.

Network of stream source templates, streams, stream queries, and
stream listeners. Upstream elements feed into downstream elements
to generate derived, added-value items.

Developing Apama Applications 10.11.2 25

1 Getting Started with Apama EPL

EPL Term Definition

Activation When the passage of time or the arrival of an item causes a stream
network or an element in a stream network to process items.

Defining event types

Conceptually, an event is an occurrence of a particular item of interest at a specific time. Examples
of events include:

m A price of $100 for a share of IBM stock at noon on November 7, 2014

m Purchase of 1000 shares of IBM stock at $80 per share at 12:01 PM on December 12, 2014
= RFID tag 123-456-789 was scanned at 10:05 AM at loading dock 3

m Purchase order 55555 for 10,000 widgets sent to Acme Motor Supply

m TCP/IP address 123.4.56.789 just accessed server 5

= Container X was overfilled greater than 0.2 grams more than standard amount

An event usually corresponds to a message of some form. The correlator is designed to take in
huge numbers of messages per second, and sift them for the events or patterns of events of interest.
When the correlator detects interesting events or patterns it can undertake a variety of actions.

A correlator can receive events in several ways:
® You use Software AG Designer to send events from a file.

®m From an adapter that receives an event from an external source. Apama adapters translate
events from non-Apama format to Apama format.

® You run the Apama engine_send utility to manually send events into the correlator.
® A monitor or query generates an event within the correlator.

® You can write an application in C, C++, Java, or .NET that uses the Apama client API to send
events into the correlator.

The correlator propagates information by sending events.

In EPL, each event is of a specific type. An event type has a name and a particular set of fields.
Each field has a name and is one of a selection of types. Every event instance of a given event type
has the same set and order of fields. For the correlator to process an event of a specific event type,
it needs to have the event type definition for that type. Having the definition for an event type,
lets the correlator

m Operate on the messages of that event type
m Create optimal indexing structures for finding events of that type that are of interest

An event type definition specifies the event type's name and the name and type of each of its fields.

26 Developing Apama Applications 10.11.2

1 Getting Started with Apama EPL

See also “Specifying named constant values” on page 251.

Allowable event field types

A field in an event can be any Apama type. See also “Types” on page 607.

Certain field types are valid only within a certain scope and you cannot pass events with such
field types outside that scope. The details are as follows:

®m context — When an event contains a context type field, you can send the event to other
monitors within the same correlator but you cannot send the event outside the correlator. In
other words, you can send or route the event. See “Generating events” on page 266.

B chunk, listener and stream — An event that contains one or more of these types of fields is
valid only within the monitor that creates it. You cannot send, route, or enqueue an event that
contains a field of type chunk, listener or stream.

If an event contains a chunk, listener, or stream field you cannot listen for that event.

For more information, see the description of event in the API Reference for EPL (ApamaDoc).

Format for defining event types

In EPL, the format for an event type definition is as follows:

event event_type {
[
[wildcard] field_type field_name; |
constant field_type field_name := literal; |
action_definition

]

Syntax description

Syntax Element Description

event This EPL keyword is required. It indicates an event type
definition.

event_type Replace event_type with a name that you choose for this

event type. An EPL best practices convention is to specify
an initial capital in event type names, and to capitalize
subsequent words in the name. For example: StockT1ick.

{1} Enclose the field definitions in curly braces.

wildcard Specify the wildcard keyword in front of a field definition
when you are certain that you will never specify that field
in the match criteria for this event type. In other words,

Developing Apama Applications 10.11.2 27

1 Getting Started with Apama EPL

Syntax Element

Description

field_type

field_name

constant

literal

action_definition

when the correlator watches for certain events of this type,
the value of a wildcard field is always irrelevant.

For more details, see “Improving performance by ignoring
some fields in matching events” on page 159.

Replace field_type with the name of a type. If you specify
action,sequence,stream()rdictionary,yotlnTustalso
specify the type of the action's argument(s) and return
value if there are any, the type of the values in the
sequence or stream, or the type of the dictionary's key as
well as the type of the values in the dictionary. For
example: dictionary<integer,string>. For more details,
see the descriptions of the dictionary and sequence types
in the API Reference for EPL (ApamaDoc).

Replace field_name with a name that you choose for this
field.

An event can have zero or more fields. You might define
an event with no fields in a situation where only detection
of the event is needed to start some process.

While there is no limit to the number of fields in an event,
the correlator can index up to 32 fields per event. This
means that the correlator can match on up to 32 fields per
event. If an event type has more than 32 fields, you must
specify the wildcard keyword for the additional fields.
Note that if the type of an event field is location, that field
counts as 2. For example, if you have 28 non-location type
fields and 2 location fields, then you have reached the
limit of 32 indexed fields. If you try to inject an event
definition that specifies more than 32 fields and you do
not specify the wildcard keyword for additional fields,
the correlator rejects the file. You must add the wildcard
keywords to be able to inject the file.

Specify the constant keyword in front of a field definition
vvhosetypeisboolean,decimal,float,integer,orstring
and whose value never changes.

If you specify the constant keyword, you must assign a
literal to that field. The type of the literal must be the same
as the field_type you specified for this field.

When you specify an action in an event type definition
you can call that action on an instance of the event (see
“Specifying actions in event definitions” on page 255),
unless it is a static action, in which case you can instead

28

Developing Apama Applications 10.11.2

1 Getting Started with Apama EPL

Syntax Element Description

call it on the event type itself (see “Defining static
actions” on page 264).

Example event type definition

For example, the EPL definition of an event type for simple financial stock price ticks might include
the stock's name and its price:

event StockTick {
string name;
float price;
}
To represent a specific instance of an event, use the following form:

event_type (fieldl_value, field2_value ...)

For example, a StockT1ick event describing Acme's new price of 55.20 looks like this:
StockTick("ACME", 55.20)
The reading order of fields in an event type definition and in instances of that event type must

always match and is always left-to-right and then top-to-bottom. That is, "ACME" is the value of
the name field and 55.20 is the value of the price field.

Working with events

After you define an event type, there are built-in methods you can call on it, and there are various
ways that you can make that event available to monitors and queries.

You can call a number of methods on any event type. For an overview of these methods, see the
description of event in the API Reference for EPL (ApamaDoc).

Making event type definitions available to monitors and queries

A monitor or query must have information about the type definitions of the events that it processes.
You can provide this information as follows:

m Define the event type in a separate file that contains only event definitions. An event type
definition file has a .mon extension. It is still an EPL file even though it contains only event
type declarations.

You can define any number of event types in a single file. A common practice is to define the
event interface to a service in a file that is separate from the implementation of that service.
You might have a single event interface file and multiple implementations of services that
process those event types.

An event type definition file is the only way to make event type definitions available to queries.

Developing Apama Applications 10.11.2 29

1 Getting Started with Apama EPL

m Define the event type in the monitor. Only instances of that monitor can process events of that
type. Also, events of that type cannot be sent into the correlator from outside. When you define
an event type inside a monitor it has a fully qualified name. For example:

monitor Test

{
event Example{}

}

The fully qualified name for the Example event type is Test.Example and the toString() output
for the event name is "Test.Example()".

m After the optional package specification, define the event type at the beginning of an EPL file
that also defines monitors. All event type declarations must be before the monitor declarations.
After you inject this file into the correlator, the following monitors can process events of that

type:
® All monitors that you define in the same file

= All monitors that you inject after you inject the file that contains the event definition.

You might have a need for different event type definitions to have the same event type name. In
this situation, define each event type in a different package. Remember that event types to be used
by queries must be defined in event type definition files. Then, in your monitor or query, use one
of the following ways to make the appropriate event type definition available. In the monitor or

query:
m Specify the fully qualified name of the event type, for example:

com.apamax.test.Status

m After any package declaration and before any other declarations, specify a using declaration.
For example:

using com.apamax.test.Status;
In your code, you can then simply refer to the Status event type.

Do not create EPL structures in the com.apama namespace. This namespace is reserved for future
Apama features. If you inadvertently create an EPL structure in the com.apama namespace, the
correlator might not flag it as an error in this release, but it might flag it as an error in a future
release.

See also “Name Precedence” on page 717.

An event type definition must be injected into the correlator before a monitor that processes events
of that type. After you inject an event type definition into the correlator, any monitor that you
inject after that can process events of that type.

During development, when you use Software AG Designer to launch a project, it ensures that files
are injected in the right order. When more than one project requires the same event definition file,
do one of the following:

m In each project, declare an external dependency on the common event definition file. See
"Specifying dependencies for a single-user project" in Using Apama with Software AG Designer.

30 Developing Apama Applications 10.11.2

1 Getting Started with Apama EPL

m Create a project that contains the common event definition file. In each project that requires
these event definitions, declare a dependency on the project that contains the common event
definition file. See "Specifying projects" in Using Apama with Software AG Designer.

Channels and input events

Adapters, Apama client applications, and tools such as the engine_send correlator utility send
events into the correlator. Each incoming event is associated with a channel either explicitly or
implicitly. An event that has a channel explicitly set is delivered on the specified channel. An event
that does not have a channel explicitly set is delivered on the default channel. The default channel's
name is the empty string.

An incoming event that is sent on the default channel goes to each public context. In addition,
contexts can subscribe to channels of interest (see “Subscribing to channels” on page 54). An
incoming event for which a channel is explicitly set goes to each context that is subscribed to its
associated channel. If there are no contexts subscribed to the specified channel the event is discarded.

Any running Apama queries receive events that come in on the default channel. In addition,
Apama queries run in contexts that are subscribed to receive events sent on the com. apama.queries
channel. So queries also receive events sent on that channel.

Events sent into the correlator from, for example, clients and adapters, are not normally delivered
to external receivers. However, external receivers can specify the com.apama. input channel in their
configuration. This is a wildcard for all events coming into the correlator. Also, an external receiver
can specify com.apama.input.channel_name to receive correlator input events that are associated
with that particular channel.

When two events are sent to different channels there is no ordering guarantee. The only guarantee
is that events going from the same source to the same destination on the same channel will be
delivered in order. Also, if there is an external connection with, for example, an adapter or client,
then the events must use the same connection for them to be delivered in the same order.

All routable event types can be sent to channels, including event types defined in monitors.

An Apama application can use Software AG's Universal Messaging message bus to deliver events
on specified channels. If a correlator is configured to connect to Universal Messaging, then a
channel might have a corresponding Universal Messaging channel.

See "Choosing when to use Universal Messaging channels and when to use Apama channels" in
Connecting Apama Applications to External Components.

Developing Apama Applications 10.11.2 31

1 Getting Started with Apama EPL

32

Developing Apama Applications 10.11.2

2 Defining Monitors

T Y o To 10| g o] g1 o] g oTo] o1 (=] o £ PRSPPI 34
B Example of a simple MONItOrcooovviiiiiii 37
B Spawning MONILOr INSTANCEScvvviiiiiiiiiiiiiiiieeeeeeeeeeee e e e e e e e eeeeeeeeeeeeeaeeeeeeeaeeteeeeaeeraeeaeeeeeees 39
m Communication among MONItOr INSTANCESccuviiriiiieeeiiiiie e 45
B ADOUL SEIVICE MONITOISiiiiiiiiiiiiiiiei et sesseeessessssesnnennnennee 52
B Adding predefined annotationNSccoooiiriiiiiiir e 52
B Subscribing t0 ChaNNEIS ..o e 54
B Adding service monitor bundles to Your Projectcoceeeeeiiiii 57
m Utilities for operating 0N MONITOISccovviiiiiiiiiiiiie e, 57

Developing Apama Applications 10.11.2 33

2 Defining Monitors

A monitor is one of the basic units of EPL program execution.

Note:

The other basic unit is a query. A monitor cannot contain a query. A query cannot contain a
monitor. For information about writing queries, see “Defining Queries” on page 59. For a
comparison of queries and monitors, see "Architectural comparison of queries and monitors"
in Introduction to Apama.

Monitors have both data and logic. Monitors communicate by sending and receiving events. You
define a monitor in a . mon source file. When you load the .mon file into the correlator, the correlator
creates an instance of the defined monitor.

A monitor instance can operate like a factory and spawn additional monitor instances. A spawned
monitor instance is a duplicate of the monitor instance that spawned it except that the correlator
does not clone any active listeners or stream queries. Spawning lets a single monitor instance

generate multiple instances of itself. While generally, the spawned monitor instances all listen for
the same event type, each one can listen for events that have different values in particular fields.

It is good practice to define monitors and events in separate files. An advantage of doing this is
that queries, as well as monitors, can use the same event definitions. When you inject files into the
correlator, be sure to load event type definitions before you load the monitors and/or queries that
process events of those types.

The topics below provide information and instructions for defining monitors. For reference
information, see “Monitors” on page 643. Apama provides several sample monitor applications,
which you can find in the samples\epl directory of your Apama installation directory.

See also: "Overview of Developing Apama Applications" in Using Apama with Software AG Designer
and "Overview of Deploying Apama Applications" in Deploying and Managing Apama Applications.

About monitor contents

A file that defines a monitor has the following form:

1. An optional package declaration

2. Followed by
a. Zero or more using declarations
b. Zero or more custom aggregate function definitions
c. Zero or more event type definitions

3. One or more monitor definitions

When you define monitors that are closely related, it is your choice whether to define them in the
same file or different files.

A monitor must have information about any event types it processes. Hence, the correlator must
receive and parse all of the event types used by the monitor before it is able to correctly parse the
monitor itself.

34 Developing Apama Applications 10.11.2

2 Defining Monitors

A monitor can contain one or more global variables. A global variable declaration appears inside a
monitor but outside any actions. The variable is global within the scope of the monitor.

A monitor can also contain a number of actions. Actions are similar to procedures. Finding an
event, or pattern of events, of interest can trigger an action. You can also trigger an action by
invoking it from inside another action.

Any construct that you declare inside a monitor is available only from within that monitor. In
other words, its use is restricted to the scope of the monitor.

Below is a minimal monitor:

monitor EmptyMonitor {
action onload() {
}

}

The monitor above does not do anything; it does not register interest in any event or event pattern,
it does not have variables, and it does not do anything in its single action statement. However, it
does show the minimum structure of a monitor:

m It specifies the monitor keyword followed by the name of the monitor. In the example, the
name of the monitor is EmptyMonitor. The name of the monitor and the name of the file that
contains the monitor do not need to be the same. A single file can contain multiple monitors.

m [t declares the onload() action. When you inject a monitor into the correlator, the correlator
executes the monitor's onload() action. Every monitor must contain an onload() action. The
onload() action is similar to the main() function in C/C++.

If you define two or more monitors in the same file, the correlator executes the onload () actions
of the monitors in the order in which you define the monitors. If there is an onload() action
whose execution is dependent on the results of the execution of the onload() action of another
monitor, but sure you define that other monitor earlier in the same file. If you define that other
monitor in a separate file, be sure you inject that file first. Tip: it is better to avoid these
dependencies as much as possible by using initialization events. See “Using events to control
processing” on page 51.

EPL provides a number of actions, such as onload(), onunload(), and ondie(). You can define
additional actions, and assign a name of your choice that is not an EPL keyword. See also
“Keywords” on page 711.

Do not create EPL structures in the com.apama namespace. This namespace is reserved for future
Apama features. If you do inadvertently create an EPL structure in the com.apama namespace, the
correlator might not flag it as an error in this release, but it might flag it as an error in a future
release.

Loading monitors into the correlator

During development, you use Software AG Designer to load your project, including monitors,
into the correlator. Software AG Designer ensures that files are loaded in the required order.

At any time, you can use the engine_inject correlator tool to load EPL files into the correlator.
See "Injecting code into a correlator" in Deploying and Managing Apama Applications.

Developing Apama Applications 10.11.2 35

2 Defining Monitors

In a deployment environment, you can load monitors into the correlator in any of the following
ways:

m Use the engine_inject tool.
m Write a program in C++, Java, or NET and use the corresponding Apama client APL

If you try to inject a monitor whose name is the same as a monitor that was already injected, the
correlator rejects the monitor. You can inject two monitors with the same name into the correlator
only if they exist in different packages. To specify the package for a monitor or event type, add a
package statement as the first line in the EPL file that contains the monitor/event definition. For
example:

package com.mycompany.mypackage;
monitor Foo {

3

Terminating monitors

A monitor instance terminates when one of the following events occurs:
m The monitor instance executes a die statement in one of its actions.
® A runtime error condition is raised.

® The monitor is terminated externally (for example, with the engine_delete utility). When the
correlator deletes a monitor it terminates all instances of that monitor.

m The monitor instance has executed all its code and there are no active event or stream listeners.
This will occur rapidly if the monitor's onload () action does not create any listeners. See also
“Beware of accidental stream leaks” on page 245.

When a monitor instance terminates, the correlator invokes the monitor's ondie () action, if it is
defined. You cannot spawn in an ondie() action.

Unloading monitors from the correlator

The correlator unloads a monitor in the following situations:
= All of the monitor's instances have terminated.
® An external request kills the monitor. This kills any instances of the monitor.

If the monitor defines an onunload() action, the correlator executes it just before it unloads the
monitor. You cannot spawn in an onunload() action.

If an owning monitor has an internal event type, it is possible for another dependent monitor to hold
an instance of that internal event type in a variable of the any type (see the description of the any
type in the API Reference for EPL (ApamaDoc)) if the owning monitor has sent or routed an instance
of the monitor-internal event. In this case, a monitor is not completely unloaded, even if all of its
monitors have terminated, because another monitor still depends on one of the monitor-internal
types. The monitor name will stay in the correlator, but there will be no monitor instances running.

36 Developing Apama Applications 10.11.2

2 Defining Monitors

The onunload() action, if defined, still executes when the last monitor instance is terminated. The
monitor is not automatically deleted in this case. The monitor name needs to be explicitly deleted
with the engine_delete tool or by using the client API, which can only be done if the monitors
that are dependent on the internal type are either no longer dependent or have been deleted
themselves. See also "Deleting code from a correlator" in Deploying and Managing Apama Applications.

Example of a simple monitor

The empty monitor discussed in “About monitor contents” on page 34 does not do anything. To
write a useful monitor, add the following:

= An event type definition

® A global variable declaration

® An event expression that indicates the pattern to monitor for

® An action that operates on an event that matches the specified pattern

For example, the EPL below

® Defines the StockTick event type, which is the event type that the monitor is interested in.

m Defines the newTick global variable, which is accessible by all actions within this monitor. The
newT1ick variable can hold a StockT1ick event.

m Registers an interest in all StockTick events.

m Invokes the processTick() action when it finds a StockT+ick event. The processTick() action
uses the log statement to output the name and price of all StockT1ick events received by the
correlator.

Lines starting with // are comments. EPL also supports the standard C++/Java /% ... */ multi-line
comment syntax.

// Definition of the event type that the correlator will receive.
// These events represent stock ticks from a market data feed.
event StockTick {

string name;

float price;

3

// A simple monitor follows.
monitor SimpleShareSearch {
// The following is a global variable for storing the latest
// StockTick event.
StockTick newTick;
// The correlator executes the onload() action when you inject the
// monitor.
action onload() {
on all StockTick(*,*):newTick processTick();
b
// The processTick() action logs the received StockTick event.
action processTick() {
log "StockTick event received" +

Developing Apama Applications 10.11.2 37

2 Defining Monitors

" name = " + newTick.name +
" Price = " + newTick.price.toString() at INFO;

About the variable in the example

The single global variable is of the event type StockTick. A variable can be of any primitive type
(boolean, decimal, float, integer, string), or any reference type (action, context, dictionary,
event, listener, location, sequence Or stream).

About the onload() action

In this example, the onload() action contains only one line of code:

on all StockTick(*,*):newTick processTick();

This line specifies the following:
B on all StockTick(x,x) indicates the event to look for.

The on statement begins the definition of an event listener. It means, “when the following event
(or a pattern of events) is received ...”. This event listener is looking for all StockT+ick events.
The asterisks indicate that the values of the StockTick event fields do not matter.

B :newTick processTick(); indicates what to do when a StockTick event is found.

If the event listener finds a StockTick event, the coassignment (:) operator indicates that you
want to copy the found event into the newT1ck global variable. The onload () action then invokes
the processTick() action.

About event listeners

The on statement must be followed by an event expression. An event expression specifies the
pattern you want to match. It can specify multiple events, but this simple example specifies a
single event in its event expression. For details, see “About event expressions and event
templates” on page 144.

The a11 keyword extends the on statement to listen for all events that match the specified pattern.
Without the al1 keyword, the event listener would listen for only the first matching event. In this
example, without the al1 keyword, the event listener would terminate after it finds one StockTick
event.

In the sample code, the event expression is StockTick (x,*). Each event expression specifies one
or more event templates. Each event template specifies one event that you want to listen for. The
StockTick(*x,*) event expression contains one event template.

The first part of an event template defines the type of event the event listener is looking for (in
this case StockTick). The section in parentheses specifies filtering criteria for contents of events of
the desired type. In this example, the event template sets both fields to wildcards (). This declares
an event listener that is interested in all StockTick events, regardless of content.

38 Developing Apama Applications 10.11.2

2 Defining Monitors

When an event listener finds a matching event, the listener can use the as operator to place the
event into an implicitly declared variable only available in the scope of the listener processing
block or the : assignment operator to place that event in a global or local variable. For example:

on StockTick(*,*) as newTick {
processTick(newT1ick) ;

}

This copies a StockT1ick event into the newT1ick variable which is only in scope of the processing
block. This is known as implicit coassignment.

Or:

on all StockTick(*,*):newTick processTick();

This copies a StockTick event into the newT+ick global variable. This is known as a variable
coassignment.

Finally, the on statement invokes the processTick() action. For all received StockT1ick events,
regardless of content, the sample monitor copies the matching event into the newT1ick global
variable, and then invokes the processTick() action. For details, see “Using global variables” on
page 248.

About the processTick() action

The processTick() action executes the log statement to output some data on the registered logging
device, which by default is standard output. This log statement is used to report some of the fields
from the received event. For details, see “Logging and printing” on page 281.

Accessing fields in events

EPL uses the . operator to access the fields of an event. You can see that the processTick() action
uses the . operator to retrieve both the name (newTick.name) and price (newTick.price) fields of
each event.

The 1log statement requires strings as fields, so the processTick() action specifies the built-in
.toString() operation on the non-string value:

newTick.price.toString()

Spawning monitor instances

It is frequently necessary to enable a single monitor to concurrently listen for multiple kinds of
the same event type. For example, you might want one monitor to listen for and process stock
ticks that each have a different stock name. You accomplish this is by spawning monitor instances
as described in the topics below.

See also “Spawning to contexts” on page 293.

Developing Apama Applications 10.11.2 39

2 Defining Monitors

How spawning works

In a monitor, you spawn a monitor instance by specifying the spawn keyword followed by an
action. When the correlator spawns a monitor instance, it does the following:

1. Creates a new instance of the monitor that is spawning.
2. Copies the following, if there are any, to the new monitor instance:

m Current values of the spawning monitor instance's global variables

® Any arguments declared in the action that is specified in the spawn statement

= Anything referred to indirectly by means of the copied variables and arguments
3. Executes the named action with the specified arguments in the new monitor instance.

The new monitor instance does not contain any active event listeners, stream listeners, streams or
stream queries that were in the spawning monitor instance. For example, data held in local variables
that are bound to a listener are not copied from the spawning monitor instance to the new monitor
instance. The figure below illustrates this process:

Time
= = = ™)
[10] (1] [1:]
s = =
) a 2]
o o (=] 5
& L (5 Received
= i = Events
= = >
< - 2
a -
=, Initial
Chosen Stock = “ Monitor

.+ Instance

| <
Chosen Stock = “IBM"
Spawned
Chosen Stock = “ATT" Manitor
Instances
Chosen Stock = “XRX"
—?
-

The figure shows a monitor that spawns when it receives a NewStock event. Initially, the monitor
has one active event listener. When the event listener finds the first NewStock event, the monitor

1. Copies the name IBM to the chosenStock variable.

2. Spawns a monitor instance.

40 Developing Apama Applications 10.11.2

2 Defining Monitors

The spawned monitor instance duplicates the initial monitor instance's state. In this example, this
means that the value of the chosenStock variable in the spawned monitor instance is 18M. When
the initial monitor instance receives another NewStock event (the value of the name field is ATT), it
again copies the stock's name to the chosenStock variable and spawns. The same occurs for the
XRX event, resulting in three spawned monitor instances.

Each new monitor instance starts with no active event listeners. It then creates a new event listener
for stockTick events of the chosen stock (see the sample code in the next topic). The initial monitor
instance's event listener for NewT+ick events remains active after spawning. However, because the
action to create a new StockTick event listener is executed only in the spawned monitor instances,
the initial monitor instance continues to listen for only NewT1ick events.

Sample code for spawning

EPL that implements the example described in “How spawning works” on page 40 is as follows:

// The following event type defines a stock that a user is interested
// in. The event type includes the name of the stock (name) and the
// user's personal name (owner).
//
event NewStock {

string name;

string owner;

}

event StockTick {
string name;
float price;

}

monitor SimpleShareSearch {
NewStock chosenStock;
integer numberTicks;
StockTick newTick;

// Listen for all NewStock events. When a NewStock event is found
// assign it to the chosenStock variable and spawn with a call to
// the matchTicks() action. This clones the state of the monitor
// and launches a monitor instance that executes matchTicks().
action onload() {

numberTicks := 0;

on all NewStock (*, *):chosenStock spawn matchTicks();

3

// In the spawned monitor instance, listen for only those StockTick
// events whose name matches the name in the chosenStock variable.
action matchTicks() {

on all StockTick(chosenStock.name,x):newTick processTick();

3

action processTick() {
numberTicks := numberTicks + 1;
log "A StockTick regarding the stock "
+ newTick.name + "has been received "
+ numberTicks.toString() + " times. This 1is relevant for "
+ " Trader name: " + chosenStock.owner

Developing Apama Applications 10.11.2 41

2 Defining Monitors

+ " and the price is " + newTick.price.toString()
+ "." at INFO;

3

This example defines a new event type named NewStock. Traders dispatch this event when they
want to look for a specific kind of stock event. The code example spawns a monitor instance when
the monitor finds a NewStock event. For example, if three newStock events are received by the initial
monitor instance, there will be three spawned monitor instances. Other than spawning, the
difference between this code sample and the sample in “Example of a simple monitor” on page 37
is that this one specifies an owner in each NewStock event and the monitor's state now includes a
counter.

In this example, after spawning, all processing is within a spawned monitor instance. Processing
begins with execution of the matchT1icks action. This action starts by defining an event listener for
StockTick events whose name field matches the name field in the spawned monitor instance's
chosenStock variable. When there are multiple, spawned monitor instances, each spawned monitor
instance listens for only the StockTick events that match their chosenStock name.

The numberT1icks counter variable and the chosenStock event variable, which contains the stock
name and the owner's name, are available in the cloned state of the spawned monitor instance.
This lets the processTick() action in each spawned monitor instance

m Customize output to include the originating trader's name

® Maintain a counter of how many StockT1icks for a particular stock have been detected for a
trader

The really important aspect that distinguishes spawning is that the entire variable space is cloned
at the moment of spawning. In the example, every spawned monitor instance has a copy of the
chosenStock variable that contains the NewStock event that triggered spawning. Also, every spawned
monitor instance has a copy of the numberT1icks variable, which is always set to © when the initial
monitor instance spawns. This ensures that each spawned monitor instance can maintain an
accurate count of how many matching StockTick events have been found.

The initial monitor instance listens for NewStock events. Remember that spawning does not clone
active listeners, so the spawned monitor instances do not have listeners that watch for NewStock
events. Each spawned monitor instance listens for only those StockTick events that contain name
fields that match that spawned monitor instance's value for the chosenStock variable.

Typically, spawning is not an expensive operation. However, its overhead does increase as the
size of the monitor being spawned increases. When writing an EPL application avoid repeated
spawning of monitors that contain a large number of variables.

Spawned monitor instances contain copies of all global state from the spawning monitor instance.
It does not matter whether the spawned monitor instance is going to use that state or not. To avoid
wasting memory, a typical practice is to hold state in events that are referred to by local variables,
which are not copied during spawning. This ensures that you do not have a lot of state information
in global variables when the monitor instance spawns. Alternatively, you can insert code so that
the new monitor instance clears unneeded state immediately after it starts running.

For information about spawning to actions that are members of events, see “Spawning” on page 256.

42 Developing Apama Applications 10.11.2

2 Defining Monitors

Terminating monitor instances

The example discussed in “Sample code for spawning” on page 41 spawns a monitor instance for
each newStock event that the initial monitor instance receives. This is not always desirable. For
example, if two identical newStock events are received, two identical monitor instances are spawned.
To prevent this, you can use the die statement to delete a monitor instance if a more recent one
(with the same spawning properties) has been created. For example:

action onload() {
on all NewStock(x, *):chosenStock spawn matchTicks();
3
action matchTicks() {
on NewStock (chosenStock.name, chosenStock.owner) die;
/] ...
3

In this fragment, the monitor spawns when it receives a NewStock event. In the spawned monitor
instance, the initial on statement activates an event listener for a NewStock event that is identical
to the one that caused the spawning. In other words, the spawned monitor instance is listening
for a NewStock event where the fields are the same as that held by the chosenStock variable. If such
an event arrives, the monitor instance terminates. This structure ensures that only one monitor
instance for each stock name and owner exists at any one time. The same NewStock event kills the
existing monitor instance and causes spawning of a new monitor instance. That is, the same event
triggers the concurrent event listeners of the initial monitor and the spawned monitor instance.

In this solution, when a NewStock event kills an existing monitor instance and spawns a new
monitor instance, the value of the numberTicks variable in the new instance is zero. Often, this
kind of behavior is required. You want to ignore the state of the old monitor instance and start
afresh.

Note that the event that triggers the initial monitor instance's event listener and causes the spawning
of a monitor instance does not get processed by the spawned monitor instance's new event listener.
An event is available to only those event listeners that are active when the correlator receives the
event.

You can also use the die statement to kill a monitor instance at will. For example, consider the
following fragments:

event StopStock {
string name;
string owner;

3

action onload() {
on all newStock(x, *):chosenStock spawn matchTicks();

3

action matchTicks() {
on StopStock (chosenStock.name, chosenStock.owner) die;

/1 -

Developing Apama Applications 10.11.2 43

2 Defining Monitors

Traders would send stopStock events when they are no longer interested in a particular stock.
Receiving a matching StopStock event kills the monitor instance that is listening for that stock.
You can use this technique to explicitly kill any monitor instance.

About executing ondie() actions

A monitor instance can terminate for any of the following reasons:

It executes all its code and has no active listeners or streaming elements.
m [texecutes a die statement in one of its actions.
® The engine_delete utility or an Apama client API removes the monitor from the correlator.

® A runtime error is detected in the monitor's code, which causes that instance of the monitor
to die.

In all of these situations, if the monitor defines an ondie() action, the correlator invokes it. Like
the onload() and onunload() actions, ondie() is a special action because the correlator invokes it
automatically in certain situations.

Suppose that a monitor that defines the ondie () action spawns ten times, and each monitor instance
dies. The correlator invokes ondie() eleven times: once for each spawned monitor instance, and
once for the initial monitor instance. Then, just before the monitor's EPL is unloaded from the
correlator, the correlator invokes the onunload()action only once, and it does so in the context of
the last remaining monitor instance.

The correlator executes each ondie() operation in the context of its monitor instance. Therefore,
the ondie() operation can access the variables in the monitor instance being terminated.

You cannot spawn in an ondie() or an onunload() action.

There are two forms of the ondie action: one form can have no argument and the other form can
have optional<com.apama.exceptions.Exception>and optional<string> arguments. If the monitor
instance terminates due to an uncaught exception, this exception is passed as a first argument to
the ondie action. The second argument of the ondie action is populated with the reason if monitor
instance terminated without an exception. Constants for the reason string are defined on the
monitor type. See the API Reference for EPL (ApamaDoc) for more information.

Example:

action ondie(optional<com.apama.exceptions.Exception> exc, optional<string>
reasonCode) {
ifpresent exc {
// do something
1
ifpresent reasonCode {
if reasonCode = monitor.DIE or reasonCode = monitor.NO_LISTENERS
or reasonCode = monitor.ENGINE_DELETE {
//do something

44 Developing Apama Applications 10.11.2

2 Defining Monitors

Specifying parameters when spawning

When spawning a monitor instance, you can pass parameters to an action. For example:

monitor m {
action onload() {
spawn forward("a", "channelA");
spawn forward("b", "channelB");

}

action forward(string arg, string channel) {
on all Event(arg) as e {
send e to channel;

}

on StopForwarding(arg) {
die;

}

Communication among monitor instances

In EPL applications, everything in a monitor instance is private. There is no direct way for a monitor
instance to invoke an action or access the state of another monitor instance. Instead, messages, in
the form of events, are the mechanism for communication among monitor instances. All events
are visible to all interested monitor instances.

Consequently, how you divide your application operations into monitors and what events the
monitor instances use to communicate are crucial design decisions. An understanding of the order
in which the correlator processes events for monitors helps you determine where and when to
allocate events.

The topics below provide information for making these decisions.

You can use the MemoryStore to share state between monitors, see “Using the MemoryStore” on
page 375. If you are mixing monitors and queries in your application, see “Communication between
monitors and queries” on page 140.

Organizing behavior into monitors

Typically, an Apama application consists of several monitors each doing a specific task. For
example, a simple algorithmic trading system might consist of the following monitors:

® A monitor that manages order processing by spawning a monitor instance for each order.

® One or more market data monitors. Each monitor listens for a different type of market data
(such as tick data, market depth) required to process orders. Each of these monitors typically
spawns a monitor instance for each stock you want to observe.

A more complex application might organize its orders into portfolios or split sets of orders into
smaller orders for wave trading or some other purpose.

Developing Apama Applications 10.11.2 45

2 Defining Monitors

In an Apama application, each monitor can usually be categorized as a core processing monitor
or a service monitor. A core processing monitor performs the tasks you want to accomplish. A
service monitor provides data needed by the core processing monitors. Typically, the core
processing monitors spawn multiple monitor instances. These monitor instances will consume
data from the same service monitors. For example, all monitor instances that manage the individual
orders for a given stock would obtain tick data from the same instance of a service monitor. The
ordinality of the solution elements (for example, N order processors that require data from 1 tick
data provider) often dictates how the solution code should be organized into separate monitors.
See also “About service monitors” on page 52.

The ordinality of the solution elements often dictates how the solution code should be organized
into separate monitors. For example, there is an N:1 relationship between the N order processor
monitor instances that require market data for a given stock and the 1 market data service monitor
instance that supplies it.

Event processing order for monitors

As mentioned earlier, contexts allow EPL applications to organize work into threads that the
correlator can execute concurrently. When you start a correlator it has a main context. In a monitor,
you can create additional contexts to enable the correlator to concurrently process events.

Note:
In a query, you do not create contexts. Instead, Apama automatically creates contexts as needed
to process the incoming events.

Each context, including the main context, has its own input queue, which receives
m Events sent specifically to that context from other contexts.

= Events sent to a channel that a monitor in the context is subscribed to. See “Channels and input
events” on page 31.

Concurrently, in each context, the correlator
m Processes events in the order in which they arrive on the context's input queue
m Completely processes one event before it moves on to process the next event

When the correlator processes an event within a given context, it is possible for that processing to
route an event. A routed event goes to the front of that context's input queue. The correlator
processes the routed event before it processes the other events in that input queue.

If the processing of a routed event routes one or more additional events, those additional routed
events go to the front of that context's input queue. The correlator processes them before it processes
any events that are already on that context's input queue.

For example, suppose the correlator is processing the E1 event and events E2, E3, and E4 are on the
input queue in that order.

46 Developing Apama Applications 10.11.2

2 Defining Monitors

Context
E4 E3 E2 E1l

EE—

While processing E1, suppose that events En1 and En2 are created in that order or sent to the context.
Assuming that there is room on the input queue of that context, those events go to the end of the
input queue of that context:

Context
En2 Enl E4 E3 E2 E1

L

While still processing E1, suppose that events R1 and R2 are created in that order and routed. These
events go to the front of the queue:

Context
En2 Enl E4 E3 E2 R2 R1 E1

>

When the correlator finishes processing E1, it processes R1. While processing R1, suppose that two
event listeners trigger and each event listener action routes an event. This puts event R3 and event
R4 at the front of the context's input queue. The input queue now looks like this:

Context
En2 Enl E4 E3 E2 R2 R4 R3 R1

>

It is important to note that R3 and R4 are on the input queue in front of R2. The correlator processes
all routed events, and any events routed from those events, and so on, before it processes the next
routed or non-routed event already on that queue.

Now suppose that the correlator is done processing R1 and it begins processing R3. This processing
causes R5 to be routed to the front of that context's input queue. The context's queue now looks
like the following;:

Context
En2 Enl E4 E3 E2 R2 R4 R5 R3

>

See also “Understanding time in the correlator” on page 180.

Developing Apama Applications 10.11.2 47

2 Defining Monitors

Allocating events in monitors

Note:
The principles described here apply to variables of any type, not just to any event type or any
reference type.

When writing monitors consider when and where to declare and populate event variables. You
can declare event variables at the monitor level or inside an action. Event variables that you declare
at the monitor level are similar to global variables.

Events are reference types. This means that, for example, a variable of event type Foo is not an
instance of Foo. The variable is a reference to an instance of Foo.

You cannot initialize the fields of a monitor-level variable. You can, however, initialize a
monitor-level instance of the event that the variable refers to. For example:

Foo a := Foo(1l, 2.3);

This instantiates a Foo event and specifies that a refers to that event. Now suppose you declare

the following;:

Foo b := aj;

This does not instantiate a new Foo event. It only initializes b as an alias for a.

When you declare an event at the monitor level, the correlator can automatically use default values
for the event's fields. You can, but you do not have to, initialize field values. This is because the
correlator implicitly transforms a statement such as this:

Foo a;

into this:

Foo a := new Foo;

Before you use a locally declared event variable in an action, you must either assign it to an existing
event of the same type, or you must specify the new operator to create a new event to assign to the
variable. Note that each event field of an event created using new initially has the default value for
that event field type.

The following code illustrates these points:

event Foo

{
integer 1,
float x;

}

monitor Bar
Foo a; // Global (monitor-level) declaration.
// The correlator creates a Foo event with default
// values for fields.

action onload() {
a.i := 10; // Assign non-default value.

48 Developing Apama Applications 10.11.2

2 Defining Monitors

a.x := 20.0; // Assign non-default value.
Foo b; // Local (in an action) declaration.
// The correlator does not create an event yet.
b := new Foo; // Create a default Foo event and assign
// it to local event.
b.i := 10; // Assign a non-default value.
b.x := 20.0; // Assign a non-default value.
Foo c := a; // You can assign a locally declared event to

// reference an existing event.

// Variables a and c alias the same event.
c.i := 123 // The value of a.i is now also 123.
Foo d := F00(15,30.0);

// Create an event and also initialize 1t.

Sending events to other monitors

After you inject a monitor into the correlator, it can communicate with other injected monitors
under the following conditions:

If the source monitor instance and the target monitor instance are in the same context, the
source monitor instance can route an event that the target monitor instance is listening for. A
routed event goes to the front of the context's input queue. The correlator processes all routed
events before it processes the next non-routed event on the context's input queue. If the
processing of a routed event routes another event, that event goes to the front of the input
queue and the correlator processes it before it processes any other routed events on the queue.
See “Event processing order for monitors” on page 46.

If the source monitor instance and the target monitor instance are in different contexts, the
source monitor instance must have a reference to the context that contains the target monitor
instance. The source monitor instance can then send an event to the context that contains the
target monitor instance. The target monitor instance must be listening for the sent event or the
context that contains the target monitor instance must be subscribed to the channel that the
event is sent on. See “Sending an event to a particular context” on page 296 and “Subscribing
to channels” on page 54.

Within a context, an application can use routed events and completion event listeners to initiate
and complete a service request inline, that is, prior to processing any subsequent events on the
input queue. See “Specifying completion event listeners” on page 157.

In the following example, the event listeners trigger in the order in which they are numbered.

monitor Client {

listener_1:

= on EventA() { route RequestB(...) }
listener_5:= on ResponseForB () { doWork(); %
listener_6:= on completed EventA() { doMoreWork(); }

monitor Servicel{

listener_2:= on RequestB(...)

route RequestC();
listener_4:= on ResponseForC{

Developing Apama Applications 10.11.2 49

2 Defining Monitors

route ResponseForB ();

}

monitor Servicela{
listener_3:= on RequestC (...)

route ResponseForC();

3

Best practices for working with routed events include:
m Keep them small; preferably zero, one, or two fields.
m Specify wildcards wherever appropriate in definitions of events that will be routed.

See also “Generating events with the route statement” on page 266.

Defining your application's message exchange protocol

Monitors use events to communicate with each other. Consequently, an EPL application will have
a well-defined message exchange protocol. A message exchange protocol defines the following;:

m Types and structure of events that function as messages between monitor instances.
® Relationships among these events.
®m Sequence and flow of events — which events are sent in response to receiving particular events.

® Which monitors need to be able to handle which events, and conversely, which monitors
should not receive which events.

= Which channels these events are sent to, or whether they are sent directly between contexts.

When you define your application's message exchange protocol, keep in mind that any event that
the correlator processes is potentially available to all loaded monitors. Consequently, you want
to follow conventions that prevent the inadvertent matching of events with event listeners. These
conventions are:

m Use packages to restrict the scope of event names (for example, MyPackage, YourPackage).

m Use duplicate event definitions with different event names (for example, MyStartEvent,
YourStartEvent).

m Use discriminating/addressing information in the event (for example, Request{integer
senderId;...}, Response { integer toSender;...})

While event definitions provide partial support for a robust message exchange protocol, they lack
the ability to specify event patterns, request-response associations, and so on. You should insert
structured comments in your event definition files to define this part of the message exchange
protocol. The comments that describe the relationships among the events define the contract that
the participating monitors must adhere to. It is up to you to document the expected flows and
patterns and to ensure that your monitors comply with the contract.

50 Developing Apama Applications 10.11.2

2 Defining Monitors

Some common message exchange patterns are:

m Request/response

m Publish/subscribe/unsubscribe

m Start/stop

To identify the event types that a core monitor needs to support, consider the following;:

® What actions do you want to perform on the object that the monitor represents? You might
want to define an event that is dedicated to each action. For example, for an order processing
monitor, you might define an event type for each of the following actions:

m Place an order

m Change an order
m Cancel an order
® Suspend trading
® Resume trading

® What initialization and termination events are needed? Keep in mind that a core monitor is
typically a factory that creates monitor instances that each represent a single entity. You
probably want to define at least one event type for initialization and one event type for
termination.

® Do you need other control events? For example, in the order processing example, do you need
a control event that suspends all trading and applies to all orders? See “Using events to control
processing” on page 51.

® Do you need to add any events to observe what is happening in the monitor? For example,
each order processing monitor could support a request/response protocol to inquire of its state
or it could simply send an OrderProcessingState event each time there is a significant state
change.

Using events to control processing

In addition to using events to share data, you can use events to control processing. Control events
are like switches. You use them to move a monitor from one state to another. Control events
typically contain little or no data; that is, they have one or no fields.

A common use for control events is to initialize or terminate a process. For example, rather than
use an onload () statement to set things up, it is good practice to use a monitor's onload() statement
to create an event listener for a start event. This practice defers initialization until the start event
is received. Similarly, you can use a stop event to signal to a monitor that it should perform
shutdown actions such as deallocating resources before you terminate the correlator.

For example, consider the following action:

action initialize() {
on EndAuction() and not BeginAuction() startNormalProcessing();

Developing Apama Applications 10.11.2 51

2 Defining Monitors

on BeginAuction() and not EndAuction() startAuctionProcessing();
route RequestAuctionState(); //A service monitor will respond with
//an EndAuction or BeginAuction event

3

In this code, EndAuction and BeginAuction can be viewed as control events. Receipt of one of these
events determines whether the monitor executes the logic associated with being in an auction or
out of an auction.

About service monitors

Of course, all monitors can be considered to be providing some kind of service. However, as
mentioned earlier, it can be helpful to view the monitors that make up your application as either
core processing monitors or service monitors. It is common for a single instance of a service monitor
to provide data to a set of monitor instances spawned from a core processing monitor instance.

Apama provides a number of service monitors that fit this pattern. These service monitors provide
support for the following:

Name Description

DataView Service Exposes read-only data to dashboards. This data comes from
EPL and Java applications. See “Making Application Data
Available to Clients” on page 433.

Password Service Supports retrieval of passwords from implementation-specific
providers.
Scenario Service Provides support for interacting with the application using the

Scenario Service API. See "Scenario Service API" in Connecting
Apama Applications to External Components.

In addition, there are a number of service monitors for use by adapters:

Name Description

ADBC Adapter Provides event capture and playback in conjunction with Apama's
Data Player in Software AG Designer. Also monitors Java
database connectivity (JDBC) and open database connectivity
(ODBC).

IAF Status Manager Monitors connectivity with an adapter.

Adding predefined annotations

Some EPL language elements can take predefined annotations. They provide the runtime and
Software AG Designer with extra information about these language elements. These predefined
annotations can appear immediately before the following:

52 Developing Apama Applications 10.11.2

2 Defining Monitors

m Event declarations

m Actions in monitors or event definitions

Annotations have packaged names like events. Thus, either their full name, or (preferably) a using
declaration should be added to the file to allow the name to be used without having to specify its
full name. Annotations are written as an at symbol (@) followed by the name of the annotation,
followed by parameters in parentheses. The values used in annotation parameters must be literals.
If both annotations and ApamaDoc are specified, the order should be: ApamaDoc, followed by
annotations, followed by the language element that they apply to.

The following annotations are available:

Annotation

Parameters

Description

SideEffectFree

OutOfOrder

TimeFrom

Heartbeat

DefaultWait

ExtraFieldsDict

None

None

string

string

string

string

This annotation is part of the com.apama.epl
package and applies to action definitions. It tells
the EPL compiler that this action has no side
effects. When called from a log statement, the
compiler is free to not call an action if it has no
side effects and the log level is such that the log
statement would not print anything to the log
file. See “Logging and printing” on page 281.

This annotation is part of the com.apama.queries
package and applies to event definitions. It tells
the query runtime that these events may occur
out of order. See “Out of order events” on
page 97.

This annotation is part of the com.apama.queries
package and applies to event definitions. It tells
the query runtime the default action name on
the event definition to obtain source time from.
See “Using source timestamps of events” on
page 90.

This annotation is part of the com.apama.queries
package and applies to event definitions. It tells
the query runtime the default heartbeat event
type to use. See “Using heartbeat events with
source timestamps” on page 96.

This annotation is part of the com.apama.queries
package and applies to event definitions. It tells
the query editor in Software AG Designer the
default time to wait to use. See “Using source
timestamps of events” on page 90.

This annotation is part of the
com.softwareag.connectivity:package£n1d

Developing Apama Applications 10.11.2

53

2 Defining Monitors

Annotation Parameters Description

applies to event definitions. It names a field of
type dictionary<string,string> where the
apama.eventMap connectivity host plug-in will
place unmapped entries. See "Translating EPL
events using the apama.eventMap host plug-in"
in Connecting Apama Applications to External
Components.

Messageld string This annotation is part of the
com.softwareag.connectivity package and
applies to event definitions. It names a field of
an event type that should contain the unique
identifier of the connectivity plug-in message
that the event came from.

The field must be of type string and it can refer
to a field nested in another event, for example:

MessageId("nestedEvent.fieldOfEvent")

You should not name a field that you expect to
have a real value. See "Using reliable transports"
and "Reliable messaging with Digital Event
Services" in Connecting Apama Applications to
External Components.

Example:

using com.apama.epl.SideEffectFree;

monitor SomeMonitor {
action onload() {
on all Event() as e {
log prettyPrint(e) at DEBUG;

}
}
@SideEffectFree()
action prettyPrint(Event e) returns string {
return e.fieldl +" : "+e.field2.toString();
}

Subscribing to channels

Adapters and clients can specify the channel to deliver events to. In EPL, you can send an event
to a specified channel. To obtain the events delivered to particular channels, monitor instances
and external receivers can subscribe to those channels.

54 Developing Apama Applications 10.11.2

2 Defining Monitors

In a monitor instance, to receive events sent to a particular channel, call the subscribe () method
on the monitor pseudo-type by using the following format:

monitor.subscribe(channel_name) ;

Replace channel_name with a string expression that indicates the name of the channel you want
to subscribe to. You cannot specify a com.apama.Channel object that contains a string.

Call the subscribe () method from inside an action. Any monitor instance in any context can call
monitor.subscribe().

The subscribe () method subscribes the calling context to the specified channel. When a context
is subscribed to a channel events delivered to that channel are processed by the context, and can
match against any listeners in that context. This includes listeners from monitor instances other
than the instance that called subscribe (). However, the subscription is owned by the monitor
instance that called monitor. subscribe (). If that monitor instance terminates, then any subscriptions
it owned also terminate.

A subscription ends when the monitor instance that subscribed to the channel terminates or
executes monitor.unsubscribe

Whether an event is coming into the correlator or is generated inside the correlator, it is delivered
to everything that is subscribed to the channel. If the target channel has no subscriptions from
monitor instances nor external receivers then the event is discarded.

For example:

monitor pairtrade

{
action onload()
{
on all PairTrade() as pt {
spawn start_trade(pt.left, pt.right) to context(pt.toString());
}
}
action start_trade(string syml, string sym2)
{
monitor.subscribe("ticks-"+syml);
monitor.subscribe("ticks-"+sym2);
// Next, set up listeners for syml and sym2.
}
}

This code spawns a monitor for each trade pair. The spawned monitor subscribes to just the ticks
for the symbols passed to it. If a symbol in one pair is slow to process, any unrelated pairs of
symbols are unaffected. See "Event association with a channel" in Deploying and Managing Apama
Applications..

In a context, any number of monitor instances can subscribe to the same channel. When multiple
monitors in a context require data from a channel the recommendation is for each monitor to
subscribe to that channel. This ensures that the termination of one monitor does not affect the
events received by other monitors. Subscriptions are reference counted. The result of multiple

Developing Apama Applications 10.11.2 55

2 Defining Monitors

subscriptions to the same channel from the same context is that each event is delivered once as
long as any of the subscriptions are active. An event is not delivered once for each subscription.

Suppose that in one monitor instance you unsubscribe from a channel but another monitor instance
in the same context is subscribed to that channel. In the monitor instance that unsubscribed, be
sure to terminate any listeners for the events from the unsubscribed channel. Events from the
unsubscribed channel continue to come in because of the subscription from the other monitor
instance.

To explicitly terminate a subscription, call monitor.unsubscribe (channel_name).In a given context,
if you terminate the last subscription to a particular channel then the context no longer receives
events from that channel. If events from the previously subscribed channel were delivered but
not yet processed (they are waiting on the input queue) those events will be processed. This could
include the processing of any listener matches. It is an error to unsubscribe from a channel that
the calling monitor instance does not have a subscription to, and this will throw an exception.

If a monitor is going to terminate anyway there is neither requirement nor advantage to calling
unsubscribe (). Calling unsubscribe() can be useful when a monitor listens to configuration data
during startup but does not need to listen to it during normal processing.

Note:

The subscribe () and unsubscribe () methods are static methods on the monitor type. However,
it is not possible to use instances of the monitor type. For example, there cannot be variables or
event members of type monitor.

See also “Channels and contexts” on page 294.

Apama queries cannot subscribe to channels. However, events sent on the default channel as well
as events sent on the com.apama.queries channel are received by all running Apama queries. See
“Defining Queries” on page 59.

If a correlator is configured to connect to Universal Messaging, then a channel might have a
corresponding Universal Messaging channel. If there is a corresponding Universal Messaging
channel, the monitor is subscribed to the Universal Messaging channel. See "Choosing when to
use Universal Messaging channels and when to use Apama channels" in Connecting Apama
Applications to External Components.

About the default channel

The name of the default channel is the empty string.

Public contexts, including the main context, are always subscribed to the default channel. Contexts
that Apama queries run in are also always subscribed to the default channel.

When an adapter or client that is sending events to the correlator does not specify a target channel
the event goes to the default channel. There is no need for a public context to subscribe to the
default channel.

Events generated by the route statement are not delivered to the default channel.

56 Developing Apama Applications 10.11.2

2 Defining Monitors

An adapter that is using Universal Messaging to send events cannot use the default channel. See
"Configuring IAF adapters to use Universal Messaging" in Connecting Apama Applications to External
Components.

About wildcard channels

An external receiver can be configured to listen on the com. apama. input channel, which is a wildcard
channel for all events that come into the correlator. This can be useful for diagnostics, testing, or
auditing, but it is not recommended for production. In a production environment, the
recommendation is to explicitly specify the channels that the receiver should listen on.

A monitor instance cannot subscribe to com.apama.input.

To configure an external receiver to process all events generated in the correlator, specify that the
receiver listens on the default channel (""). With this specification, a receiver would get all events
generated by the send...to channel and emit statements regardless of the channel the event was
directed to. Events generated by the route statement are not delivered to the default channel.

Adding service monitor bundles to your project

Depending on what your Apama application does, it might require one or more provided service
monitors. Apama organizes service monitors into bundles. To use the service, you add the bundle
to your Apama project in Software AG Designer. See also "Specifying the project bundles properties"
in Using Apama with Software AG Designer.

When the bundle has been added in Software AG Designer, expand the bundle directory to see
the contents. To understand exactly what each service monitor provides, open the service's EPL
file. The comments in the EPL file explain the purpose of each service monitor and how to use it.

You can also write your own service monitors. Best practices for doing this include:
= Follow good engineering practices for defining message exchange protocols.

m Copy the conventions used in the Apama-provided service monitors as these monitors
implement common patterns.

Utilities for operating on monitors

Apama provides the following command-line utilities for operating on monitors. For details about
using these utilities, see "Correlator Utilities Reference" in Deploying and Managing Apama
Applications.

B engine_inject — injects files into the correlator.
B engine_delete — removes items from the correlator.
® engine_send — sends Apama-format events to the correlator.

B engine_receive — lets you connect to a running correlator and receive events from that
correlator.

Developing Apama Applications 10.11.2 57

2 Defining Monitors

® engine_watch — lets you monitor the runtime operational status of a running correlator.
B engine_inspect — lets you inspect the state of a running correlator.

® engine_management — lets you shut down a running correlator or obtain information about a
running correlator. You can also use this utility to manage other types of components, such
as adapters and continuous availability processes.

58 Developing Apama Applications 10.11.2

3 Defining Queries

T oY 0T (¥ Tod (o) o IR (0 T 0 U= [60
B Format of query definitioNS ... 68
B Defining metadata in @ QUETYcooooe i 70
B PartitionNing QUETIESceiiiiiiiiiiiiitt ettt e ettt e e e e e e r e e e e e e e e et r e e e e e e e e e aaannes 71
B DefiNiNg QUETY INPUL .o e e e e e e e s 77
B Finding and acting on event Patternsooooooiiiiiiie e 103
B Implementing parameterized QUETIESuuuuiiiieeiiieeeiiiiis e e eeee e e e e e e e e ee et e e e e e eeeanes 129
B RESHICHONS IN QUETIES ...oeiiiiiiiieiiieeeeeeeee ettt ettt ettt e et e e e e e e e e e e e e e e e 134
B Best practices for defining QUETIESccoiiiiiiii i 135
B TeStNQ QUETY EXECULIONutiiiieieeeiiiiiiiiet it e e e e e e ettt e e e e e s sttt e e e e e e e e s e e e e e e e e e nnnnnreee s 138
m Communication between monitors and QUETIESeeviiiieiiiiiiiiiiiieeeee e 140

Developing Apama Applications 10.11.2 59

3 Defining Queries

A query is one of the basic units of EPL program execution.

Note:

The other basic unit is a monitor. A monitor cannot contain a query. A query cannot contain a
monitor. For information about writing monitors, see “Defining Monitors” on page 33. For a
comparison of queries and monitors, see "Architectural comparison of queries and monitors"
in Introduction to Apama.

Apama queries are suitable for applications where the incoming events provide information
updates about a very large set of real-world entities. Apama provides several sample query
applications, which you can find in the samples\queries directory of your Apama installation
directory.

The topics below provide information and instructions for defining queries.
For reference information, see “Queries” on page 651.

See also: "Using Query Designer" in Using Apama with Software AG Designer and "Deploying and
Managing Queries" in Deploying and Managing Apama Applications.

Introduction to queries

An Apama query is a self-contained processing element that communicates with other queries,
and with its environment, by sending and receiving events. Queries are designed to be
multithreaded and to scale across machines.

You use Apama queries to find patterns within, or perform aggregations over, defined sets of
events. For each pattern that is found, an associated block of procedural code is executed. Typically
this results in one or more events being transmitted to other parts of the system.

Note:
If a license file cannot be found while the correlator is running, several restrictions are enforced
on queries. See "Running Apama without a license file" in Introduction to Apama.

Example of a query

The following code provides an example of a query. This query monitors credit card transactions
for a large set of credit card holders. The goal is to identify any fraudulent transactions. While this
example illustrates query operation, it is not intended to be a realistic application.

query ImprobableWithdrawallLocations {
parameters {
float period;
}
inputs {
Withdrawal(value>500) key cardNumber within period;
}
find Withdrawal as wl -> Withdrawal as w2
where w2.country != wl.country {
log "Suspicious withdrawal: " + w2.toString() at INFO;
}

60 Developing Apama Applications 10.11.2

3 Defining Queries

Each query definition is in a separate file that has a . qry file name extension. The example shows
several query features:

Parameters section

Queries can be parameterized. When a query has no parameters, a single instance of the query
is automatically created when the query is loaded into a correlator. If one or more parameters
are defined for a query, when the query is loaded into a correlator, no instances are created
until you define an instance and specify a set of parameter values for that instance.

Inputs section

The inputs section identifies the events that the query will operate on, that is, the event inputs.
This section contains one or more definitions. Each definition identifies the type of input event
(Withdrawal in the example) together with details identifying which withdrawal events are
input, how those events are distributed, and what state, or event history, is to be held.

The query key is a fundamental concept. If a key is defined, then the incoming events are
partitioned into different sets based on the value of the key. Query processing operates
independently for each set/partition. In the example query, events for each cardNumber will be
independently processed.

For each event input, the definition identifies the set of events that are current. When looking
for pattern matches or evaluating aggregates, only current events are used. For each event
input, the set of events that is current is referred to as the event window.

Find statement

The find statement identifies an event pattern to be matched and defines what event processing
actions are taken when a match is found. A find statement consists of an event pattern followed
by a find block.

The event pattern can specify conditions that determine whether there is a match. A where
condition specifies a Boolean expression that must evaluate to true for there to be a match. A
within condition specifies that certain elements within the pattern must occur within a given
time period. A without condition specifies an event whose presence can prevent a match.

Statements in a find block can send events to communicate with other queries, with monitor
instances, and with external system elements in a deployment, such as adapters, correlators,
or other deployed processes. Some EPL statements, such as on, spawn, from, and die are not
allowed in queries.

Use cases for queries

Apama queries are useful when you want to monitor incoming events that provide information

updates about a very large set of real-world entities such as credit cards, bank accounts, cell phones.

Typically, you want to independently examine the set of events associated with each entity, that
is, all events related to a particular credit card account, bank account, or cell phone. A query
application operates on a huge number of independent sets with a relatively small number of
events in each set.

Developing Apama Applications 10.11.2 61

3 Defining Queries

One use case for Apama queries is to detect subsequent withdrawals from the same bank account
but from locations that make it improbable that the withdrawals are legitimate. Very large numbers
of withdrawal events would stream into your application. A query can segregate the transactions
for each bank account from the transactions of any other bank account. Your query application
can then check the transaction events for a particular account to determine if there have been
withdrawals within, for example, a two-hour period from locations that are more than two hours
apart. You can write a query application so that if it finds this situation the response is to contact
the credit card holder.

Another use case is to detect repeated maximum withdrawals from the same automatic teller
machine (ATM) within a short period of time. This might be due to a criminal with a stack of
copied cards and identification numbers. In this case, a query can segregate events by ATMs. That
is, the transactions conducted at a particular ATM would be in their own partition, separate from
transactions conducted at any other ATM. Your query application can check the events in each
partition to determine if, for example, there are repeated withdrawals of $500 within one hour. If
such a situation is found your query can be written to send an alert message to the local police.

Another use case for Apama queries is to offer a better data plan to new smartphone users. Large
numbers of events related to cell phone customers would come into the system. Your query
application can create sets of events where each set, or partition, contains the events related to one
cell phone customer. When your query detects an upgrade from a flip phone to a smart phone,
your application can automatically send a message to that customer that outlines a better data
plan.

In summary, the characteristics of an Apama query application include:
= You want to monitor a very large number of real-world entities.

® You want to process events on a per-entity basis, for example, all events related to one credit
card account.

®m The data you need to retain in order to run Apama queries is either too large to fit on to a
single machine or there is a requirement to place it in shared, fast-access storage (a cache) to
support resilience/availability requirements.

More information about the use cases for queries can be found in "Understanding queries" in
Introduction to Apama.

Delayed and out of order events

In many of the typical applications envisaged for Apama queries, the input events may be either
delayed or out of order. For example, cars and other mobile sources of events such as smart phones
and tablet computers might normally send regular streams of events, but when such devices are
out of network coverage, these events will have to be batched and sent when back in range. Many
older generation factory robots store events and only send periodic batches by design. And in
other cases, events may be sent out of order. Television set top boxes, for example, often employ
distinct channels for tuning information and diagnostics. This means that a “channel changed”
event may be received before a “set top box crashed” event, and so may be thought to have caused
it, even though the event in fact happened after it, and was causally unconnected.

62 Developing Apama Applications 10.11.2

3 Defining Queries

Delayed or out of order events can create problems for the query runtime because it assumes that
events should be treated as being in the order in which they are processed, and the time of each
event is the correlator's time at the point the event is processed. However, provided that the input
events contain a timestamp recording the time that the event was created at the source, these
problems can be overcome by using the Apama queries source timestamp functionality. This
allows the queries runtime to wait for specified periods before processing events, and then to
process those events on the basis of their source timestamps rather than the time they were received
by the correlator. (For out of order events, the Apama event definitions must have the appropriate
annotation; for more information, see “Out of order events” on page 97).

Events can also be supplemented by heartbeat events with timestamps from data sources to inform
the query runtime when communication with the data source is working correctly, which avoids
long delays waiting for events to occur in case they are delayed.

See “Using source timestamps of events” on page 90 for details on how to configure Apama
queries to use source timestamps.

Query terminology

The following table defines important query terms.

Term Description

query A self-contained processing unit. It partitions incoming events according
to a key and then independently processes the events in each partition.
Processing involves watching for an event pattern and then executing
a block of procedural code when that pattern is found.

input An event type that a query operates on. An input definition specifies
an event type plus details that indicate how to partition incoming events
and what state, or event history, is to be held.

key A query key identifies one or more fields in the events being operated
on. Each input definition must specify the same key.

partition A partition contains a set of events that all have the same key value.
One or more windows contain the events added to each partition.

window For each input, a window contains the events that are current. The query
operates on only current events.

latest event The latest event is the event that was most recently added to a partition.
set of current events The events that are in the window(s) of a partition.
pattern Specification of the event or sequence of events or aggregation that you

are interested in. A pattern can include conditions and operators.

match set A match set is the set of events that matches the specified pattern. A
match set always includes the latest event.

Developing Apama Applications 10.11.2 63

3 Defining Queries

Term

Description

parameterization

source timestamp

heartbeat event

definitive time

A query definition that specifies parameters is a parameterized query.
An instance of a parameterized query is referred to as a
parameterization.

The time an event occurred at its source. This may be before it is
processed if there is some delay or disruption in delivering the event
from the source to the query runtime. This will be data in one or more
fields of an input event. Queries can use the source timestamp if an
action is provided to obtain the source timestamp in the correct form.
See “Using source timestamps of events” on page 90.

An event that a query uses to determine when communication with a
data source is working correctly, and it has not missed any events that
are delayed. With heartbeat events, received input events can be
processed as they are considered definitive. Without these, the query
runtime needs to wait for the input's wait time specified in the query
definition to ensure it avoids missing delayed events.

The point in time for which the query runtime has been told that it can
assume it has received all the events it is going to receive. All events at
or before this point in time are considered definitive and can be used
to evaluate the query. This applies when using the source timestamp
functionality.

Overview of query processing

When Apama executes queries, it does so in parallel, making use of multiple CPU cores as available.
This is good for performance, but uses more resources on the hosts running the correlator and
can, in edge cases, cause events to be processed in an order that is different from the order in which
they were delivered to the correlator. To simplify testing, a serial mode is supported where events
are processed in order, no matter how quickly they are sent.

Apama processes queries as follows:

1. Based on the inputs section of a query, the query subsystem creates listeners for the required

events.

2. Running Apama queries receive events sent on the default channel and on the
com.apama.queries channel.

3. Events matching those listeners are forwarded to the query subsystem that processes the

events.

4. The events are processed in parallel. That is, multiple threads of execution are employed,
thereby achieving vertical scaling on machines that have multiple cores.

5. The query subsystem must locate the relevant events for the query partition. That is, the
previously encountered events that are still current according to the defined event windows

64

Developing Apama Applications 10.11.2

3 Defining Queries

for that query. The information in the incoming event, that is, the key, is all that is required to
locate these events.

6. The window contents are updated, adding the new event and discarding any events that are
no longer current.

7. The system then checks the updated window contents to determine if there are any new pattern
matches.

8. For each new pattern match the associated find block statements are executed.

In a single correlator solution, events in a particular partition are held in one or more Apama
MemoryStore records. The key from the incoming event is used to locate these records. In a
multi-correlator solution, the records are held in a distributed cache, accessed by means of the
MemoryStore API. All of this is internal, however, you should consider timing constraints when
deciding whether a query-based solution is appropriate for a given problem. See "Understanding
queries" in Introduction to Apama.

After injecting a query into a correlator, events may be immediately sent to that query. If necessary,
Apama stores these events until the query is prepared. That is, the query might be opening
local/remote stores. Events are delivered when the query is ready to process them. There is no
guarantee that the order in which the events arrived in the correlator is the same order in which
the query processes them. See “Event ordering in queries” on page 138.

When testing, either send events at a realistic event rate, with pauses in between each set of events,
or use single context mode. To send events with pauses, you can place BATCH entries in the .evt
file. See "Event timing" in Deploying and Managing Apama Applications.

By default, the query subsystem determines the size of the machine it is running on (the number
of cores) and scales accordingly. If other services are affected by the load on the host machine, or
for testing, then send one of the following events to the correlator (for example, by creating an
.evt file in Software AG Designer and sending it as part of the Run Configuration) to configure
how the correlator executes queries:

B com.apama.queries.SetSingleContext()

B com.apama.queries.SetMultiContext()

Overview of query application components

While queries can make up the central logic of an Apama deployment, deploying an Apama query
application also requires event definitions, and connections to event sinks and event sources.
Optionally, an Apama query application can make use of EPL plug-ins, EPL actions, and interactions
with EPL monitors.

In addition to queries, the following components are required to implement a query application.

m Event definitions. This includes event types used by adapters or mapped from message busses
(see below) or used internally within application components. Typically, event types specific
to an adapter or to existing messages on a message bus would be written by those creating or
configuring the adapter.

Developing Apama Applications 10.11.2 65

3 Defining Queries

Connections between event sources and queries and also between queries and event sinks.
This is typically handled by adapters or by mapping to messages on a message bus by means
of JMS. For testing, it is possible to use Software AG Designer or command line tools to send
and receive messages.

A correlator process. Several queries can share the same correlator process. Queries can be
started by Ant scripts, which can be exported from an Apama project. For testing, Software
AG Designer can start the queries.

Optionally, queries can use a library of functions that you provide. These would be written in
EPL and can call EPL plug-ins written in C++ or Java. Functions in such a library can be invoked
from different points in a query.

Optionally, a query can interact with monitors. See “Communication between monitors and
queries” on page 140.

For additional information, see "Query application architecture" in Deploying and Managing Apama
Applications.

Writing event definitions

Event definitions are defined in Apama .mon files. When writing event type definitions be sure to
consider the following:

An inputs block in a query can specify filters on event fields of type boolean, decimal, float,
integer, string or location.

An event field to be specified as a query key must be of type boolean, decimal, float, integer,
string or location.

An event field to be specified in an inputs block, whether as a filter or a key, cannot be marked
with the wildcard modifier in the event type definition.

A where condition in a query can make use of all actions and fields of events, including members
of reference types such as sequence, dictionary and other events.

Specifying an event filter in an inputs block is very efficient because it prevents any part of
the query from executing if the filter condition does not match. However, a filter in an inputs
block can operate on only contiguous ranges and can compare only a single field to a constant
or parameter value.

Specifying an event filter in a where condition is more expensive than specifying an event filter
in an inputs block. However, a filter in a where clause can be more powerful because it can
specify any EPL expression.

A query cannot use an event that contains an action variable or fields of type chunk or listener.

If you want to take advantage of the source timestamp functionality, be sure to add an event
field that records the time of the creation of the data encapsulated in the event, and an action
that returns this time in the form of a float representing the number of seconds since the epoch
(midnight, 1 Jan 1970 UTC). If the time data is not in this format, you can use the TimeFormat
event library to perform the relevant conversions (for further information, see “Using the
TimeFormat Event Library” on page 343).

66

Developing Apama Applications 10.11.2

3 Defining Queries

For example, consider the following event definitions:

event Slice {
integer quantity;
float price;

}

event UsableEvent {
integer quantity;
string username;
wildcard string auxData;
sequence<Slice> slices;
action averagePrice() returns float {
float t:=0;
Slice s;
for s 1in slices {
t:=t+s.price;
}
return t/(slices.length().toFloat());

}
}
event InternalEvent {
action<> returns float averager;

}

UsableEvent.quantity and UsableEvent.username can be used in a query inputs block or in a query
where condition.

UsableEvent.auxData, UsableEvent.slices and UsableEvent.averagePrice() can be used in where
conditions but not in inputs blocks.

InternalEvent cannot be an input to a query because it has an action variable. However, an
instance of InternalEvent could be used in a where condition or in triggered EPL code in a find
block.

For example, the find statement in a query can be written as follows:

find UsableEvent as el and UsableEvent as e2
where el.averagePrice() > e2.averagePrice()
and
el.slices[0].price < e2.slices[0].price

Action definitions can supply helper actions such as the averagePrice() action above. This can be
useful in both event types used by adapters and in internal event types. For example, some event
types may have no members but simply be a named container for useful library actions.

To make use of EPL plug-ins written in C, C++ or Java, it is recommended to write an EPL event
type or set of event types that wrap the plug-in. This provides a more consistent interface and can
add type safety to the use of chunks, which are opaquely-typed C, C++ or Java objects. These EPL
actions can then be called from queries, as can any EPL action.

Event sinks and sources

A typical deployment includes adapters that connect the Apama system to external sources of
data or provide the means to send events out of Apama. This can include:

Developing Apama Applications 10.11.2 67

3 Defining Queries

®m Adapters hosted in the Apama IAF. See "Using the IAF" in Connecting Apama Applications to
External Components.

m Connections to a JMS message bus with mapping of J]MS messages to Apama event types. See
"Using the Java Message Service (JMS)" in Connecting Apama Applications to External Components.

m Connections to a database by means of ADBC. See "The Database Connector IAF Adapter
(ADBCQC)" in Connecting Apama Applications to External Components.

® Connections to other components using the Apama engine_client library. See "Developing
Custom Clients" in Connecting Apama Applications to External Components.

For testing purposes, Software AG Designer can send / receive events from / to files, and command
line tools are provided as well.

Correlator process

When developing queries in Software AG Designer, launching a configuration starts a correlator
and injects queries into it by default. It is also possible to export the Apama launch configuration
to an Ant script, which can be copied onto another machine such as a server to run your project
on that machine.

It is possible to run multiple correlators that are configured to use the same distributed cache store.
These correlators share query state. In such deployments, the recommendation is to use a JMS
message queue. Typically, these deployments would use correlators on separate physical machines
so a failure of one does not affect others. For testing, it is possible to run several correlators on a
single machine provided a separate port number is allocated to each correlator. Take care to use
the correct port number when interacting with the correlators.

Format of query definitions

A query searches for an event pattern that you specify. You define a query in a file with the
extension .qry. Each .qgry file contains the definition of only one query. The following sample
shows the definition of a simple query that will search for a withdrawal event pattern:

query ImprobableWithdrawallLocations {
metadata {
"author":"Apama",
"version":"1"
}
parameters {
float period;
}
inputs {
Withdrawal() key cardNumber within (period);
}
find
Withdrawal as wl -> Withdrawal as w2
where w2.country != wl.country {
log "Suspicious withdrawal: " + w2.toString() at INFO;

68 Developing Apama Applications 10.11.2

3 Defining Queries

The format for a query definition is as follows:

query name {
[metadata { metadata_block }]
[parameters { parameters_block } 1]
inputs { inputs_block }
find pattern block
[action_definition ...]

Syntax Element Description

query name Specify the query keyword followed by a name for your query. Like
monitors and event types, the identifier you specify as the name of a
query must be unique within your application.

metadata The metadata section is optional. If you specify a metadata section, it
must be the first section in the query. Metadata are specified as a list
of key-value pairs. Both key and value must be string literals. For
more information, see “Defining metadata in a query” on page 70.

parameters The parameters section is optional. If you specify a parameters section,
it must follow the metadata section, if there is one, and precede the
inputs section. Parameters must be of the following types:

B integer
B decimal
m float

B string
H boolean

Specify one or more data_type parameter_name pairs. The parameter
name can use any of the characters allowed for EPL identifiers (see
“Identifiers” on page 711). Any parameters you specify are available
throughout the rest of the query. For more information about
parameters and how parameters get their values, see “Implementing
parameterized queries” on page 129.

inputs The inputs section is required and it must follow the parameters
section, if there is one, and precede the find statement. In the inputs
section, you must define at least one input. If you specify more than
one input each input must be a different event type.

The inputs section specifies the events that the query operates on. An
input definition can include the keyword, key, followed by one or

more fields in the specified event. This is the query key. The correlator
uses the key to partition incoming events into separate windows. For
example, the cardNumber key indicates that there is a separate window
for the withdrawal events for each card number. In other words, each

Developing Apama Applications 10.11.2 69

3 Defining Queries

Syntax Element Description

window can contain Withdrawal events associated with only one
account.

For details, see “Defining query input” on page 77.

find statement After the inputs section, you must specify a find statement. A find
statement specifies the event pattern of interest and a block that
contains procedural code. This code can define EPL actions you want
to perform when there is a match. For more information, see “Finding
and acting on event patterns” on page 103.

action_definition After the find statement, you can optionally specify one or more
actions in the same form as in EPL monitors. An expression in a find
statement can reference an action defined in that query. See “Defining
actions in queries” on page 128.

Defining metadata in a query

You can record information about a query in the metadata section. This can be, for example, the
recording author, the version number, or the last modified date of a query. Once defined, metadata
information about a query can be viewed in the Scenario Browser. See also "Using the Scenario
Browser view" in Using Apama with Software AG Designer.

Format for defining query metadata

You define query metadata in the metadata section of a query definition. The metadata section is
optional. If you specify a metadata section, it must be the first section in the query. The format for
specifying the metadata section is as follows:

metadata {

key:value

[, key:value]...
}

key and value must be string literals. Both are case-sensitive.
value can be a multi-line string.

key must be a valid EPL identifier (see “Identifiers” on page 711). Therefore, key must not include
spaces, hyphens, dots or any other characters that are not allowed in EPL identifiers.

All key definitions that are contained in a single metadata section of a query must be unique.

It is recommended to use lowerCamelCase style for the key. The prefix “apama” should not be
used for the key as it is reserved for future use.

70 Developing Apama Applications 10.11.2

3 Defining Queries

Partitioning queries

Based on the values of selected fields in incoming events, the correlator segregates events into
many separate partitions. Partitions typically relate to real-world entities that you are monitoring
such as bank accounts, cell phones, or subscriptions. For example, you can specify a query that
partitions Withdrawal events based on their account number. Each partition could contain the
Withdrawal events for one account. Typically, a query application operates on a huge number of
partitions with a relatively small number of events in each partition.

Each partition is identified by a unique key value. You specify a key definition in each input
definition in the query's inputs block. The key definition specifies one or more fields or actions in
the event type you want to monitor. The number, order and type of the key fields must be the
same in each input definition in a query.

A query operates on the events in the windows in each partition independently of the other
partitions.

Note:
Several restrictions are enforced on queries if a license file cannot be found while the correlator
is running. See "Running Apama without a license file" in Introduction to Apama.

Defining query keys

At runtime, each partition is identified by a unique key value, which is the value of one or more
fields or actions in the events that the query operates on.

Note:

Using a key is optional. If you do not specify a key, all events the query operates on are in one
partition. Since this is an unusual use case for queries, the documentation assumes that you
always choose to specify a key.

An event member that is declared as a constant cannot be used as a query key.

In a query, each input definition in the inputs section specifies the query key in the key definition.
The key definition specifies one or more fields or actions in the event that the window will contain.
For example:

query ImprobableWithdrawallLocations {
inputs {
Withdrawal() key cardNumber within (600.0);

}
find (Withdrawal as wl -> Withdrawal as w2)
where (wl.country != w2.country) {
getAccountInfo();
sendEmail();
}

}

In this example, the definition for withdrawal events specifies that the cardNumber field is the key.
When the correlator processes a Withdrawal event, it adds the event to the partition identified by
the withdrawal event's cardNumber value.

Developing Apama Applications 10.11.2 71

3 Defining Queries

Suppose the input definition in this example specifies two key fields:

inputs {
Withdrawal() key cardNumber, cardType within (600.0);
}

Each partition is now identified by a combination of the cardNumber value and the cardType value.
When you specify two or more key fields, insert a comma after each field except the last one. It is
allowable to specify key fields in an order that is different than the order of the fields in the event.

When you specify more than one input in a query, each input definition must specify the same
number and data type order of key fields. For example:
inputs {

Withdrawal() key cardNumber within (600.0);

AddressChange() key cardNumber retain 1;
}

For each input in this example, the key is the cardNumber field. The data type of the cardNumber
field in the withdrawal event must be the same as the data type of the cardNumber field in the
AddressChange event.

Sometimes, a field in one event contains the same information as a field in another event but the
two fields have different names. For example, information about the type of a card could be in the
cardType field in Withdrawal events and the type0fCard field in AddressChange events. In this
situation, you must specify an alias for one of the event field names. You do this in the input
definition's key definition. In the following example, as cardType in the second input definition
specifies the alias:
inputs {

Withdrawal() key cardNumber, cardType within (600.0);

AddressChange() key cardNumber, typeOfCard as cardType retain 1;
3

When you specify more than one input, the key definition in each input definition must specify
the same number of fields in the same order. Also, the data type of a field in one key definition

must be the same as the data type of its corresponding field in every other key definition in the
same inputs block. If the names of corresponding key fields are not the same, you must use the
as keyword to specify an alias.

While specification of an alias for a key field name is sometimes required, it is always an option
you can choose to use. For example:

inputs {
Withdrawal() key number as cardNumber, cardType within (600.0);
AddressChange() key number as cardNumber, typeOfCard as cardType retain 1;
}

An alias maps a field in an event to a key field. You cannot use an alias as a field of the event. For
example, consider the following query:

query Q {
inputs {
A() key surname as lastName, dob as dateOfBirth retain 5;
B() key lastName, dateOfBirth retain 4;

72 Developing Apama Applications 10.11.2

3 Defining Queries

find A as a -=> B as b

}

In the find block of this query, you can use the following
B a.surname, a.dob-Names of event fields
B b.lastName, b.date0OfBirth - Names of event fields

® lastName, dateOfBirth-Names of key fields

Defining actions as query keys

A query may also use the result of an action call on the event as the key for a query. To use an
action as a query input key, you must provide the action name, parameters and an alias. The action
call must always return a value (chunk, listener and action are invalid return types).

The following example calls the getName () action within the A event to generate the input key:

query Q {
inputs {
A() key getName() as name retain 1;

¥

find A as a ...

}

The parameters passed to an input key action can include query parameters or literals, or can be
blank in which case empty parenthesis must still be supplied. Passing a query parameter allows
for specializing the partitions depending on the query parameter, which can reduce duplicating
query code when only the input keys differ.

The following example calls the getName () action within the B event, supplying the query parameter
nameToPartitioninto the action. The action can then return a different field (firstname or surname)
depending on the parameters of this query instance:

query Q {
parameters {
string nameToPartition;

}
inputs {
B() key getName(nameToPartition) as name retain 1;

+
find B as b ...

}

An alias must always be supplied and can be used to identify the returned value of the action call
in the find block. For example, the alias name will identify the value returned from the call to
getName () and can be used in the find block:

find B as b {
print name;

3

If using multiple input events, the action return type must match the type for the key in all other
inputs, and the alias must match between inputs. The following example uses both action and

Developing Apama Applications 10.11.2 73

3 Defining Queries

field input keys; the surname field and the return from getName () must be the same type, and they
are both mapped to the alias name:

query Q {
inputs {
A() key surname as name retain 1;
B() key getName("Surname") as name retain 1;

}

find A as a -> B as b ...

}

We suggest that query parameters that are passed into action keys are not updated. Updating
them can cause unexpected partitioning as the returned value from the action call may not be as
expected.

Query partition example with one input

A key can be one event field. For example:

query ImprobableWithdrawallLocations {
inputs {
Withdrawal() key cardNumber within (600.0);

}
find (Withdrawal as wl -> Withdrawal as w2)
where (wl.country != w2.country) {
getAccountInfo();
sendEmail();
}

3

In the previous code fragment, the key is the cardNumber field in the incoming withdrawal event
type. When a Wi thdrawal event arrives the correlator adds it to the window in the partition identified
by the value of the withdrawal event's cardNumber field. For each partition, each unique card number
in this example, the correlator maintains the window and evaluates the pattern separately from
every other partition.

Suppose that cardNumber is the first field in Withdrawal events. The following table shows what
happens at runtime.

Incoming Event Goes Into Window in Partition Window Contents
Identified by This Key Value

Withdrawal (12345, 50.0, ...) 12345 Withdrawal (12345, 50.0, ...)
Withdrawal (24601, 60.0, ...) 24601 Withdrawal (24601, 60.0, ...)
Withdrawal (12345, 10.0, ...) 12345 Withdrawal (12345, 50.0,

D),

Withdrawal (12345, 10.0, ...)

In the execution of this query, there is no interaction between the withdrawal events for account
number 12345 and the withdrawal event for account number 24601.

74 Developing Apama Applications 10.11.2

3 Defining Queries

Query partition example with multiple inputs

The following query provides an example of partitioning with two inputs. This query operates
on APNR (Automatic Plate Number Recognition) events and Accident events:

query DetectSpeedingAccidents {

inputs {
APNR() key road within(150.0);
Accident() key road within(10.0);

}

find APNR as checkpointA -> APNR as checkpointB -> Accident as accident
where checkpointA.plateNumber = checkpointB.plateNumber
and checkpointB.time - checkPointA.time < 100
// Which indicates the car was speeding

emit NotifyPolice(accident.road, checkpointA.plateNumber);

The road field in an APNR event must be the same type as the road field in an Accident event.
Assuming that road is a string, each partition is identified by a unique value for that string.

Suppose the correlator processes the following events in top to bottom order and that road is the
first field in each event:

Accident("M11")

APNR("A14", "FAB 1", ...)
APNR("A14", "BSG 75", ...)
APNR("M11", "ZC 158", ...)
APNR("A14", "BSG 75", ...)
APNR("M11", "ZC 158", ...)
APNR("A14", "FAB 1", ...)

Accident("A14")

The following table shows which events are in which partitions. Note that in each partition, the
APNR events are in one window and the Accident events are in another window. Although the
events are in separate windows, the correlator time-orders the events across all windows in a
partition.

Events in Partition Identified by "M11" Events in Partition Identified by "A14"
Accident("M11™") APNR("A14", "FAB 1", ...)
APNR("M11", "ZC 158", ...) APNR("A14", "BSG 75", ...)
APNR("M11", "ZC 158", ...) APNR("A14", "BSG 75", ...)
APNR("A14", "FAB 1", ...)

Developing Apama Applications 10.11.2 75

3 Defining Queries

Events in Partition Identified by "M11" Events in Partition Identified by "A14"

Accident("A14")

In each partition, the query evaluates the event pattern against the events in the windows in that
partition. The query does this for each partition separately from every other partition. In this
example, when the correlator adds the Accident("A14") event to the partition identified by "A14"
the event pattern is triggered if the where clause in the find statement evaluates to true. The event
pattern is not triggered in the partition identified by "m11".

About keys that have more than one field

A key can be made up of several event fields. For example, a Transaction event might contain a
field that indicates the transaction source account and another field that indicates the transaction
destination account. You can specify that you want to partition Transaction events according to
each unique source/destination combination:

query TransactionMonitor {
inputs {
Transaction() key source, dest within PERIOD;

}

In this example, there is a partition identified by the value of each source/dest combination. Each
of the following events is added to a window in a different partition:

This Event Is Added to the Window in the Partition
Identified By

Transaction(l, 100, ...) 1, 100

Transaction(l, 102, ...) 1, 102

Transaction(2, 100, ...) 2, 100

Transaction(2, 102, ...) 2, 102

Regardless of the event pattern in the query, this query monitors the transfer of money from one
specific account to another specific account. This query handles each transfer between the same
two accounts separately from all other transactions.

Now suppose that there is an Acknowledgement event that acknowledges that a transaction has
succeeded. It also has account source and account destination fields, but they are inverted when
compared to the transaction event fields. That is, the source account for an acknowledgment is
the destination account of the transaction. To ensure that the acknowledgments are added to the
same partition as the corresponding transactions, the key definition specifies the as keyword:
inputs {

Transaction() key source as txSource, dest as txDest within PERIOD;

Acknowledgement () key dest as txSource, source as txDest within PERIOD

}

76 Developing Apama Applications 10.11.2

3 Defining Queries

The query partitions events according to the combined values of the fields identified by txSource
and txDest. The following table shows the partition that each event is added to.

This Event Is Added to a Window in the Partition
Identified By

Transaction(l, 100, ...) 1, 100

Acknowledgement (100, 1, ...) 1, 100

Transaction(l, 102, ...) 1, 102

Transaction(2, 100, ...) 2, 100

Acknowledgement (100, 2, ...) 2, 100

As you can see, a Transaction event and its Acknowledgement event are each added to a window
in the same partition.

Defining query input

In a query definition, you must specify an inputs block that defines at least one input. The input
definitions identify the events that you want the query to operate on. An input definition can
specify particular content and it can also specify a number of events or a time period. For example:

query FraudulentWithdrawalDetection {
inputs {
Withdrawal (amount > 10.0)
key cardNumber, cardType
within 600.0;
AddressChange()
key cardNumber, typeOfCard as cardType
retain 1;
}
find (Withdrawal as wl -> Withdrawal as w2)
where (wl.country != w2.country or wl.city != w2.city)
without AddressChange as ac {
getAccountInfo();
if preferredContactType = "Email" {
sendEmail();
}
if preferredContactType = "SMS" {
sendSMS () ;
}

The previous code defines two inputs. For each input, there is an associated window of events.
The first input window contains wi thdrawal events and the second contains AddressChange events.

The input definition for the withdrawal events specifies that each withdrawal event in the window
must have a value greater than 16.0 in the amount field. The input definition for the AddressChange
events does not specify an event filter. Therefore, each AddressChange event that arrives is eligible
to be in the window.

Developing Apama Applications 10.11.2 77

3 Defining Queries

The next element in an input definition is the key definition. The key definition indicates how you
want to partition the incoming events. If you define more than one input, the number, type and
order of the key fields must be the same for each input. In the previous sample code, assume that
the key fields for Withdrawal events, cardNumber and cardType are integer and string, respectively,
and that the key fields for AddressChange events, cardNumber and typeOfCard are also integer and
string, respectively. The two input keys match in number, type and order of key fields.

After the key definition, you can specify a within clause, a retain clause, or both. If you specify
both, the within clause must be before the retain clause. A within clause specifies a period of
time. Only events that arrive within that period of time are in the window. In the window that
contains Withdrawal events, only Withdrawal events that have arrived in the last 10 minutes (600. 0
seconds) are in the window. A retain clause specifies how many events can be in the window. In
the window that contains AddressChange events, only the last AddressChange event that arrived
can be in the window. When an AddressChange event arrives, if an AddressChange event is already
in the window it is ejected.

After the duration, you can optionally specify a with unique clause to prevent repeated values

appearing in the window. If specified, the with unique clause lists one or more fields or actions
on the event type (action names should be followed by open and close parentheses). If there is

more than one event in the window after the within and retain specifications, then all but the

latest are discarded. See “Matching only the latest event for a given field” on page 101.

The final, optional, element of an input definition is the specification of the event source timestamp
and the associated wait period. If you expect that input events from a source will be subject to
delays or may be received out of order, then you can specify a time from clause with the name of
an action that returns a float specifying the number of seconds from the epoch (midnight, 1 Jan
1970 UTC) that the event was created. If you do this, you must also add a wait clause which requires
a float or time literal specifying the maximum delay expected for these events. This tells the query
runtime how long it must wait if it has not received any events before it can continue processing
the events it has received. Both of these clauses require that the event definition must have a source
timestamp recording the time of creation of the event, and a corresponding action that returns
that timestamp in the form of a float representing the number of seconds since the epoch. In the
example below, the query is gathering data from cars, which may be delayed if a vehicle goes out
of network coverage. Accordingly, the input definitions specify that the source timestamps of the
events are to be obtained from the events' getEcuTime actions which simply return the value of
the events' ts float field. Further, the input definitions specify that in each case, the runtime should
wait for up to 1 hour before continuing to process any events already received to allow for possible
delays. For further details, see “Using source timestamps of events” on page 90.

event CarRPM {
string carId;
float ts;
float rpm;

action getEcuTime() returns float {
return ts;

}

event CarEngineTemp {
string carId;
float ts;

78 Developing Apama Applications 10.11.2

3 Defining Queries

float temp;

action getEcuTime() returns float {
return ts;

3

event CarEngineMisfire {
string carId;
float ts;

action getEcuTime() returns float {
return ts;
b
b

query DetectEnginePerformanceProblems {
inputs {
CarEngineTemp() key carId within 1 hour time from getEcuTime wait 1 hour;
CarRPM() key carId within 1 hour time from getEcuTime wait 1 hour;

CarEngineMisfire() key carId within 1 hour time from getEcuTime wait 1 hour;

3

find CarEngineTemp as t and CarRPM as r -> wait 1 minute
where t.temp > T_THRESHOLD
where r.rpm > R_THRESHOLD
without CarEngineMisfire as misfire {
log "Possible engine performance problem" + t.toString() + r.toString();

Typically, you define one to four inputs. If you define more than one input, each must be a different
event type. In other words, two inputs to the same query cannot be the same event type.

Queries can share windows

All query instances that have the same input definitions share the same windows. Two queries
have the same input definitions when they specify:

® the same input event types (the order can be different)
m the same keys
® the same (if any) input filters

m the same use of source timestamps - that is, the same action named in time from clauses (wait
times may be different)

m the same use of heartbeat events
Any wait, within, retain or with unique specifications can be different.

When two query instances have the same input definitions and no parameters are used in any
input filters, then all instances of those query definitions can share window data. If parameters

Developing Apama Applications 10.11.2 79

3 Defining Queries

are used in input filters, then parameterizations with different parameter values each store data
separately. This increases total storage requirements and cost of processing the queries.

If a query is already running and you inject a query that defines the same inputs or create a
parameterization that defines the same inputs then the new query instance or new parameterization
uses the same windows as the query that was already running. This means that events that were
received before the new query was injected or before the parameterization was created can be in
a match set for the new query instance or new parameterization. This can happen when an event
arrives after the new query is injected or after the parameterization is created and that event
completes the pattern that the new instance or parameterization is looking for.

To reduce the amount of memory storage required to run queries, you might want to adjust the
input definition for a query so that it is the same as another query. For example, suppose query Q
is consuming inputs A, B, and X, while query P is consuming inputs A, B, and Y. If both queries
define both x and Y as inputs (as well as A and B) then they can share the same windows. This can
be an advantage when there are many A and B events but comparatively few x and Y events. If
many queries can be written with similar input sections then they can share windows, which can
lead to very efficient use of memory.

If the reason for adding an input using source timestamps is simply in order to share window
contents, then the wait time for this input can be zero to avoid unnecessary delays.

Format of input definitions

In a query definition, you define one or more inputs in the inputs block. The format of the inputs
block is as follows.

inputs {
event_type(event_filter)
key query_key [within_clause] [retain_clause]
[with_unique_clause]
[time_from_clause wait_clause [or_clause]] ;

[event_type(event_filter)

key query_key [within_clause] [retain_clause]
[with_unique_clause]

[time_from_clause wait_clause [or_clause]] ;]...

}

Syntax Element Description

event_type Name of the event type that you want to operate on. The event
type must be parsable. See “Type properties summary” on
page 611.
Event type names can come from the root namespace, a using
declaration, or a local package as specified in a package
declaration.

event_filter Optionally filter which events of this type you want to be in the

window. For example, you might define the window to contain
only the events whose amount field is greater than 10. The rules

80 Developing Apama Applications 10.11.2

3 Defining Queries

Syntax Element

Description

query_key

retain_clause

within_clause

with_unique_clause

for what you can specify for the event filter are the same as for
what you can specify in an event template in EPL. See “Event
templates” on page 628.

Specify one or more event fields or actions. You can specify event
fields of type boolean, decimal, float, integer, string or
location. When an action is used as an input key, an alias must
be supplied.

The correlator uses the key to partition the events. Each partition
is identified by a unique key value. One or two keys is typical.
Three is unusual and rarely needed. More than three key values
is discouraged.

When you define more than one input in a query

® The number, type, and order of the key fields in each input
definition must be the same.

= If the names of the key fields are not the same in each input
definition, you must specify aliases so that the names match.
For details, see “Partitioning queries” on page 71.

Optionally specify retain followed by an EPL integer expression
that indicates how many events to hold in the window. For
example, if you specify retain 1, only the last event that arrived
that is of the specified type and that has the key value(s)
associated with that partition is in the window. You must specify
a retain clause or a within clause or both.

While it is possible to retain any number of events, you must
ensure that you define an input that allows a match with the
event pattern specified in the corresponding find statement. For
example, the following query never finds a match:

query Q {
inputs {
A() key k retain 3;
}
find A as al -> A as a2 -> A as a3 -> A as a4 {
print al.toString()+ " - "+a4.toString();
}

}

Optionally specify within followed by a float expression or time
literal that specifies the length of time that an event remains in
the window. You must specify a retain clause or a within clause
or both. See “Specifying event duration in windows” on page 83.

Optionally specify a set of secondary keys which constrains the
window to only include the latest event for each value for the

Developing Apama Applications 10.11.2

81

3 Defining Queries

Syntax Element Description

set of keys. See “Matching only the latest event for a given
field” on page 101.

time_from_clause Optionally specify time from followed by the name of an action
that specifies how the source timestamp of the event can be
obtained. The named action must be an action defined on that
input event type. It must take no parameters and must return a
float. This is taken to be when the event occurred, specified as
seconds since the epoch.

Note:

You are not permitted to use the event's built-in getTime ()
method. This method returns the time when the correlator
either processed or created the event, which defeats the
purpose of the source timestamp functionality.

wait_clause If a time_from_clause is provided, a wait_clause is required,
which specifies wait followed by a float expression or time
literal which specifies the maximum delay expected for events.
This is how long a query will wait for events if it has not received
any events. See also “Using heartbeat events with source
timestamps” on page 96 and “Out of order events” on page 97.

or_clause Optionally specify a heartbeat event type which informs the
query runtime when communication with the data source is not
delayed. See “Using heartbeat events with source timestamps” on
page 96. This can only be specified if the time_from_clause and
wait_clause are specified.

Behavior when there is more than one input

The correlator orders the events in a window according to the time it processes each event, that
is, the time it adds the event to its window. When a query defines more than one input then, for
each partition, the correlator maintains a single time-order for all events in all windows.

Suppose the correlator adds an event to a window and within 0.1 seconds the correlator adds a
different event to the same window or to another window in the same partition. Outside a query,
these two events might have the same timestamp because default correlator behavior is to increment
the timestamp only every tenth of a second. In a query, however, if an event is added to a window
within 0.1 seconds after another event was added to a window, the correlator assigns the second
event a timestamp with enough significant digits to ensure that time order is preserved. The
following code fragment shows the result of calling the getTime () method on two events that
arrive within 0.1 seconds of each other:

find E as e -=> F as f {
print e.getTime().toString(); // Yields "1365761429.1"
print f.getTime().toString(); // Yields "1365761429.100001"

}

82 Developing Apama Applications 10.11.2

3 Defining Queries

The order of the events is important when the event pattern in a find statement specifies the
followed-by operator. Consider this example:

query Q {
inputs {
A() key k retain 20;
B() key k retain 10;

}
find A as a ->Bas b { ... }

}

This pattern does not trigger when the correlator adds an A event to the A window. But if there is
already an A event in the A window then this pattern triggers when a B event is added to the B
window.

In a partition, at any one time, it is possible for the set of windows to contain multiple sets of events
that, each taken in isolation, would match the defined event pattern. In this case, the event matching
policy determines which of the candidate sets triggers an action. See “Event matching policy” on
page 126 for a description of how the query chooses the event set that triggers an action. To illustrate
event matching policy, that topic provides an example of query behavior when there is more than
one window.

Specifying event duration in windows

In an input definition, you can specify an optional within clause that indicates the length of time
that an event remains in the window. For example:

query FraudulentWithdrawalDetection {
inputs {
Withdrawal() key userId within 1 hour;

}
find Withdrawal as wl -> Withdrawal as w2
where wl.city != w2.city {
log "Suspicious withdrawal: " + w2.toString() at INFO;

}

In this example, a Withdrawal event remains in the window for 1 hour. After 1 hour in the window,
an event is ejected. Each time an event is added to one of the windows in a partition, the correlator
evaluates the find pattern for that partition. Ejection of an event from a window does not trigger
pattern evaluation. There are two formats for specifying a within clause:

B within time_literal
B within float_expression
Parentheses in within clauses are allowed. The rules for specifying a time literal are:

m Specify one or more integer or float literal(s) and follow each one with a keyword that
indicates a time unit.

® Time unit keywords are:

m day, days

Developing Apama Applications 10.11.2 83

3 Defining Queries

® hour, hours

E min, minute, minutes

B sec, second, seconds

B msec, millisecond, milliseconds

Outside a query, you can use these keywords as identifiers. Inside a query, you cannot use
these keywords as identifiers unless you prefix them with a hash symbol (#). See also
“Keywords” on page 711.

® A space is required between an integer or float literal and its time unit. A space is required
after a time unit if it is followed by an integer or float literal. Additional whitespace is allowed.

= If you specify more than one time unit keyword they must be in the order of decreasing size.
For example, days must be before minutes.

® You need not specify all time units.

m Each time unit keyword must represent a different time unit, that is, you cannot, for example,
specify both day and days.

Examples of valid time literals:

B 10 hours

B 1 days 12 hours

B 1 day 2 hours 30 minutes 4 sec
B 2 days 5 minutes

m 2.5 sec

® 10 seconds - This is equivalent to specifying the float expression 16.6.

Note:

While it is possible to define time literals using float values, for example, 3.5 days 12.5 hours
33.3 min, it is recommended that you use only integer values when the specification includes
more than one time unit. For example, rather than specifying 2 days 65.75 minutes, you should
specify 2 days 1 hour 5 min 45 sec.

If you open and edit a query in Apama's Query Designer in Software AG Designer, it modifies
the time literal (if necessary) such that it contains only integers. Also, the allowable range of
integers is 0 to 23 for hours, 0 to 59 for minutes, o to 59 for seconds, and 6 to 999 for milliseconds.
Where necessary, the Query Designer rounds up to a whole number of milliseconds. For example,
suppose you specify the following time literal in EPL code:

3.5 days 4 hours 27.5 minutes 1002.75 milliseconds

The Query Designer converts this to 3 days 16 hours 27 minutes 31 seconds 3 milliseconds. The
actual Query Designer display is: 3d 16h 27m 31s 3ms.

When you specify a float expression it indicates a number of seconds.

84 Developing Apama Applications 10.11.2

3 Defining Queries

Consider the example at the beginning of this topic as the following events are added to their
appropriate windows:

Time Event Added to Window

10:00 Withdrawal("Dan", "London™")
10:30 Withdrawal("Dan", "Dublin")
10:45 Withdrawal("Dan", "Paris")
11:15 Withdrawal("Ray", "Honolulu")
11:30 Withdrawal("Dan", "Rome")

For the partition identified by user ID Dan, the query evaluates the pattern at the following times:

Time Window Contents Matching Events

10:00 Withdrawal("Dan", "London")

10:30 Withdrawal("Dan", "Dublin") wl=Withdrawal("Dan", "London")
Withdrawal("Dan", "London") w2=Withdrawal("Dan", "Dublin")

10:45 Withdrawal("Dan", "Paris'") wl=Withdrawal("Dan", "Dublin")
Withdrawal("Dan", "Dublin") w2=Withdrawal("Dan", "Paris")

Withdrawal("Dan", "London")

11:30 Withdrawal("Dan", "Rome") wl=Withdrawal("Dan", "Paris")

Withdrawal("Dan", "Paris'") w2=Withdrawal("Dan", "Rome")

An event remains in its window for exactly the specified duration. For example, at 11:00,
Withdrawal("Dan", "London") isnolonger in the window and at 11:30, Withdrawal("Dan", "Dublin")
is no longer in the window. Although the contents of the window have changed, ejection of an
event does not cause evaluation of the event pattern.

At 11:15, there is no evaluation of the event pattern for the partition identified by user ID Dan
because an event is added to a window in the partition identified by user ID Ray.

Using the output of another query as query input

While it is possible to have a query send an event explicitly containing all of the coassignments
in the pattern or aggregates using the %send construct, this requires setting each field and defining
an event type, which currently can only be defined in EPL. In this case, however, this event
definition needs to be kept in sync with the query. If the query pattern is modified, then the query's
%send construct and the event definition may both need to be updated. It is therefore recommended
that you use the query output event to chain queries together.

Developing Apama Applications 10.11.2 85

3 Defining Queries

Every query will automatically generate a query output event, which can be used as an input to
other queries. This makes it easy to connect multiple queries together. One query may compute
an aggregate such as an average over a sensor reading, while another query checks if a number
of averaged readings match some condition.

The query output event

With each query definition, a query output event definition is automatically defined which is
named after the query (see below) and has all of the values available to actions defined as fields.

The query output event definition comprises:
= All parameters.
m All keys (using the alias name).
m For find patterns:
m All “positive” event coassignments (that is, excluding without events and wait nodes).
m For find every patterns (that is, a query which contains aggregates):
m All aggregate select values.

Consider the two examples below, where we assume that the Measure event is defined as follows:

event Measure {
string deviceld;
integer userId;
float value;

}
Example 1
query Q1 {
parameters {
float threshold;
b
inputs {
Measure() key deviceId within 5 minutes;
Error() key deviceId within 5 minutes;
b
find Measure:ml -> (Measure:m2 or Error:el)
without Error:err {
b
b

Query output event definition for Q1:

event Q1 {
float threshold;
string deviceld;
Measure ml;
optional<Measure> m2;
optional<Error> el;

86 Developing Apama Applications 10.11.2

3 Defining Queries

In query Q1, the parameter threshold of type float, the solitary input key deviceId of type string,
and the positive coassignments m1, m2 and el are mapped in the query output event Q1. m2 and e1
are wrapped in optional since they might or might not contain any value (just m2 or el is enough
to trigger the find pattern).

Example 2

package com.apamax.mypkg;
query Q2 {
inputs {
Measure() key deviceId, userId as id within 5 minutes;

b

find every Measure:ml
select mean(ml.value):avg_value
select last(ml.userId):last_value{

}

Query output event definition for Q2:

package com.apamax.mypkg;
event Q2 {
string deviceld;
integer id;
float avg_value;
integer last_value;

}

In query Q2, which uses aggregates, both the keys deviceId of type string and userId (aliased as
id) of type integer are mapped in the query output event Q2. The query contains two select
statements both of whose values are also mapped in the query output event.

Note that the query output event definition resides in the same package as the query, and that it
can be used in any EPL application in the usual way you use any external event definition.

Note:

Only the first 32 fields of indexable event types can be used in listeners. Beyond this, fields will
be marked as wildcard fields. See “Improving performance by ignoring some fields in matching
events” on page 159 for more information on wildcards.

When is the query output event generated?

Whenever a query's find statement triggers, the query output event is routed, no matter whether
it was triggered by an event or a timer firing. Another query can use this query output event as
an input, thus allowing the “chaining” of one query to another.

For example, query Q3 below uses both Q1 and Q2 as input:

using com.apamax.mypkg.Q2;
query Q3 {
inputs {
Q1() key deviceId within 5 minutes;
Q2() key deviceId within 5 minutes;
}
find Q1: gl and Q2 : g2 {
print "Query Q3 1is triggered";

Developing Apama Applications 10.11.2 87

3 Defining Queries

}

Q3 will trigger on receiving the inputs of type Q1 and Q2. Hence, Q3 will trigger when both queries
Q1 and Q2 trigger.

Note:

It is recommended to use separate packages for queries (and hence the query output event) and
any external event definitions defined in EPL. This makes it clear where the event definitions
are and avoids name clashes.

Cycles are illegal. For example, if a query Q2 uses Q1 as input and if Q1 in turn also uses Q2 as
input, any such cyclic dependency is illegal to use.

Specifying maximum number of events in windows

In an input definition, you can specify a retain clause that indicates how many events can be in
the window. For example:

query FraudulentWithdrawalDetection2 {
inputs {
Withdrawal() key userId retain 3;
}
find Withdrawal as wl -> Withdrawal as w2 where wl.city != w2.city {
log "Suspicious withdrawal: " + w2.toString() at INFO;
}
3

In this query, only the most recent three withdrawal events can be in the window. In other words,
the window cannot contain more than three events. If only zero, one or two Withdrawal events
with a particular key have arrived since the application was started then there would be only zero,
one or two events, respectively, in the window.

The correlator evaluates the event pattern each time an event is added to the window. Suppose
that at the indicated times the following events are added to the window in the partition identified
by user ID Dan:

Time Event Added to Window
10:00 Withdrawal("Dan", "Dublin'")
10:10 Withdrawal("Dan", "London'")
10:20 Withdrawal("Dan", "London'")
10:30 Withdrawal("Dan", "London'")
11:30 Withdrawal("Dan", "Paris")

For the partition identified by user ID Dan, the query evaluates the pattern at the following times:

88 Developing Apama Applications 10.11.2

3 Defining Queries

Time Window Contents Matching Events

10:00 Withdrawal("Dan", "Dublin")

10:10 Withdrawal("Dan", "Dublin") wl=Withdrawal("Dan","Dublin")
Withdrawal("Dan", "London") w2=Withdrawal("Dan","London")

10:20 Withdrawal("Dan", "Dublin") wl=Withdrawal("Dan","Dublin")
Withdrawal("Dan", "London") w2=Withdrawal("Dan","London")

Withdrawal("Dan", "London")

10:30 Withdrawal("Dan", "London")
Withdrawal("Dan", "London")

Withdrawal("Dan", "London")

11:30 Withdrawal("Dan", "London") wl=Withdrawal("Dan","London")
Withdrawal("Dan", "London") w2=Withdrawal("Dan","Paris")

Withdrawal("Dan", "Paris'")

It is important to note that at 10:30, the withdrawal("Dan", "Dublin") event that arrived at 10:00
is no longer in the window because the window retains three events at most and there are three
Withdrawal events that have been added to the window more recently.

Specifying event duration and maximum number of events

In an input definition, you can specify a within clause that indicates how long an event can remain
in the window and a retain clause that indicates how many events can be in the window. When
you specify both a within clause and a retain clause the within clause must be before the retain
clause. For example:

query FraudulentWithdrawalDetection3 {
inputs {
Withdrawal() key userId within 1 hour retain 3;

}
find Withdrawal as wl -> Withdrawal as w2 where wl.city != w2.city {
log "Suspicious withdrawal: " + w2.toString() at INFO;

}

In this query, a withdrawal event can be in the window for up to one hour and only the three most
recent Withdrawal events, if each one arrived during the previous hour, can be in the window. In
other words, the window cannot contain an event that arrived more than an hour ago and it cannot
contain more than three events. If only two Withdrawal events arrived in the previous hour then

there would be only two events in the window.

Suppose that at the indicated times the following events are added to the window in the partition
identified by user ID Dan:

Developing Apama Applications 10.11.2 89

3 Defining Queries

Time Event Added to Window
10:00 Withdrawal("Dan", "Dublin'")
10:10 Withdrawal("Dan", "London")
10:20 Withdrawal("Dan", "London'")
10:30 Withdrawal("Dan", "London'")
11:30 Withdrawal("Dan", "Paris")

For the partition identified by user ID Dan, the query evaluates the pattern at the following times:

Time Window Contents Matching Events

10:00 Withdrawal("Dan", "Dublin") wl=Withdrawal("Dan","Dublin")

w2=Withdrawal("Dan","London")

10:10 Withdrawal("Dan", "Dublin") wl=Withdrawal("Dan","Dublin")
Withdrawal("Dan", "London") w2=Withdrawal("Dan","London")
10:20 Withdrawal("Dan", "Dublin'")

Withdrawal("Dan", "London")

Withdrawal("Dan", "London")

10:30 Withdrawal("Dan", "London")
Withdrawal("Dan", "London")

Withdrawal("Dan", "London")

11:30 Withdrawal("Dan", "Paris")

It is important to note that at 10:30 the withdrawal("Dan", "Dublin") event that arrived at 10:00
is no longer in the window because the window retains three events at most and there are three
Withdrawal events that have been added to the window more recently. Also, at 11:30 there are no
Withdrawal("Dan","London") events in the window as they have been ejected because more than
one hour has elapsed since each one was added to the window.

Using source timestamps of events

By default, the query runtime assumes that events should be treated to be in the order in which
they are processed, and the time of each event is the correlator's time at the point the event is
processed. This is suitable if events are delivered reliably to the Apama correlator in a short amount
of time and in order. However, if the events are delayed, accumulated into batches before being
sent or delivered over unreliable networks, then it may be necessary to use the time at which an
event happened at the event source, which would have to be available in the event in order for

90 Developing Apama Applications 10.11.2

3 Defining Queries

queries to use the source timestamp. For example, a car may measure the engine's temperature,
RPM and other important statistics along with a timestamp, and record these in a small computer
in the car. Periodically, when the car is connected to a wireless network, the car will send this data
as a batch of events. For the correct behavior of queries that make use of the time or ordering of
events, the query will need to be configured to use the source timestamp.

Note:

Source timestamps are not intended to be a replacement for Xclock. They can, however, be used
in conjunction with Xclock for testing purposes. Xclock is controlling the correlator's time (see
“Disabling the correlator's internal clock” on page 183). Source timestamps indicate the time at
which an event occurred.

In order to use the source timestamp:
m Every event which may be delayed should contain the source timestamp in some form.

® An action must be defined on the event definition, which takes no parameters and returns a
float. This should calculate the source time of the event - typically the time the event occurred
- based on the fields of the event. The return value of the action should specify the time in
seconds since the epoch (midnight, 1 Jan 1970 UTC). If the event contains the time in seconds
since the epoch (in this example, stored in a field named sourceT1ime), this can be as simple as
the following:

action getSourceTime() returns float { return sourceTime; }

Otherwise, the TimeFormat event library can be used to help convert from time of day and
date, and perform time zone conversions as necessary. For example, if the source timestamps
in your events are not already in the UTC time zone, then one way to do this is to include a
time zone field and then use the TimeFormat event's parseTimeWithTimeZone action to obtain
the source time in the correct form as shown in the following event definition:

using com.apama.correlator.timeformat.TimeFormat;
using com.apama.queries.TimeFrom;

@TimeFrom("getSourceTime")
event E {
integer k;
string sourceTime;
string timeZone;

action getSourceTime() returns float {

TimeFormat timeFormat := TimeFormat();
return timeFormat.parseTimeWithTimeZone("HH:MM:SS", sourceTime,
timeZone) ;

}
}

See also “Using the TimeFormat Event Library” on page 343.

® The event definition should have a @TimeFrom annotation as in the above example (see also
“Adding predefined annotations” on page 52) or queries that use the event as an input must
specify a time from clause that names the action that provides the source time. In either case,
queries must always specify a maximum time to wait for the events (see below). If both are
specified, the time from clause in the query takes precedence.

Developing Apama Applications 10.11.2 91

3 Defining Queries

Note:

You are not permitted to use the event's built-in getTime () method. This method returns the
time when the correlator either processed or created the event, which defeats the purpose of
the source timestamp functionality.

Waiting for delayed events

If using source timestamps, we assume events may be delayed between the source time at which
they occur and being processed by the Apama correlator. If no events are received by the correlator,
it needs to distinguish between no events having occurred and events being delayed. If events are
delayed, the query runtime will wait before evaluating the query, as it does not have a definitive
view of all of the events. A query that uses source timestamps must specify the maximum wait
time that a query will wait before it will process events. This is the maximum delay that the query
will tolerate and the maximum delay between an event having occurred and the query processing
that event. The wait time is inclusive - that is, an event delayed by exactly the value specified in
the wait clause will be considered valid.

The maximum wait time must be specified and must be set to a reasonable value, as it can increase
the number of events stored by the query runtime, and processing of the query may be delayed
by up to that duration. The maximum wait time for an input may be less than or more than the
within duration, but should not represent a large number of events for typical event rate for that
input.

The wait time must be specified in a query using the wait clause in an input declaration. The wait
clause can specify a time as a time literal (using days, hours, minutes and seconds) or as a float
expression. Both the source timestamp action and wait clause must be specified (or neither). The
source timestamp action can be specified via the time from clause in the query or a @TimeFrom
annotation on the event type definition.

It is possible to mix inputs that have source times and events that do not have source times in a
single query. Event inputs without a source time are equivalent to using currentTime (that is, the
correlator's current time, see “currentTime” on page 704) as the source time, and a wait time of 0.

Event definitions may have an annotation defined @befaultwait which specifies the default value
to use for the wait time (see also “Adding predefined annotations” on page 52). This is only
informational and used by the Design tab in Software AG Designer when editing query files as
a means of setting the default wait time. The query must always specify the wait time, even if it
is using the default value. Note that the editor will copy the value from the annotation, so changing
the annotation will not affect existing query definitions.

Definitive time of a query event source

Given that input events may be delayed or out of order, how does the query runtime know when
it is safe to process events? To answer this question, we introduce the concept of definitive time.
The point in time for which the query runtime is entitled to think that it has received all the events
it is going to receive is called the “definitive time”. All events at or before this point in time are
considered definitive and can be used to evaluate the query. Events after the definitive time will
not be processed until they become definitive (that is, the definitive time has changed so that the
events are now at or before the definitive time). The query runtime will assume that no further

92 Developing Apama Applications 10.11.2

3 Defining Queries

events will be received with a time before the definitive time, and will only evaluate events that
have occurred before the definitive time.

In the case of an individual query input, the definitive time of that input is the latest of:

m The timestamp of the latest event received (unless the event definition is marked as occurring
out of order, see “Out of order events” on page 97).

® The timestamp of the latest heartbeat event, if specified (see “Using heartbeat events with
source timestamps” on page 96).

m The correlator's current time less the maximum wait time of a query.

The query's overall definitive time is then determined as the minimum or earliest of the definitive
times for each input.

If no events (either input or heartbeat events) are received, then a query may need to wait in order
to evaluate the events it has received (particularly if using the wait operator in the pattern, or more
than one input, where some inputs have no events received).

The concept of definitive time is best explained using worked examples. Consider, first, a query
with a single input event type.

using com.apama.queries.TimeFrom;

@TimeFrom("getSourceTime")
event E {

integer k;

float sourceTime;

action getSourceTime() returns float {
return sourceTime;

}
}

query SingleInput {

inputs {
E() key k within 1 hour wait 2 hours;
b
find E as el -> E as e2 where e2.getSourceTime() - el.getSourceTime() > 600.0

{
}

log "Time gap " + (e2.getSourceTime() - el.getSourceTime()).toString();

3

In this case, where there is only a single input type, the definitive time will be the latest or most
recent of either: the source timestamp of the last event, or the current time minus the wait time (2
hours in this example). The following table shows how the query runtime keeps track of the
definitive time as it receives input events.

Wall Time E event source |Query definitive |Result Explanation
timestamp time
10:00 07:00 08:00

Developing Apama Applications 10.11.2 93

3 Defining Queries

Wall Time E event source Query definitive |Result Explanation
timestamp time
10:05 07:30 08:05 Nothing - events
are too old.
10:10 08:30 08:30
10:24 08:32 08:32 Nothing - event

timestamps were
only 2 minutes
apart.

10:26 08:50 08:50 Time gap 18
minutes

10:30 10:30 10:30 Nothing - only 1
event in the
"within 1 hour"
window.

Now consider a more complex case where the query has two input event types. Events of type E
are defined as above, but we add another definition for events of type X.

@TimeFrom("getSourceTime")
event X {

integer k;

float sourceTime;

action getSourceTime() returns float {
return sourceTime;
1
1

query MultipleInputs {

inputs {
E() key k within 1 hour wait 1 hour;
X() key k within 1 hour wait 1 hour;
b

find E as el -> E as e2 without X as x {
log "Got (" + el.sourceTime.toString() + ", "
+ e2.sourceTime.toString() + ")";

}

Once again the table below shows how the definitive time of the query is determined. In this case,
the runtime must take the definitive time as being the earliest of the definitive times of the input
types because, as the pattern depends on all input types, it is only up until that point that it has a
definitive view of all the query inputs.

For example, at wall time 09:22, even though the runtime has got E events with source timestamps
08:32 and 08:40, it is not entitled to conclude that we have a match for the query pattern because

94 Developing Apama Applications 10.11.2

3 Defining Queries

the most recent X event has a timestamp of only 08:25, so we do not yet know if there was an X
event between 08:32 and 08:40 that would prevent a match. The wait time of 1 hour has not yet
elapsed, so the definitive time of the query remains at 08:25, which is the source time of the most
recent X event.

It is not until wall time 09:23 that we receive another X event with a source timestamp of 08:50.
At this point, given that in this example we know that events are being delivered in order, it is
safe for the runtime to assume that there were no other X events between 08:25 and 08:50 and so
it can proceed to execute the query and match for the two pairs of E events ("08:30, 08:32" and
"08:32, 08:40"). Further, at this time (wall time 09:23) the receipt of the X event with source timestamp
08:50 allows the runtime to update the definitive time of the overall query to 08:40, which has
become the earliest of the definitive times of the query inputs.

Wall Time E event source (X event source |Query Result Explanation
timestamp timestamp definitive time
09:20 08:30 08:25 08:25
09:21 08:32 08:25 Nothing yet.
Still waiting for
an X.
09:22 08:40 08:25
09:23 08:50 08:40 Got (08:30,
08:32)
Got (08:32,
08:40)
09:24 08:55 08:50 No 08:40 - 08:55
match, there is
an X at 08:50.
09:25 09:00 08:50 Nothing yet -
still waiting for
X after 08:50.
09:26 08:57 08:57 No 08:55 - (09:00
match, there is
an X.
09:27 09:10 08:57 Nothing yet -
still waiting for
X after 08:57.
10:10 09:10 Got (09:00, We waited for
09:10) 1 hour for an X.

Developing Apama Applications 10.11.2 95

3 Defining Queries

Using heartbeat events with source timestamps

When using source timestamps, if a query's input has no events for a period of time, then the
query will wait for the specified wait time for that query before evaluating events. This can cause
unacceptable delays in processing events from other inputs. Some data sources may provide
heartbeat events with timestamps which signal that communication from the data source to the
queries system is working correctly. If these events occur but no input events have been received,
then the query can infer that no input events, or only the input events received, have occurred,
and thus the query's input is definitive upon receiving a heartbeat, without having to wait any
further. If communication is disrupted or delayed, then the heartbeat events will similarly be
delayed, and the query will wait, as it has to in order to process delayed events.

Heartbeat events are specified on the input event type's definition or per input of the query. They
are only used if a query input is using source timestamps, that is, it has a wait clause specified.
The heartbeat can be specified as a @Heartbeat annotation on the event definition, which should
name the fully qualified event type to use as heartbeat events.

If a query input contains a time from clause, then the heartbeat must be explicitly named with an
or heartbeat-type clause after the wait clause. For example, these two are equivalent:

@TimeFrom("getEcuTime")
@Heartbeat ("CarHeartbeat")

event CarEngineTemp { .. }
query ... {
inputs {
CarkEngineTemp() key carId within 1 hour wait 6 hours;
3
or:
query ... {
inputs {
CarEngineTemp() key carId within 1 hour time from getEcuTime
wait 6 hours or CarHeartbeat;

The following rules apply for the heartbeat event:
B The heartbeat event cannot be filtered.

m The heartbeat event must share the same key fields and the same types as the input event type.
In the above example, both CarEngineTemp and CarHeartbeat must have a field named carId
which is of the same type in each event type. If actions are used in the input key, the heartbeat
event must also supply the same action with the same signature (same parameters and return

type).

® The heartbeat event must have a matching action for obtaining the source time. In the above
example, both CarEngineTemp and CarHeartbeat must have an action of the signature action
getEcuTime() returns float. Typically, these would have the same implementation, as the
heartbeat would have source timestamps in the same form as the input events; but the

96 Developing Apama Applications 10.11.2

3 Defining Queries

implementation of these methods may be different for heartbeat events (see “Out of order
events” on page 97.)

® The heartbeat event cannot be used as an input in the pattern, unless it is also listed as an input
event in its own right.

®m The same heartbeat event type may be used for different inputs of the same query (this is
typical, as a query may use a number of different types of events from the same data source,
such as a car in the above example).

When a heartbeat event is received and processed, it will step forward the definitive time for all
inputs that specify that heartbeat event. Thus, if all inputs use the same heartbeat event, then that
heartbeat can step forward the definitive time, allowing the query to evaluate events received on
some inputs without having to wait for the input wait time on other inputs where no input events
were received.

Typically, heartbeat events will be delivered regularly. The rate at which heartbeat events are sent
is dependent on the data source, but the queries system must be able to handle all of the heartbeat
events from all data sources as well as the input events. Some devices may only send the heartbeats
under certain conditions, for example, a car may only send heartbeats if the engine is running or
the car is occupied. If no heartbeat events are received, then queries will use the wait time specified
in the input before evaluating any events received, as needed.

Note that queries assume that the heartbeat events are delivered in the same order as input events.
If an input event arrives with a timestamp before a previous heartbeat event, it will be discarded.

Typically, heartbeat events will be events that come from the same data source as the input events
they are used with. Thus, any communications disruption affecting the input events will affect
the heartbeat events in the same way. This is not a requirement; if some other system has knowledge
of when a data source is connected or disconnected, the heartbeat events could be sent from that
system - but if the system incorrectly sends heartbeat events and input events are delayed, then
input events may be discarded.

Out of order events

When using source timestamps (see also “Using source timestamps of events” on page 90), the
query runtime by default expects events to arrive in order. If an event arrives with an earlier source
timestamp than a previous event for that same partition, it will be discarded. However, there are
two cases where this behavior does not occur (see below), and queries will store events which
arrive out of order and re-order them so that when they are processed, they are processed in order
according to the source time.

Note:

In both cases described below (with the @outoforder () annotation and delayed events), heartbeat
events (if specified) are always considered definitive, even if they are delayed. You cannot use
an event definition with an @outoforder () annotation as a heartbeat event. Note that as soon
as a heartbeat event is processed, the query will ignore any events with earlier timestamps.

Developing Apama Applications 10.11.2 97

3 Defining Queries

Case 1: Using the eoutoforder() annotation on the event definition

If the event definition (in an EPL file) has the eoutoforder () annotation which is available in the
package com.apama.queries (see also “Adding predefined annotations” on page 52), then the
queries runtime will treat it as not occurring in order.

This means that definitive time is not affected by the timestamp on the events. Thus, events will
not be processed until the specified wait time has elapsed since their source time, or a heartbeat
event (if specified) with a later timestamp has been processed (and all inputs have had their
definitive time moved forward).

It is recommended to use heartbeats when using @outoforder () events. They are not required, but
if not used, the query execution will be delayed by the longest input wait specified in the query.

The following example compares the behavior if @utoforder () is or is not specified on the input:

query FindAdjacentAEvents {
inputs {
A() within 30.0 wait 20 seconds;
}
find A as al -> A as a2 {
print "al = "+al.toString()+"; a2 = "+a2.toString();
}
}

In the following tables, the events are listed in the order in which they are processed, but they
occur in the order A(1), A(2), A(3), A(4). Note that A(2) is delayed by more than the wait time of
the query (the actual events would have a source timestamp, but we show that as a separate column
for clarity).

The following table applies if the event definition does have @outoforder ():

Input event |Input event |Correlatortime|Notes Query Query output
timestamp definitive time
A1) 10:00:10 10:00:20 10:00:00
A(4) 10:00:20 10:00:30 10:00:10
A(3) 10:00:15 10:00:32 10:00:12
10:00:35 20 seconds 10:00:15 al=A(1);
after A(3)'s a2=A(3)
source time
(10:00:15)
A(2) 10:00:12 10:00:37 discarded - 10:00:17
more than 20
seconds old

98 Developing Apama Applications 10.11.2

3 Defining Queries

Input event |Inputevent |Correlatortime|Notes Query Query output
timestamp definitive time
10:00:40 20 seconds 10:00:20 al=A(3);
after A(4)'s a2=A(4)
source time
(10:00:20)

The following table applies if the event definition does not have @outoforder ():

Input event |Inputevent |Correlatortime | Notes Query Query output
timestamp definitive time
A1) 10:00:10 10:00:20 10:00:10
A@4) 10:00:20 10:00:30 10:00:20 al=A(1);
a2=A(4)
A(3) 10:00:15 10:00:32 10:00:20 (nothing -
event is

discarded as it
is out of order)

A(2) 10:00:12 10:00:37 discarded - 10:00:20
more than 20
seconds old

Case 2: Events are delayed

Even in the case where events are normally delivered in order from the data source, if there is a
delay which is then resolved, a number of delayed events may all be processed in a very short
space of time. Even if they are delivered to Apama correlators in the correct order, the query
runtime runs in parallel within the correlator, so events processed close together in time may be
processed out of order, even if they do not have an @outoforder () annotation on the event definition.
If an event is delayed, then the query runtime will wait before considering the event's time as
definitive for that input.

By default, the query runtime considers an event as delayed if its source time is more than 10
seconds before the correlator's time at the point it is processed, and it will wait for 10 seconds
before considering the event's time as definitive for that input. These settings can be modified by
SendingirlaSetDelayedEventsLeeway(delayLeeway, reorderBuffer) event:

com.apama.queries.SetDelayedEventslLeeway (5, 20.0)

The above example would set the query runtime to consider events older than 5 seconds as delayed,
and would not consider them definitive until 20 seconds after they were received.

To consider all events in order regardless of delay, send an event with the first value set to infinity
(as all actual delays must be less than infinity):

Developing Apama Applications 10.11.2 99

3 Defining Queries

com.apama.queries.SetDelayedEventsLeeway (infinity, 0.0)

These events should be sent to all correlators in a cluster, typically as part of the initialization of
the correlator along with injecting the query definitions.

The following example compares the behavior with different configurations and some delayed
events:

query FindAdjacentAEvents {
inputs {
A() within 30 minutes wait 10 minutes;
}
find A as al -> A as a2 {
print "al = "+al.toString()+"; a2 = "+a2.toString();
}
}

The following table lists the events where the A event does not have @outoforder (). The last three
columns give the behavior with different configurations:

m Default config. A. Matches with the default values: 10 seconds delay threshold and 10 seconds
reorder buffer.

m Config. B. Matches if SetDelayedEventsLeeway (300, 10) is sent: 5 minutes (300 seconds) delay
threshold and 10 seconds reorder buffer.

m Config. C. Matches if SetDelayedEventsLeeway (10, 60) is sent: 10 seconds delay threshold
and 1 minute reorder buffer.

Input event |Input event |Correlator |Definitive |Default Config. B |Config. C

timestamp |time time of the |config. A
query for
default
leeway
values
A1) 10:06:10 10:10:30 10:00:30 (10
minutes ago)
A(4) 10:06:20 10:10:31 10:00:31 (10 al=A(1);
minutes ago) a2=A4)
A(3) 10:06:15 10:10:32 10:00:32 (10 (A(3) out of
minutes ago) order and
discarded)
A(2) 10:06:13 10:10:33 10:00:33 (10 (A(2) out of
minutes ago) order and
discarded)

100 Developing Apama Applications 10.11.2

3 Defining Queries

Input event |Input event |Correlator |Definitive |Default Config. B |Config. C
timestamp |time time of the |config. A

query for

default

leeway

values

10:10:43 10:06:20 al=A(1);

(latest A a2=A(2)

event

received) |217AQ);
a2=A(3)
al=A(3);
a2=A(4)

10:11:33 al=A(1);
a2=A(2)
al=A(2);
a2=A(3)
al=A(3);
a2=A(4)

A(6) 10:12:05 10:12:10 10:12:05 al=A(4); al=A(4); al=A(4);
(latest A a2=A(6) a2=A(6) a2=A(6)
event
received)

A(5) 10:12:04 10:12:11 10:12:05 (none - event | (none - event | (none - event
(latest A A(D) is A(D) is A(D) is
event discarded) |discarded) |discarded)
received)

Note that A(6) is treated as occurring in order, as it is delayed by less than the delayLeeway value.
Thus A(5) is discarded, as it has occurred out of order.

Matching only the latest event for a given field

A query input can optionally limit the window to only contain the most recent item for each value
of a given field or action of the event. This is performed by the with unique operator, which is
followed by one or more fields or actions of the input event type.

For example, consider a query looking at sensor data from a number of sensors on the same
production line, with events that specify the productionLine and sensorId. The query compares
sensor values between different machines and sensors on the same production line, so the query
can be keyed on the productionLine field of events, but not on the sensor1d field. However, only
the latest event for each sensor is required. By specifying a with unique sensorId clause, only the
latest value of each sensor is used.

Developing Apama Applications 10.11.2 101

3 Defining Queries

If you add a with unique clause, if there is more than one item in the window that has the same
value for all the fields or actions listed in the with unique clause, then only the most recent event
is considered to be in the window and can match the pattern. The suppression of duplicates occurs
after the within and/or retain clauses apply. For example:
inputs {

Sensor () key productionLine retain 3 with unique sensorId;

}

Given the following events, the window contains only those marked in the third column of the
following table (assuming all are for the same productionLine):

Event |sensorId Window contains Notes

1 A 1(A)

2 B 1(A), 2(B)

3 C 1(A), 2(B), 3(C)

4 B 3(C), 4(B) Event 1 is discarded due to retain 3. Event 2 is
discarded as event 4 has the same sensorId.

5 3(C), 4(B), 5(D)

6 C 4(B), 5(D), 6(C) Event 3 is discarded due to retain 3.

7 D 6(C), 7(D) Event 4 is discarded due to retain 3. Event 5 is

discarded as event 7 has the same sensorId.

Note that the with uniqueis applied after the retain expression. Any with unique expression does
not affect window sharing (see also “Queries can share windows” on page 79) nor how much
data is stored.

The with unique clause comes after the sizing of the window (within, retain) and before, if present,
the time from, wait or or clauses used for specifying source time.

with unique can list a number of comma-separated members or calls to actions, where the action
name is followed by parentheses. Actions used in a with unique clause must take no parameters
and return a value. The ordering is unimportant.

For example, using with unique upperName () for an event definition such as the following would
only keep one event for each value of the name field, ignoring case:
event E {

string name;
action upperName() returns string { returns name.toUpper(); }

102 Developing Apama Applications 10.11.2

3 Defining Queries

Finding and acting on event patterns

In a query, the find statement specifies the event pattern you are interested in. At runtime, for
each event that the correlator adds to a window, the query checks for a match. Depending on the
definition of the event pattern, the set of events that matches the pattern contains one or more
events. This is the match set. A match set

® Always contains the latest event, which is the event that was most recently added to a window.
m Satisfies the event pattern.

® Is always the most recent set that matches the event pattern. This is important when there is
more than one set that is a candidate for the match set.

The format of a find statement is as follows:

find pattern block

Syntax Element Description

pattern The event pattern that you want to find. See “Defining event
patterns” on page 103.

block The procedural code to execute when a match is found. See
“Acting on pattern matches” on page 127.

Defining event patterns

In a query definition, you specify a find statement when you want to detect a particular event
pattern. The find statement specifies the event pattern of interest followed by a procedural block
that specifies what you want to happen when a match is found. For example:

query ImprobableWithdrawallLocations

{
inputs {
Withdrawal() key cardNumber within 24 hours;
}
find
Withdrawal as wl -> Withdrawal as w2 where w2.country != wl.country {
log "Suspicious withdrawal: " + w2.toString() at INFO;
}
}

In this example, the window that the query operates on contains any withdrawal events that have
arrived in the last 24 hours. The key is the card number so each partition contains only withdrawal
events that have the same value in their cardNumber field. In other words, each partition contains
the withdrawal events for one particular account. For more information about input definitions,
see “Defining query input” on page 77.

The find statement specifies that the event pattern of interest is a Withdrawal event followed by
another Withdrawal event.

Developing Apama Applications 10.11.2 103

3 Defining Queries

In each partition, the where clause filters the withdrawal events so that there is a match only when
the values of their country fields are different. The two event templates in the find statement
coassign matching withdrawal events to wl and w2, respectively.

In this example, the two matching withdrawal events might or might not have arrived in the
partition consecutively. For details, see “Query followed-by operator” on page 106.

When there is a match the query executes the action in the find block.

The format for defining a find statement is as follows:

find

[every] [wait duration as identifier]
event_type as identifier [find_operator event_type as identifier]...

[wait duration as identifier]

[where_clause] [within_clause] [without_clause]
[select_clause] [having_clause] {

block
}

Syntax Element

Description

event_type

every

wait

identifier

Name of the event type you are interested in. You must
have specified this event type in the inputs section.

Specity the optional every modifier in conjunction with the
select and having clauses. This lets you specify a pattern
that aggregates event field values in order to find data based
on many sets of events. See “Aggregating event field
values” on page 122.

Specify the optional wait modifier followed by a time literal
or a float expression. A wait modifier indicates a period
of elapsed time at the beginning of the event pattern and/or
at the end of the event pattern. A float expression always
indicates a number of seconds, See “Query wait
operator” on page 112.

Coassign the matching event to this identifier. A
coassignment variable specified in an event pattern is within
the scope of the find block and it is a private copy in that
block. The exception to this is in an aggregating find
statement, only the projection expression can use the
coassignments from the pattern. The procedural block of
code can use projection coassignments and any parameters,
but it cannot use coassignments from the pattern. Changes
to the content that the variable points to do not affect any
values outside the query.

Unlike EPL event expressions, you need not declare this
identifier before you coassign a value to it.

104

Developing Apama Applications 10.11.2

3 Defining Queries

Syntax Element

Description

find_operator

where_clause

within_clause

without_clause

select_clause

having_clause

In an event pattern in a find statement, each coassignment
variable identifier must be unique. You must ensure that
an identifier in an event pattern does not conflict with an
identifier in the parameters section, or inputs section.

Optionally specify and or -> and then specify an event_type
and coassignment variable. Parentheses are allowed in the
pattern specification and you can specify multiple operators,
each followed by an event_type and coassignment variable.
For example, the following is a valid find statement:

find (A as al -> ((A as a2)) -> (A as a3) ->

(A as a4 -> A as a5 -> A as a6) —>

(((A as a7) -> A as a8) -> A as a9) —>

A as alo)

{
print "query with 10: "+al.toString()+ "
- "+al0@.toString();

}

You can use either as or the colon (:) as the coassignment
operator.

To filter which events match, specify where followed by a
Boolean expression that refers to the events you are
interested in. The Boolean expression must evaluate to true
for the events to match. The where clause is optional.
Coassignment variables specified in the find or select
statements are in scope in the where clause. Also available
in a where clause are any parameter values and key values.
This where clause applies to the event pattern and is referred
to as a find where clause to distinguish it from a where clause
that is part of a without cause, which is referred to as a
without where clause. See “Query conditions” on page 113.

A within clause sets the time period during which events
in the match set must have been added to their windows.
A pattern can specify zero, one, or more within clauses. See
“Query conditions” on page 113.

A without clause specifies event types whose presence
prevents a match. See “Query conditions” on page 113.

A select clause indicates that aggregate values are to be
computed. See "Aggregating event field values” on page 122.

A having clause restricts when the procedural code is
invoked for a pattern that aggregates values. See
“Aggregating event field values” on page 122.

Developing Apama Applications 10.11.2

105

3 Defining Queries

Syntax Element Description

block Specify one or more statements that operate on the matching
event(s). For details about code that is permissible in the
find block, see “Acting on pattern matches” on page 127.

Items available in a find block can include:
® Any parameters defined in the parameters section

m Coassignment variables specified in the event pattern
(or projection coassignments in the case of aggregating
find statements).

. Key values

Query followed-by operator

You can specify the -> (followed-by) operator in the find statement. The -> operator matches
events that come after each other. The event on the left of the operator always arrives in the
correlator before the event on the right. In other words, the -> operator is always between two
distinct events. For example, A as al -> A as a2requires the arrival of two instances of an A event
for the query to find a match. Also, any where clauses in the find statement must evaluate to true
for an event pattern to match. Finally, the match set always includes the latest event.

Thus, the rules for when there is a match for an event pattern that specifies one or more followed-by
operators are as follows. All of these requirements must be met for there to be a match.

m There are events in the partition that match the subpatterns on both sides of the followed-by
operator(s).

m There is a match for the subpattern on the left of a followed-by operator before there is a match
for the subpattern on the right of a followed-by operator. One event cannot match more than
one subpattern in an event pattern.

= If a subpattern contains a where clause then the where clause must evaluate to true for the
subpattern to match.

m The match set contains the latest event.

m If there is more than one candidate event set for the match set then it is the most recent candidate
event set that is the match set. See “Event matching policy” on page 126.

The following sections provide examples that illustrate these rules.

Two coassignments

Consider the following code in which the withdrawal event contains only one field of interest,
which is the country. Assume that the query partitions arriving w1 thdrawal events into windows
according to the account number field.

find Withdrawal as wl -> Withdrawal as w2

106 Developing Apama Applications 10.11.2

3 Defining Queries

where wl.country = "UK" and w2.country = "Narnia" {
// Recent card fraud in Narnia against UK customers
emit SuspiciousWithdrawal(w2);

3

To make it easier to understand the behavior of the -> operator in more populated windows, the
following example events omit the account number field but include a unique identifier field.
Suppose the window for this query contains the following events, in arrival order top to bottom:

Withdrawal("Belgium", 1)
Withdrawal("UK", 2)

Although there is a withdrawal event followed by another withdrawal event, the where clause does
not evaluate to true so there is no match. Now suppose the window contains these events:

Withdrawal("UK", 3)
Withdrawal("Narnia", 4)

Now the query finds a match. There is a Withdrawal event followed by another withdrawal event,
and the where clause evaluates to true. Withdrawal("UK, 3") is coassigned to w1 and
Withdrawal("Narnia", 4) is coassigned to w2. The query executes the statements in its find block,
which in this example is to emit the event that triggered the match.

In this example, the Withdrawal events in the match set arrived consecutively. However, this is
not a requirement. Consider a window that contains the following events:

Withdrawal("UK", 5)

Withdrawal("Belgium", 6)
Withdrawal("Belgium", 7)
Withdrawal("Narnia", 8)

When withdrawal("Narnia", 8) is added to its window, the query finds a match because the
Withdrawal("UK", 5) eventis followed by the Withdrawal("Narnia", 8) eventand the where clause
evaluates to true for those two events. The effective behavior is that all combinations of events in
the window are inspected to find a combination that matches. The withdrawal("uK, 5")event is
coassigned to w1 and withdrawal("Narnia, 8") is coassigned to w2. The query executes the
statements in its find block.

A match must include the event that arrived most recently in the window (the latest event). This
ensures that a query does not detect more than one match for the same combination of events. In
the previous example, the query found a match when the withdrawal("Narnia", 8) eventarrived.

Imagine that another withdrawal event arrives and the window now contains the following events:

Withdrawal("UK", 5)

Withdrawal("Belgium", 6)
Withdrawal("Belgium", 7)
Withdrawal("Narnia", 8)
Withdrawal("Belgium", 9)

While the window still contains the withdrawal("UKk", 5) event followed by the
Withdrawal("Narnia", 8) event, the arrival of the withdrawal("Belgium", 9) eventdoesnot trigger
anew match because it is not part of that combination. However, suppose the Withdrawal("Narnia",
10) event arrives. The window now contains the following events:

Withdrawal("UK", 5)

Developing Apama Applications 10.11.2 107

3 Defining Queries

Withdrawal("Belgium", 6)
Withdrawal("Belgium", 7)
Withdrawal("Narnia", 8)
Withdrawal("Belgium", 9)
Withdrawal("Narnia", 10)

Now the query finds a new match. The withdrawal("UK", 5) event is followed by the just arrived
withdrawal("Narnia", 10) event and the where clause evaluates to true for these two events. This
match set contains Withdrawal("UK", 5) and Withdrawal("Narnia", 10). While this match set
contains the same Withdrawal("UK", 5) event that was in the previous match set, it is a new match
set because it contains the event that arrived most recently, which is the withrawal("Narnia", 10)
event.

Suppose that the withdrawal("Narnia", 14)event has just arrived in the following window:

Withdrawal("Belgium", 11)
Withdrawal("UK", 12)
Withdrawal("UK", 13)
Withdrawal("Narnia", 14)

In this situation, there is a match set that contains the two most recently arrived events, that is,
Withdrawal("UK", 13) and Withdrawal("Narnia", 14).TheWithdrawal("UK", 12) eventisnot part
of the match set because it is not the most recently arrived withdrawal event whose country field
is "UK".

Three coassignments

The code example below shows three coassignments in the find statement. This query partitions
the arriving events into windows according to their Automated Transaction Machine identifier
numbers (atmId).

query RepeatedMaxWithdrawals {
inputs {
Withdrawal() key atmId within 4 minutes;
}
find Withdrawal as wl -> Withdrawal as w2 -> Withdrawal as w3
where wl.amount = 500 and w2.amount = 500 and w3.amount = 500 {

log "Suspicious withdrawal: " + w3.toString() at INFO;
3

Each window contains the withdrawal events that occurred in the last four minutes at a particular
ATM. For simplicity, the following examples show only the amount and transactionIdevent fields.
Suppose the following events are in the window and that they arrived in order from top to bottom:

Withdrawal (500, 101) wl
Withdrawal (500, 102) w2
Withdrawal (500, 103) w3

After the third event arrives, the event pattern is matched, the where clause evaluates to true, and
the events are coassigned to w1, w2, and w3 as shown above.

Another event arrives in the window:

Withdrawal (500, 101)

108 Developing Apama Applications 10.11.2

3 Defining Queries

Withdrawal(5600, 102) wl
Withdrawal(5600, 103) w2
Withdrawal(500, 104) w3

When the fourth event arrives there is a new match and the events are coassigned as shown above.
The withdrawal(500, 101) event is not part of the new match set. A match set always includes the
most recent events that satisfy the event pattern and that allow the where clause to evaluate to
true.

Another event arrives and the window now contains these events:

Withdrawal(5600, 101)
Withdrawal(5600, 102)
Withdrawal(5600, 103)
Withdrawal(5600, 104)
Withdrawal(100, 105)

The latest event, Withdrawal(100, 105), does not have 500 in its amount field. Consequently, its
arrival in the window does not trigger a new match because a match set must always include the
latest event. While the window still contains three events that satisfy the event pattern, the actions
in the find block are not executed as a result of the arrival of withdrawal(100, 105) because it did
not trigger a new match.

Another event arrives and the window now contains these events:

Withdrawal(5600, 101)
Withdrawal(5600, 102)
Withdrawal(500, 103) wl
Withdrawal(500, 104) w2
Withdrawal(100, 105)
Withdrawal(500, 106) w3

With the arrival of the withdrawal (500, 106) event, there is a new match and the events are
coassigned as shown above. The coassigned events are the three most recently arrived events that
satisfy the event pattern. It does not matter that withdrawal(100, 105) arrived after some events
that are in the match set. That event does not satisfy the event pattern and so it is not included in
the match set.

Finally, suppose all of the following events have arrived in the window within the specified four
minutes:

Withdrawal (500, 101)
Withdrawal (500, 102)
Withdrawal (500, 103)
Withdrawal (500, 104)
Withdrawal (100, 105)
Withdrawal (500, 106) wl
Withdrawal (500, 107) w2
Withdrawal (100, 108)
Withdrawal (100, 109)
Withdrawal (500, 110) w3

Asyou can see, the latest event causes a new match. This match set does not include the two events
that arrived just before the latest event. Those two events do not satisfy the event pattern.

Developing Apama Applications 10.11.2 109

3 Defining Queries

Query and operator

In a find statement, you can specify the and operator in the event pattern. The events on both sides
of the and operator must be matched for the query to fire. The condition on each side of an and
operator can be a single event template or a more complex expression.

In the next example, assuming that an X event and a Y event have already been added to their
respective windows, adding an A event to its window causes a match.

(X as x => A as al) and (Y as y -> A as a2)

In the second example, suppose events were added to their windows in this order: X (1), A(1),
Y (1), A(2). The A(1) event is not included in the match set. Only A(2) is in the match set because
it is the most recent A event to follow X (1) as well as the most recent A event to follow Y (1).

When a single event is used in more than one coassignment you must coassign the event, A in
these examples, to distinct identifiers, a1 and a2 in these examples.

Specification of an and operator implies that there are no requirements regarding the order in
which the events specified in the event pattern are added to the window. For example, events
specified in the right-side condition can be added to their windows before events specified in the
left-side condition. When conditions specify multiple events, the events that cause one side of the
and operator to evaluate to true:

m can all be added to their windows before the events that cause the other side to evaluate to
true,

m can all be added to their windows after the events that cause the other side to evaluate to true;

®m can arrive in their windows at times interleaved with the arrival of the events that cause the
other side to evaluate to true;

B can contain the events that cause the other side to evaluate to true;
® can be contained by the events that cause the other side to evaluate to true.

When there is an order requirement or when you require multiple instances of the same event
type, specify the followed-by (->) operator.

The and operator has a higher precedence than the followed-by (->) operator, and lower precedence
than the or operator. For clarity, use brackets in expressions that specify more than one type of
operators.

Query or operator

In a find statement, you can specify the or operator in the event pattern. The events on one side
or the other of the or operator must be matched for the query to fire. The condition on each side
of an or operator can be a single event template or a more complex expression.

In the next example, assuming that a FlagAccount event and an OrderPlaced event have already
been added to the query's window, adding either a CreditCardAdded or OrderCancelled event to
its window causes a match.

110 Developing Apama Applications 10.11.2

3 Defining Queries

FlagAccount as account -> (CreditCardAdded as added or

(OrderPlaced as placed and OrderCancelled as cancelled))

A pattern normally only matches one side of an or operator, as it matches the most recent events.
However, if one event matches both sides of an or operator, then both events may be coassigned.

Optional or-terms

Events on one side of the or operator are not required to be present when matching the pattern.
In the example above, the added, placed and cancelled coassignments are not all required to be
present. It will match if either an added event, or a placed and canceled event appears in the
query's window. These terms are referred to as “or-terms”. It is possible for the pattern to match
with matching only some of those events, and others are left without an event assigned to them.
These or-terms are thus optional rather than definitely having a value matched by the pattern.
The following rules apply to or-terms:

Or-terms can only be used in where clauses (see “Query conditions” on page 113) if the where
clause does not make use of or-terms on the opposite side of the or operator in the pattern. In
the above example, added is opposite placed and cancelled. Therefore, the following where
clauses are not legal:

B where added.cardId = placed.cardId
B where added.cardId = 5 or placed.cardId = 5
(but see the next point for an example of how to express these conditions)

If one of the where clauses uses or-terms that are not being matched by the pattern, then they
are ignored as they cannot be evaluated. For example, only one of the following where clauses
is required to match (as it is not possible for both to match):

B where added.cardId = 5
B where placed.cardId = 5

In the action of the query (see “Acting on pattern matches” on page 127), the type of an or-term
is optional<EventType>. The types in the above example are:

B optional<CreditCardAdded>
B optional<OrderPlaced>
B optional<OrderCancelled>

Use the 1 fpresent statement to handle the contents of such events. See “Defining conditional
logic with the ifpresent statement” on page 276 for further information.

If using the %send construct (see "Adding query send event actions" in Using Apama with Software
AG Designer), any or-terms required by the fields of the event should be included in an i fpresent
entry of the %send. This uses the i fpresent statement, thus the contents of the or-terms events
are available to the send action. When using the Query Send Event Action dialog in Software
AG Designer, the 1 fpresent is automatically filled out.

Developing Apama Applications 10.11.2 1M1

3 Defining Queries

m If one side of an or term matches and the other side is incomplete, then no or-terms from the
incomplete side of the or operator are included in the matched events. Each side of an or
operator can either match completely or not at all. In the above example, if a CreditCardAdded
event occurs, the OrderPlaced event is discarded, despite being present in the window. Thus,
detecting the presence of just the placed or canceled event with i fpresent is sufficient to detect
which side of the or has matched.

m Aggregates (see “Aggregating event field values” on page 122) cannot use or-terms.

The or operator has a higher precedence than the and operator, and lower precedence than the
followed-by (->) operator. For clarity, use brackets in expressions that specify more than one type
of operator.

Query wait operator

You can specify the wait operator in an event pattern. The wait operator indicates that there must
be a time interval either at the beginning of the matching pattern or at the end of the matching
pattern. The format for specifying the wait operator is as follows:

wait (durationExpression) as coassignmentId
You can use either as or the colon (:) as the coassignment operator.

Syntax Element Description

durationExpression A time literal (such as 2 min 3 seconds) or a float
expression. A float expression can use constants and
parameters. It indicates a number of seconds.

coassignmentId An identifier. You can specify this identifier only in a

between clause. See “Query condition ranges” on page 118.

Typically, you specify the wait operator in conjunction with an event pattern condition. For
example:

find A as a -> B as b -> wait(10) as t
without X as x between (b t)

There is a match for this pattern when these things happen in this order:

1. AnAeventis added to a window in a partition.

2. ABeventisadded to a window in the same partition.

3. Ten seconds go by without an x event being added to a window in that partition.

The wait operator can be unambiguously at the beginning of a pattern that uses the followed-by
operator or unambiguously at the end of a pattern that uses the followed-by operator. For example:

X as x -> wait(1.0) -> Y as vy // Not allowed
X as x and wait(1.0) and Y as y // Not allowed
X as x and Y as y and wait(1.0) // Not allowed
wait(l1.0) -> (X as x and Y as y) // Allowed

wait(l1.0) -> X as x -> Y as y -> wait(1.0) // Allowed

12 Developing Apama Applications 10.11.2

3 Defining Queries

The following code fragment detects the opening of a door without security authorization:

find wait(5 seconds) as p -> DoorOpened as e
without SecurityAuthorization as s where s.doorId = e.doorId {
emit UnautorizedAccess(e.doorId);

}

Suppose the following events were received:

Time Event

00 SecurityAuthorization("doorl")
02 DoorOpened("doorl")

07 DoorOpened("door1™")

15 DoorOpened ("door2")

The first DooroOpened event for door1 does not generate an alert because a SecurityAuthorization
event was received within the 5 seconds that preceded the first Dooropened event and the doorId

field is the same for both events. That is, because the Boolean expression in the where clause of the
without clause evaluates to true, a match is prevented and so an alert is not sent.

The second DoorOpened event for doorl causes an UnautorizedAccess alert because the
SecurityAuthorization event was received more than 5 seconds before the second DoorOpened
event for doorl.

The Door0Opened event for door2 causes an UnauthorizedAccess alert because a SecurityAuthorization
event was not received within the 5 seconds that preceded that booropened event. Since there was
no SecurityAuthorization event, the Boolean expression in the where clause that is in the without
clause evaluates to false, which allows a match.

Query conditions

A find statement can specify conditions that determine whether there is a match for the specified
event pattern. The following table provides an overview of the conditions you can specify.

Condition: where within without

Specifies: Boolean expression Time period Event type coassigned to
an identifier

Latest event can The Boolean expression Events in the pattern (or, An event of a specified

cause a match when: evaluates to true. if specified, the between type was not added to a
range) must have been window after the
received within the time addition of the oldest
specified. That is, the event in the potential
elapsed time from when match set nor before the
the first event was addition of the latest
received to when the last event.

Developing Apama Applications 10.11.2 13

3 Defining Queries

Condition: where within without

event was received must
be less than the within
time period.

Number allowed: Zero or more Zero or more Zero or more

Order when all Ist 2nd 3rd

conditions are

specified:

Format: where within time_literal without typeId as
boolean_expression coassignmentID

You can use either as or
the colon (:) as the
coassignment operator.

Notes: where x where y Alternatively, you can Optionally, after each
. i specify within without clause you can
is equivalent to expression. The specify one where clause,
expression must evaluate which is referred to as a
where x and y .
to a float. without where clause to
A where clause that distinguish it from a find

Optionally, after each
within clause, you can
specify a between clause. Optionally, after each
See “Query condition without clause, you can
ranges” on page 118. specify a between clause.
See “Query condition
ranges” on page 118.

precedes any within or where clause.
without clauses is
referred to as a find

where clause.

Query where clause

A where clause filters which events match. A where clause consists of the where keyword followed
by a Boolean expression that refers to the events you are interested in.

Coassignment variables specified in the find statement are in scope in the find where clause. Also
available in the find where clause are any parameter values and key values. However, each where
clause cannot use or-terms (coassignments that are not required as they are on one side of an or
operator in the pattern) from both sides of an or operator in the pattern. Each where clause can
only use coassignments from at most one side of every or operator in the pattern. Different where
clauses can use coassignments from different sides of an or operator (see “Query or operator” on
page 110). Thus, when writing where clauses which apply to either side of an or, use separate where
clauses for each condition. They cannot be combined into a single where clause with an or or and
operator in the where clause; they may require both sides to be evaluated.

For example, instead of

find OrderPlaced:placed or OrderCancelled:cancelled

114 Developing Apama Applications 10.11.2

3 Defining Queries

where placed.orderId = 1 or cancelled.orderId = 2

write the following;:

find OrderPlaced:placed or OrderCancelled:cancelled
where placed.orderId = 1
where cancelled.orderId = 2

For where clauses that do not use any coassignments, all of the Boolean expressions must evaluate
to true for the events to match.

For where clauses that use or-terms, they only apply if the events they make use of are matched
by the pattern. If they use or-terms that have not been matched by the pattern, then those where
clauses are ignored as they cannot be evaluated.

All of the where clauses that can be evaluated must be true for the pattern to match. If a single
where clause combines (with an and or or operator) conditions on an or-term and a normal
coassignment, then the entire where clause is ignored if the or-term is not matched.

The where clause is optional. You can specify zero, one or more where clauses.

Note:

You can specify a find where clause that applies to the event pattern and you can also specify a
without where clause that is part of a without clause. Any where clauses that you want to apply
to the event pattern must precede any within or without clauses.

Query within clause

A within clause sets the time period during which events in the match set must have been added
to their windows. A pattern can specify zero, one, or more within clauses. These must appear after
any find where clauses and before any without clauses. The format of a within clause is as follows.
The between clause is optional.

within durationExpression [between (identiferl identifier2 ...)]

The durationExpression must be a time literal (such as 2 min 3 seconds) or it must evaluate to a
float value. A float expression can use constants and parameters. It indicates a number of seconds.

For example, consider the following find statement:

find LoggedIn as lc -> OneTimePass as otp
where lc.user = otp.user
within 30.0 {
emit AccessGranted(lc.user);

}

If specified, the between clause lists two or more items. Each item can be a coassigned event in the
pattern. A wait coassignment can also be specified. These items define a range. See “Query condition
ranges” on page 118. For example:

find wait(l.) as w -> A as a {

within (5.0) between w a

Now assume that the following events arrive:

Developing Apama Applications 10.11.2 115

3 Defining Queries

Time Event Access Granted?

10 LoggedIn("Andy")

15 OneTimePass ("Andy") Yes. Both events received within 30 seconds.
20 LoggedIn("Mike")

60 OneTimePass ("Mike") No. OneTimePass event received more than 30

seconds after corresponding LoggedIn event.

60 LoggedIn("Sam")

90 OneTimePass ("Sam") No. OneTimePass event received exactly 30
seconds after corresponding LoggedIn event.
For there to be a match, the oneTimePass event
must be received less than 30 seconds after its
corresponding LoggedIn event.

As mentioned earlier, a find statement can specify multiple within clauses. This is useful when
the pattern of interest refers to multiple events and you specify a between range as part of each
within clause. When you specify multiple within clauses they must all be satisfied for there to be
a match.

Query without clause

A without clause specifies event types, which must be specified in the inputs block of the query,
whose presence prevents a match. For example, if a potential match set contains 3 events, it can
be a match only if a type specified in a without clause was not added to a window neither after
the first event nor before the third event. Any event type that can be used in the find pattern can
be used in the without clause.

Optionally, after each without clause, you can specify one where clause, which is referred to as a
without where clause to distinguish it from a find where clause. The following table compares find
where clauses and without where clauses.

Find where clause Without where clause

true allows a match. Think of this as a positive false allows a match. Think of this as a negative
where clause. where clause.

Can only be before any within or without clauses Can only be part of a without clause

Applies to the event pattern Applies to the event specified in its without
clause

Cannot refer to event specified in without clause Can refer to event specified in without clause

The absence of an event of a type specified in a without clause has the same effect as the presence
of an event for which the without where clause evaluates to false.

116 Developing Apama Applications 10.11.2

3 Defining Queries

In addition to being able to refer to parameters and coassignment identifiers in the event pattern,
a without where clause can refer to the one event mentioned in its without clause. When a without
where clause evaluates to true, the presence of the without event prevents a match. If a without
where clause is false, then that without event instance is ignored; that is, a match is possible.

A without clause cannot use the -> or and pattern operators. However, you can specify multiple
without clauses. If there are multiple wi thout clauses each one can refer to only its own coassignment
and not coassignments in other without clauses. However, all without clauses can make use of the
pattern's standard coassignments, such as od.user in the example at the end of this topic.

If there are multiple without clauses a matching event for any one of them prevents a pattern
match. Multiple without clauses can use the same type and the same coassignment, which is useful
only when their where conditions are different.

Typically, a without where clause references the event in its without clause, but this is not a
requirement.

Optionally, after each without clause, you can specify a between clause, which lists two or more
coassigned events. It can also list a wait coassignment. For an event to cause a match, the type
specified in the without clause cannot be added to the window between the points specified in
the between clause. See “Query condition ranges” on page 118.

Any without clauses must be after any find where clauses and within clauses. If you specify both
optional clauses, the without where clause must be before the between clause.

When a without clause includes both optional clauses, where and between, the format looks like
this:
without typeId as coassignmentId

where boolean_expression
between (identifierl identifier2...)

As mentioned previously, a find where clause applies to the event pattern while a without where
clause applies to the event specified in its without clause. The following table shows the resulting
behavior according to the type of the where clause and the value of its Boolean expression:

Type of where clause Boolean expression evaluates Boolean expression evaluates
to true to false
Find where clause appliesto ~ Allows match Prevents match

event pattern

Without where clause applies to Prevents match Allows match
its without event

Example

Consider the following find statement:

find OuterDoorOpened as od -> InnerDoorOpened as 1id
where od.user = id.user
without SecurityCodeEntered as sce where od.user = sce.user {
emit Alert("Intruder "+id.user);

Developing Apama Applications 10.11.2 17

3 Defining Queries

Now suppose the following events arrive:

Event Received

Result

OuterDoorOpened ("Andrew")

SecurityCodeEntered("Andrew")

Causes the without where clause to evaluate to
true, which prevents a match.

InnerDoorOpened("Andrew")

No alert is set.

OuterDoorOpened("Brian")

InnerDoorOpened("Brian")

Because there is no intermediate
SecurityCodeEntered event, there is a match and
the query sends an alert. This is an example of
how the absence of an event of a type specified in
a without clause has the same effect as the
presence of an event for which the without where
clause evaluates to false.

OuterDoorOpened("Chris™")

SecurityCodeEntered("Charlie")

Causes the without where clause to evaluate to
false, which allows a match.

InnerDoorOpened("Chris")

Causes a match and the query sends an alert.

OuterDoorOpened("Dan")

SecurityCodeEntered("David")

Causes the without where clause to evaluate to
false, which allows a match.

SecurityCodeEntered("Dan")

Causes the without where clause to evaluate to
true, which prevents a match.

SecurityCodeEntered("Densel")

Causes the without where clause to evaluate to
false, which allows a match.

InnerDoorOpened('"Dan")

There is no match because one of the
SecurityCodeEntered events caused the without
where clause to evaluate to true, which prevents
a match.

Query condition ranges

The within and without clauses (see “Query conditions” on page 113) can each have an optional

between clause that restricts which part of the pattern the within or without clause applies to. The
format for specifying a range is as follows:

between (identiferl identifier2 ...)

118 Developing Apama Applications 10.11.2

3 Defining Queries

At least two identifiers that are specified in the event pattern are required. The identifiers specify
a period of time that starts when one of the specified events is received and ends when one of the
other specified events is received. A between clause is the only place in which you can specify a
coassignment identifier that was assigned in a wait clause. You cannot specify identifiers used in
awithout clause. Also, the same event cannot match both the coassignment identifier in the without
clause and an identifier in a between clause.

The condition that the between clause is part of must occur in the range of identifiers specified in
the between clause. For example, consider the following find pattern:

find A as a and B as b and C as ¢ without X as x between (a b)

For there to be a match set for this pattern, no x event can be added to its window between the
arrivals of the a and b events. If events are received in the order B A X ¢, then there is a match set
because the x event is not between the a and b events. If the events are received in the order B ¢
X A, then there is no match set because an X event occurred between the a and b events.

Here is another example:

find A as a -> B as b -> (C as ¢c and D as d)
within 10.0 between (a b)
within 10.0 between (c d)

Range Description

(a b) This duration starts when an A event is received because the pattern is looking
for an A event followed by a B event. For there to be a match, the B event must
arrive less than 10 seconds after the A event.

(c d) After an A event followed by a B event has been received, this duration starts
when either a C event or a D event is received. Since the pattern is looking for a
¢ and a D, it does not matter which event is received first. For there to be a match,
the event that is not received first must be received less than 10 seconds after
the first event.

The following table provides examples of match sets.

Time |Event Received |Match Set

10 A(1)

15 B(1)

20 D(1)

25 c(1) A(1),B(1),D(1),C(1)

37 D(2) No match. More than 10 seconds elapsed between c(1) and b(2).
40 C(2) A(1),B(1),D(2),C(2)

Developing Apama Applications 10.11.2 19

3 Defining Queries

The range is exclusive. That is, the range applies only after the first event is received and before
the last event is received. For example, consider this pattern:

find A as al -> A as a2 without A as repeated between (al a2)

A match set for this pattern is two consecutive A events. If three consecutive A events are added
to the window, the first and third do not constitute a match set event though the first A was followed
by the third A. This is because the second A was added between the first and the third A events. In
other words, the events that match a1 and a2 are excluded from the range in which the repeated
event can match. The following table provides examples of match sets for this pattern. It assumes
that A(1) is still in the window when A(4) is added.

Event Added to Window Match Set Not a Match Set

A(1)

A(2) A1), A(2)

A(3) A(2), A(3) A(1), A(3)

A(4) A(3), A(4) A(1l), A(4) and A(2), A(4)

The query below is a real world example of the pattern just discussed. It emits the average price
change in the last minute.

query FindAveragePriceMove {
inputs {
Trade() key symbol within 1 minute;
}

find every Trade as tl -> Trade as t2
without Trade as mid between (tl1 t2)
select avg(t2.price - tl.price) as avgPriceChange {
emit AveragePriceChange(symbol, avgPriceChange);

}

It is illegal to have two within clauses with identical between ranges. This would be redundant,
as only the shortest within duration would have any effect. It is, however, legal to have more than
one without clause with the same between range. Typically, these would refer to different event
types or where conditions.

If or-terms (see “Query or operator” on page 110) are included in the range of a condition, then if
an or-term is not matched, that coassignment is ignored in the range. If this means that the range
has less than two points, the condition is ignored. There must be a combination of events for which
there are at least two coassignments definitely in the range. Using only or-terms on opposite sides
of an or operator in the pattern is an error, as the condition will never apply.

Special behavior of the and operator

To optimize performance when evaluating a query where clause, the correlator evaluates each side
of an and operator as early as possible even if evaluation is not in left to right order. This behavior
is different from the behavior outside a query. That is, outside a query, the left side of an and
operator is guaranteed to be evaluated first. See “Logical intersection (and)” on page 687.

120 Developing Apama Applications 10.11.2

3 Defining Queries

For example, suppose you specify the following event pattern:

A as a —> B as b where a.x = 1 and b.y = 2

Consider what happens when the following events are added to their windows:
A(1), A(2), A(3), B(5), B(4), B(3)

The correlator can identify that

® only the a coassignment target is needed to evaluate the a.x = 1 condition;
® only the b coassignment target is needed to evaluate the b.y = 2 condition.

Because none of the B events cause the b.y = 2 condition to evaluate to true, the correlator does
not evaluate the a.x = 1 condition.

In a where clause, because the right side of an and operator might be evaluated first, you should
not specify conditions that have side effects. Side effects include, but are not limited to:

B print or log statements

B route, emit, enqueue...to statements

®= Modifying events, sequences, dictionaries, etc.

m Causing a runtime error

m (Calling an action that has a side effect statement in it
m Calling plug-ins that have side effects

If a where clause calls an action that has a side effect, you should not rely on when or whether the
action is executed.

Whether the correlator can optimize evaluation of the where clause depends on how you specify
the where clause conditions. For example, consider the following event definition:

event Util {
static action myWhereClause(A a, B b) returns boolean {
return a.x = 1 and b.y = 2;
1
1

Suppose you specify the following event pattern:

A as a —> B as b where Util.myWhereClause(a, b)

If the same A and B events listed above are added to their windows, the result is the same as the
result of evaluating the following:

A as a -> B as b where a.x = 1 and b.y = 2

However, evaluation might take longer because the correlator cannot separate evaluation of b.y
= 2 from evaluation of a.x = 1. The myWhereClause() actionreturnsa.x = 1 and b.y = 2asa
single expression. Consequently, the correlator evaluates Uti1l.myWhereClause(a, b) for each
combination of a and b. Given the A and B events listed above, this is a total of 9 times.

Developing Apama Applications 10.11.2 121

3 Defining Queries

While the correlator might evaluate some where clause conditions in a right-to-left order, the
correlator always evaluates each where clause condition as soon as it is ready to be evaluated.
When multiple conditions become ready to be evaluated at the same time then the correlator
evaluates those conditions in the order they are written. For example, the typical pattern of checking
whether a dictionary contains a key before operating on the value with that key continues to work
reliably:

E as e -> F as f where e.dict.hasKey("k") and e.dict["k"] = f.x and f.y = 1

In this example, f.y = 1 might be evaluated before the other two conditions, but e.dict.hasKey ("k")
is always evaluated before e.dict["k"] = f.x, and the latter is not evaluated if the hasKey ()
method returns false.

Aggregating event field values

A find statement can specify a pattern that aggregates event field values in order to find data
based on many sets of events. A pattern that aggregates values specifies the every modifier in
conjunction with select and having clauses.

Based on a series of values, an aggregate function computes a single value, such as the average of
a series of numbers. See the API Reference for EPL (ApamaDoc) for detailed information on all built-in
aggregate functions.

Note:

If a built-in aggregate function does not meet your needs, you can use EPL to write a custom
aggregate function. A custom aggregate function that you want to use in a query must either
be abounded function or it must support both bounded and unbounded operation. See “Defining
custom aggregate functions” on page 223.

For example, the following query watches for a withdrawal amount that is greater than some
threshold multiplied by the average withdrawal amount of the ATMWi thdrawal events in the window,
which might be as many as 20 events. This query uses the last () aggregate function to identify
the event added to the window most recently and uses the avg() aggregate function to find the
average withdrawal amount of the events in the window. The having clause must evaluate to true
for the query to send the SuspiciousTransaction event, passing the transaction ID of the suspicious
withdrawal. You can use either as or the colon (:) as the coassignment operator.

using com.apama.aggregates.avg;
using com.apama.aggregates.last;
query FindSuspiciouslylLargeATMWithdrawals {
parameters {
float THRESHOLD;

}
inputs {

ATMWithdrawal() key accountId retain 20;
}

find every ATMWithdrawal as w
select last(w.transactionId) as tid
having last(w.amount) > THRESHOLD * avg(w.amount) {
send SuspiciousTransaction(tid) to SuspiciousTxHandler;

3

122 Developing Apama Applications 10.11.2

3 Defining Queries

To use an aggregate function in a find statement, specify the every modifier and specify one or
more select Or having clauses. A select clause indicates that aggregate values are to be computed.
Each select clause specifies a projection expression and a projection coassignment. The projection
expression can use coassignments from the pattern if the coassignments are within a single
aggregate function call. For example, the following pattern computes the average value of the x
member of event type A in the query's input and coassigns that average value to aax.

find every A as a select avg(a.x) as aax

A select clause can use parameter values. For example the following two select clauses are both
valid if there is a parameter param:

find every A as a
select avg(param * a.x) as apax
select param x* avg(a.x) as paax

You can specify multiple select clauses to produce multiple aggregate values.

In an aggregating find statement, only the projection expression can use the coassignments from
the pattern. The procedural block of code can use projection coassignments and any parameters,
but it cannot use coassignments from the pattern.

The first() and last() built-in aggregate functions are useful if you want to refer to the
coassignment value of the oldest or newest event, respectively, in the window.

The following example determines the average price of trades other than your own:

find every Trade as t
where t.buyer != myId and t.seller != myId
select wavg(t.price, t.amount) as avgprice

Match sets used in aggregations

In find statements without the every modifier, only the most recent set of events that match the
pattern are used to invoke the procedural code block. With the every modifier, every set of events
that matches the pattern is available for use by the aggregate function, provided that the latest
event is present in one of the sets of events. Any events or combinations of events that do not
match the pattern or do not match the where clause, or are invalidated due to a within or without
clause, are ignored; their values are not used in the aggregate calculation.

For example, consider the following find statement:

find every A as a -> B as b
where b.x >= 2
select avg(a.x + b.x) as aabx {
print aabx.toString();

}

The following table shows what happens as events are added to the window.

Developing Apama Applications 10.11.2 123

3 Defining Queries

Event Added |Match Sets Average Of Value of aabx
to Window
A(1) None
A(2) None
B(2) A(1), B(2) 3and 4 3.5
A(2), B(2)
B(1) None because B(1) causes the

where clause to be false.

B(3) A(1), B(2) 3,4,4,and 5 4
A(2), B(2)
A(1), B(3)
A(2), B(3)

Note:

Only coassignments that definitely have a value may be used in aggregates. Or-terms that are
on one side of an or operator in the pattern may not be used in aggregate expressions (see also
“Query or operator” on page 110).

Using aggregates in namespaces

As with event types, an aggregate function is typically defined in a namespace. To use an aggregate
function, specify its fully-qualified name or a using statement. The built-in aggregate functions
are in the com. apama. aggregates namespace. For example, to use the avg() aggregate function you
would specify the following in the query:

using com.apama.aggregates.avg;

Filtering unwanted invocation of procedural code

Each select clause defines an aggregate value to be produced. You can also specify one or more
having clauses to restrict when the procedural code is invoked. For example, consider the following
find statement:

find every A as a
select avg(a.x) as aax
having avg(a.x) > 10.0 {
print aax.toString();

}

This example calculates the average value of a.x for the set of A events in the window. However,
it executes the procedural block only when the average value of a.x is greater than 10.e.

124 Developing Apama Applications 10.11.2

3 Defining Queries

Multiple having clauses

You can specify multiple having clauses and you can use parameter values in having clauses. For

example,

find every A as a

select
select
having
having
having

{

avg(a.
sum(a.
avg(a.
sum(a.
max(a.

X) as aax
y) as aay
X) > 10.0
y) > paraml
z) < param2

print aax.toString(), + " : " + aay.toString();

When you specify more than one having clause it is equivalent to specifying the and operator, for

example:

having avg(a.x) > 10.0 or sum(a.y) > paraml
having max(a.z) < param2

is equivalent to

having (avg(a.x) > 10.0 or sum(a.y) > paraml) and (max(a.z) < param2)

Using a select coassignment in a having clause

Rather than specifying an aggregate expression twice, once in a select clause and then subsequently
in a having clause, it is possible to refer to the aggregate value by using the select coassignment
name. For example:

find every A as a
select avg(a.x) as aax
having avg(a.x) > 10.0 {
print aax.toString();

You can rewrite that as follows:

find every A as a
select avg(a.x) as aax
having aax > 10.0 {
print aax.toString();

Using a having clause without a select clause

When you want to test for an aggregate condition but you do not want to use the aggregate value,
you can specify a having clause without specifying a select clause. For example,

find every A as a

Developing Apama Applications 10.11.2 125

3 Defining Queries

having avg(a.x) > 10.0 {
print "Average value is greater than ten!";

Event matching policy

It is possible for the windows for a given key to contain multiple sets of events that, each taken in
isolation, would match the defined event pattern. In this case, the matching policy determines
which of the candidate event sets is the match set that triggers the query. There are two event
matching policies:

®m Recent — This is the only policy followed for queries that to not specify the every keyword,
that is, they do not specify aggregate functions.

m Every — This is the only policy followed for queries that specify the every keyword. That is,
they specify aggregate functions.

For both policies, the match set must include the latest event. The latest event is the event that was
most recently added to the set of windows identified by a particular key.

For the recent matching policy, to identify which candidate match set triggers the query, the
correlator compares the times of the second-most-recent events in the candidate event sets. If one
of these events is more recent than its corresponding event(s) then the candidate event set it is in
is the match set. However, if two or more candidate event sets share the second-most-recent event,
then the correlator compares the times of the third-most-recent events in those candidate event
sets. The correlator continues this until it finds an event that is more recent than its corresponding
event(s) in other candidate event set(s). The candidate event set that becomes the match set is
referred to as the most recent set that matches the event pattern.

Once the correlator determines which candidate event set is the match set, it ignores the order of
any earlier events in any event sets. This means that it is possible for the most recent set of events
to contain an event that was added earlier than an event in a set that is not the most recent set.
The following event definitions and sample query illustrate this.

event APNR {
// Automatic Plate Number Recognition
string road;
string plateNumber;
integer time; // Represents time order for illustration purposes

}

event Accident {
string road;

}

event NotifyPolice {
string road;
string plateNumber;

}

The following query uses these events:

query DetectSpeedingAccidents {
inputs {

126 Developing Apama Applications 10.11.2

3 Defining Queries

APNR() key road within(150.0);
Accident() key road within(10.0);
}
find APNR as checkpointA -> APNR as checkpointB -> Accident as accident
where checkpointA.plateNumber = checkpointB.plateNumber
and checkpointB.time - checkPointA.time < 100
// Which indicates the car was speeding

emit NotifyPolice(accident.road, checkpointA.plateNumber);

Suppose the following events are in the query windows:
APNR("MyRoad", "2N2R4", 1000)
APNR("MyRoad","FAB 1", 1010)
APNR ("MyRoad","FAB 1", 1080)
APNR ("MyRoad","2N2R4", 1090)
Accident ("MyRoad")

There are two candidate event sets:

Coassignment A candidate event set Another candidate event set
identifier

checkpointA APNR("MyRoad", "2N2R4", 1000) APNR("MyRoad","FAB 1", 1010)
checkpointB APNR ("MyRoad", "2N2R4", 1090) APNR("MyRoad","FAB 1", 1080)
accident Accident ("MyRoad") Accident ("MyRoad")

Both sets match against the single Accident event. The next most recent events are
APNR("MyRoad","2N2R4", 1090) and APNR("MyRoad","FAB 1", 1080). The APNR("MyRoad", "2N2R4",
1090) event is more recent. Consequently, after the Accident event is added to its window, there
is a match and the match set includes the Accident event and the 2N2R4 APNR events. This is the
most recent set of events.

In this example, in the most recent set of events, the earliest event, APNR ("MyRoad", "2N2R4", 1000)
is earlier than the earliest event, APNR("MyRoad", "FAB 1", 1010), in the other set of events.

Acting on pattern matches

When a query finds a set of events that matches the specified pattern it executes the statements in
its find block. The find block specifies one or more statements that operate on the matching
event(s). The items available in a find block include:

® Any parameters defined in the parameters section.

m Coassignment variables specified in the event pattern.

Developing Apama Applications 10.11.2 127

3 Defining Queries

In the case of an aggregating find statement, only the projection expression can use the
coassignments from the pattern. The find block can use projection coassignments, but it cannot
use coassignments from the pattern.

m Key values.

® Actions that are defined in the same query after the find block. Any expression in the find
statement pattern or block can reference an action defined after the find block.

® EPL constructs and statements that are allowed in queries. See “Restrictions in queries” on
page 134.

Defining actions in queries

In a query, after a find statement, you can define one or more actions in the same form as in EPL
monitors. See “Defining actions” on page 252.

In a given query, an action that you define can be referenced from any expression in that query's
find statement, including any statements in its find block. For example:

query CallingQueryActions {
parameters {
float distanceThreshold;
float period;

}
inputs {

Withdrawal() key account within period;
}

find Withdrawal as wl -> Withdrawal as w2
where distance(wl.coords, w2.coords) > distanceThreshold
{
logIncident(wl, w2);
sendSmsAlertToCustomer (
getTelephoneNumber (wl), getAlertText(wl,w2));
+

action distance(Coords a, Coords b) returns float {
integer x := a.x - b.x;
integer y := a.y - b.y;
return (x*x + yxy).sqrt();

+
action logIncident (Withdrawal w, Withrawal w2) { ... }
action getTelephoneNumber (Withdrawal w) returns string { ... }
action getAlertText (Withdrawal wl, Withrawal w2) returns string { ... }
action sendSmsAlertToCustomer(string telephoneNumber, string text) { ... }
}
Note:

In a query, do not define an action whose name is onload, ondie, onunload, onBeginRecovery, or
onConcludeRecovery. In EPL monitors, actions with these names have special meaning. For more
information, see “Monitor actions” on page 647.

128 Developing Apama Applications 10.11.2

3 Defining Queries

Implementing parameterized queries

An Apama query can define parameters and then refer to those parameters throughout the query
definition. This enables a query definition to function as a template for multiple query instances.

A query that defines parameters is referred to as a parameterized query. An instance of a
parameterized query is referred to as a parameterization.

A parameterized query offers the following benefits:

m Patterns of interest (find patterns) may be customized from a single generic query. This can
significantly reduce the amount of code that needs to be written and maintained.

m Parameterizations exist only at runtime. There is no need to maintain a file for each instance.

m Parameters can be used throughout the query in which they are defined. For example, you
can use them in the definition of inputs, in find actions, and in user-defined actions. Values
do not need to be hardcoded.

You define query parameters in the parameters section of a query definition. See also “Format of
query definitions” on page 68. The format for specifying the parameters section is as follows:

parameters {
data_type parameter_name;
[data_type parameter_name; ...

}

In the following example, the parameters section is in bold as are the references to the parameters.

query FaultyProduct {
parameters {
string product;
float thresholdCost;
float warrantyPeriod;
}
inputs {
Sale() key customerId within warrantyPerdiod;
Repair() key customerId retain 1;
b
find Sale() as sl -> Repair() as ril
where sl.product = product
and rl.product = product
and rl.cost >= thresholdCost
{
log "Cost of warranty covered repair for product \"" + product +
"l above threshold $" + thresholdCost.toString() + " by $
" + (rl.cost - thresholdCost).toString() at INFO;

}

See also: “Query lifetime” on page 652.

Developing Apama Applications 10.11.2 129

3 Defining Queries

Parameterized queries as templates

When a parameterized query is injected into a correlator no instances of the query are created
until a request to create a parameterization is sent using the Scenario Service (that is, the
com.apama.services.scenario client API). This request must include valid values for the query's
parameters. For example, if the query in the previous topic is injected, the request to create a
parameterization must include valid values for the product, thresholdCost, and warrantyPeriod
parameters. Only then does the query become active.

A parameterized query lets you define a generic query find pattern that operates on a particular
group of input types and that can be customized for particular criteria. The query in the previous
topic could be created for any product with the threshold cost and warranty period specified as
required. To achieve the same result with a non-parameterized query, you would have to define
a query such as the following:

query FaultyProduct {

inputs {
Sale() key customerId within 1 week; //warrantyPeriod
Repair() key customerId retain 1;

+

find Sale() as sl w-> Repair() as rl
where sl.productId = "Mobile device A" // productId
and rl.productId = "Mobile device A" // productId
and rl.cost >= 50.00 // thresholdCost

log "Cost of warranty covered repair for product \"Mobile device A\
" above threshold $50.00 by $" + (rl.cost - 50.00).toString() at INFO;

}

While this query is valid it has the drawback that whenever you want to perform a similar query
for a product that differs by type, warranty coverage period or threshold repair cost then a new
query will need to be written (or most likely copied and pasted) with the new set of values and
then injected into the correlator. The benefit of a parameterized query is that only one query
definition needs to be injected into the correlator and you can then manually or programmatically
create as many different instances for the different product-value combinations as required.

Using the Scenario Service to manage parameterized queries

There are several ways to manage (create/edit/remove) parameterizations:

m Usethe ScenarioService APlinJava or .NET client libraries. See "Developing Custom Clients"
in Connecting Apama Applications to External Components.

m Use Apama's Scenario Browser view in Software AG Designer. See "Scenario Browser view"
in Using Apama with Software AG Designer.

m Write dashboards that control the instances of a parameterized query. See "Building Dashboard
Clients" in Building and Using Apama Dashboards.

The Scenario Service is also used to read and manage instances of DataViews and MemoryStore.

130 Developing Apama Applications 10.11.2

3 Defining Queries

To these tools, a query will appear with the fully qualified name declared in the .qry file prefixed
with QRrY_ to highlight that the entity being viewed is a query. For parameterized queries, instances
can be created, edited or deleted. For unparameterized queries, a single instance will appear as

soon as the query is injected. This instance cannot be edited nor deleted, nor new instances created.

When there is a request to create a parameterization, the Scenario Service tries to validate the
supplied parameter values. If the values are valid, the result is as if a query with those values had
just been injected.

End users have the ability to define conditions on parameter values when setting them in
dashboards. Parameter values can be modified only by the Scenario Service. Updates by the
Scenario Service do not occur atomically across all contexts if the query is running in multiple
contexts. Consequently, it is possible to observe the effects of the old parameter values interleaved
with the effects of the new parameter values. For example, consider a query that has a pattern
such as the following;:

find A as a -> wait(paramValue) as t

The wait period will be based on the value the parameter had when the wait period started. If the
parameter value is edited after the A event enters the partition the wait still fires according to the
old value. Such transitions are typically short. The actual time required depends on various factors
such as machine load and memory.

Some important differences between parameterized queries and other strategies include:

m Parameterized queries have input variables but not output variables. DataViews and
MemoryStore have both input variables and output variables. All queries have an empty list
of output variables.

®m Requests to create or update a parameterization with values that are invalid will be denied.
Invalid values are values that would cause wait, within or retain clauses to evaluate to less
than or equal to zero, or would cause them to fail to evaluate, for example, by causing a runtime
exception to be thrown.

For example, consider the following query:

query ParameterizationExample {
parameters {
integer intParam;
integer floatParam;

}
inputs {

A() key 1id retain (10/intParam);

B() key id within (5.0 - floatParam);
}

find A as a -=> B as b -> wait(-1.0 * floatParam)
where (a.intField/intParam > 0) {
log "Found match" at INFO;

}

Suppose that there is a request to create a parameterization of this query. The request indicates
that intParamis equal to 0 and floatParamis equal to 10.0. If the parameterization were created
then every expression that contains a parameter value would immediately throw an exception or

Developing Apama Applications 10.11.2 131

3 Defining Queries

be invalid. In the inputs block, evaluation of the retain expression would result in a divide-by-zero
exception. The within expression would evaluate to -5.0, which is not valid. Similarly, upon
evaluating the elements in the find block the wait expression would be a negative value and the
where clause would also result in a divide-by-zero exception. Since a parameterization such as this
would lead to either invalid expressions or exceptions being thrown, these values are not allowed.
If you try to pass disallowed values to the Scenario Service createInstance() method then the
Scenario Service returns null. Similarly, if you try to pass invalid values to the Scenario Service
editInstance() method, then the Scenario Service returns false, which indicates an error.

Referring to parameters in queries

You can refer to parameters throughout a query definition.

You cannot change parameter values in the query code itself. Parameter values can be modified
only by the Scenario Service.

CAUTION:

Apama recommends that you do not change parameter values used in input filters because it
is possible to miss events that would cause a match. In a given parameterization, when an input
filter refers to a parameter and you change the value of that parameter, it causes the
parameterization to stop and restart. Events sent during the changeover are ignored. Also, there
might have been earlier events that match the new parameter value but that did not make it
into the window because they did not match the previous parameter value. An alternative is
to use a parameter in a where clause in the find statement instead. This can be more efficient
when the parameter value needs to be changed frequently. Using parameter values in input
filters can also increase memory usage, see “Queries can share windows” on page 79.

Examples of using parameters in queries:

® In retainand within expressions that are in the inputs block:

parameters {
integer maxRetention;
float maxDuration;

}

inputs {
A() key 1id retain maxRetention;
B() key id with maxDuration;

}

m In the filter of the event template in the inputs block:

parameters {
float threshold;

}
inputs {

Withdrawal(amount > threshold) key k;
}

® Inwhere and within clauses that are in the find pattern:

parameters {
float maxDuration;
float maxDifference;

132 Developing Apama Applications 10.11.2

3 Defining Queries

}
inputs {

A() key 1id retain 2;
}

find A as al -> A as a2 where (a2.cost - al.cost) >
maxDifference within maxDuration {

®m Inwait expression(s) that are in the find pattern:

parameters {
float interval;

}
inputs {

A() key 1id retain 2;
}

find A as al -> wait(interval) as wl -> A as a2 {

}

® Inan aggregate expression that is in the find pattern:

parameters {

float avg;
}
inputs {

A() key 1id within 1 day;
}

find every A as a
select avg(a.cost - avg) as avgDeviation {

m In an action that is in the find block:

parameters {
float avg;
}
inputs {
A() key 1id retain 1;
}
find A as a {
log "Deviation from mean = " + (a.value - avg).toString();

}

m In a user-defined action block:

parameters {
float avg;
}
inputs {
A() key 1id retain 1;
}
find A as a {
log "Deviation from mean = " + getDeviation(a).toString();
}
action getDeviation(A a) returns float {
return (a.value - avg);

3

Developing Apama Applications 10.11.2 133

3 Defining Queries

While parameter values can be used anywhere within the query it is illegal to mutate the parameter
values. They can be modified only by the Scenario Service.

Scaling and performance of parameterized queries

Depending on the machine architecture a user can expect to be able to create several hundred
parameterizations, which all concurrently process events.

As a result of the time required to process a parameterization edit request, the recommendation
is to avoid multiple simultaneous edit requests for the same parameterization. There is no guarantee
that all of the threads executing the parameterization will hold the same parameter values during
the update period. During the update period, there might be a mix of results based on old parameter
values and results based on new parameter values. Any requests to the same parameterization
should be spaced approximately 1 second apart to allow time for requests to be executed throughout
the parameterization. This applies to create, edit and delete requests.

In a cluster of correlators, the correlators share the same set of parameter values across the cluster.
While a Scenario Service client can connect to any correlator in the cluster, it is not recommended

to edit the same parameterization from multiple Scenario Service clients concurrently, as the results
will be undefined.

Restrictions in queries

There are some EPL elements that are appropriate for monitors but not queries, for example spawn
and die. This is because queries scale automatically, with multiple threads of execution processing
the events for different partitions as and when they arrive. Hence, within query code, the spawn
and die operations are meaningless. Queries operate on the events in their windows and do not
need to set up event listeners, stream queries, or stream listeners. Also, queries cannot subscribe
to receive events sent to particular channels.

The following EPL features cannot be used in queries:
m Event listeners, that is, on statements

m Stream queries and stream listeners

B spawn and spawn. . .to statements

m die statements

B monitor.subscribe() and monitor.unsubscribe()

® Anidentifier cannot start with two consecutive underscore characters. For example, __MyEvent
is an invalid event type name in a query (it is valid in a monitor). A single underscore at the
beginning of an identifier is valid.

m Predefined self variable

Of course, you cannot call an action on an event when that action uses a restricted feature listed
here.

134 Developing Apama Applications 10.11.2

3 Defining Queries

The recommended means to send events from queries to monitors is by sending to a channel. See
“Generating events with the send statement” on page 267.

The debugger does not support debugging query execution - it is not possible to set breakpoints
in a query file. Use of the debugger can also affect how quickly queries are ready to respond to
events, and should not be used in a production system (where it would cause significant pauses
of the correlator).

Note:
Several restrictions are enforced on queries if a license file cannot be found while the correlator
is running. See "Running Apama without a license file" in Introduction to Apama.

Best practices for defining queries

Use values for the length of the window that will not store too much data in the
window.

Given the expected incoming event rate, set the within and/ or retain window lengths so that
typically less than a hundred events per partition will be within the window. With more than that
the cost of executing queries can become excessive and the system will not perform efficiently.
There is no limit on the number of events within any partition. If a very small proportion of
exceptional partitions has many more, then that is not a problem. The important factor is that if
the average number is large, this can affect the performance of executing queries.

Use parameters instead of creating many similar queries.

Rather than writing many separate queries which are very similar in structure and differ only in
values, it may be easier to write a template query and create multiple parameterizations of it. See
also “Parameterized queries as templates” on page 130.

If a query requires different fields for its keys depending on the query parameters, it should use
an action as a query key. See also “Defining actions as query keys” on page 73.

Use within in input durations if the partition values change over time

In some queries, the key used by the query may correspond to a transient object, that is, any given
value for the partition is not permanent. For example, if tracking parcels being delivered, then
each consignment ID will be short-lived. Once a parcel is delivered, there would in most cases be
no more events for that consignment ID (and future deliveries may never re-use the same
consignment ID). In these cases, over long periods, the number of different key values processed
will only increase, as new IDs are generated. Such queries should include a within specification
in the inputs for all event types. Otherwise, if inputs only have a retain specification, then the
events will be held forever, and more and more storage will be required by the queries system.
This is not typically necessary if the key corresponds to more permanent objects, such as ATMs
or distribution depots.

Developing Apama Applications 10.11.2 135

3 Defining Queries

Use input within that is larger than the value of all waits, withins in the pattern

If your inputs specify a within and there is wait or within in the pattern, then the input within
should be larger than the longest wait and within in the pattern. If not, the pattern will not have
the intended effect, as events will be expired from the input window while a wait or withinin the
pattern is still active.

Use same set of inputs to allow sharing of data

If you have many queries of different types and they are using a lot of memory or are running
slowly, then check if they are using the same inputs definitions (see also “Queries can share
windows” on page 79). Memory usage can be reduced and performance increased by making
multiple queries use the same set of input definitions, even if some queries have some event types
in their inputs that they are not using.

Understand the difference between filters and where clauses

Filters in the input section filter events before they are stored in the distributed cache. By contrast,
the where clause filters events (or combinations of events) after they have been stored in the
distributed cache. The where clause is more powerful, but also more expensive, especially if most
events do not match the where clause.

= A filter applies before the event window. Thus, events not matching the filter are ignored and
do not need to be stored anywhere. This makes filtering a very cheap way of reducing the
number of events that need to be processed. The retain count only applies to the events that
match the filter. For example, the following query input will match events where there have
been two events with value = 5; it will match if another event for the same k has occurred
between them with value not equal to 5.

query Q1 {
inputs {
Event(value = 5) key k retain 2;
}
find Event as el -> Event as e2 {
}

}

Compare the above with:

query Q2 {
inputs {
Event() key k retain 2;
b
find Event as el -> Event as e2 where el.value = 5 and e2.value = 5 {
b

}

This only matches if the last two events for a given value of k both have the value 5 - as we
only retain 2 events and after retaining 2 events, check that they have value = 5.

m Afilter applies to all events. Note that in query Q2 above we had to repeat the value = 5 check.

136 Developing Apama Applications 10.11.2

3 Defining Queries

® A where clause does not affect the definition of the inputs. Query Q2 could share window
contents with other queries that are concerned with different values of value, or do not filter
at all.

® Afilter is restricted to range or equality matches per field of the incoming events. where clauses
can be more complex (for example, where el.fieldl + e2.field2 = 10isvalid, asisel.isTypeA
or el.isTypeB; but neither could be expressed in a filter).

Avoid changing parameter values used in filters

If using parameters in filters, avoid changing the values of those parameters. As this changes
which events should be stored in the window, this is similar in effect to stopping a query instance
and creating a new query instance. It involves creating new tables in the distributed cache, and
events that are delivered to correlators while a new table is opened will be dropped. It may be
more desirable to use a where clause to restrict which events match a pattern.

Use custom aggregates to get data from multiple match sets

As well as the built-in aggregates, it is possible to define new aggregates in EPL to collate
information about all events that matched a pattern. For example, it may be desirable to have a
list of all events that matched a pattern. This can be achieved by writing a new custom aggregate.
For example:

// file MyAggregates.mon:
aggregate CollateEvents(Event e) returns sequence<Event> {
sequence<Event> allEvts;
action add(Event e) {
allEvts.append(e);
}

action value() returns sequence<Event> {
return allEvts;

3

// file PrintAllEvents.qry:
query PrintAllEvents {
inputs {
Event() within 2 hours;

}

find every Event as el select CollateEvents(el) as cl {
Event e;
for e in cl1 {
print e.toString();
}

Developing Apama Applications 10.11.2 137

3 Defining Queries

Testing query execution

When writing queries, as with any programming, it is important to test that the query is behaving
as expected. Testing can be as simple as a small Apama project with the event definitions, the
queries, and an . evt file of events to send to the query. You can use this project to check whether
the query sends out the correct events. In Software AG Designer, use the Engine Receive view
to observe the output of the query. Whether or not a query is written to send output events, you
can add log statements to the query file to verify whether it has or has not triggered.

Be sure to test queries in an environment that is separate from your production environment. Of
course, preventing problems is the best way to avoid the need to troubleshoot so ensure that
queries are sufficiently tested before deploying them.

The following background information and troubleshooting tips provide some guidance. See also
“Overview of query processing” on page 64.

Exceptions in queries

In a query, exceptions can occur in the following places:
m Procedural code in a find statement block

B having clause

B retain clause

B select clause

B wait clause

m All where clauses

m All within clauses

An exception in the inputs block (retain or within clause) or the find block'swait or within clause
causes the query to terminate. If there is an exception elsewhere, the query continues to process
incoming events. An exception that occurs in a where or having clause causes the Boolean expression
to evaluate to false.

Event ordering in queries

Unlike EPL monitors, the order in which queries process events is not necessarily the order in
which they were sent into the correlator. In particular, if two events that will be processed by the
same query with the same key value are sent very close together in time (both events received less
than about .1 seconds of each other) then they may be processed as if they had been sent in a
different order. For example, consider a query that is looking for an A event followed by an A event.
If two A events with the same key arrive 1 millisecond apart then the events might not be processed
in the order in which they were sent.

Queries use multiple threads to process events and to scale across multiple correlators on multiple
machines. To do this efficiently, there is no enforcement that the events are processed in order.

138 Developing Apama Applications 10.11.2

3 Defining Queries

However, when events that have the same key arrive roughly about .5 seconds apart or more then
out-of-order processing is typically avoided provided the system can keep up with the load.
Therefore, you want to specify a query so that it operates on partitions in which the arrival of
consecutive events is spaced far enough apart. For example, consider a query that operates on
credit card transaction events, which could mean thousands of events per second. You want to
partition this query on the credit card number so that there is one event or less per partition per
second. By following this recommendation, it becomes possible to process events that are generated
at rates of up to 10,000 events per second.

When creating an .evt file for testing purposes, the recommendation is to begin the file with a
&FLUSHING (1) line to cause more predictable and reliable event-processing behavior. See "Event
timing" in Deploying and Managing Apama Applications.

Query diagnostics

To help you monitor queries that are running on a given correlator, Apama provides data about
active queries in DataViews. See "Monitoring running queries" in Deploying and Managing Apama
Applications.

When deploying Apama queries it is possible to enable generation of diagnostic information.
These are log statements that explain some of the internal workings of the query evaluation. In
particular, events coming into the query and the contents of the windows before the pattern is
evaluated are both logged. This can aid understanding of how the query evaluation occurs. If a
query is misbehaving then providing this diagnostics logging to Apama support can help in
understanding the issue.

Note:
Diagnostic logs contain the event data. You may want to consider using fake data rather than
real data if the real data is sensitive.

Logging in where Statements

It can be useful to modify a query so that rather than including the expression that needs to be
evaluated in a where clause, the query calls an action on the query to execute the expression used
by the where clause. This allows logging of inputs and the result of the expression. For example,
instead of a query that contains the following:

find A as a -> B as b where a.x >= b.x { ...

Write the query this way:

action compareAB(A a, B b) returns boolean {
log "compareAB; 1inputs: A as a = "+a.toString()+ ", B as b = "+b.toString();
boolean r:= (a.x >= b.x);
log "compareAB; result is "+r.toString();
return r;

}

find A as a -> B as b where compareAB(a, b) { ...

You can then use these log statements to check if the query is behaving as expected.

Developing Apama Applications 10.11.2 139

3 Defining Queries

Divide and conquer

One of the advantages of testing a query with a known set of input events is that it is possible to
see how changing the query affects the results. For example, if a query is not matching any events
and has many within and without clauses, try removing all of them. One way to do this is to place
them onto separate lines and use // as a comment at the beginning of the lines in the source view.
If the query still does not fire, use query diagnostics to check that events are being evaluated. If
the query is firing, then add within and without clauses one at a time until the query stops firing.
The problem is at the condition that stops it from firing when it should.

Query performance

A critical factor that affects the performance of queries is the size of the windows specified in the
inputs block of the query. Aim for windows that contain no more than 100 events. Depending on
the distributed cache used to store data, it may also be necessary to change the number of parallel
contexts per correlator. Experiment with different values for the number of worker contexts. See
also “Overview of query processing” on page 64.

Using external clocking when testing

When testing queries, as well as switching into single context execution, it is often useful to use
external clocking. This allows &TIME events to be sent into the correlator to simulate the passage
of time, which allows queries involving long durations (for example, multiple days) to be tested
easily. To ensure the correct ordering of processing between events and &TIME events, you should
also include &FLUSHING (1) at the beginning of the event file, before any events. See “Externally
generating events that keep time (&TIME events)” on page 184 and "Event timing" in Deploying
and Managing Apama Applications.

Communication between monitors and queries

Queries can be used with or without monitors written in EPL. The following statements can be
used to send events between queries, or between queries and monitors or vice versa:

® route statement. A route statement from a query sends the event to be processed by other
query instances. This is the recommended mechanism for sending events between queries.
See also “The route statement” on page 673.

The route statement cannot be used to send events to a monitor.

= send...tostatement. A send...to statement can be used to send an event to all Apama
queries running on that correlator by sending it to the com. apama. queries channel or the default
channel. To send the event to a monitor, send it to a channel the monitor is listening to. See
also “The send . . . to statement” on page 673.

Note:
Queries receive events sent to the default channel, which is useful for testing.

140 Developing Apama Applications 10.11.2

3 Defining Queries

The order in which events are processed is not guaranteed for queries. See “Event ordering in
queries” on page 138.

In case the events are expected to be received by a monitor, the monitor author should make it
clear which channel they are expecting events on. The channel name can be a single name for a
given monitor or a name constructed from data in the event, so that different values are processed
in parallel.

If you are using multiple correlators, be aware that communication between queries and monitors
normally takes place within a single correlator. However, it is possible to use engine_connect or
Universal Messaging to connect correlators. This allows an event sent on a channel on one correlator
to be processed by a monitor subscribed to that channel on another correlator.

Unlike a query's history window, any state stored in EPL monitors, including in the listeners, is
independent in each correlator, and is not automatically moved or shared between correlators.

Developing Apama Applications 10.11.2 141

3 Defining Queries

142 Developing Apama Applications 10.11.2

4 Defining Event Listeners

m About event expressions and event templatescccooooeviviiiiiiiiii e 144
B Specifying the on Statement ... 147
m Using a stream source template to find events of interestccooeeeiieiiiiiiiiciiciicinnnns 148
m Defining event expressions with one event templatecccccvveeiiieiiiiiiiiieeeeeeee 148
m Terminating and changing event liIStENErSoooiiiiiiiiiiiiiii e 153
B Specifying multiple eVent lISTENEISuuuiiiiiiiiiiiiiiiiiiiiiiii e eeeeeeeeeeeeeeeneees 155
m Listening for events that do not matChcccoooii i 156
B Specifying completion eVeNt lISTENEISuuuiiiiiiiiiiiiiii 157
m Improving performance by ignoring some fields in matching eventscccccceveeee. 159
m Defining event listeners for patterns of VENTSeeviiiieiiiiiiiiiiiie e 160
m Specifying and/or/not [0gic in event ISTENEISccuuiiiiiiiiiiie e 162
m How the correlator executes event liIStENErSovviiiiiiiiiiiiiiiiiiie e 168
m Defining event listeners with temporal constraintscccooooeeiviiviiiiii e 175
B Understanding time in the correlatorccoooo i, 180
m Out of band connection NOLIfICALIONSueiiiiiiiiiiiii e 186

Developing Apama Applications 10.11.2 143

4 Defining Event Listeners

In an EPL monitor, an on statement specifies an event expression and a listener action.

Note:
Queries do not need to set up event listeners so you cannot specify an on statement in a query.
The information about defining event listeners applies only to monitors.

When the correlator executes an on statement it creates an event listener. An event listener observes
each event processed by the context until an event or a pattern of events matches the pattern
specified in the event listener's event expression. When this happens the event listener triggers,
causing the correlator to execute the listener action. At this point, depending on the form of the
event expression, the event listener either terminates or continues listening for additional matching
event patterns.

An event listener analyzes the event stream until one of the following happens:
® The event listener finds the pattern defined in its event expression.

m The quit() method is called on the event listener to kill it.

® The monitor that defines the event listener dies.

m The correlator determines that the event listener can never trigger.

The correlator can support large numbers of concurrent event listeners each watching for an
individual pattern.

About event expressions and event templates

To create an event listener, you must specify an event expression. An event expression
® Identifies an event or event pattern that you want to match

m Contains zero or more event templates

m Contains zero or more event operators

An event template specifies an event or any type and encloses in parentheses the set of, or set of
ranges of, event field values to match. An event template can specify wildcards for event fields or
can specify that certain event fields must have particular values or ranges of values.

An event expression can specify a temporal operator and zero event templates.

Following are event expressions that are each made up of one event template:

Event Expression Description

StockTick(*,*) The event listener that uses this event expression is
interested in all StockT1ick events regardless of the
event's field values.

NewsItem("ACME",) The event listener that uses this event expression is
interested in NewsItem events that have a value of ACME

144 Developing Apama Applications 10.11.2

4 Defining Event Listeners

Event Expression

Description

ChainedResponse(reqIld="reql")

any ()

in their first field. Any value can be in the second
field.

The event listener that uses this event expression is
interested in ChainedResponse events whose reqId
field has a value of reqi. If a ChainedResponse event
has any other fields, their values are irrelevant.

The event listener that uses this event expression is
interested in all events, regardless of their type.

You can specify more than one event template in an event expression by adding event operators.
The following table describes the operators that you can use in an event expression.

Category Operator

Operation

Followed by ->

Repeat matching all

Logical operators and

not

or

Xor

Temporal operators at

The event listener detects a match when it finds an event
that matches the event template specified before the
followed-by operator and later finds an event that matches
the event template that comes after the followed-by
operator.

The event listener detects a match for each event that
matches the specified event template. The event listener
does not terminate after the first match.

Logical intersection. The event listener detects a match
after it finds events that match the event templates on
both sides of the and operator. The order in which the
listener detects the matching events does not matter.

Logical negation. The event listener detects a match only
if an event that matches the event template that follows
the not operator has not occurred.

Logical union. The event listener detects a match as soon
as it finds an event that matches one of the event
templates on either side of the or operator.

Logical exclusive or. The event listener detects a match
if it finds an event that matches exactly one of the event
templates on either side of the xor operator. For example,
consider this event: A(1,1). This event does not trigger
the following listener because it matches the event
templates on both sides of the xor operator: on A(1,x)
xor A(x,1).

The event listener triggers at specific times or repeatedly
at a specified interval.

Developing Apama Applications 10.11.2

145

4 Defining Event Listeners

Category Operator Operation
wait Limits the amount of time that an event listener can detect
a match.
within The event listener can find a match only within the

specified timeframe.

Consider the following example:

event Test

{
float f;
}
monitor RangeExample
{
action onload()
{
on Test (f >= 9.0) and Test (f <= 10.0) processTest();
}
action processTest();
{
do something }
}

The event expression is:

Test (f >= 9.0) and Test (f <= 10.0)

This event expression specifies the and operator so the event listener must detect an event that
matches both of the event expression's event templates or two events, where one matched the first
template and another matched the second. It does not have to be a single event that matches both
event templates. The order in which the templates are matched does not matter.

Consider this event expression:

A(a = "foo") xor A(b > 9)

An event listener that defines this event expression triggers for A("foo", 9) butnotA("foo", 10).
On A("foo", 10), the A templates would trigger simultaneously, so the xor would remain false.

The correlator can match on up to 32 fields per event. If you specify an event template for an event
that has more than 32 fields, you must ensure that the correlator maintains indexes for the particular
fields for which you specify values that you want to match.

In other words, when the event definition was loaded into the correlator, the fields that did not
have the wildcard keyword formed the set of fields that you can match on. An event template can
try to match on only those fields. If an event template specifies any of the wildcard fields, it must
be with an asterisk.

If you try to load a monitor that defines an event template that specifies more than 32 fields without
an asterisk or a wildcard field without an asterisk, the correlator rejects the monitor. You must
correct the template in order to load the monitor.

146 Developing Apama Applications 10.11.2

4 Defining Event Listeners

Specifying the on statement

You specify an on statement to define an event listener. The format of an on statement is as follows:

[listener identifier :=] on event_expr [coassignment] listener_action;

Syntax description

Syntax Element Description

identifier Optionally, you can specify a variable of type listener
and assign the new event listener to that variable. This
gives you a handle to the event listener — if you want
to terminate it you can call the quit() method on the
listener.

event_expr The event expression identifies the event or pattern of
events that you want to match. An event expression is
made up of one or more event templates and zero or
more event operators.

coassignment Optionally, you can coassign the matching event to a
variable. Use the as operator to implicitly declare the
variable in the scope of the following listener_action,
or the : assignment operator to coassign to a local or
global variable of the same event type. Coassignments
are part of event templates. Each event template can
have a coassignment, so there can be multiple
coassignments in a listener.

Note:

Coassignment is not always possible for all
operations. For more details, see “Specifying the 'or'
operator in event expressions” on page 162.

listener_action The statement or block that you want the correlator to
perform when the event listener triggers.

Examples

In the following example, the event expression contains one event template: StockTick (*,*). The
asterisks indicate that the values of the StockT1ick event's two fields are not relevant when matching.
When this event listener detects a StockT1ick event, the listener triggers and causes the correlator
to execute the processTick() listener action.

on StockTick(x,*) processTick();

Following is an example that implicitly declares the newTick variable in the scope of the
listener_action.

Developing Apama Applications 10.11.2 147

4 Defining Event Listeners

on StockTick(*,*) as newTick {
processTick(newT1ick) ;

}

Following is an example that explicitly coassigns the matching event to the newT1ick variable. The
newT1ick variable must be a StockT1ick event type variable. Coassignment simply assigns the event
to the variable.

on StockTick(*,*):newTick processTick();

The next example begins with the declaration of a l1istener variable. The statement assigns the
event listener to the 1 variable.

listener 1 := on StockTick(x,*) as newTick processTick();

Suppose that after finding a matching event, the listener action includes specification of an on
statement. For example:
listener 1 := on StockTick(x,*) as newTick {
on StockTick(newTick.symbol, > newTick.value) as risingTick {
processRisingTick();

}
}

The correlator creates an entirely new event listener to handle the nested on statement. This new
event listener is completely independent of the enclosing event listener. For example, the enclosing
event listener does not wait for the nested event listener to find a matching event.

Using a stream source template to find events of
interest

In addition to event listeners, EPL provides stream source templates for finding events of interest.
A stream source template is an event template prefixed with the a1l keyword. The result of a
stream source template is a stream.

Use streams on a continuous flow of incoming items when you want to aggregate, join to other
streams, and/or narrow the scope of the matching items based on content, arrival time, or the most
recent particular number of items.

Use an event listener for discrete events or discrete patterns of events for which you want to
independently trigger the listener action.

For information about using stream source templates, see “Working with Streams and Stream
Queries” on page 189.

Defining event expressions with one event template

This section provides examples of specifying event expressions that contain just one event template.
It is important to understand the various ways that you can specify a single event template. When
you are familiar with this, it is easier to start applying operators and combining multiple event
templates in an event expression.

148 Developing Apama Applications 10.11.2

4 Defining Event Listeners

Listening for one event

Consider the following on statement:

on StockTick() processTick();

This event listener is watching for one StockTick event. The values of the StockTick event's fields
are irrelevent, as indicated by the empty parentheses. When this event listener finds a StockT+ick
event, it triggers and terminates. When the event listener triggers, it causes the correlator to execute
the processTick() action.

Listening for all events of a particular type

Consider the straightforward case where an event expression consists of a single event template.
When the event listener finds an event that matches its event template, the event listener triggers,
and the correlator executes the listener action. Since the event listener has found the event it was
looking for, it terminates.

In some situations, you might want the event listener to continue watching for the same event so
that you can act on each one. You do not want the event listener to terminate after it finds one
event. In this situation, specify the a1l keyword before the event template, as in the following
example:

on all StockTick() processTick();

When the a1l operator appears before an event template, when that event template finds a match,
it continues to watch for subsequent events that also match the template.

Listening for events with particular content

The sample monitor is very simple. It just logs all StockT1ick events. The content of the StockT1ick
event is not relevant when matching. See “Example of a simple monitor” on page 37. However,
you can filter events according to their content. To alter the example so that the monitor logs only
StockT1ick events for a given stock, you must specify a filter on the first field in the event template.
For example, suppose you want to log only ACME stock ticks. You need to change the following
line:

on all StockTick(*,*):newTick processTick();

to this:
on all StockTick("ACME",*):newTick processTick();

Now the event listener triggers on only StockTick events whose name field matches ACME.

To filter stockTick events based on their price, you might specify the event template shown below.
This event template specifies that you are interested in all StockT1ick events whose price is 50.5
or greater.

on all StockTick(*, >=50.5):newTick processTick();

Developing Apama Applications 10.11.2 149

4 Defining Event Listeners

Using positional syntax to listen for events with particular
content

You can specify that you want to listen for StockTick events that have a particular name and a
particular price. In the on statement below, the event listener is looking for StockTick events in
which the name is ACME and the price is 50.5 or less.

on all StockTick("ACME", <=50.5) as newTick processTick();

When you specify this syntax, called positional syntax, the event template must define a value (or
a wildcard) to match against for every field of that event's type. You must specify these values in
the same order as the fields in the event type definition. Consider the following event type:

event MobileUser {
integer userID;
location position;
string hairColour;
string starsign;
integer gender;
integer incomeBracket;
string preferredHairColour;
string preferredStarsign;
integer preferredGender;

}

Following is an event listener definition for this event type:

on MobileUser(*,x, "red", "Capricorn", *, *, x, x, 1) some_action();

Using name/value syntax to listen for events with particular
content

Specification of every field in an event can get unwieldy when you are working with event types
with a large number of fields and you are specifying values for only a few of them. In this case,
you can use the name/value syntax in which you specify only the fields of interest. In the name/value
syntax, it is as if you had specified a wildcard () for each field for which you do not specify a
value. For example:

on MobileUser (hairColour="red", starsign="Capricorn",
preferredGender=1) some_action();

The table below shows equivalent event expressions that demonstrate how to specify each syntax.
The table uses these event types:

event A {
integer a;
string b;
}

event B {
integer a;

}

150 Developing Apama Applications 10.11.2

4 Defining Event Listeners

event C {
integer aj;
integer b;
integer c;

}
Comparison Criterion Positional Syntax Equivalent Name/Value Syntax
Equality on A(3,"string") on A(a=3,b="string")

on A(=3,="string") on A(b="string",a=3)
Relational comparisons on B(>3) on B(a>3)
Ranges on B([2:3]) on B(a in [2:3])
Wildcards on C(x,4,%) on C(b=4)

on C(x,*,%x) on C(a=*,b=4,c=x)

on C()

For details about the operators and expressions that you can specify in event templates, see
“Expressions” on page 683.

It is possible to mix the two syntax styles as long as you specify all positional fields before named
tields. For example:

m Correct event template: on D(3,>4,1 1in [2:4])

® Incorrect event template: on D(k=9,"error")

Listening for events of different types

A monitor is not limited to listening for events of only one type. A single monitor can listen for
any number of event types. The following sample monitor uses the StockTick event type and the
StockChoice event type, which specifies a stock name. When the event listener finds a StockChoice
event, a second event listener then looks for only stocks that match the name in the StockChoice
event.

// Definition of a type of event that the correlator will receive.
// These events represent stock ticks from a market data feed.
event StockTick {

string name;

float price;

}

// Definition of a type of event that describes the stock to process.
// These events come from a second live data feed.
event StockChoice {
string name;
}

// The following simple monitor listens for two different event types.

monitor SimpleShareSearch {

Developing Apama Applications 10.11.2 151

4 Defining Event Listeners

// A global variable to store the matching StockTick event:
StockTick newTick;

// A global variable to store the StockChoice event:
StockChoice currentStock;

// Wait for a StockChoice event and use 1its name field to
// filter for StockTick events.
action onload() {
on StockChoice(*):currentStock {
on all StockTick(currentStock.name, *):newTick processTick();
b
}

action processTick() {
log "StockTick event received" +
" name = " + newTick.name +
" Price = " + newTick.price.toString() at INFO;

The differences between the sample in “Example of a simple monitor” on page 37 and this monitor
are the following:

m Definition of an additional event type (StockChoice)
m Definition of a new global variable (currentStock)
= A more complex onload() action

While the first two changes are straightforward, the new onload() action introduces new behavior.
The first line in the onload() action is similar to that in the earlier example. In the new example,
the monitor creates an event listener for a StockChoice event. The content of the StockChoice event
is not relevant when matching. When the event listener finds an event of this type, it stores the
value of the StockChoicename field in the currentStock variable and triggers the creation of a second
event listener.

In this example, the first event listener defines the action of creating the second event listener
in-line. The first event listener looks for a StockChoice event. The second event listener looks for
all stockT1ick events whose name field corresponds to the value of currentStock.name.

Listening for events of all types

You can specify a listener which listens for all events types as shown below:

on any() as anyVar {
print "Event received : " + anyVar.toString();

3

In the above listener, the on any () event template will match against all events in the corresponding
context, regardless of their type.

You can provide an optional typeName to specify which type you are listening for. This must name
a routable type.

152 Developing Apama Applications 10.11.2

4 Defining Event Listeners

You can provide an optional values. This must be a dictionary<string, any> which names
indexable fields. The listener will filter to only match events where all of the specified fields are
equal. If you specify values, you must also specify the typeName. For example:

dictionary<string, any> values := {"quantity'", 100};

on any(typeName="Event", values = values)
The above definition is equivalent to:
on Event(quantity=100)
Example:
event A{}
event B{}
on all any() as anyVar {
print "Event received : " + anyVar.toString();

}

route A(); //listener fires
route B(); //listener fires

You can use all event expression operators (all, and, not, -> and so on) with the any listener.

Note:

Due to unpredictable results, it is recommended that you do not use any () listeners in onload
actions. Instead, do so in response to an event (a start event or, more likely, a configuration
event) once everything has been injected.

Terminating and changing event listeners

After the correlator creates an event listener, you cannot change it. Instead of changing an event
listener, you terminate it and create a new one.

The example in “Listening for events of different types” on page 151 looks for only one StockChoice
event. The monitor would be more useful if it continued looking for subsequent StockChoice
events, and on every new StockChoice event it changed the second event listener to look for stock
ticks for the new company.

When the correlator creates an event listener, it copies from the action the value of any local
variables. However, if the variable is of a reference type, changes to the object referred to by the
value are seen by other listeners.

The steps and example below shows how to terminate an event listener with the quit() operation.
See also, “Specifying and not logic to terminate event listeners” on page 165.

When you want to change an event listener, do the following:

1. Obtain a handle to the event listener you want to change.

2. Terminate that event listener with the quit() operation.

Developing Apama Applications 10.11.2 153

4 Defining Event Listeners

3. Create a new event listener to take its place.

The following sample monitor does just this.

// Definition of a type of event that the correlator will receive.
// These events represent stock ticks from a market data feed.
event StockTick {

string name;

float price;

3

// Definition of a type of event that describes the stock to process.
// These events come from a second live data feed.
event StockChoice {

string name;

}
// The following simple monitor listens for two different event types.

monitor SimpleShareSearch {
// A global variable to store the matching StockTick event:
StockTick newTick;

// A global variable to store the StockChoice event:
StockChoice currentStock;

// A handle to the second listener:
listener 1;

// Record the latest StockChoice event and use 1its name field
// to filter the StockTick events.
action onload() {
on all StockChoice(x):currentStock {
l.quit();
1 := on all StockTick(currentStock.name, x):newTick processTick();

}

action processTick() {
log "StockTick event received" +
" name = " + newTick.name +
" Price = " + newTick.price.toString() at INFO;

The differences between the example in “Listening for events of different types” on page 151 and
this example are as follows:

® The monitor in this example declares an additional global variable, 1, whose type is listener.

m The initial on statement now specifies the all operator. After this event listener finds a
StockChoice event, it watches for the next StockChoice event.

m The onload() action specifies a new listener action. Each time the first event listener finds a
StockChoice event, the listener action:

154 Developing Apama Applications 10.11.2

4 Defining Event Listeners

m Terminates the second event listener by calling the 1.quit() method. Of course, upon
finding the first StockChoice event there is no second event listener to terminate. This is
not a problem as in this case the 1.quit() method does not do anything.

m Creates a new event listener to seek StockT1ick events for the company named in the
StockChoice event just detected.

m Stores a handle to the new event listener in the 1 global variable. The first event listener
uses this handle when it needs to terminate the second event listener.

Specifying multiple event listeners

When the correlator encounters an on statement, it creates an event listener to watch for events
that match the event expression specified in the on statement. When the event listener finds a
matching event, the event listener triggers and the correlator executes the listener action. Ordinarily
the event listener then dies. That is, the event listener processes only a single matching event.

When you require multiple matching events specify the all operator before the template for the
event for which you want multiple matches. This prevents termination of the event listener upon
an event match.

Another way to match multiple events is to define two (or more) event listeners for the same event
type. If you specify two on statements that require the same event, they both trigger when they
find that event. The order in which they trigger is not defined. For example:

on all StockTick(*,x) as newTickl { print newTickl.name; }
on all StockTick(*,x) as newTick2 { print newTick2.name; }

When the correlator receives a single StockTick event, the correlator populates both the newT+ick1
variable and the newT1ick2 variable with the event value. The correlator then prints the value of
the name field in each variable. This means that an event of the format StockTick ("ACME", 50.10)
causes this output:

ACME
ACME

Adding further on statements to those above would increase the number of times the string ACME
is printed. This is true regardless of where (that is, in which action) the on statements are defined.
For example:

action actionl() {
on all StockChoice("ACME") as currentStock processTick();
b

action action2() {
on all StockChoice("ACME") as currentStock processTick();

3

If both the action1() and action2() actions have been invoked, both will invoke the processTick()
action when an "ACME" stockChoice event is received.
Now consider the following example:

on all StockTick("ACME", %) actionl();
on all StockTick(*,50.0) actionl();

Developing Apama Applications 10.11.2 155

4 Defining Event Listeners

The event StockTick ("ACME", 50.0) will trigger both event listeners. It is not possible to determine
which one will execute the action first but the actions will be executed atomically. That is, the
correlator will start executing action1(), finish it, and only then will the correlator execute action1()
again. The correlator processes only one listener action at a time.

See “Spawning monitor instances” on page 39 for another way to have multiple event listeners.

Listening for events that do not match

Sometimes it is useful to catch events that do not match other event templates. To do this, specify
the unmatched keyword in an event template. An unmatched event template matches against events
for which both of the following are true:

® Except for completed and unmatched event templates, the event does not cause any other event
expression in the same context as the unmatched event template to match. For information
about completed event templates, see the next topic.

m The event matches the unmatched event template.
The correlator processes an event as follows:

1. The correlator tests the event against all normal event templates. Normal event templates do
not specify the completed or unmatched keyword.

2. If the correlator does not find a match, the correlator tests the event against all event templates
that specify the unmatched keyword. If the correlator finds one or more matches, the matching
event templates now evaluate to true. That is, if there are multiple unmatched event templates
that match the event, they all evaluate to true.

The scope of an unmatched event template is the context that contains it. Suppose an event goes to
two contexts. In one context, there is a matching event listener and in the other context there is a
match against an unmatched event template. Both matches trigger the listener actions.

Specify the unmatched keyword with care. Be sure to communicate with other developers. If your
code relies on an unmatched event template, and someone else injects a monitor that happens to
match some events that you expected to match your unmatched event template, you will not get
the results you expect. The firing of an event-specific unmatched listener is suppressed if an on
any () listener matches the event (not just a type-specific listener).

A typical use of the unmatched keyword is to spawn a monitor instance to process a particular
subset of events. For example:

event Tick{ string stock; ... }
monitor TickProcessor {
Tick tick;

action onload() {
on all unmatched Tick():tick spawn processTick();
}
action processTick() {
on all Tick(stock=tick.stock) ...;
}

156 Developing Apama Applications 10.11.2

4 Defining Event Listeners

3

You can use the unmatched keyword with an any () listener as shown below:

on unmatched any() {
print "An unmatched any() listener triggered!";

}

An unmatched any() event template will match against all unmatched events (as defined above)
in the context, regardless of the event's type.

See also:
m “Example using unmatched and completed” on page 158.

m “Writing echo monitors for debugging” on page 337

Specifying completion event listeners

In some situations, you want to ensure that the correlator completes all work related to a particular
event before your application performs some other work. In your event template, specify the
completed keyword to accomplish this. For example:

on all completed A(f < 10.0) {}

Suppose an A event whose f field value is less than 106 arrives in the correlator. What happens is
as follows:

1. If there are normal or unmatched event listeners whose event expression matches this A event,
those event listeners trigger.

2. The correlator executes listener actions and then processes any routed events that result from
those actions, and any routed events that result from processing the routed events, and so on
until all routed events have been processed.

3. The completed event listener triggers.

A common situation in which the completed keyword is useful is when a piece of data comes into
the system and that piece of data causes a cascade of event listeners to trigger. Each listener action
updates some data. When all listener actions have been executed, you want to take a survey of
the new state of things and do something in response.

For example, consider a pricing engine made up of many individual pricing engines. When a new
piece of market data arrives all pricing engines update their prices and then the controller uses
some metric to pick the best price, which it publishes. The controller should publish the new price
only after all individual engines have updated their output. The controller achieves this by listening
for all the updates but only publishing when the market data event causes the completed event
listener to trigger. The EPL for this scenario follows.

// Request/return best price from *allx markets

event RequestSmartBestPrice{ string stock; integer id; }
event BestSmartPriceReply{ integer id; float price; }

Developing Apama Applications 10.11.2 157

4 Defining Event Listeners

//Request/return best price from individual market(s)
event RequestBestPrice{ string stock; integer id; }
event BestPriceReply{ integer 1id; float price; }

// Simple example: Assume 'best' is 'lowest' and no account
// is taken of 'side'.
monitor SmartPriceGetter {

RequestSmartBestPrice request;

sequence< float > prices;

action onload() {
on all RequestSmartBestPrice(*,*):request spawn getPrices();

}

action getPrices() {

on all BestPriceReply(request.id, *) as reply
prices.append(reply.price);

on completed RequestSmartBestPrice(request.stock, request.id) {
prices.sort();
route BestSmartPriceReply(request.id, prices[0]);
die;

}

route RequestBestPrice(request.stock, request.id);

You can use the completed keyword with an any () listener as shown below:

on completed any() {
print "A completed any() listener triggered!";

}

A completed any() event template will match against all events in the context once they are
processed, regardless of their type.

Example using unmatched and completed

The following example shows the use of both the unmatched and completed keywords. After the
example, there is a discussion of the processing order.

on all A("foo", < 10) as a {
print "Match: " + a.toString();
a.count := a.count+l; // count is second field of A
route A;

on all completed A("foo", < 10) as a {
print "Completed: " + a.toString();

on all unmatched A(x,*)as a {
print "Unmatched: " + a.toString();

The incoming events are as follows:

A("foo", 8);

158 Developing Apama Applications 10.11.2

4 Defining Event Listeners

A("bar", 7);

The output is as follows:

Match: A("foo", 8)
Match: A("foo", 9)
Unmatched: A("foo", 10)
Completed: A("foo", 9)
Completed: A("foo", 8)
Unmatched: A("bar", 7)

A("foo", 8) isthe firstitem on the queue. The correlator processes all matches for this event except
for any matching on completed expressions. The correlator processes those after it has processed
all routed events originating from A("foo", 8), which includes the processing of all routed events
produced from all routed events produced from A("foo", 8), and so on.

Correlator processing goes like this:

1. Processing of A("foo", 8) routes A("foo", 9) to the front of the queue.

2. Processing of A("foo", 9) routes A("foo", 10) to the front of the queue.

3. Processing of A("foo", 10) finds a match with the unmatched event expression.
4

All routed events that resulted from A("foo", 9) have now been processed. The completed
A("foo", 9) event template now matches so the correlator executes its listener action.

5. All routed events that resulted from A("foo", 8) have now been processed. The completed
A("foo", 8) event template now matches so the correlator executes its listener action.

6. Processing of A("bar", 7) matches the unmatched A(x,*) event template and the correlator
executes its listener action.

For another example of the use of unmatched and completed, see “Writing echo monitors for
debugging” on page 337.

Improving performance by ignoring some fields in
matching events

In applications where a particular field of an event type will never participate in the match criteria
for that event type, the performance of Apama can be improved (at times drastically) by marking
that field as a wildcard field in the event type definition.

For example, consider a version of the StockTick event type that has four fields: name, volume,
price, and source. If in our application volume and source are never going to be used for matching
on within event templates, that is, they will always be marked as * (wildcard), they could be tagged
so explicitly in the event type:

event StockTick {
string name;
wildcard float volume;
float price;
wildcard string source;

3

Developing Apama Applications 10.11.2 159

4 Defining Event Listeners

The wildcard keyword tells Apama not to include this field in its internal indexing, as it will never
be required in a match operation. This not only saves memory, but can significantly improve
performance, particularly when there are many such fields which never occur in match conditions.
Note that removing fields from an event type altogether is even more efficient than using wildcard,
but this is not always possible. For example, the field might not be relevant in match conditions
but it might be input to calculations within an action block, or it might need to be included in an
event specified in a send. . . to statement.

When a field has been declared as a wildcard then any subsequent attempt to define a match
condition using that field will result in a parser error, and the offending monitor will not be injected.
Therefore, given the above event type definition, the following will result in a parser error:

action someAction() {
on StockTick("ACME", >125.0,*,"NASDAQ") doSomething();

}
while the following is correct:

action someAction() {
on StockTick("ACME", *, 50.0, *) doSomething();

}

Defining event listeners for patterns of events

One way to search for an event pattern in EPL is to define an event listener to search for the first
event, and then, in that listener action, define a second event listener to search for the second event
in the pattern, and so on.

However, the on statement takes an event expression, and this can be more than just a single event
template.

Consider the following very simple example: locate a news event about ACME followed by a stock
price update for ACME. With the EPL explored so far, one would write this as:

event StockTick {
string name;
float price;

}

event NewsItem {
string subject;
string newsHeading;

}

monitor NewsSharePriceSequence_ACME {
// Look for a news item about ACME, if successful execute the
// findStockChange() action
//
action onload() {
on NewsItem("ACME",x) findStockChange();
+

// Look for a StockTick about ACME, if successful execute the
// notifyUser() action

160 Developing Apama Applications 10.11.2

4 Defining Event Listeners

//
action findStockChange() {
on StockTick("ACME",x) notifyUser();

3

// Print a message, event sequence detected

//
action notifyUser() {
log "Event sequence detected.";

3

If, as in this example, you do not intend to express any custom actions after finding an event other
than searching for another event, the whole pattern of events to look for can be encoded in a single
event expression within a single on statement.

An event expression can define a pattern of events to match against. Each event of interest is
represented by its own event template. You can apply several constraints on the temporal order
that the events have to occur in to match the event expression.

In the more declarative syntax of an event expression, the above monitor would be written as
follows:

event StockTick {
string name;
float price;

}

event NewsItem {
string subject;
string newsHeading;

}

monitor NewsSharePriceSequence_ACME {
// Look for a NewsItem followed by a StockTick
action onload() {
on NewsItem("ACME",x) -> StockTick("ACME",x)

notifyUser();
}
// Print a message, event sequence detected
//
action notifyUser() {
log "Event sequence detected.";
+
}

Here, instead of just one event template, the on keyword is now followed by an event expression
that contains two event templates.

The primary operator in event expressions is ->. This is known as the followed-by operator. It
allows you to express a pattern of events to match against in a single on statement, with a single
action to be executed at the end once the whole pattern is encountered.

In EPL, an event pattern does not imply that the events have to occur right after each other, or
that no other events are allowed to occur in the meantime.

Developing Apama Applications 10.11.2 161

4 Defining Event Listeners

Let A, B, C and D represent event templates, and A', B', ¢' and D' be individual events that match
those templates, respectively. If a monitor is written to seek (A > B), the event feed {A',Cc',B',D'}
would result in a match once the B' is received by Apama.

Followed-by operators can be chained to express longer patterns. Therefore, one could write:

on A -> B -> C -> D executeAction();

Notes:

® An event template is in fact the simplest form of an event expression. All event expression
operators, including ->, actually take event expressions as operands. So in the above
representation, A, B, C, D could in fact be entire nested event expressions rather than simple
event templates.

m [tisuseful to think of event expressions as being Boolean expressions. Each clause in an event
expression can be true or false, and the whole event expression must evaluate to true before
the event listener triggers and the action is executed.

Consider the above event expression: A -> B -> C -> D

The expression starts off as false. When an event that satisfies the A event template occurs,
the A clause becomes true. Once B is satisfied, A -> B becomes true in turn, and evaluation
progresses in a similar manner until eventually allof A -> B -> ¢ > D evaluates to true. Only
then does the event listener trigger and cause execution of the listener action. Of course, this
event expression might never become true in its entirety (as the events required might never
occur) since no time constraint (see “Defining event listeners with temporal constraints” on
page 175) has been applied to any part of the event expression.

Specifying and/or/not logic in event listeners

When the correlator creates an event listener each event template in the event expression is initially
false. For an event listener to trigger on an event pattern, the event expression defining what to
match against must evaluate to true. Consequently, in an event expression, you can specify logical
operators.

Specifying the 'or' operator in event expressions

The or operator lets you specify event expressions where a variety of event patterns could lead to
a successful match. It effectively evaluates two event templates (or entire nested event expressions)
simultaneously and returns true when either of them becomes true.

Example:

on A() or B() executeAction();

This means that either A or B need to be detected to match. That is, the occurrence of one of the
operand expressions (an A or a B) is enough for the event listener to trigger.

A coassigned variable can only be used if the variable is initialized in all circumstances that could
cause the listener to fire. The following are both valid and invalid examples for coassignment.

162 Developing Apama Applications 10.11.2

4 Defining Event Listeners

Example 1 - valid

Only one of these A events will have been matched when triggered, but both are coassigned to
variable a, so you can use a in the action.

on A(property = valuel) as a or A(property = value2) as a {
executeAction(a);

3

Example 2 - valid

Only one of a or b will be coassigned to. However, they are global variables, so if a is coassigned
to, you will have the default initialized value of b or the old value of b from a previous triggering.

monitor Monitor {
A a;
B b;
action foo() {
on all A():a or all B():b {
executeAction(a, b);

3

Example 3 - valid

Only one of a or b will be coassigned to when triggered. However, they already have values
assigned, so if a is coassigned to, you will have a new B in b.

monitor Monitor {
action foo() {
A a := new A;
B b := new B;
on all A():a or all B():b {
executeAction(a, b);

3

Example 4 - invalid

Only one of a or b will be coassigned to when triggered. Neither of them already have values, so
you cannot assume that either a or b can be used.

monitor Monitor {
action foo() {
A a;
B b;
on all A():a or all B():b {
executeAction(a, b);

3

Developing Apama Applications 10.11.2 163

4 Defining Event Listeners

Example 5 - invalid

This is basically the same as example 4.

on A() as a or B() as b {
executeAction(a, b);

3

Specifying the '‘and’ operator in event expressions

The and operator specifies an event pattern that might occur in any temporal order. It evaluates
two event templates (or nested event expressions) simultaneously but only returns true when
they are both true.

on A() and B() executeAction();

This will seek “an ”A” followed by a ”B or “a "B” followed by an ”A. Both are valid matching
patterns, and the event listener will seek both concurrently. However, the first to occur will
terminate all monitoring and cause the event listener to trigger.

Example event expressions using 'and/or' logic in event
listeners

The following example event expressions indicate a few patterns that can be expressed by using
and/or logic in event listeners.

Event Expression Description
A -> (B or C) Match on an A followed by either a B or a C.
(A ->B) or C Match on either the pattern A followed by a B, or just a

C on its own.

A -> ((B -> C) or (C -> D)) Find an A first, and then seek for either the pattern B
followed by a ¢ or ¢ followed by a D. The latter patterns
will be looked for concurrently, but the monitor will
match upon the first complete pattern that occurs. This
is because the or operator treats its operands atomically,
that is, in this case it is looking for the patterns
themselves rather than their constituent events.

(A -> B) and (C -> D) Find the pattern A followed by a B (thatis, A -> B)
followed by the pattern ¢ -> D, or else the patternc ->
D followed by the pattern A -> B. The and operator treats
its operands atomically. That is, in this case it is looking
for the patterns themselves and the order of their
occurrence, rather than their constituent events. It does
not matter when a pattern starts but it occurs when the
last event in it is matched. Therefore {A',c',B',D'}

164 Developing Apama Applications 10.11.2

4 Defining Event Listeners

Event Expression Description

would match the specification, because it contains an A
-> B followed by a ¢ -> D. In fact, the specification
would match against either of the following patterns of
event instances; {A',c',B',D'}, {C',A",B',D"'},
{ar,B',c',n'}, {c',A",Dp',B'},{A",C",D'",B'} and
{cr,p',A",B'}

Specifying the 'not' operator in event expressions

The not operator is unary and acts to invert the truth value of the event expression it is applied
to.

on ((A() -> B()) and not C()) executeAction();

therefore means that the event listener will trigger executeAction only if it encounters an A followed
by a B without a € occurring at any time before the B is encountered.

The not operator can cause an event expression to reach a state where it can never evaluate to
true. That is, it becomes permanently false.

Consider the above event listener event pattern: on (A() -> B()) and not C()

The event listener starts by seeking both A -> B and not ¢ concurrently. If an event matching c is
received before one matching B, the ¢ clause evaluates to true, and hence not C becomes false.
This means that (A -> B) and not C can never evaluate to true, and hence this event listener will
never trigger. The correlator terminates these zombie event listeners periodically.

It is possible to specify the not operator in an event expression in such a way that the expression
always evaluates to true immediately. Since this triggers the specified action without any events
occurring, you want to avoid doing this. See “Avoiding event listeners that trigger upon
instantiation” on page 169.

Specifying 'and not' logic to terminate event listeners

A typical situation is that you want to listen for a pattern only until a particular condition occurs.
When the condition occurs you want to terminate the event listener. In pseudocode, you want to
specify something like this:

on all event_expression until stop_condition

To define an event listener that behaves this way, you specify and not:

on all event_expression and not stop_condition

The following example listens for a price increase for a particular stock while the market is open.

event Price {
string stock;
float price;

Developing Apama Applications 10.11.2 165

4 Defining Event Listeners

b
on all Price("IBM",>targetPrice) as p and not MarketClosed() {
...do something}

When you inject a monitor that contains this code, the correlator sets up an event template to listen
for Price events and another event template to listen for MarketClosed events. As long as the
correlator does not receive a MarketClosed event, not MarketClosed() evaluates to true. While not
MarketClosed () evaluates to true, each time the correlator receives a Price event for IBM stock at
a price that is greater than targetPrice, this event expression evaluates to true and triggers its
listener action. When the correlator receives a MarketClosed event, MarketClosed () evaluates to
true and so not MarketClosed() evaluates to false. At that point, the event expression can no
longer evaluate to true. When the correlator recognizes an event listener that can never trigger,
it terminates it. In other words, after the market is closed the event listener terminates.

Typically, the stop condition is a condition that applies to multiple entities. In the previous example,
the condition applies to only IBM stock, but it could easily be rewritten to apply to all stocks.

Pausing event listeners

You can also specify and not when you want to listen for a pattern, pause when a particular
condition occurs, and resume listening for that pattern when some other condition occurs. Consider
the example that terminates the event listener after the market closes. Suppose instead that you
want to listen for increases in stock prices only when there is no auction. When the correlator
receives an InAuction event, you want to pause the event listener and when the correlator receives
an AuctionClosed event you want the event listener to become active again. To do this, you can
write something like the following:

action initialize() {
on EndAuction() and not BeginAuction() notInAuctionLogic();
on BeginAuction() and not EndAuction() inAuctionLogic();
route RequestAuctionPhase();

3

action inAuctionLogic() {
on EndAuction() notInAuctionLogic();

3

action notInAuctionLogic() {
on all Price("IBM",>targetPrice) as p and not BeginAuction()
sellStock();
on BeginAuction() inAuctionlLogic();

3

The initialize() action sets up two event listeners that determine whether to start with the
inAuctionLogic() action or the notInAuctionLogic() action. The response to the routed
RequestAuctionPhase eventis an EndAuction event or a BeginAuction event. As soon as one of these
events arrive, both event listeners terminate. For example, if an EndAuction event arrives, the first
event listener terminates because its EndAuction() event template evaluates to true and its not
BeginAuction() event template also evaluates to true. The second event listener terminates because
its not EndAuction() event template evaluates to false and so the event expression can never
evaluate to true.

166 Developing Apama Applications 10.11.2

4 Defining Event Listeners

Choosing which action to execute

Another situation in which and not logic can help terminate event listeners is when you want to
specify a choice of one or more actions and terminate the event listeners after one is chosen. An
example of this appears below. This is the CEP equivalent of a case statement.

on Pattern_1() and not PatternMatched() processCasel();
on Pattern_2() and not PatternMatched() processCase2();
on Pattern_3() and not PatternMatched() processCase3();
on Pattern_1() or Pattern_2() or Pattern_3()

{

3

route PatternMatched();

When you inject a monitor that contains this type of code the correlator immediately sets up
multiple event listeners. For the example in “Pausing event listeners” on page 166, the event listeners
would be watching for these events:

B Pattern_1l
B PatternMatched
B Pattern_2
m Pattern_3

Initially, all and not event templates evaluate to true. Suppose Pattern_2 arrives. This causes these
two event listeners to trigger:

on Pattern_2() and not PatternMatched() processCase2();

on Pattern_1() or Pattern_2() or Pattern_3()

It is unknown which event listener action the correlator executes first, but the order does not
matter. The correlator does all of the following:

m The correlator executes the processCase2() action.

m The correlator terminates the event listener that specifies processcase2 () because it has found
its match and it does not specify all.

m The correlator routes a PatternMatched event to the front of the context's input queue.

When the correlator processes the PatternMatched() event, the two event templates that are still
watching for and not PatternMatched become false. Consequently, those event listeners will
never trigger and the correlator terminates them.

Following is another example of specifying and not to make a choice:

on Ack() and not Nack()

{
processAck();
b
on Nack() and not Ack()
{
processNack() ;
b

Developing Apama Applications 10.11.2 167

4 Defining Event Listeners

Specifying 'and not' logic to detect when events are missing

Using and not logic with a time-based listener is useful for detecting the absence of an event that
is expected.

For example, consider an application that monitors the processing of customer orders. The
application listens for ordercCreate events, which indicate that a customer has placed an order.
After an orderCreate event is found, the application listens for an OrderStepComplete event that
has an instanceid value that matches the instanceid value in the OrdercCreate event and that has
a step field value of order Shipped. If the application does not find a matching oOrderStepComplete
event within an hour (3600 seconds), the listener triggers and the application generates an alert
to indicate that the order was not shipped.

Following is code that shows the listener definition.

on all OrderCreate() as oc {
on wait(3600.00) and not OrderStepComplete (
instanceid=oc.instanceid,step="0rder Shipped") as os {
// Raise an alert.

3

This listener triggers when the event templates on both sides of the and operator evaluate to true.
The event template before and evaluates to true after an hour has elapsed. The event template
after and evaluates to true in the absence of a matching orderStepComplete event. If the application
finds a matching orderStepComplete event within an hour then the second event template evaluates
to false and the correlator terminates the listener because it can never trigger.

In the following example, when a FileReceived event is found, the application starts to listen for
a FileProcessed event. If a FileProcessed event is not found within 30 seconds of receiving the
FileReceived event, the application generates an alert.

monitor SimpleFileSearch {
action onload() {

on all FileReceived() as f {
on wait(30.0) and not FileProcessed(id=f.1id) {
// Send alert that file was not processed.
}

on FileProcessed(id=f.id) within(30.0) {
// Send confirmation that the file was processed.

}

How the correlator executes event listeners

An understanding of how the correlator executes event listeners can help you correctly define
event listeners. The topics below provide the needed background.

168 Developing Apama Applications 10.11.2

4 Defining Event Listeners

How the correlator evaluates event expressions

When the correlator processes an injection request, it executes the monitor's onload () statement,
which typically defines an event listener. To understand how the correlator evaluates the event
expression in the event listener, consider the following on statement:

on A()->B() and C()->D() processOrder();

The event expression consists of four templates and three operators. The operators are:

->
and
->

The correlator does not evaluate the right operand of a followed by operator until after its left
operand has evaluated to true. Hence, B and D are not evaluated initially but will only be evaluated
after A and ¢, respectively, have become true. Initially, the correlator evaluates the A and ¢ event
templates.

Suppose a C event arrives first. The ¢ part of the event expression is now true and the correlator
now evaluates the A and D event templates. Now suppose an A event arrives next. The correlator
evaluates the B and D event templates. When a B event arrives the first term, A()->B(), of the event
expression becomes true. Finally a b event arrives and the second term, B()->D() becomes true
and so the expression as a whole evaluates to true. The event listener triggers.

As mentioned before, when the correlator instantiates an event listener each event template in the
event listener is initially false. An event template changes to true when the correlator finds a
matching event. In a given context, the correlator cannot find a matching event while it is setting
up an event listener because the correlator processes only one thing at a time in each context.
Everything happens in order and no two things happen simultaneously in a given context.

Of course, events are always coming into the correlator. These events go on the input queue of
each public context to wait their turn for processing. So while a matching event might arrive while
the correlator is setting up an event listener, as far as correlator processing is concerned, the event
arrives later. See “Understanding time in the correlator” on page 180.

Avoiding event listeners that trigger upon instantiation

Because all event templates are initially false, it is important to think carefully before specifying
not in an event expression. It is easy to inadvertently specify the not operator in such a way that
the expression evaluates to true immediately upon instantiation. Since this triggers the specified
action without any events occurring, it is unlikely to be what you intended and you want to avoid
doing this. Consider the following example:

on (A() => B()) or not C() myAction();

Assuming that A, B and C represent event templates, the value of each starts as being false. This
means that not Cisimmediately true, and hence the whole expression is immediately true, which
triggers the specified action. If any of A, B or C is a nested event expression the same logic applies
for its evaluation. Typically, the not operator is used in conjunction with the and operator. See
“Choosing which action to execute” on page 167.

Developing Apama Applications 10.11.2 169

4 Defining Event Listeners

When an event listener triggers the correlator sends a request to the front of the context's input
queue to execute the event listener action. For example:

route D();
on not E() {
print "not E";

1
route F();

The route keyword sends the specified event to the front of the context's input queue. The correlator
processes this code in the following order:

1. The correlator processes event D.
2. The correlator prints "not E".

3. The correlator processes event F.

When the correlator terminates event listeners

The correlator terminates event listeners in the following situations:

m The event listener's event expression evaluates to true, and does not specify the all keyword.
The correlator executes the specified action. Since the single defined match was found, the
correlator terminates the event listener.

m The correlator recognizes that an event listener's event expression can never evaluate to true.
For example:

on (A() -> B()) and not C()

The event listener starts by seeking both A() -> B() and not C() concurrently. If an event
matching C is received before one matching B, the ¢ clause evaluates to true, and hence not ¢
becomes false. This means that (A() -> B()) and not C() can never evaluate to true, and
hence this event listener will never trigger its action. The correlator terminates these zombie
event listeners periodically.

B You obtain a handle to an event listener and call the quit() method on that event listener. See
“Terminating and changing event listeners” on page 153.

How the correlator evaluates event listeners for a series of
events

Suppose there are seven event templates defined, which are represented as A, B, C, b, E, F and G.
Now, consider a series of incoming events, where xn indicates an event instance that matches the

event template X. Likewise, Xn+1 indicates another event instance that matches against x, but which
need not necessarily be identical to xn.

Consider the following pattern of incoming events:

Cl A1 F1 A2 C2 B1 D1 E1 B2 A3 G1 B3

170 Developing Apama Applications 10.11.2

4 Defining Event Listeners

Given the above event pattern, what should the event expression A() -> B() match upon?

In theory the combinations of events that correspond to “an ”A” followed by a B are {A1, B1}, {A1,
B2}, {A1, B3}, {A2, B1}, {A2, B2}, {A2, B3} and {A3, B3}. In practice it is unlikely that you want your event
listener to match seven times on the above example pattern, and it is uncommon for all the
combinations to be useful.

In fact, within EPL, on A() -> B() will only match on the first instance that matched the template.
Given the above event pattern the event listener will trigger only on {A1, B1}, execute the associated
action and then terminate.

Evaluating event listeners for all A-events followed by B-events

You might want to alter the behavior described in the previous topic, and have the event listener
match on more of the combinations. To do this, specify the all operator in the event expression.
If the event listener's specification was rewritten to read:

on all A() -> B() success();

the event listener would match on every A and the first B that follows it.

The way this works is that upon encountering an A, the correlator creates a second event listener
to seek the next A. Both event listeners would be active concurrently; one looking for a B to
successfully match the pattern specified, the other initially looking for an A. If more As are
encountered the procedure is repeated; this behavior continues until either the monitor or the
event listener are explicitly killed.

Therefore on all A() -> B() would return {A1, B1}, {A2, B1} and {A3, B3}.

Note that allis a unary operator and has higher precedence than ->, or and and. Therefore

on all A() -> B()

is the same as both of the following:

on (all A()) -> B()
on ((all A()) -> B())

The following table illustrates how the execution of on all A() -> B() proceeds over time as the
pattern of input events is processed by the correlator. The timeline is from left to right, and each

stage is labeled with a time tn, where tn+1 occurs after tn. To the left are listed the event listeners,
and next to each one (after the ?) is shown what event template that event listener is looking for

at that point in time. In the example, assuming L was the initial event listener, L', L' " and L' ' ' are
other sub-event-listeners that are created as a result of the all operator.

Guide to the symbols used:

This symbol indicates the following

,', A specific point in time when a particular event is received.

Developing Apama Applications 10.11.2 171

4 Defining Event Listeners

This symbol indicates the following

x No match was found at that time.

v The listener has successfully located an event that matches its current active
template.

= A listener has successfully triggered.

+ A new listener is going to be created.

The parent event listener denoted by on all A() -> B() will never terminate as there will always
be a sub-event-listener active that is looking for an A.

onallA—> B
Timeline of incoming events =>»
C. A F A C, B D E B A G B

¥ t,
L?2a %

¥ t,
L2a x '+

L 7B X s -
L' 2a X

LB X v X X

L’ 2A x Y+
Yt

LB 3¢ v X 5¢ X
L' ?B 52 v X%
L" 2A X

¥t
L ?B x v X X X =
L' ?B X v % =
L" 2a x X

Vt,
E x v o x x x ¥
E x v ox v
L" ?2A X X X x x o+
Vt,

E X v X X X v
= v v
L" 7B X x X X x v X =
L™ 2a x %

172 Developing Apama Applications 10.11.2

4 Defining Event Listeners

Evaluating event listeners for an A-event followed by all
B-events

Consider an event listener defined as follows:

on A() -> all B() success();

The monitor would now match on all the patterns consisting of the first A and each possible
following B.

For clarity this is the same as:

on (A() -> (all B())) success();

The way this works is that the correlator creates a second event listener after finding a matching
B. The second event listener watches for the next B, and so on repeatedly until the monitor is
explicitly killed.

Therefore on A() -> all B() would match {A1, B1}, {A1, B2} and {A1, B3}.

Graphically this would now look as follows:

on A=pall B

Timeline of incoming events =
C. A F A C, B D E B, A G B

Ve,

L?2a X
L ?2A x

L 7B x Ve -
+ tﬁ
L?B x v x x X f+=
* t?
5 X v X X X v
L'?B X

Yt

L' 7B e X V4=

+ t12

L" 7?8 X X v4=

Developing Apama Applications 10.11.2 173

4 Defining Event Listeners

The table shows the early states of L' and L' ' in light color because those event listeners actually
never really went through those states themselves. However, since they were created as a clone
of another event listener, it is as though they were.

The parent event listener denoted by on (A() -> all B()) will never terminate as there will always
be a sub-event-listener looking for a B.

Evaluating event listeners for all A-events followed by all B-
events

Consider the following event listener definition:

on all A() -> all B() success();

or

on ((all A()) -> (all B())) success();

Now the monitor would match on an A and create another event listener to look for further As.
Each of these event listeners will go on to search for a B after it encounters an A. However, in this
instance all event listeners are duplicated once more after matching against a B.

The effect of this would be that on all A -> all B would match {A1, B1}, {A1, B2}, {A1, B3}, {A2, B1},
{A2, B2}, {A2, B3} and {A3, B3}. That is, all the possible permutations. This could cause a very large
number of sub-event-listeners to be created.

Note:

The all operator must be used with caution as it can create a very large number of
sub-event-listeners, all looking for concurrent patterns. This is particularly applicable if multiple
all operators are nested within each other. This can have an adverse impact on performance.

Now consider the example,

on all (A() -> all B()) success();

This will match the first A followed by all subsequent Bs. However, as on every match of an A
followed by B, (A() -> all B()) becomes true, then a new search for the "next" A followed by
all subsequent Bs will start. This will repeat itself recursively, and eventually there could be several
concurrent sub-event-listeners that might match on the same patterns, thus causing duplicate
triggering.

Give the same event pattern as described in “Evaluating event listeners for all A-events followed
by B-events” on page 171, this would be evaluated as follows:

174 Developing Apama Applications 10.11.2

4 Defining Event Listeners

on all (A = all B)
Timeline of incoming events =>»
C,A F, A C B D E B A G B,

"t‘l
pe

Ve,

LB x v %X %X X f++=

¥t

E x v x X x v
L' 7B x
L" ?a *x
vt
E x v x x x v
L' 7B X X ++=
L" 2a X x X
Y,
E X v X 2 X v
= X X v
L" 72a X X X v
L™ 2B x
L™ 2a v
Vt,
E 3G e x v
= X X v
L" 2B X X X v’ X (++=
L™ 2B X X f++=
L™ 7B v X v 4+4=

Thus matching against {A1, B1}, {A1, B2}, {A1, B3}, and twice against {A3, B3}. Notice how the number
of active event listeners is progressively increasing, until after t12 there would actually be six
active event listeners, three looking for a B and three looking for an A.

Defining event listeners with temporal constraints

So far this section has shown how to use event expressions to define interesting patterns of events
to look for, where the events of interest depend not only on their type and content, but also on
their temporal relationship to (whether they occur before or after) other events.

Developing Apama Applications 10.11.2 175

4 Defining Event Listeners

Being able to define temporal relationships can be useful, but typically it also needs to be constrained
over some temporal interval.

Listening for event patterns within a set time

Consider this earlier example:

event StockTick {
string name;
float price;

}

event NewsItem {
string subject;
string newsHeading;

}

monitor NewsSharePriceSequence_ACME {
// Look for a NewsItem followed by a StockTick
//

action onload() {
on NewsItem("ACME",x) -> StockTick("ACME",x)
notifyUser();

}

// Print a message, event sequence detected
//
action notifyUser() {
log "Event sequence detected.";
}
}

This will look for the event pattern of a news item about a company followed by a stock price tick
about that company. Once improved this could be used to detect the beginning of a rise (or fall)
in the value of shares of a company following the release of a relevant news headline.

However, unless a temporal constraint is put in place, the monitor is not going to be that pertinent,
as it might trigger on an event pattern where the price change occurs weeks after the news item.
That would clearly not be so useful to a trader, as the two events were most likely unrelated and
hence not indicative of a possible trend.

If the event listener above is rewritten as follows,

on NewsItem("ACME",x) -> StockTick("ACME",*) within(30.0)
notifyUser();

the StockT1ick event would now need to occur within 30 seconds of NewsItem for the event listener
to trigger.

The within(float) operator is a postfix unary operator that can be applied to an event template
(the StockT1ick event template in the above example). Think of it like a stopwatch. The clock starts
ticking as soon as the event listener starts looking for the event template that the within operator
is attached to. If the stopwatch reaches the specified figure before the event template evaluates to
true, then the event template becomes permanently false.

176 Developing Apama Applications 10.11.2

4 Defining Event Listeners

In the above code, the timer is only activated once a suitable NewsItem is encountered. Unless an
adequate StockTick then occurs within 30 seconds and makes the expression evaluate to true, the
timer will fire and fail the whole event listener.

You can apply the within operator to any event template. For example:

on A() within(10.0) LlistenerAction();

After the correlator sets up this event listener, the event listener must detect an A event within 10
seconds. If no A event is detected within 10 seconds, the event expression becomes permanently
false and the correlator subsequently terminates the event listener.

Waiting within an event listener

The second timer operator available for use within event expressions is wait(float).

The wait operator lets you insert a 'temporal pause’ within an event expression. Once activated,
a wait expression becomes true automatically once the specified amount of time passes. For
example:

on A() -> wait(10.0) -> C() success();

Execution of this event listener proceeds as follows:
1. Set up an event template to watch for an A event.
2. After detecting an A event, wait 10 seconds. Set up an event template to watch for a C event.

In addition to being part of an event expression, wait can also be used on its own.

on wait(20.0) success();

When the correlator instantiates this event listener the event listener just waits for the number of
seconds specified (here being 20), then it evaluates to true, triggers, and causes the correlator to
execute the success() action.

Therefore a wait clause starts off being false, and then turns to true once its time period expires.
This behavior can be inverted through use of not. The expression not wait (20.0) would start off
being true, and stay true for 20 seconds before becoming false.

Consider the following example:

on B() and not wait(20.0) success();

This event listener triggers only if a B event is detected within 20 seconds after the correlator sets
up the event template that watches for B events. After 20 seconds, the not wait(20.0) clause would
become false and prevent the event listener from ever triggering. This would therefore be the
same as

on B within(20.0) success();

By using all with wait, you can easily implement a periodic repeating timer,

on all wait(5.0) success();

Developing Apama Applications 10.11.2 177

4 Defining Event Listeners

This event listener triggers every 5 seconds and causes the correlator to execute the success()
action each time.

See also “Specifying 'and not' logic to detect when events are missing” on page 168.

Triggering event listeners at specific times

The at temporal operator lets you express temporal activity with regards to absolute time. The at
operator allows triggering of a timer:

® At a specific time, for example, 12:30pm on the 5th April.

® Repeatedly with regards to the calendar when used in conjunction with the a1l operator,
across seconds, minutes, hours, days of the week, days of the month, and months, for example,
on every hour, or on the first day of the month, or every 10 minutes past the hour and every
40 minutes past the hour.

Important:

Triggering using the at operator always uses the time zone in which the correlator is running.
If the time zone contains time changes (for example, Daylight Saving Time), then a listener
which would trigger during a period of time which is skipped (when the clocks go forward)
will not trigger, since that time did not occur. Listeners which would trigger during a repeated
section of time (when the clocks go back) will trigger for both the first time and the second time,
since that time occurred twice. This is true for all patterns using the at operator.

The syntax of the at operator is as follows:

at(minutes, hours, days_of_month, months, days_of_week [,seconds])

where the last operand, seconds, is optional.

Valid values for each operand are as follows:

Operand Values

minutes 0 to 59, indicating minutes past the hour.

hours 0 to 23, indicating the hours of the day.

days_of_month 1 to 31, indicating days of the month. For some months only 1 to 28,

1to 29 or 1 to 30 are valid ranges.

months 1to 12, indicating months of the year, with 1 corresponding to January
days_of_week 0 to 6, indicating days of the week, where 0 corresponds to Sunday.
seconds 0 to 59, indicating seconds past the minute.

The at operator can be embedded within an event expression in a manner similar to the wait
operator. If used outside the scope of an all operator it will trigger only once, at the next valid
time as expressed within its elements. In conjunction with an all operator, it will trigger at every
valid time.

178 Developing Apama Applications 10.11.2

4 Defining Event Listeners

The wildcard symbol () can be specified to indicate that all values are valid, for example:

on at(5, *, x, *x, *) success();

would trigger at the next “five minutes past the hour”, while

on all at(5, *, x, *x, *) success();

would trigger at five minutes past each hour (that is, every day, every month).
Whereas,

on all at(5, 9, *x, *x, *) success();

would trigger at 9:05am every day. However,

on all at(5, 9, *x, x, 1) success();

would trigger at 9:05am only on Mondays, and never on any other week day. This is because the
effect of the wildcard operator is different when applied to the days_of_week and the days_of_month
operands. This is due to the fact that both specify the same entity. The rule is therefore as follows:

® Aslong as both elements are set to wildcard, then each day is valid.

m If either of the days_of_week or the days_of_month operand is not a wildcard, then only the
days that match that element will be valid. The wildcard in the other element is effectively
ignored.

m If both the days_of_week and the days_of_month operands are not wildcards, then the days
valid will be the days which match either. That is, the two criteria are ‘or' 'ed, not ‘and' 'ed.

A range operator (:) can be used with each element to define a range of valid values. For example:
on all at(5:15, x, *x, *, *) success();

would trigger every minute from 5 minutes past the hour till 15 minutes past the hour.

A divisor operator (/integer, x) can be used to specify that every x'th value is valid. Therefore
on all at(*/10, *x, *x, *, *) success();

would trigger every ten minutes, that is, at 0, 10, 20, 30, 40 and 50 minutes past every hour.

If you wish to specify a combination of the above operators you must enclose the element in square
braces ([1), and separate the value definitions with a comma (,). For example

on all at([*/10,30:35,22], *, x, *x, *) success();

indicates the following values for minutes to trigger on; 0,10, 20, 30, 40 and 50, from 30 to 35, and
specifically the value 22.

A further example,

on all at(*/30,9:17,[*/2,1],*,*) success();

would trigger every 30 minutes from 9am to 5pm on even numbered days of the month as well
as specifically the first day of the month.

Developing Apama Applications 10.11.2 179

4 Defining Event Listeners

Using variables to specify times

If you wish to programmatically parameterize usage of the at operator, you have to use variables
in conjunction with it. You can replace any of the parameters to the at operator with a string
variable or with a sequence of integer variables.

The first alternative, using a string variable, allows you to define the matching criteria within a
string variable and then specify the variable within the at call. The following example shows how
this can be done. Each of the parameters can be replaced with a string variable in this way.

string minutes = "%/30";
on all at(minutes,9:17,[*/2,1],%,*) success();

The other alternative is to use a sequence of integer variable. This is only useful when you want
to specify a selection of valid values for the parameter.

sequence<integer> days = new sequence<integer>;
days.append(1l); // Monday 1is ok
days.append(3); // and so 1is Wednesday

on all at(*,x,*,x,days) success();

See also the description of the sequence type in the API Reference for EPL (ApamaDoc).

Understanding time in the correlator

An understanding of how the correlator handles time is essential to writing Apama applications.
The topics below discuss time in the correlator.

See also "System clock" in Installing Apama.

Correlator timestamps and real time

When the correlator receives an event, it gives the event a timestamp that indicates the time that
the correlator received the event. The correlator then places the event on the input queue of each
public context. The correlator processes events in the order in which they appear on input queues.

An input queue can grow considerably. In extreme cases, this might mean that a few seconds pass
between the time an event arrives and the time the correlator processes it. As you can imagine,
this has implications for whether the correlator triggers listeners. However, the correlator uses
event timestamps, and not real time, to determine when to trigger listeners.

As an extreme example, suppose a monitor is looking for A -> B within(2.0). The correlator
receives event A. However, the queue has grown to a huge size and the correlator processes event
A three seconds after event A arrives. The correlator receives event B one second after it receives
event A. Some events in the queue before event B cause a lot of computation in the correlator. The
result is that the correlator processes event B five seconds after event B arrives. In short, event B
arrives one second after event A, but the correlator processes event B three seconds after it processes
event A.

180 Developing Apama Applications 10.11.2

4 Defining Event Listeners

If the correlator used real time, A -> B within(2.0) would not be triggered by this pattern. This
is because the correlator processes event B more than two seconds after processing event A. However,
the correlator uses the timestamp to determine whether to trigger actions. Consequently, A -> B
within(2.0) does trigger, because the correlator received event B one second after event A, and so
their timestamps are within 2 seconds of each other.

As you can see, the number of events on an input queue never affects temporal comparisons.

Event arrival time

As mentioned before, when an event arrives, the correlator assigns a timestamp to the event. The
timestamp indicates the time that the event arrived at the correlator. If you coassign an event to

a variable, the correlator sets the timestamp of the event to the current time in the context in which
the coassignment occurs. For JMon applications, this is always the current time in the main context.

The correlator uses clock ticks to specify the value of each timestamp. The correlator generates a
clock tick every tenth of a second. The value of an event's timestamp is the value of the last clock
tick before the event arrived.

When you start the correlator, you can specify the --frequency hz option if you want the correlator
to generate clock ticks at an interval other than every tenth of a second. Instead, the correlator
generates clock ticks at a frequency of hz per second. Be aware that there is no value in increasing
hz above the rate at which your operating system can generate its own clock ticks internally. On
UNIX and some Windows machines, this is 100 Hz and on other Windows machines it is 64 Hz.

When you start the correlator, you can specify the -Xclock option to disable the correlator's internal
clock and replace it with externally generated time events. See “Externally generating events that
keep time (&TIME events)” on page 184.

About timers and their trigger times

In an event expression, when you specify the within, wait, or at operator you are specifying a
timer. Every timer has a trigger time. The trigger time is when you want the timer to fire.

® When you use the within operator, the trigger time is when the specified length of time elapses.
If a within timer fires, the event listener fails. In the following event listener, the trigger time
is 30 seconds after A becomes true.

on A -> B within(30.0) notifyUser();

If B becomes true within 30 seconds after the event listener detects an A, the trigger time is not
reached, the timer does not fire, and the monitor calls the notifyUser () action. If B does not
become true within 30 seconds after the event listener detects an A, the trigger time is reached,
the timer fires, and the event listener fails. The monitor does not call notifyuser (). The correlator
subsequently terminates the event listener since it can never trigger.

® When you use the wait operator, the trigger time is when the specified pause during processing
of the event expression has elapsed. When a wait timer fires, processing continues. In the
following expression, the trigger time is 20 seconds after A becomes true. When the trigger
time is reached, the timer fires. The event listener then starts watching for B. When B is true,
the monitor calls the success action.

Developing Apama Applications 10.11.2 181

4 Defining Event Listeners

on A -> wait(20.0) -> B success();

® When you use the at operator, the trigger time is one or more specific times. An at timer fires
at the specified times. In the following expression, the trigger time is five minutes past each
hour every day. This timer fires 24 times each day. When the timer fires, the monitor calls the
success action.

on all at(5, *, x, x, *) success();

Important:
Triggering using the at operator always uses the time zone in which the correlator is running.

At each clock tick, the correlator evaluates each timer to determine whether that timer's trigger
time has been reached. If a timer's trigger time has been reached, the correlator fires that timer.
When a timer's trigger time is exactly at the same time as a clock tick, the timer fires at its exact
trigger time. When a timer's trigger time is not exactly at the same time as a clock tick, the timer
fires at the next clock tick. This means that if a timer's trigger time is .01 seconds after a clock tick,
that timer does not fire until .09 seconds later.

When a timer fires, the current time is always the trigger time of the timer. This is regardless of
whether the timer fired at its trigger time or at the first clock tick after its trigger time. In other
words, the current time is equal to the value of the currentTime variable when the timer was started
plus the elapsed wait time. For example:

float listenerSetupTime := currentTime;
on wait(1.23) {
//When the timer fires, currentTime = (listenerSetupTime + 1.23)

}

A single clock tick can make a repeating timer fire multiple times. For example, if you specify on
all wait(0.01), this timer fires 10 times every tenth of a second.

Because of rounding constraints,

® Atimersuchason all wait(0.1) drifts away from firing every tenth of a second. The drift is
of the order of milliseconds per century, but you can notice the drift if you convert the value
of the currentTime variable to a string.

= Two timers that you might expect to fire at the same instant might fire at different, though
very close, times.

The rounding constraint is that you cannot accurately express 6.1 seconds as a float because
you cannot represent it in binary notation. For example, the on wait(0.1) event listener waits
for 0.10000000000000000555 seconds.

To specify a timer that fires exactly 10 times per second, calculate the length of time to wait by
using a method that does not accumulate rounding errors. For example, calculate a whole part
and a fractional part:

monitor TenTimesPerSecondMonitor {
// Use integers to keep track of the next timer fire time.
// This ensures that the value of the currentTime variable 1increases
// by exactly 1.0 after every 10 tenths of a second.
integer nextFireTimeInteger;

182 Developing Apama Applications 10.11.2

4 Defining Event Listeners

integer nextFireTimeFraction;
action onload() {
nextFireTimeInteger := currentTime.ceil();
nextFireTimeFraction := (10.0 *
(currentTime-nextFireTimeInteger.toFloat())).ceil();
setupTimeListener();

}
action setupTimeListener() {
nextFireTimeFraction := nextFireTimeFraction + 1;
if(nextFireTimeFraction = 10) {
nextFireTimeFraction := 0;

nextFireTimeInteger := nextFireTimeInteger+l;

b
on wait((nextFireTimeInteger.toFloat() +
(nextFireTimeFraction.toFloat()/10.0)) - currentTime)

{
setupTimelListener();
doWork() ;
}
}
action doWork()
{
// This is called 10 times every second.
log currentTime.toString();
/] ...
}

3

When a timer fires, the correlator processes items in the following order. The correlator:
1. Triggers all event listeners that trigger at the same time.
2. Routes any events, and routes any events that those events route, and so on.

3. Fires any timers at the next trigger time.

Disabling the correlator's internal clock

By default, the correlator keeps time by generating clock ticks every tenth of a second. If you
specify the -Xclock option when you start a correlator, the correlator disables its internal clock.
This means the correlator does not generate clock ticks and does not assign timestamps based on
clock ticks to incoming events.

Instead, it is up to you to send &TIME events into the correlator to externally keep time. This gives
you the ability to artificially control how the correlator keeps time.

Time flows in all contexts, including private contexts. Also, different contexts can have different
internal times. This happens when one context is still processing events that arrived at an earlier
time while another is processing more recent events. The "currentTime" is always the time of the
events being processed. (As opposed to wall-clock time, which can be obtained from the Time
Manager EPL plug-in.)

Developing Apama Applications 10.11.2 183

4 Defining Event Listeners

Externally generating events that keep time (&TIME events)
A &TIME event can have one of the following formats:

m [t can contain a number of seconds:

&TIME (float seconds)

The seconds parameter represents the number of seconds since the epoch, 1st January 1970.

The maximum value for seconds that the correlator can acceptis 1012, which equates to roughly
33658 AD, and should be enough for anyone. However, most time formatting libraries cannot
produce a date for numbers anywhere near that large.

m Or it can contain a time string;:

&TIME (string time)

The time is a string in extended ISO8601 form, with fractional seconds. For example:
&TIME("2015-04-20T23:32:41.032+01:00")
&TIME("2015-04-20T22:32:41.032+00:00")

&TIME("2015-04-20T22:32:41.032Z")
&TIME("2015-04-20T22:32:41.032")

These all refer to the same time. Note that the first example shows the time in a different time
zone with an offset of 1 hour.

When the correlator processes an &TIME event by taking it off an input queue, the correlator sets
its internal time (the current time) in that context to the value encoded in the event. Every event
that the correlator processes after an &TIME event and before the next &TIME event has the same
timestamp. That is, they have the timestamp indicated by the value of the previous &TIME event.
For example:

&TIME(1)
AQ)

B()
&TIME(2)

cO

Events A and B each have a timestamp of 1. Event ¢ has a timestamp of 2.

If you specify the -Xclock option, and you do not send &TIME events to the correlator, it is as if
time has stopped in the correlator. Every event receives the exact same timestamp. While not
sending time events is not strictly incorrect, it does mean that time stands still.

You must use great care when implementing this facility. There are EPL operations that rely on
correct time-keeping. For example, all timer operations rely on time progressing forwards. Timers
will fail to fire if time remains at a standstill, or worse, moves backwards. There is a warning
message in the correlator log if you send a time event that moves time backwards.

184 Developing Apama Applications 10.11.2

4 Defining Event Listeners

When sending &TIME events into a multi-context application, the time ticks are delivered directly
to all contexts. This can be different than the way in which events in the . evt file are sent in to the
correlator and then sent between contexts in an application. This difference can result in processing
events at an incorrect simulated time. In these cases, sending &FLUSHING (1), for example, before
sending time ticks and events can result in more predictable and reliable behavior.

For more information, see "Event timing" in the correlator utilities section of Deploying and Managing
Apama Applications.
About repeating timers and & TIME events

You are not required to send &TIME events every tenth of a second. You can send them at larger
intervals and timers will behave as they would when the correlator generates clock ticks. For a
repeating timer, a single &TIME event can make it fire multiple times. Consequently, sending an
&TIME event can have a lot of overhead if it is a large time jump and there are repeating timers. For
example, consider the following pattern:

1. You start the correlator and specify the -Xclock option, which sets the time to 0.
2. You inject a timer into the correlator, for example, on all wait(0.1).

3. Yousend an &TIME event to the correlator and this event has a relatively large value, for example,
1185898806.

The result of this pattern is that the timer fires many times because the &TIME event causes each
intermediate, repeating timer to fire. (Intermediate timers are timers that are set to fire between

the last-received time and the next-received time.) For the example given, the timer fires 1010 times,
which can take a while to process. You can avoid this problem by doing any one of the following:

m Send the correlator an &TIME event and specify a sensible time before you set up any timers.
This is likely to be your best alternative.

® Send the correlator an &TIME event and specify a sensible time before you inject any monitors.

m Send the correlator an &SETTIME event before you send the &TIME event. See “Setting the time
in the correlator (&SETTIME event)” on page 185.

Setting the time in the correlator (&SETTIME event)
A &SETTIME event can have one of the following formats:
® [t can contain a number of seconds:

&SETTIME (float seconds)

The seconds parameter represents the number of seconds since the epoch, 1st January 1970.
For example:

&SETTIME (0) sets the time to “Thu Jan 1 00:00:00.0 BST 1970”.
&SETTIME (1185874846.3) sets the time to “Tue Jul 31 09:40:46.3 BST 2007”.

m Or it can contain a time string:

Developing Apama Applications 10.11.2 185

4 Defining Event Listeners

&SETTIME (string time)

The time is a string in extended ISO8601 form, with fractional seconds. For example:
&SETTIME("2015-04-20T23:32:41.032+01:00")
&SETTIME("2015-04-20T722:32:41.032+00:00")
&SETTIME("2015-04-20T22:32:41.032Z")

&SETTIME("2015-04-20T22:32:41.032")

These all refer to the same time. Note that the first example shows the time in a different time
zone with an offset of 1 hour.

Normally, you do not need to send &SETTIME events. You would just send &TIME events. An &SETTIME
event is useful only to avoid the problem pattern described above. The only difference between
an &SETTIME event and an &TIME event is that the &SETTIME event causes an intermediate, repeating
timer to fire only once while the &TIME event causes intermediate, repeating timers to fire repeatedly.
For example, on all wait(0.1) fires ten times for every second in the difference between
consecutive &TIME events. However, it fires only once when the correlator receives an &SETTIME
event.

If you decide to send an &SETTIME event before an &TIME event, you typically want to send the
&SETTIME event only before the first &TIME event. You should not send an &SETTIME event before
subsequent &TIME events. Doing so causes a jumpy quality in the behavior of time. There is a
warning message in the correlator log if you set a time that moves time backwards.

For information about when you might want to use external time events, see "Determining whether
to disconnect slow receivers" in Deploying and Managing Apama Applications.

Out of band connection notifications

Apama applications running in the correlator can make use of Apama out of band notifications.
Out of band notifications are events that are automatically sent to all public contexts in a correlator
whenever any component (an IAF adapter, dashboard, another correlator, or a client built using
the Apama SDKs) connects or disconnects from the correlator.

For example, consider an environment where correlator A and correlator B both have out of band
notifications enabled and are connected so that events from correlator A are sent to correlator B.
In this case, correlator A will receive a ReceiverConnected event and correlator B will receive a
SenderConnected event. The Apama application running in correlator A and B can listen for those
events and execute some application logic. Note that clients such as dashboards and IAF adapters
typically connect as both receiver and a sender together and, therefore, two events would be sent
in quick succession.

Out of band events are defined in the com.apama.oob package and consist of:
B OutOfBandConnections
B ReceiverConnected

B SenderConnected

186 Developing Apama Applications 10.11.2

4 Defining Event Listeners

B ReceiverDisconnected
B SenderDisconnected

OutOfBandConnections contains helper functions to get currently connected senders and receivers
synchronously. These functions return a sequence of ReceiverConnected events for connected
receivers and sequence of SenderConnected events for connected senders. Your application can
call these functions at any time and can consume the ReceiverConnected and SenderConnected
events in the same way as it consumes asynchronous out of band events. This is particularly useful
for getting information about connected senders and receivers which were already connected
before the application was injected and whose ReceiverConnected and SenderConnected events
were missed by the application. See the "API Reference for EPL (ApamaDoc)" for more information
about the event and helper functions provided.

The ReceiverConnected and SenderConnected events contain the name of the component that is
connecting. When correlators and IAF adapters send a notification event, the format of the string
that contains the component name is as follows:

Hnamell

If no name is provided, however, the component name is as follows:

"name (on port port_number)"

The name is the name that was specified when the component was started. For correlators and IAF
adapters, you can specify a name with the --name option when you start the component (see
"Starting the correlator” in Deploying and Managing Apama Applications and "[AF command-line
options" in Connecting Apama Applications to External Components). The name defaults to correlator
or iaf according to the type of component. The port_number is the port that the connecting receiver
or sender is running on.

Out of band events make it possible for developers of Apama components to add appropriate
actions for the component to take when it receives notice that another component of interest has
connected or disconnected. For example, an adapter can cancel outstanding orders or send a
notification to an external system.

To enable out of band notifications in your Apama applications, you add the Out of Band Event
Notifications bundle to your project. This bundle contains the event definitions and the monitor
that enables the notifications. See "Adding bundles to projects" in Using Apama with Software AG
Designer or "Creating and managing an Apama project from the command line" in Deploying and
Managing Apama Applications for further information. In your Apama application, you have to
create a listener for out of band events specific to the components in which you are interested.

Note:

You can also enable out of band notifications for a correlator with the engine_management tool
and its -r set00B on option. Be sure to inject the event definitions before running the tool with
that option. For more information about using the engine_management tool, see "Shutting down
and managing components" in Deploying and Managing Apama Applications.

Developing Apama Applications 10.11.2 187

4 Defining Event Listeners

188 Developing Apama Applications 10.11.2

5 Working with Streams and Stream Queries

m Introduction to streams and stream NetwWOrksccoooiiiiiiiiiiiii 190
B Defining StreaMS ...ooooviiiiiie 191
B Using output from SIrEAMScooiiiiii i 192
B DefiNing SrEAM QUETIESoeiiiiiiiiiiiieii ettt e e e e r e as 195
m Defining custom aggregate fUNCHONSuviiiiiiiiiiiiiiie e 223
m Working with lots that contain multiple itemMS ..o 227
B Stream NetWOork lifetiMeoo i 231
B Using dynamic expressions in Stream QUENIESccvvvvvvieiiieiiieiiieiieeeeeeeeeeeeee e 234
m Troubleshooting and stream query coding guidelinescccccoo e, 241
Developing Apama Applications 10.11.2 189

5 Working with Streams and Stream Queries

EPL lets you create two kinds of queries:

m Self-contained queries are processing elements that communicate with other self-contained
queries, and with their environment, by receiving and sending events. Self-contained queries
are designed to be multithreaded and to scale across machines. A self-contained query is
sometimes referred to as an Apama query. This kind of query is defined in a .qry file, which
cannot contain a monitor. See “Defining Queries” on page 59.

m Stream queries operate on streams of items to generate more valuable streams that contain
derived items. Stream queries are defined in monitors. The following topics provide information
about stream queries.

In stream queries, derived items can be of any EPL type. You can use standard relational operations,
such as filters, joins, aggregation, and projection, to generate items. For example, you can define
a query that converts a stream of raw tick data into a stream of volume-weighted average price
(VWAP) items.

Stream-based language elements allow operations that refine events to be expressed more clearly
and concisely than when using procedural language constructs such as event listeners. In particular,
applications that need to calculate one value based on multiple items from an input stream are
simpler and more efficient when written with stream queries.

Apama provides sample code that uses streams and stream queries in the samples\epl directory
of your Apama installation directory.

Introduction to streams and stream networks

A stream query is part of a stream network. A stream network starts with one or more stream
source templates (see “Creating streams from event templates” on page 191). A stream source
template collects matching events received by the monitor instance and places them as items in a
stream. Stream queries (see “Defining stream queries” on page 195) take existing streams (a stream
created by a stream source template or by another stream query) and generate added-value streams
that contain derived items. Finally, stream listeners (see “Using output from streams” on page 192)
bring items out of the stream network and into procedural code. In a given stream network,
upstream elements feed into downstream elements to generate derived items.

When a monitor instance receives an event that matches a stream source template, the correlator
activates the stream network. The passage of time can also cause the correlator to activate a stream
network. If, for example, a stream query operates on the items received within the last 5.0 seconds,
then 5.0 seconds after an item arrives the correlator will again activate the stream network (see
“Adding window definitions to from and join clauses” on page 201).

In a given stream network activation, not all stream queries and not all stream listeners necessarily
receive items. Which queries and stream listeners receive items depends on the definitions of the
stream queries and stream listeners. However, in a given stream network activation, the correlator
passes items through all queries and stream listeners in the network that receive items. A query
or stream listener that receives an item is considered to be activated. Only when processing of all
activated queries and stream listeners is complete does the correlator process the next event on
the context's input queue.

190 Developing Apama Applications 10.11.2

5 Working with Streams and Stream Queries

In a given stream network activation, various queries can produce multiple items on their output
streams. The items in a particular stream during a particular stream network activation are called
a lot. If a stream query or stream listener receives a lot that contains multiple items, it processes
all items as part of a single stream network activation (see “Working with lots that contain multiple
items” on page 227, and “Coassigning to sequences in stream listeners” on page 194).

The items in a lot are always ordered, and the lots themselves are always ordered.

Defining streams

You can use a stream variable to reference a stream. A stream variable declaration has the following
form:

stream<type> name
Replace type with the type of the items in the stream. This can be any Apama type.
Replace name with an identifier for the stream. For example:

stream<Tick> ticks;

A streamvariable can be a field in an event. However, you cannot route, enqueue, or send an event
that contains a stream variable field.

There are two ways to create a stream:
= From an event template. See “Creating streams from event templates” on page 191.

® From the result of a stream query on some other stream. See “Defining stream queries” on
page 195.

To obtain a reference to an existing stream, you must assign from or clone another stream value.

An inert stream never generates any output. There are a number of ways to create an inert stream
including, but not limited to, the following;:

m Calling new on a stream type or a type that contains a stream
m Declaring a global variable of stream type, or a type that contains a stream

® Spawning a monitor instance that contains a stream value

Creating streams from event templates

A stream can be created from an event template using the all keyword, including a1l any() to
listen for events of all types. This is referred to as a stream source template.

Example:

stream<Tick> ticks := all Tick(symbol="APMA");

This creates a stream that contains all subsequent T+ick events that have the symbol APMA. You can
use any single event template this way, however, you must specify the a1l keyword and you

Developing Apama Applications 10.11.2 191

5 Working with Streams and Stream Queries

cannot use operators such as and or followed-by to combine several event templates. See also
“Stream network lifetime” on page 231.

Terminating streams

If a stream goes out of scope, it continues to exist until the monitor instance terminates or the
stream is explicitly terminated in some fashion. Streams are not garbage-collected. This means it
is possible to leak streams, thereby consuming memory and potentially performing unnecessary
computation, if you do not explicitly terminate streams.

To terminate a stream, call the quit() method on a stream variable that refers to the stream you
want to terminate. For example:

stream<integer> foo := all A();
foo.quit();

This might also terminate connected streams. See “Stream network lifetime” on page 231. Itis also
possible to terminate connected streams by quitting a stream listener.

Using output from streams

A stream listener passes output items from a stream to procedural code. You use a from statement
to create a stream listener. The from statement has two forms.

The first form of the from statement creates a stream listener that takes items from an existing
stream. For example:

from sA as a {
/* Code here executes whenever an item is available from sA. x/

}
The second form of the from statement contains a stream query definition, which creates a new
stream query. The stream listener takes items from the output stream of the query. For example:

from a in sA select a as a {
/* Code here executes whenever the query produces output. x/

3

The syntax for the first form of the from statement is as follows:

[listener:=] from streamExpr coassignment block

Syntax Element Description

listener Optional. You can specify a listener variable to refer to
the stream listener that the from statement creates. You can
declare a new listener variable or a use an existing
listener variable.

streamExpr Specifies any expression of type stream except a stream
query. This can be, for example, a stream variable or a

192 Developing Apama Applications 10.11.2

5 Working with Streams and Stream Queries

Syntax Element

Description

coassignment

block

stream source template. If you want to specify a stream
query, use the other form of the from statement.

You must coassign the stream output into a variable. You
can either use the as operator to implicitly declare the
variable in the scope of the following statement or the :
assignment operator to coassign to a local or global variable
of the same type as the stream output that has already been
declared.

For details about the characters you can specify, see
“Identifiers” on page 711.

The output from a stream is referred to as a lot. Like an
auction lot, a stream output lot can contain one or more
items. If the stream output is a lot that contains more than
one item, the from statement coassigns each item, in turn,
to the variable. See “Working with lots that contain
multiple items” on page 227.

A from statement cannot specify multiple coassignments.

Specifies a block of EPL statements, enclosed in braces. The
from statement coassigns each stream output item to the
specified variable and executes the block once for each
output item.

If the stream output is a lot that contains more than one
item, and you want to execute the block just once for the
lot rather than once for each item in the lot, coassign the
result to a sequence. See “Coassigning to sequences in
stream listeners” on page 194.

The syntax for the second form of the from statement is as follows:

[listener:=] StreamQueryDefinition coassignment block

Syntax Element

Description

listener

StreamQueryDefinition

coassignment

Optional. You can specify a listener variable to refer
to the stream listener that the from statement creates.
You can declare a new listener variable or a use an
existing listener variable.

Specifies a stream query. See “Defining stream
queries” on page 195.

You must coassign the stream output into a variable.
You can either use the as operator to implicitly declare

Developing Apama Applications 10.11.2

193

5 Working with Streams and Stream Queries

Syntax Element Description

the variable in the scope of the following statement or
the : assignment operator to coassign to a local or global
variable of the same type as the stream output that has
already been declared.

For details about the characters you can specity, see
“Identifiers” on page 711.

If the query outputs lots that contain more than one
item, the from statement coassigns each item in the lot,
in turn, to the variable. See “Working with lots that
contain multiple items” on page 227.

A from statement cannot specify multiple
coassignments.

block Specifies a block of EPL statements, enclosed in braces.
The from statement coassigns each stream output item
to the specified variable and executes the block once
for each output item.

If the stream output is a lot that contains more than one
item, and you want to execute the block just once for
the lot rather than once for each item in the lot, coassign
the result to a sequence. See “Coassigning to sequences
in stream listeners” on page 194.

Listener variables and streams

Like event listeners, you can assign a stream listener to a listener variable. A stream listener exists
until one of the following happens:

m The monitor instance that contains the stream listener is terminated.
m The stream or streams the listener refers to are terminated.

If you do not want to wait for one of the above to occur, you can stop a stream listener by calling
the quit() method on a listener variable that refers to it. Note that in many cases this will also
terminate the stream that is feeding the stream listener. See “Stream network lifetime” on page 231.

Coassigning to sequences in stream listeners

Unlike event listeners, a stream query might generate multiple items for each external or routed
event. This is usually due to a batched window (a window that is updated after every p seconds
or after every m items arrive) or to a join operation on two streams. In this case, the correlator
executes a stream listener action multiple times, once for each generated item.

194 Developing Apama Applications 10.11.2

5 Working with Streams and Stream Queries

In a stream query definition, a window defines the set of items from the input stream that the
query operates on. See “Adding window definitions to from and join clauses” on page 201.

To execute the stream listener action only once, and coassign all generated items at once, specify
a stream listener that coassigns to a sequence variable. The sequence must contain items of the
same type as the stream. For example:

sequence<A> seqA;

from batchedEvents: seqA {
/* segA contains all events that arrive in this batch */

}

Defining stream queries

A stream query operates on one or two streams to transform their contents into a single output
stream. A stream query definition declares an identifier for the items in the stream so that the item
can be referred to by the operators in the stream query. Here is a simple stream query definition:

stream<integer> ints := from a in sA select a.i;

When the correlator executes a statement that contains a stream query definition, the correlator
creates a new stream query. Each stream query has an output stream (the type of which might
differ from that of the input stream).

A stream query definition is an expression that evaluates to a stream value. The value is a reference
to the output stream of the generated query.
Following is an example of a simple stream query in a stream listener:

from a in sA select a.b as b {
doSomethingWith(b) ;
b

The following table describes the user-defined parts of this stream listener. It is important to
understand the distinctive role each one serves.

Syntax Element Description

a This is an identifier that represents the current item in the stream being
queried. See “Specifying input streams in from clauses” on page 199.

sA This variable represents the stream being queried.

a.b This expression describes what each query result looks like. In this example,
the query produces outputs from the b field of the events in the stream.

b This is the variable that you coassign the query results to so that the
correlator can use the query result in the stream listener's code block.

Developing Apama Applications 10.11.2 195

5 Working with Streams and Stream Queries

Linking stream queries together

A stream query definition is an expression and its result is a stream. Consequently, with one
exception described below, you can use a stream query definition anywhere that you can use a
stream value. For example, you can assign the resulting value to a stream variable:

stream <float> values := from a in sA select a.value;

Alternatively, you can use a stream query definition as the return value from an action. For example:

action createPriceStream (stream<Tick> ticks) returns stream<float> {
return from t in ticks select t.price;

}

Another option is to embed a stream query within another stream query. For example:

from p in (from t in ticks where t.price > threshold select t.price)
within period
select wavg(t.price,t.volume) as vwap {

processVwap (vwap) ;

}

You can use stream variables to link stream queries together, as detailed in the next section.

The exception is that you cannot use a stream query immediately after the from keyword in the
first form of the from statement. For example, the following is not a valid statement:

from from t in ticks select t.price as tickPrice {
print tickPrice.toString();
}

Instead, use the second form of the from statement and specify a stream variable or a stream source
template. The following example specifies a stream variable:
from t in ticks select t.price as tickPrice{

print tick.price.toString();
3

For more information on the different forms of the from statement, see “Using output from
streams” on page 192.

Simple example of a stream network

Sometimes a single from statement is all that is required to achieve your goal. For example, to
obtain a volume-weighted average price (VWAP) for a stock, you can add the following from
statement to a monitor:

from t in all Tick(symbol="APMA™")
within period
select wavg(t.price,t.volume) as vwap {
processNewVwap (vwap) ; }

196 Developing Apama Applications 10.11.2

5 Working with Streams and Stream Queries

Often, however, you want to use the output from one query as the input to another query. For
example, here is an extract from the Statistical Arbitrage demo, which is available from the Welcome

page:

spreads :=
from a in all com.apama.demo.marketdata.Depth(symbol=order.Instrument_1)
retain 1
from b in all com.apama.demo.marketdata.Depth(symbol=order.Instrument_2)
retain 1
select (a.midPrices[0] - b.midPrices[0]);
stream<MeanSd> meanSds :=
from s in spreads within 20.0 select MeanSd(mean(s), stddev(s));
stream<integer> comparison :=
from s in spreads from m in meanSds select
compareSpreadAndBands (s, m.mean, m.sd, order.Std_Dev_Multiplier);
stream<integer> prevComparison :=
from c in comparison retain 1 select rstream c;
from c in comparison from p in prevComparison
where c!=p select c as instruction {
if state = WAIT_FOR_SPREAD and instruction = HOLD {
monitorState();
3
if state = MONITOR and 1instruction != HOLD {
waitForOrders(instruction);

}

When queries are connected like this, the set of connected queries is referred to as a stream network.

A stream network is strictly within a monitor instance. Routing an event takes that event entirely
out of the stream network since the event would not be received in the same network activation

even if it is received by the same monitor. Spawning a monitor makes any stream variables point
to inert streams, so it is not possible to refer to a stream network from a different monitor instance.

Stream query definition syntax

A stream query definition contains several elements, some of which are optional and some of
which are required. These elements, and their constituent parts, are described in the following
sections. The elements appear in a stream query in this order:

FromClause [FromClause | JoinClause] [WhereClause] ProjectionDefinition

Element Required or Description
Optional
FromClause Required Specifies the input stream for the query. See

“Specifying input streams in from
clauses” on page 199.

A from clause can also specify which items
from the input stream the query should
operate on. See “Adding window definitions
to from and join clauses” on page 201.

Developing Apama Applications 10.11.2 197

5 Working with Streams and Stream Queries

Element Required or Description
Optional

If a second from clause appears, the
correlator performs a cross-join to combine
items from the two streams. See “Defining
cross-joins with two from clauses” on
page 213.

JoinClause Optional Specifies a second stream for the query to
operate on. The correlator performs an
equi-join to combine items from the two
streams. See “Defining equi-joins with the
join clause” on page 215.

A join clause can also specify which items
from the input stream the query should
operate on. See “Adding window definitions
to from and join clauses” on page 201.

WhereClause Optional Applies a filtering criterion to the items in
the window or the items produced by the
join operation. See “Filtering items before
projection” on page 217.

ProjectionDefinition Required Defines how the query generates output
items. See “Generating query results” on
page 218.

Identifier scope in stream queries

Consider the following code fragment:

integer a;
stream<float> prices := from a in ticks select a.price;

In this example, the a in the query refers to the current T+ick item in the stream and not to the a
integer variable. In a stream query, you can use an identifier that you have not previously declared.
If there is a variable in a containing scope that has the same name as an identifier in the query,
then for expressions in the query the identifier in the query hides the variable in the containing
scope.

Following is another example of how scope works with stream queries:

integer a := 42;
from a in ticks select a.price as p {
print a.toString(); // Prints "42" rather than one of the ticks. }

The previous code fragment illustrates that identifiers in the listener action can have the same
names as identifiers in the stream query. While this is not good practice, it is important to recognize
that the listener action is not part of the stream query. Consequently, an identifier in a stream
query is out-of-scope in the stream query's listener action.

198 Developing Apama Applications 10.11.2

5 Working with Streams and Stream Queries

Stream query processing flow

Each element of the stream query operates on the output of the previous part. To correctly define
stream queries, it can be helpful to understand that items flow through the query and the correlator
processes the parts of the query in the order shown in the following figure. In the figure, the dashed
outlines indicate optional elements.

Simple Query
—————— - ——————
Inguit - . 5 # N - Output
Steam Window _,_."'—-'l'\, Whers ,"'—. Stream
Joined Query
put T T
Strea . Window #I"-u_%
i
=
L T - Stream
——————— T
Input Window N
Stream " .

As items arrive on the input stream(s) and time elapses, the window definition for each stream
identifies which items from that stream the query should be processing at any given moment. This
includes partitioning, if it is specified. See “Adding window definitions to from and join clauses” on
page 201.

In queries with two input streams, the correlator combines items from the two streams by means
of a cross-join operation (a second from clause) or an equi-join operation (a join clause). See “Joining
two streams” on page 213.

The where clause, if there is one, filters items. See “Filtering items before projection” on page 217.

The projection definition defines how the query generates output items. This includes the select
clause, which has appeared in examples such as “Simple example of a stream network” on page 196.
See “Generating query results” on page 218.

Specifying input streams in from clauses

In a stream query, each from clause specifies a stream that the query is operating on. The syntax
of the from clause is as follows:

from itemIdentifier 1in streamExpr [WindowDefinition]

Syntax Element Description

itemIdentifier Specify an identifier that you want to use to represent the
current item in the stream you are querying. You use this
identifier in subsequent clauses in the query. For details
about the characters you can specify, see “Identifiers” on
page 711.

Developing Apama Applications 10.11.2 199

5 Working with Streams and Stream Queries

Syntax Element Description

The type of the identifier is the same as the type of the
items that are in the stream you are querying.

There is no link between an item identifier in a query and
a variable that you might define elsewhere in your code.
In other words, it is okay for an in-scope variable to have
the same name as an item identifier in a query. Inside the
query, the item identifier hides that variable. See the
second example below.

streamExpr Specify an expression that returns a stream type. This is
the stream that you want to query.

WindowDefinition Define which portion of the stream to query. See “Adding
window definitions to from and join clauses” on page 201.

Examples

The query below generates a stream of float items. The item identifier is a. The stream variable,
ticks, refers to a stream of Tick events. The select clause specifies that each query result item
contains only the price value from the T1ick event. Details about the select clause are in “Generating
query results” on page 218.

stream<float> prices := from a in ticks select a.price;

The a11 keyword followed by an event template is an expression of type stream referred to as a
stream source template. Consequently, you can use this in a from clause. For example, you can
modify the previous example to use the stream source template directly within the stream query:

stream<float> prices :=
from a in all Tick(symbol="APMA") select a.price;

Notes

A stream query is an expression of type stream and so anywhere that you can specify a stream
expression you can use a stream query in its place. (There is one exception to this. See “Linking
stream queries together” on page 196.) This means you can nest stream queries to create a compound
stream query. For example, consider the following non-nested stream queries:

stream<A> sA := all A();

stream<integer> derived :=
from a in sA retain 2 select mean(a.x);

stream sB :=
from a in derived within 10.0 select B(stddev(a));

An equivalent way to write this is as follows:

stream sB :=

200 Developing Apama Applications 10.11.2

5 Working with Streams and Stream Queries

from b in

from a in all A() retain 2 select mean(a.x)
within 10.0
select B(stddev(b));

The compiler generates the same stream network in both cases, so the performance is exactly the
same. However, nesting stream queries beyond one level can make the compound stream query
hard to understand.

To define a query that operates on two streams, specify two consecutive from clauses or specify a
from clause followed by a join clause. See “Joining two streams” on page 213.

Adding window definitions to from and join clauses

The items flowing through a stream are ordered. In any given activation, there are zero or more
items that are current. By default, the stream query operates on those current items.

Alternatively, a window may be defined. Window definitions specify which items the query should
operate on in each activation, based on (but not limited to) the following:

® The items within a given time period
B A maximum number of items
m The content of the items

As the window contents change, the items in the query projection will also change: new items will
be inserted and old ones removed. The output from a query is a stream of items.

If the projection is an aggregate projection then the query output is the result of evaluation of the
select clause when the window contents change. See “Aggregating items in projections” on
page 220.

If the projection is a simple, non-aggregate projection, the default output is the insert stream (or
istream for short) of new projected items. Alternatively, if the rstream keyword is specified in the
select clause, the output is the remove stream (or rstream) of items that have become obsolete.
See also “Obtaining the query's remove stream (rstream)” on page 221.

Window definition syntax

There are a number of different formats and keywords that you can use to define a window on a
stream. Following are the alternatives you can choose from. See the subsequent topics for details.

[partition by partitionByExpr[, partitionByExpr]...]

(
within windowDurationExpr[every batchPeriodExpr]
[retain windowSizeExpr] [with unique keyExpr]

| retain windowSizeExpr [every batchSizeExpr] [with unique keyExpr]

)

| retain all

Developing Apama Applications 10.11.2 201

5 Working with Streams and Stream Queries

Every window definition specifies retain, within or both.

Syntax Element Description

partitionByExpr Optionally specifies an EPL expression that should
involve the input item in some way and that returns a
comparable type. A partition by clause effectively creates
a separate window for each encountered distinct value
of partitionByExpr.

windowDurationExpr Specifies a float expression that indicates a duration of
a number of seconds. The window contains the items
received within the last windowDurationExpr seconds. See
“Defining time-based windows” on page 203.

batchPeriodExpr Specifies a float expression that indicates an interval
period of a number of seconds. The window updates its
contents every batchPeriodExpr seconds. See “Defining
batched windows” on page 207.

windowSizeExpr Specifies an integer expression that indicates the number
of items you want to retain in the window. The window
contains the most recent windowSizeExpr items. See
“Defining size-based windows” on page 204.

keyExpr Specifies an EPL expression that must contain at least one
reference to the input item and must return a comparable
type. See “Comparable types” on page 617.

If you add awith unique clause, if there is more than one
item in the window that has the same value for the key
identified by keyExpr, only the most recently received
item is considered to be in the window. See “Defining
content-dependent windows” on page 211.

batchSizeExpr Specifies an integer expression that indicates a number
of items. The window updates its contents after every
batchSizeExpr items that match the query are found. See
“Defining batched windows” on page 207.

Omitting the window definition

The window definition is optional in a stream query. If you do not specify any window then, for
any given activation of the stream query, the stream query operates on only the items that are
current for that activation. Typically, this is a single event. However, if the source for this query
is, for example, a stream query with a batched window, then the items in each batch will be
processed together as in the following example:

stream<A> sA := from a in all A() retain 4 every 4 select a;
from a in sA select count() as c { ... }

202 Developing Apama Applications 10.11.2

5 Working with Streams and Stream Queries

The second query receives batches of four A events and will generate a single aggregate value for
each batch. For more details see “Stream queries that generate lots” on page 228.

Retaining all items

The simplest window is one that contains all items that have ever been in the stream. The
corresponding window definition is retain all. Conceptually, once an item enters a retain all
window, it remains in the window indefinitely (or until the stream query is terminated). The
following query evaluates the running mean of all items that have ever been in the values stream:

stream <decimal> means := from v 1in values retain all select mean(v);

The retain all clause specifies an unbounded window. Unbounded windows have restrictions
on their use:

® You cannot have a partitioned or batched unbounded window.

® You cannot perform a join operation on an unbounded window.

® You cannot specify an unbounded window when you use rstream in the select clause of a
query.

When you use a custom (user-defined) aggregate function in a query that contains an unbounded
window, you cannot also use a bounded aggregate function. You should also be aware that, if you
use a badly implemented custom aggregate function in a query that contains an unbounded
window, then this can result in uncontrolled memory usage. See “Defining custom aggregate
functions” on page 223.

Defining time-based windows

In a time-based window, the items are held in the window for a specific duration. The syntax for
defining a time-based window is:

within windowDurationExpr

Replace windowDurationExpr with an expression that returns the number of seconds that items
should remain in the window as a float value. For example, the following query calculates the
sum of all items that arrived in a stream of float values during the last 1.5 seconds:

stream<float> sums := from v in values within 1.5 select sum(v);

The following diagram illustrates how this works in practice.

Developing Apama Applications 10.11.2 203

5 Working with Streams and Stream Queries

t=0.0 t=1.0 t=1.5 t=2.0 t=2.5 t=3.0 t=3.5 t=4.0 t=4.5

el 10.0 10.0 10,0

e 20.0 200 | [200

e 30.0 300 | 30.0

a3 40.0 40.0
Simple istream Projection - 10.0 - 200 30.0 - 400 -
Simple rstraam Projection -- — - -- 10.0 - 0.0 - 30.0
Agoregate Projection -- 10.0 - 300 20,0 50.0 30.0 70.0 40.0

Each column represents a time when the query window contents change whereas each row
represents the arrival and lifetime of each event. As an event arrives in the window, it appears in
bold purple. At each given time, the current window contents is indicated by the items enclosed
by boxes. Bold purple items are new and lighter purple items are old items still in the window.
The numbers at the bottom give the contents of the stream of insertions to and removals from the
window in the case where each value is being selected independently, or when the aggregate sum
of the values in the set of items in the window is being calculated. The query before the diagram
corresponds to the aggregate projection line. The queries shown here are:

®m Simple istream projection:

from v in values within 1.5 select v

m Simple rstream projection:

from v in values within 1.5 select rstream v

m Aggregate projection:

from v in values within 1.5 select sum(v)

In a simple, non-aggregate projection, when an event arrives in the window, it appears in the
istream of the projection. It remains for 1.5 seconds, at which point it appears on the rstream of
the projection. The aggregate projection behaves differently. Whenever an item arrives in or is
removed from the window, a new sum appears on the istream of the aggregate projection.

Defining size-based windows

As well as time, you can specify windows that contain only a certain number of items. In a
size-based window, as each new item arrives, it is added to the window. After the number of items
in the window reaches the window size limit specified in the query, the arrival of a new item
causes the removal of the oldest item from the window.

The syntax for defining a size-based window is as follows:

retain windowSizeExpr

204 Developing Apama Applications 10.11.2

5 Working with Streams and Stream Queries

Replace windowSizeExpr with an expression that returns how many items you want to retain in
the window as an integer value. For example, the following query calculates the sum of the last
two items in a stream of floats:

stream <float> sums := from v in values retain 2 select sum(v.number);

The following diagram, which uses the same notation as the previous section, illustrates how this
works in practice.

to t t2 t3 t4 ts 16 7

a0 a,10.0
e b20.0| |b20.0

2 a,30.0 [|&,30.0
el a40.0 | |a40.0
ed b, 50.0 b,50.0
e5 a,60.0 | |a60.0
e a,70.0] |a.70.0

ey b,80.0

Simple istream Projection 10.0 2000 30.0 40.0 50.0 G0.0 70.0 80.0

Simple rstream Projection = - 100 200 30.0 40.0 0.0 G0.0
Agpragate Projection 10.0 300 500 70.0 90.0 1og 1300 1500

The query before the diagram corresponds to the aggregate projection. The three queries shown
here are:
® Simple istream projection:

from v in values retain 2 select v.number

®m Simple rstream projection:

from v in values retain 2 select rstream v.number

m Aggregate projection:

from v in values retain 2 select sum(v.number)

When an event arrives in the window, it appears in the istream of a simple, non-aggregate
projection. The first item remains in the window when a second item arrives. When a third item
arrives, the first item is no longer in the window and it appears on the rstream of the simple,
non-aggregate projection. Likewise, when the fourth item arrives in the window, it appears in the
istream and the second item appears on the rstream of the simple projection, and so on. The
behavior of the aggregate projection is that whenever an item arrives in or is removed from the
window, a new sum appears on the istream of the aggregate projection.

Developing Apama Applications 10.11.2 205

5 Working with Streams and Stream Queries

Combining time-based and size-based windows

Sometimes you might want to focus on the last n items received in the last d seconds. To define a
window that retains items based on both time and size, use the following format in the from clause:

within windowDurationExpr retain windowSizeExpr

The within keyword and expression must be first and the retain keyword and expression must
be second. As with separate size-based and time-based windows, replace windowDurationExpr
with an expression that returns a number of seconds, d, as a float value. Replace windowSizeExpr
with an expression that indicates how many items you want to retain in the window, n, as an
integer value. The window contains the last n items received in the last d seconds. If no items were
received in the last d seconds, the window is empty. For example:

from v in values within 2.5 retain 2 select sum(v);

The following diagram, which uses the same notation as the previous section, illustrates how this
works in practice.

t=1.0 t=1.5 t=2.0 t=2.5 t=3.0 t=3.5 t=4.0 t=4.5 =5.0 t=5.5
el 10.0 10.10 10.0 0.0
&1 20.0 2000 200 200
a2 30.0 20,0 30.0 0.0 0.0
ad 40.0 40.0 40.0 40.0
Simple istream Projection 10,0 ~ 20,0 - 30,0 - 40.0 - - -
Simple rstream Projection - - - - 10.0 - 200 - - 30.0
Agoregate Projection 10,0 - 30.0 -- 50.0 . 70.0 - - 40.0

The query before the diagram corresponds to the aggregate projection. The three queries shown
here are:

m Simple istream projection:

from v in values within 2.5 retain 2 select v

® Simple rstream projection:

from v in values within 2.5 retain 2 select rstream v

m Aggregate projection:

from v in values within 2.5 retain 2 select sum(v);

The important point to note in this example is that some items drop out of the window before the
2.5 second period is passed. When e2 arrives, e0 and el are already in the window. Even though
e0 has been there for only 2 seconds, it is removed because e1 and e2 are now the two most recent
items received in the last 2.5 seconds.

206 Developing Apama Applications 10.11.2

5 Working with Streams and Stream Queries

Defining batched windows

The default behavior is that the contents of a window change upon the arrival of each item. The
every keyword can be used to control when the contents of the window change: it causes the items
to be added to the window in batches. Time-based windows can be controlled to update only
every p seconds, and size-based windows can be controlled to update only after every m events.

The syntax for a batched window is one of the following:

within windowDurationExpr every batchPeriodExpr
| retain windowSizeExpr every batchSizeExpr
| within windowDurationExpr every batchPeriodExpr retain windowSizeExpr

Here, windowDurationExpr and windowSizeExpr retain their meaning from the previous sections.

The batchPeriodExpr is an expression that returns the time, p, between updates as a float value.
The batchSizeExpr is an expression that returns the number of events between updates, m, as an
integer value.

When you specify within followed by every followed by retain, the every keyword always indicates
a number of seconds. That is, the window updates its content every p seconds.

If no items have arrived or expired since the previous window update, the window content is
unchanged and consequently the query does not execute. The correlator executes the query only
when the window content changes.

Here is an example of a stream query that defines a batched, time-based window. The correlator
creates the query at t=0.0.

from v in values within 1.5 every 1.0 select sum(v)

The following diagram illustrates how this works in practice.

t=0.5 t=1.0 t=1.5 t=2.0 t=2.5 t=3.0 t=3.5 t=4.0 t=d4.5 t=5.0

e1 20.0 20.0 200
e 30.0 30.0 30.0
el 40.0 40,0

Simgle istream Projection 10.0 = AN0&300 - - - 40.0
Simple rstream Projection — - - 10,0 - 20.0 - 300 - 40.0
Aggregate Projection - 100 - 50.0 - 30.0 - 40.0 = 0.0

The query before the diagram corresponds to the aggregate projection. The three queries shown
here are:

= Simple istream projection:

from v in values within 1.5 every 1.0 select v

Developing Apama Applications 10.11.2 207

5 Working with Streams and Stream Queries

® Simple rstream projection:

from v in values within 1.5 every 1.0 select rstream v

m Aggregate projection:

from v in values within 1.5 every 1.0 select sum(v)

The important thing to note about the behavior of these queries is that the window content changes
only every second. Nothing appears on any insert or remove stream between those points. This
means that the items 10.0, 20.0 and 40.0 are not in the window at the moment they arrive, but
are kept until the next multiple of 1.0 second. Item lifetimes are calculated from the item arrival
time, not the point at which the batching allows the item into the window. Consequently, the
lifetime of the items in the window is also affected by the batching. In these examples, you can
see that the items that were delayed entering the window are only in the window for one second
because they were already 0.5 seconds old at the point they entered the window. For contrast, the
item with the value 30.0 remains in the window for 2.0 seconds because after 1.5 seconds the
batching has not occurred, and so the window cannot change until the next multiple of 1.0 second.

In the examples given here, the batch period is smaller than the duration of the window. If the
batch period is larger than the duration of the window, then some items can never enter the
window, if they would have already expired by the time the next batch arrives in the window.

Batched size-based windows behave similarly to batched time-based windows, except that the
batch criteria is waiting for a number of items to arrive. In that case, items always arrive in the
window as a multiple of the batch size.

Batched windows produce multiple items at one time. A single group of items flowing between
queries together is called a lot. A lot can contain one item or several items. A batched window is
one way of producing a lot that contains several items.

Partitioning streams

The partition by clause splits a stream into partitions, based on one or more key values. The
subsequent window operators are applied to the partitioned stream; the behavior is as if the
window operators had been applied separately to each partition. The result of using partition
by followed by a window operator is referred to as a partitioned window. You use a query with
a partitioned window to retain particular items for each partition specified by the partition by
clause.

Partitioning is introduced with the following syntax:

partition by partitionByExpr[, partitionByExpr]...

The partition by clause precedes other window operators, so a complete query would be:

from a in sA partition by a.x retain 2 select sum(a.y);

Each partitionByExpr is an expression that should contain at least one reference to the input item
and must return a comparable type. See “Comparable types” on page 617. Some examples are in
the following table. Assume that each partition by clause in the table starts with the following:

from a in all A()

208 Developing Apama Applications 10.11.2

5 Working with Streams and Stream Queries

Definition Description

partition by a.x Partition on a single primitive type field of the input event. This
is likely to be the most common case.

partition by a Partition on an event's field values. The events that have identical
values for all fields are in the same partition. For example:

from a in all A()
partition by a retain 2 select a;

Given the following input events:

A(1,1)
A(1,2)
AL 1)

The first and third events are in the same partition, the second is
not. In this case, the event type A must itself be a comparable type.

partition by 1 This is a valid partition expression, but it is not recommended. A
partition expression should reference the input item in some way.

partition by f(a) This is a valid partition expression if f() is a function that returns
an appropriate type.
partition by Another valid partition expression.

a.x*globaldict[a.y]

Example:

from t in all Tick()
partition by t.symbol retain 1
select rstream t;

This query creates a separate partition for each new stock symbol it finds. Each partition contains
the most recent T+ick event for that symbol. The query output, for each encountered symbol, is the
previous Tick event for that symbol. Note that it is possible for this query to consume a large
quantity of memory.

Partitions and aggregate functions

The partition by clause creates several partitions within the window. However, a stream query
has other parts in addition to the window. The other parts include the projection and optional
join or where elements. These other parts of the query operate on a single window that contains
all items from all partitions.

Likewise, when you partition a stream any specified aggregate functions aggregate over all
partitions. If you want to generate separate aggregate values for different groups of events then
you must specify a group by clause. See “Grouping outputitems” on page 220. A common use case
is to specify matching partition by and group by clauses.

Consider the following stream query:

Developing Apama Applications 10.11.2 209

5 Working with Streams and Stream Queries

from a in all A() partition by a.x retain 2 select sum(a.y);

The window definition is retain 2, and this is partitioned by a.x, where x is the first field in A.
There is one retain 2 partition for each value of x. Suppose this stream query receives the following
input events:

A(1,1)

A(1,2)

A(2,1)

A(2,2)

A(1,3)

A(2,3)

After these events have all arrived, one partition contains A(1,2) and A(1,3) while a second
partition contains A(2,2) and A(2,3). However, the parts of the query following the window
definition operate on the collection of all items in all partitions. In this example, the sum() aggregate
function generates 10. It does not generate a lot that contains two values of 5. Now consider the
following query:

from t in all Tick()
partition by t.symbol retain 10
group by t.symbol
select mean(t.price)

This query returns one mean value per symbol, which is the mean of the last 10 ticks for that
symbol. If you do not want all means for all symbols in one lot, you might prefer to spawn monitors
so that you have an instance of the following query for each symbol:

from t in all Tick(symbol=X)

retain 10
select mean(t.price)

If you do want the averages for all the symbols in the same stream, then you can specify the group
key in the select clause in order to later differentiate between the output events, as in the following
example:

from t in all Tick()
partition by t.symbol retain 10
group by t.symbol
select Output(t.symbol, mean(t.price))

As you can see, the partition by clause is often used in conjunction with the group by clause.

Tip:

In EPL, it is common to use spawn in a monitor to create separate monitor instances. For example,
each monitor instance might process a separate stock symbol. Spawning separate monitor
instances might be preferable to using a single monitor instance that specifies partition by in
a stream query so that it, for example, processes all stock symbols. Spawning separate monitor
instances can be more efficient because your application processes only the subset of symbols
that are of interest. Also, the subset of symbols of interest can change through the day.
Appropriate monitor instances and queries can be created as required.

See also “IEEE special values in stream query expressions” on page 223.

210 Developing Apama Applications 10.11.2

5 Working with Streams and Stream Queries

Using multiple partition by expressions

To partition a window according to multiple criteria, you can insert multiple, comma-separated
expressions. For example, you can refine a previous query to produce values for different volume
bands as follows:

from t in all Tick()
partition by t.symbol, t.volume.floor()/100 retain 1
select rstream t;

In this example, the correlator applies retain 1 to each set of ticks that share both the same symbol
and the same volume (to within 100). As a result, an item is output only when a replacement tick
arrives for an existing symbol in an existing volume band.

Partitioning time-based windows

If a window is purely time-based, then there is no benefit to partitioning the window. For example,
consider the following two queries:

from t in all Tick() within 1.0 ...
from t in all Tick() partition by t.symbol within 1.0 ...

The first query outputs every Tick received in the last second. The second query organizes the
stream of Tick events by their symbols, then gives you each one that arrived in the last second.
This is still every Tick received in the last second. The correlator ignores a partition by statement
if it is used only with a within window.

If your window includes a retain clause as well as a within clause then it can be helpful to use
partition by, likewise if there is a with clause. See “Defining content-dependent windows” on
page 211. For example:

from t in all Tick() partition by t.symbol within 10.0 retain 5 ...

This window will contain at most 5 Tick events for each different symbol received within the last
10 seconds.

Defining content-dependent windows

The contents of the window can also depend on the content of individual items in the stream.
Currently, the only content-dependent window operator is the with unique clause, which limits
the window to containing only the most recent item for each key value. The with unique clause
can be added to a within or a retain window by following it with:

with unique keyExpr

The keyExpr follows the same rules as a partition key expression. That is, it is an expression that
should contain at least one reference to the input item and must return a comparable type. See
“Comparable types” on page 617.

If you add a with unique clause, if there is more than one item in the window that has the same
value for the key identified by keyExpr, only the most recently received item is considered to be

Developing Apama Applications 10.11.2 211

5 Working with Streams and Stream Queries

in the window. It is important to note that the with unique clause processing happens after the
rest of the window processing. Consider the following query:

from p in pairs retain 3 with unique p.letter select sum(p.number)

If the most recent two events have the same letter, there will be only two events over which the
sum is calculated. This is illustrated in the following diagram:

to t1 2 13 t4 t5 t6

al al a,1 a,l

e b2 b2 b2

el c3 c,.3

a3 a4 ad ad

ed c,5

el .G
Simple istream Projection a1 b2] ad o5 o6 7
Simple retream Projection - - -- al b2&cd c3 ad&oh
Apgregate Projection 1 3 G L 9 i0 T

The query before the diagram corresponds to the aggregate projection. The three queries shown
here are:

®m Simple istream projection:

from p in pairs retain 3 with unique p.letter select p

® Simple rstream projection:

from p in pairs retain 3 with unique p.letter select rstream p

m Aggregate projection:

from p in pairs retain 3 with unique p.letter select sum(p.number)

As you can see, when the last three items received all have a unique letter, the query behaves like
aretain 3 window. When the last three items received do not all have a unique letter, the duplicate
that arrived firstis removed from the window. In this example, the arrival of ¢, 5 causes the removal
of c,3 even though it was one of the last three items received. In other words, the with unique
clause can cause an item to be removed from the window and the sum earlier than it would
otherwise be removed.

The difference between a partitioned window and a window that is using a with unique clause
can be described as:

® using partition by gives you the last three values for each key, and

212 Developing Apama Applications 10.11.2

5 Working with Streams and Stream Queries

® using with unique gives you one value of each key, from the last three.

You can combine both partition by and with unique if you are using different key expressions
in each clause.

Note that you cannot specify within followed by retain followed by with unique.

See also “IEEE special values in stream query expressions” on page 223.

Joining two streams

When a stream query operates over two input streams, it is referred to as a join operation. There
are two forms of join operation available in EPL:

® A cross-joinjoins every event from one stream's window with every event in the other stream's
window.

® An equi-join joins events only when they have matching keys.
Each form takes two input streams and produces a single output stream of combined items.

Join operations, particularly cross-joins, can create many more output events than input events,
not just the same or fewer.

Defining cross-joins with two from clauses

A cross-join is defined with two from clauses, one for each stream, optionally including window
definitions. A simple example of this is:

from pl in leftPairs retain 2
from p2 in rightPairs retain 2
select sum(pl.num * p2.num);

This is illustrated in the following diagram, whose notation differs from the previous diagrams.
Here, for each time point there are two columns, one for each side of the join. The first column,
with purple events, represents the items from the first from clause and the second column, with
cyan events represents the items from the second from clause. Events in bold arrived during this
activation of the stream query and the boxes enclose the windows for each side. As in the previous
diagrams, the output is given for each of the three kinds of projections.

Developing Apama Applications 10.11.2 213

5 Working with Streams and Stream Queries

i} t1
o DI

a2

el

ad ad

a5 a,6 a6 a,6

eb a7 ar

Simple

istream — 2 - 8 15820 | 12430 14435 | 4BA GG
Projaction

Simple
retream - - - 2 - G&15 8 &20 12 & 14
Projection

Agoregate 2 a

Projection 14 49 T | 169

The query before the diagram corresponds to the aggregate projection. The three queries shown
here are:
®m Simple istream projection:
from pl in leftPairs retain 2
from p2 in rightPairs retain 2
select pl.num * p2.num

® Simple rstream projection:

from pl in leftPairs retain 2
from p2 in rightPairs retain 2
select rstream pl.num * p2.num

m Aggregate projection:

from pl in leftPairs retain 2
from p2 in rightPairs retain 2
select sum(pl.num * p2.num);

As shown in the diagram, in a cross-join whenever an item arrives in a window, it is joined to
every item in the other window to produce a separate output item for each combination.

Because the number of output items is the product of the size of the two windows, cross-joins are
normally used for joins between at least one of:

m A window of size 1.

® A stream where you have omitted the window definition.

214 Developing Apama Applications 10.11.2

5 Working with Streams and Stream Queries

If both sides of the join omit the window definition, then for output to occur an item must arrive
on each stream during the same activation of the query.

A more concrete example can be seen in the Statistical Arbitrage demo (available from the Welcome
page), which includes the following statement:
spreads :=
from a in all com.apama.demo.marketdata.Depth(symbol=order.Instrument_1)
retain 1
from b in all com.apama.demo.marketdata.Depth(symbol=order.Instrument_2)

retain 1
select (a.midPrices[0] - b.midPrices[0]);

This query generates the spread between the latest prices for the two identified stocks. In each
from clause, the window contains one item. Whenever a new item arrives in one window, the
query executes the calculation defined in the select clause and outputs the result.

To generate a running mean and a standard deviation for this spread value, you can define the
following query:

stream<MeanSD> averages := from s in spreads within 20.0
select MeansSD(mean(s),stddev(s));

Then, to obtain all three current values for the spread, the mean and the standard deviation, you
can perform a join between the spreads stream and the averages stream:
stream<SpreadMeanSD> all := from s in spreads

from a in averages
select SpreadMeansSD(s, a.mean, a.stddev);

This query outputs a result only when there is an item currently in both spreads and averages.

In a cross-join, you cannot specify more than two from clauses.

CAUTION:

Be aware that cross-joins have the potential to generate a great quantity of output. Itis preferable
to use cross-joins only where the window size/duration of any window involved in the cross-join
is small. For example, putting 8000 events through a 100x100 cross-join produces 1.6 million
output events. You cannot specify a cross-join in a query that contains an unbounded window.

Defining equi-joins with the join clause

An equi-join has a key expression for each of the two streams that are being joined. Two items are
joined into an output item only if the values of their key expressions are equal. The full syntax for
an equi-join, consisting of a from clause followed by a join clause, is:

from itemIdentifierl in streamExprl [windowDefinitionl]

join itemIdentifier2 in streamExpr2 [windowDefinition2]
on joinKeyExprl equals joinKeyExpr2

As with the partition and unique key expressions, each join key expression must return a
comparable type (see “Comparable types” on page 617. Also, joinKeyExpr1 mustinclude a reference
to itemIdentifierl and joinKeyExpr2 must include a reference to itemIdentifier2. Eachjoin key
may not refer to the item from the other stream. An example of an equi-join is:

Developing Apama Applications 10.11.2 215

5 Working with Streams and Stream Queries

from pl in leftPairs retain 2
join p2 1in rightPairs retain 2
on pl.letter equals p2.letter
select sum(pl.num * p2.num);

This is illustrated in the following diagram:

(=]

e

t0 t1
0] I

83

es

el

Simple
istraarm - 2 -]
Projection

Simple
rstream - - - 2
Projection

Aggregate 2
Projection

2 t3
a1
.) ‘lI [_]

=g
(%]

4 t5
a4
a6

15 12

- 15

23 20

6 i7
a,b a,6
a7 =
14 -
8 12 & 14
26]

The query before the diagram corresponds to the aggregate projection. The three queries shown

here are:

® Simple istream projection:

from pl in leftPairs retain 2
join p2 1in rightPairs retain 2
on pl.letter equals p2.letter
select pl.num * p2.num

® Simple rstream projection:

from pl in leftPairs retain 2
join p2 in rightPairs retain 2
on pl.letter equals p2.letter
select rstream pl.num * p2.num

m Aggregate projection:

from pl in leftPairs retain 2
join p2 1in rightPairs retain 2
on pl.letter equals p2.letter
select sum(pl.num * p2.num);

216

Developing Apama Applications 10.11.2

5 Working with Streams and Stream Queries

This diagram shows the input that was used in the cross-join example, but with the join changed
to be an equi-join. As you can see, only the items with matching letters appear in the output. The
first event on the right side of the join has the same letter as the event on the left, so an output is
produced as before. When the second event arrives on the left, however, no output is produced,
because the letter does not match the other side. When a b event arrives on the right side of the
join, that is joined with the b event on the left.

Finally, at the end of the table you can see that the join is empty because none of the events on the
left match any of the events on the right.

Here is a more concrete example of an equi-join:

from r in priceRequest
join p in prices partition by p.symbol retain 1
on r.symbol equals p.symbol
select p.price

For each new stock price request, this query generates the latest price for that stock/symbol. In an
equi-join, whenever an item enters a window on one side, the correlator evaluates the join condition
to determine if the item matches any of the items in the window on the other side. The correlator
joins and outputs each matching pair when it finds one.

Typically, you want to create a derived event that is a function of the events on both sides of the
join operation. Here is another example:

from latest in latestSensorReadings
join average in averageSensorReadings
on latest.sensorId equals average.sensorId
select SensorAlert(latest.sensorId, latest.value, average.mean) as alert{
send alert to "output";

}

This query joins a stream of the most recent readings from all the sensors with a stream of averages
of the same readings over some period. When a new reading appears it causes an event on the
stream of averages at the same time. This causes them to be joined to create an alert that contains
both the latest value and the latest average, which is then sent.

See also “IEEE special values in stream query expressions” on page 223.

Filtering items before projection

In a stream query, after the window definition and any join clause, you can optionally specify a
where clause to filter the items produced by the window or join. The where clause specifies an
arbitrary EPL expression and can filter items based on any criteria available to EPL. The syntax
of the where clause is as follows:

where booleanExpr

Replace booleanExpr with a Boolean expression. This expression is referred to as the where predicate.
Only those items for which the where predicate evaluates to true are passed by the filter. For
example:

from t in ticks retain 100
where t.price*t.volume>threshold

Developing Apama Applications 10.11.2 217

5 Working with Streams and Stream Queries

select mean(t.price)

To calculate the mean price, this query operates on only the items whose value (t.price * t.volume)
is greater than the specified threshold.

Performance
The filtering performed by the where clause happens after any window, with or join operations.
In some cases, it is possible to rephrase the query to improve operational efficiency. For example:

from t in ticks within 60.0
where t.price*t.volume>threshold
select mean(t.price)

This query maintains a window of Tick items. Now consider this revision:

from p 1in
(from t in ticks where t.pricext.volume>threshold select t.price)
within 60.0

select mean(p)

In the first example, the within window contains all Tick events received in the last minute. In the
second example, the where clause is before the window definition so the filtering happens before
items enter the window. Consequently, the window contains only float items for which the where
predicate is true. These types of optimization are of particular benefit in queries that include both
a where clause and a join operation (equi-join or cross-join). However, care must be taken when
refactoring queries, particularly when size-based windows are involved. For example, consider
the two queries below:

from t in ticks retain 100 where t.pricext.volume>threshold
select mean(t.price)

from p 1in
(from t in ticks where t.price*xt.volume>threshold select t.price)
retain 100 select mean(p)

These queries are not equivalent. The first query generates the mean of a subset of the last 100
items. The where predicate evaluated to true for only the items in the subset. The second query
generates the mean of the last 100 items for which the where predicate evaluated to true.

Generating query results

The last component of a stream is the required projection definition, which specifies how to generate
items for the query's output stream. A projection definition has the following syntax:

[group by groupByExpr[, groupByExpr]...] [having havingExpr]
select [rstream] selectExpr

Syntax Element Description

groupByExpr Each groupByExpr is an expression that returns a value of a
comparable type. These expressions form the group key, which
determines which group each output item is a part of. Any

218 Developing Apama Applications 10.11.2

5 Working with Streams and Stream Queries

Syntax Element

Description

havingExpr

selectExpr

aggregate functions in the having or select expression operate
over each group separately. See “Grouping output items” on
page 220.

The havingExpr expression filters output items. See “Filtering items
in projections” on page 221.

The value you specify for selectExpr defines the items that are the
result of the query. The correlator evaluates selectExpr to generate
each item that appears in the query's output stream. The type of
selectExpr identifies the type of the query's output stream.

A projection can be one of the following kinds:

® A simple projection does not specify any aggregate functions, nor does it specify a group by or
having clause. A simple projection can be a simple istream projection or a simple rstream

projection.

® An aggregate projection specifies at least one aggregate function across the having and select

expressions.

You can specify a group by clause as part of an aggregate projection. If there is a group by
clause, the group key must be one or more expressions that take the input event and return a
value of a comparable type.

You cannot specify rstreamin an aggregate projection.

The following table describes the kinds of expressions that can appear in the select expression
for each type of projection. In more complex expressions, the rules apply similarly to each
sub-expression within that expression.

Kind of Valid in Description Example
Expression Projections
Non-item Simple and An external variable, select currentTime;
expression aggregate constant, or method

call. It does not refer to

any of the input items.
Item Simple A reference to the input select a.qd;
expression item or a non-aggregate

expression that select sqrt(a.x)*5.0/a.y

contains at least one
reference to the input
item.

Developing Apama Applications 10.11.2 219

5 Working with Streams and Stream Queries

Kind of Valid in Description Example
Expression Projections

Group key Aggregate An expression that group by a.i/10 select
expression returns one of the (a.i/10)*mean(a.x);
group keys can also
occur in the projection.

Aggregate Aggregate An expression that select mean(a.i);
function contains at least one
expression aggregate function.

Arguments to the

aggregate function can

include item

expressions.

Note:

An expression might not be syntactically equivalent to a group by expression even though it
might appear to be equivalent. For example, if the group by expression is a.i*16, you cannot
specify 10*a. 1 as an equivalent expression. An equivalent group by expression must contain
the exact sub-expression specified in the group by clause.

Aggregating items in projections

An aggregate function calculates a single value over a window. If a select expression contains
any aggregate functions, then references to the input item can appear only in the arguments to
those aggregate functions. Any EPL expression can appear in the arguments to the function, but
other aggregate functions may not. EPL provides several built-in aggregate functions and you can
define additional ones. See “Defining custom aggregate functions” on page 223 and “Built-in
aggregate functions” on page 666.

Grouping output items

In a select clause, when you do not specify a group by clause any aggregate functions in the
projection operate on all values in the window. This is true even if you partitioned the window.
To group the items in the window into one or more separate groups and to calculate an aggregate
value for each group of items, use the group by clause. The syntax of the group by clause is as
follows:

group by groupByExpr[, groupByExpr]...

Each groupByExpr is an expression that returns a value of a comparable type. See “Comparable
types” on page 617.

These expressions form the group key, which determines which group each output item is a part
of. Any aggregate functions in the select expression operate over each group separately.

220 Developing Apama Applications 10.11.2

5 Working with Streams and Stream Queries

In an aggregate projection, you can refer to any group key expressions anywhere in the select
expression. However, you can refer to a query input item only in an aggregate function argument.
For example:

from t in all Tick() within 30.0
group by t.symbol select TickAverage(t.symbol, mean(t.price));

Whenever a lot arrives, this query updates one or more groups. Every group that is updated
outputs a TickAverage event, and all TickAverage events are in the same lot. Each TickAverage
event contains the symbol and the average price for that symbol over the last thirty seconds. If a
group is not updated, it does not output a TickAverage event.

You typically use a group by clause in a stream query in conjunction with a partition by clause.
In the following example, the window contains up to 10 events for each stock symbol. The aggregate
projection calculates the average price separately for each symbol and each average is based on
up to 10 events:

from t in ticks partition by t.symbol retain 10
group by t.symbol select mean(t.price);

Obtaining the query's remove stream (rstream)

For each query, there are items that have been added to the window in a given query activation
and items that have been removed (they were previously in the window, but are no longer in the
window). By default, a simple, non-aggregate projection returns the items that have been added
to the window. This is the insert stream (istream). To obtain the items that have been removed
from the window, add the rstream keyword to the select clause.

For aggregate projections, obtaining the remove stream is not meaningful, and therefore the rstream
keyword is not allowed in aggregate projections.

For examples of specifying rstream, see “Defining time-based windows” on page 203, “Defining
size-based windows” on page 204, “Defining cross-joins with two from clauses” on page 213 and
“Defining equi-joins with the join clause” on page 215.

When you specify retain all, you cannot specify rstream.

Filtering items in projections

In a stream query, as part of an aggregate projection definition, you can optionally specify a having
clause to filter the items produced by the projection. The having clause specifies an arbitrary EPL
expression and can filter items based on any criteria available to EPL. The syntax of the having
clause is as follows:

having booleanExpr

Replace booleanExpr with a Boolean expression. This expression is referred to as the having
predicate. The having predicate is evaluated for each lot that arrives. When the having predicate
evaluates to false, the projection does not generate output.

Unlike the where clause, the having clause

m [s part of the projection

Developing Apama Applications 10.11.2 221

5 Working with Streams and Stream Queries

= Filters the output of the projection rather than what comes into the projection
m Cannot refer to individual items
m Can refer only to the group key or aggregates

A having clause can only be in an aggregate projection; it cannot be in a simple projection. Each
aggregate projection must contain at least one aggregate in a having clause or in the select clause.
Values for aggregates, whether in having expressions or select expressions, are always calculated
over the same window(s). See “Grouping output items” on page 220.

For example:

from t in all Temperature() within 60.0
having count() > 10
select mean(t.value)

This query calculates a rolling average of temperatures over the last minute. In this stream query,
the having clause permits the average to be output only when it is a reliable measure. The count()
aggregate function ensures that there are sufficient measurements (at least 10) in the previous 60
seconds to compensate for any noise or one-off errors in the readings.

Because the filtering occurs after the select expression has been processed, the average is still
being calculated invisibly in the background, and can be output the very moment the measurement
passes the reliability criterion. In the previous example, this means that after ten items have arrived,
the average of all values in the last minute is output.

Filtering grouped aggregate projections

If you specify the group by clause, the having clause operates separately on each group, just as the
select clause operates separately on each group. For example, the following code changes the
previous code so that it outputs a reliable rolling average for each zone:

from t in all Temperature() within 60.0
group by t.zone
having count() > 10
select ZoneAverage(t.zone, mean(t.value))

Just as a distinct mean is output for each group (each zone), the criterion for the having expression
are applied separately to each group. A rolling average for a zone is output only when count() >
10 is true for that zone.

Performance

It is possible for the stream network to avoid some calculations in a select clause when the having
clause evaluates to false. Since maintaining aggregates can be expensive, this can be a useful
optimization. When you know that a having clause can often evaluate to false, you can obtain
better performance by specifying a having clause in the stream query as opposed to specifying a
query like this:

from t in all Ticks(symbol="APMA") within 60.0 * 10.0

select MeanStddev(mean(t.value), stddev(t.value)) as avg_sd {
if(shouldOutput()) {

222 Developing Apama Applications 10.11.2

5 Working with Streams and Stream Queries

send avg_sd to "output";

}

This query computes a rolling average and standard deviation over the last ten minutes of a stock,
and sends them to a dashboard or similar. Optionally, the output feed that sends out the rolling
average and standard deviation can be turned off, and this is indicated by the return value of the
shouldoutput() action. However, even when the output is turned off, Tick events still come in
and the stream network still calculates the rolling average and standard deviation.

You can rewrite the code such that turning off the output terminates the query and turning on the
output restarts the query. This option loses the state of the window and introduces a 10-minute
lag before accurate output is available. A better option is to add a having clause so that turning
off the output removes the performance penalty without losing state. For example:

from t in all Ticks(symbols="APMA") within 60.0 * 10.0
having shouldOutput()
select AvgStddev(mean(t.value), stddev(t.value)) as avg_sd {
send avg_sd to "output";

3

The mean() and stddev () aggregates continue to accumulate state when shouldoutput() returns
false, but they do not fully calculate the rolling average and standard deviation for each incoming
item.

IEEE special values in stream query expressions

The following information about IEEE special values applies to the following expressions:
® The key expression in a with unique clause

m A partition by expression

m The expressions that define the conditions in a join clause

m A group by expression

If one of these expressions is a decimal or float value, or a container that involves a decimal or
float value, and the decimal or float value is an IEEE special value, then the following applies:

® NaN — This value is illegal as all or part of an expression and terminates the monitor instance.

m Positive/negative infinity — These values are legal and all positive infinities are treated as
equal as are all negative infinities.

Defining custom aggregate functions

EPL provides a number of commonly used aggregate functions that you can specify in the select
clause of a query. See “Aggregating items in projections” on page 220. If none of these functions
perform the operation you need, you can define a custom aggregate function. The format for
defining a custom aggregate function is as follows:

aggregate [bounded|unbounded] aggregateName ([arglist])

Developing Apama Applications 10.11.2 223

5 Working with Streams and Stream Queries

returns retType { aggregateBody }

Element

Description

bounded | unbounded

aggregateName

arglist

retType

aggregateBody

Specify bounded when you are defining a custom aggregate
function that will work with only a bounded window. That
is, the query cannot specify retain all.

Specity unbounded when you are defining a custom
aggregate function that will work with only an unbounded
window. That is, the query must specify retain all.

Do not specify either bounded or unbounded when you are
defining a custom aggregate function that will work with
either a bounded or an unbounded window.

If you do not specify bounded, you must define the custom
aggregate function so that it can handle a window that never
removes items. The function should not consume memory
per item in the window.

Specify a name for your aggregate function. This is the name
you will specify when you call the function in a select
clause.

For details about the characters you can specity, see
“Identifiers” on page 711.

Optionally, specify one or more comma-separated
type/name pairs. Each pair indicates the type and the name
of an argument that you are passing to the function. For
exanlple,(float price, integer quantity).

Specify any EPL type. This is the type of the value that your
function returns.

The body of a custom aggregate function is similar to an
event body. It can contain fields that are specific to one
instance of the custom aggregate function and actions to
operate on the state. The init(), add(), remove() and
value() actions are special. They define how stream queries
interact with custom aggregate functions.

You define custom aggregate functions outside of an event or a monitor, and the function's scope
is the package in which you declare it. To use custom aggregate functions in other packages, specify
the function's fully-qualified name, for example:

from a in all A() select com.myCorporation.custom.myCustomAggregate(a)

Alternatively, you can specify a using statement. For example, suppose you define the
myCustomAggregate () function in the com.myCorporation.custom package. To use that function

224

Developing Apama Applications 10.11.2

5 Working with Streams and Stream Queries

inside another package, insert a statement such as the following in the file that contains the monitor
in which you want to use the function:

using com.myCorporation.custom.myCustomAggregate;

Insert the using statement after the optional package declaration, but before any other declarations.
You can then simply specify the function name. For example:

from a in all A() select myCustomAggregate(a)

Be sure to inject the file that contains the function definition before you inject the files that contain
monitors that use the function.

See also “Names” on page 717.

Example of defining a custom aggregate function

The following example shows the definition of a custom aggregate function that returns the
weighted standard deviation of the input values.

aggregate bounded wstddev(float x, float w) returns float {
// 1lst argument 1is the value, 2nd 1is the weight.
float sO;
float si;
float s2;
action add(float x, float w) {
if (w != 0.0) {

SO = sO + w;
sl := sl + wxx;
S2 = S2 + WkX*X;

}
+

action remove(float x, float w) {
if (w !'= 0.0) {

sO = sO - w;
sl := sl - wxx;
S2 = S2 — WXX*X;

}
b

action value() returns float {
if (s@ != 0.0) { return ((s2 - sl*sl/s0)/s0).sqrt(); 1}
else { return float.NAN; }

}

Defining actions in custom aggregate functions

Certain actions in a custom aggregate function have special meanings, and you must define them
as follows:

® init() — Theinit() actionis optional. If a custom aggregate function defines an init () action,
it must take no arguments and must not return a value. The correlator executes the init()
action once for each new aggregate function instance it creates in a stream query.

Developing Apama Applications 10.11.2 225

5 Working with Streams and Stream Queries

® add() — A custom aggregate function must define an add () action. The add () action must take
the same ordered set of arguments that are specified in the custom aggregate function signature.
That is, the names, types, and order of the arguments must all be the same. The correlator
executes the add () action once for each item added to the set of items that the aggregate function
is operating on.

® remove() — A bounded aggregate function must define a remove () action. An unbounded
aggregate function must not define a remove () action. If you do not specify either bounded or
unbounded, the remove () action is optional. The remove () action must take the same ordered
set of arguments as the add () action and must not return a value. The correlator executes the
remove () action once for each item that leaves the set of items that the aggregate function is
operating on. The value that remove () is called with is the same value that add () was called
with.

® value() — All custom aggregate functions must define a value() action. The value() action
must take no arguments and its return type must match the return type in the aggregate
function signature. The correlator executes the value () action once per lot per aggregate
function instance and returns the current aggregate value to the query.

Custom aggregate functions can declare other actions, including actions that are executed by the
above named actions. A custom aggregate function cannot contain a field whose name is
onBeginRecovery,onConcludeRecovery,ﬁnit,add,value,orremove,eveniﬁforexanqﬂe,ﬂnecusﬁnn
aggregate function does not define a remove () action.

Overloading in custom aggregate functions

As with event types, the names of custom aggregate functions must be unique. Unlike the built-in
aggregate functions, there is no overloading, so it is not possible to declare two aggregate functions
with the same name and different parameters or two aggregate functions with different bounded
and unbounded specifiers and the same name. For example:

aggregate unbounded max(float value) returns float {...}
aggregate bounded max(float value) returns float {...}
// Error! You cannot use the same function name.

aggregate unbounded maxu(float value) returns float {...}
aggregate bounded maxb(float value) returns float {...}
// Both of these queries are correct. They have different names.

In contrast, the built-in bounded and unbounded aggregate functions are overloaded.

Distinguishing duplicate values in custom aggregate functions

Each item in a stream is considered to be unique. However, when duplicate values appear in the
set of items that a custom aggregate function operates on, it is not possible for the function to
identify the particular instance of the value. If your implementation requires being able to
distinguish between instances of duplicate values, you can accomplish this by extending the
signatures of the function's add () and remove() actions.

For example, you might see the following set of float values in a stream:

226 Developing Apama Applications 10.11.2

5 Working with Streams and Stream Queries

Each occurrence of a particular value in the stream represents an individual value, separate from
any other occurrences of that value. But when a query presents these values to a custom aggregate
function (by means of the add() and remove () actions), the value alone is not enough to identify
the particular occurrence that this value represents.

To distinguish one occurrence from another, extend the action signatures as follows:
®m The add() action can return a value, which can be of any type.

m Ifthe add() action does return a value, then the remove () action must accept, as its last argument
in addition to its standard arguments, an argument of the same type as that returned by the
add () action.

When an item is added to the aggregate, the value returned by the add() action is stored with the
item. When that item is removed from the aggregate, the same value will be passed to the remove ()
action. Thus, it is possible to distinguish between items with duplicate values by comparing the
additional data that is passed to the remove() action.

The following example shows an aggregate function that returns the entire window contents, in
order, as a sequence:

aggregate windowOf (float f) returns sequence<float> {
dictionary<integer,float> d;
integer i;
action init() { d.clear(); i := 0; }
action add(float f) returns -integer {
i 1= d+1;
d[i] := f;
return 1i;
b
action remove(float f, integer k) { d.remove(k); }
action value() returns sequence<float> { return d.values(); }

Working with lots that contain multiple items

Each time a stream query or stream listener is activated, it might be processing more than one
item at a time. Each simultaneously processed group of items is referred to as a lot. Like an auction
lot, a lot can contain just one item or it can contain a number of items. Stream listeners can be
activated once per item or once per lot. Stream queries try to process each item in a lot as if it
arrived separately. See “Behavior of stream queries with lots” on page 228 for a discussion of cases
where this is not possible.

When a lot contains multiple items, all items in the lot appear in the output stream at the same
time. However, the correlator preserves the order in which the stream query generated the items
in the lot. When that output stream is the input stream for another stream query, the subsequent
query uses the preserved order, if necessary, to determine how to process the items.

Developing Apama Applications 10.11.2 227

5 Working with Streams and Stream Queries

Stream queries that generate lots

To generate a lot that contains multiple items, a stream query must specify a simple projection or
an aggregate projection that contains a group by clause. The stream query must also either receive
lots that contain multiple items or must contain one of the following:

m A batched window.

® A timed window with the rstream keyword (this must be a simple projection, and not an
aggregate projection).

® A join of either type.

A query with a non-grouped aggregate projection never generates multiple items. It generates a
single item or nothing.

A timed window with the rstream keyword can generate lots because multiple items can have the
same timestamp. In a timed window, when items with the same timestamp expire, they all leave
the window at the same time. However, the correlator still maintains the order in which the items
were generated or received.

Behavior of stream queries with lots

This topic provides advanced information about how queries process lots that they receive on
their input streams. The information here requires a thorough understanding of streams, queries,
and the information about lots presented so far.

To understand how stream queries behave when receiving lots that contain more than one item,
consider the window content of the query before the lot is input and the window content of the
query after the lot is input. The difference between these two states determines the output of the
query. For example, consider the following queries:

// event A { float x; }

stream<A> sA := from a in all A() retain 3 every 3 select a;
stream<float> sB := from a in sA select a.x;

stream<float> sC := from a in sA select sum(a.x);

The following diagram shows the lot output by each stream on each activation of the query.

228 Developing Apama Applications 10.11.2

5 Working with Streams and Stream Queries

to t1 t2 t3 4 t5
el Af1.) A1) A1)
a2y Az
Af3.)
Ajd) A4 Al4)
AlS.) A5,
AlB.)
a0 Output -= - A1) - - A4
A2 AlS)
A3 AjE.)
sB Output - - 1. - - 4.
2 3.
3 G
sC Output - - & - - 15,

As can be seen, in the queries that contain aggregate functions, the aggregate expressions (and
projections) are evaluated, at most, once per query activation. All queries, with the exception of
those containing a group by clause, behave in this way.

Size-based windows and lots

When a size-based window is processing a lot that contains more than one item, all of the items
are processed in the window before any of the rest of the stream query is processed. None of the
intermediate states are visible to the query. This means that in the following query:

from a in sA retain 3 select sum(a.i);

if the window contains the events A(1), A(2) and A(3) and a lot containing both A(4) and A(5)
arrives, those will displace A(1) and A(2) immediately. The state of the window A(2), A(3), A(4)
will never have existed. This is more relevant when the lot contains more items than will fit in the
window. In this case, if five more events arrived in a single lot, the three events will fall out of the
window, the last three events will go into the window and the two interim events will disappear
—never having been in the window at any point.

This behavior means that care must be taken with fixed-size windows when events might be
processed in lots.

Join operations and lots

The principle of updating the state of a query in a single operation without the intermediate state
being visible is most relevant for join operations. The two diagrams that follow illustrate how a
cross-join behaves when several events arrive in a single lot.

Developing Apama Applications 10.11.2 229

5 Working with Streams and Stream Queries

In the diagrams, the items on the left side of the join are represented by the numbered items that
come in from the left side, and the items on the right side of the join are represented by the lettered
items that come in from the top. Each square in the grid can be a joined event. In both diagrams,
the results of the join before the lot arrives are mostly highlighted in blue. The items joined after
the lot arrives are mostly highlighted in teal. The relevant stream query in both examples is:
from a in sA retain 3

from b in sB retain 3
select C(a, b);

The complete set of values in the table represents all of the combinations of items from sA and
items from sB that could possibly be generated by the join when considering alternative ways of
ordering the sA and sB items arriving in the lot. In general, there is no particular ordering of the
sA and sB items that is superior (more meaningful) than all other orderings. Thus, when considering
the transitions, there is no preferred path from the initial window content to the final window
content. Hence, it is considered that the correct output for the join is achieved by taking the
difference between the initial window content and the final window content, ignoring any
intermediate states.

=B

In the first diagram, there are nine joined events before the lot arrives. These are represented by
the seven blue squares and the two orange squares. Two items, 4 and 5, arrive on sA and displace
items 1 and 2. Also, one item, d, arrives on sB. and displaces item a. The result is nine joined events
after the lot arrives, of which two were there before (represented by the two orange squares, and
seven are new, represented by the teal squares. A non-aggregating query that outputs the istream
(as given above) would return the seven new items (shown in teal). If, instead, the query was
selecting the rstream, then it would return the seven items that are no longer a result of the join
(shown in blue).

230 Developing Apama Applications 10.11.2

5 Working with Streams and Stream Queries

=B

In the second example, there are again nine joined events before the lot arrives. These are
represented by the nine blue squares. Four items, 4, 5, 6, and 7 arrive on sA and displace items 1,
2, and 3. Because this is a retain 3 window, item 4, as the oldest item in the lot, never makes it
into the window. Also, items d, e, f, and g arrive on sB, which displaces items a. b, and ¢, and again,
because it is a retain 3 window, item d never appears in the window. After the lot arrives, the
result is nine new joined events, which are represented by the teal squares.

Since there are no joined events that are present both before the lot arrives and after the lot arrives,
all nine events that were previously the result of the join would be returned by a query selecting
the remove stream of this join. The nine new events are output by the query that selects the input
stream. No events containing either 4 or d are ever visible as a result of the query, even though
both values were present on one of the inputs.

Grouped projections and lots

Suppose that a query that contains a group by clause processes a lot that contains several items.
The query generates new projected items for the groups where the state of the group after the lot
is input differs from the state of the group before the lot is input.

Stream network lifetime

After you create a stream or stream listener, it exists until one of the following happens:
= You explicitly terminate it.

m The monitor that contains the stream or stream listener terminates.

Developing Apama Applications 10.11.2 231

5 Working with Streams and Stream Queries

B You terminate another stream or stream listener in the same stream network and that causes
the stream or stream listener to terminate.

A stream or stream listener is explicitly terminated by calling the quit() method on a variable
that refers to it. Hence, to explicitly terminate a stream or stream listener, you must retain a reference
it. You can also terminate a stream or stream listener by terminating a related stream or stream
listener in the same stream network (as detailed below).

You can create a stream or stream listener that is not referenced by any variable and cannot be
terminated by quitting any other streams or stream listeners in the stream network. If this is
unintentional, then we refer to it as a stream or stream listener leak. This situation is similar to an
event listener leak (see “Avoiding listeners and monitor instances that never terminate” on page 447).
Here is an example:

action createStreamListener() returns listener {
stream <A> sA := all A();
listener 1 := from a in all A() select a.x as x { print x.toString(); }
return 1;
// error: meant to use sA in the query above

}

Although executing the code returns a listener variable that refers to the created stream listener,
it inadvertently creates an unreferenced stream (the local variable sA did refer to this stream but
is no longer in scope).

Calling quit() on a stream or stream listener in a stream network typically has side effects. A side
effect can be one of the following;:

® Termination of additional streams, stream queries, stream listeners, or stream event expressions.
m Disconnection between the terminated element and another element.

When determining which queries to terminate, the correlator uses the following rule: when, due
to another stream or query terminating, a query can no longer generate any output, it is also
terminated. For example, the following diagram shows a stream network with two stream source
templates generating input events for five queries, eventually connected to two stream listeners.
There are four stream variables pointing to the streams in the network.

232 Developing Apama Applications 10.11.2

5 Working with Streams and Stream Queries

straam 1 stream 2

Y Y

@ Chuery A Cuery B
* str&£|1n13 ; s'r&£|1n14 ---"______
vy "

Cluery C Query 0

®_______"—- stream 5 stream & -—"_______@

Cuery E

from... |
stream 7 «+— @

from

Suppose you call quit() on either ré or r7 (the stream variables on the right). The correlator
terminates the whole of the branch from Query b down. This is because, whichever stream you
quit, nothing can be generated by anything connected to those streams. stream 4, however, is also
feeding Query ¢, which can still generate output. Therefore, the rest of the network, including
Query B and both stream event expressions, remains active.

If you subsequently call quit() on r5, this will terminate the stream listener and Query ¢, which
will then terminate stream 3 and stream 4, since they are not connected to any other queries, and
also stream 1, stream 2 and both stream source templates.

The stream variables after their streams are terminated will be dummy references. Subsequent
attempts to create a query using those streams are ignored (the result is an inert stream).

Disconnection vs termination

In the example above, quitting r6 disconnects Query D from stream 4. Because stream 4 has other
stream queries using it, this disconnection does not terminate stream 4 immediately. Streams
terminate when all the queries using them have disconnected.

If you were instead to call quit() on r4, this would terminate everything on the right side of the
diagram, no matter how many queries are using stream 4. However, the stream would just be
disconnected from Query . Whether this terminates Query € depends on the state of the join in
Query C.Ifitisjoining a size-based window from stream 4, the items in the window would remain
to be joined against new items in stream 3. If it was a time-based window, then Query ¢ would
remain until everything in the window had been discarded. At that point, since nothing can ever

Developing Apama Applications 10.11.2 233

5 Working with Streams and Stream Queries

be added to that side of a join, Query C terminates, causing the rest of the network to also be
terminated.

Rules for termination of stream networks

The complete set of rules for when a part of a stream network is terminated are:
m Stream listeners:
B quit() is called on a listener variable pointing at that stream listener.
® The stream the listener is connected to is terminated.
m Streams:
® quit() is called on a stream variable pointing at that stream.
m The stream query generating the stream is terminated.
m All the stream queries using the stream are terminated.
m Stream queries:
® The stream the query generates is terminated.

m All of the streams the query uses are terminated and either the query does not define a
window or it defines a within or within...every window and there are no live items in
the window.

A live item is an item whose expiration (the item falls out of the window) can cause query
output. For example, if the only items in a timed window fail to satisfy a where clause in
the window definition, then those items cannot change query output when they expire.

If none of the items in the window are live, the query terminates when all items have fallen
out of the window. However, the query might terminate earlier if the correlator can
determine that none of the items are live and that all streams that the query uses have
terminated. Regardless of when such a query quits, there are no observable effects except
in two situations:

® The query is the only thing keeping the monitor active. That is, when the query
terminates, then the monitor's ondie() action is called.

m Calculation of the size of the window has one or more side effects.
m Stream source templates:

m The stream the stream source template generates is terminated.

Using dynamic expressions in stream queries

The expressions in stream queries can contain variables and action calls from EPL. Unlike
parameters to event templates, the correlator evaluates these expressions each time the query is

234 Developing Apama Applications 10.11.2

5 Working with Streams and Stream Queries

used and not just when it is created. This allows the behavior of the query to be altered during
program execution.

Behavior of static and dynamic expressions in stream queries

A static expression is an expression that refers to only static elements. Static elements are:
® Constants (defined with the constant keyword)

m Literal values, for example:

from a in all A() within 20.0 select sum(a.i);

® Primitive types that are local variables, for example:
integer width := 10;

from a in all A() retain width select sum(a.i);

The correlator can fully evaluate static expressions when it creates the stream query.

A dynamic expression is an expression that refers to one or more dynamic elements. In a query,
the value of a dynamic expression can change throughout the lifetime of that query. Consequently,
the correlator must re-evaluate each dynamic expression at appropriate points in the execution of
the query.

Dynamic elements are:

® Any reference type

= Any monitor global variable

® Where the stream query is created by an action on an event, the members of that event
= Any action, method or plug-in call

The correlator fully evaluates an event template in a stream source template when the correlator
creates the query. For example, consider the following two queries:

from a in all A(id=currentMatch) select a;
from a in all A() where 1id = currentMatch select aj;

During execution, if currentMatch is a global variable, a change to the value of currentMatch affects
the behavior of the second query, but it does not affect the behavior of the first query.

When to avoid dynamic expressions in stream queries

Where possible, use static expressions in preference to dynamic expressions. This allows the
compiler to optimize the query to improve performance. For example, consider the following
query:

stream<float> vwaps := from t 1in all ticks
within vwapPeriod
select wavg(t.price,t.volume);

Developing Apama Applications 10.11.2 235

5 Working with Streams and Stream Queries

When vwapPeriod is a monitor global variable whose value does not change, then it is preferable
to copy the value to a local variable first. For example:
float period := vwapPeriod;
stream<float> vwaps := from t 1in all ticks
within period
select wavg(t.price,t.volume);

Similarly, if it is known that a given action call always returns the same value, then it is preferable
to copy the result to a local variable and use this in place of the action call. For example:
float period := getVwapPeriod(symbol);
stream<float> vwaps := from t in all ticks
within period
select wavg(t.price,t.volume);

Ordering and side effects in stream queries

To determine when it is safe to use dynamic expressions in stream queries, it is important to
understand that:

® Ina query, the order in which the correlator executes the action calls is not defined. Although
the order is not defined, the correlator always executes the action calls in the same order for
a particular Apama release.

® When processing each item passed to the query, if an action call with a given set of arguments
appears multiple times within a stream query, then the number of times the correlator executes
the action is not specified. It might be equal to or less than the number of times that the action
call appears within the query. However, this number is always the same for a particular release.

® Inastream network, the order in which the correlator executes the queries is not defined except
for when the output of a query forms the input to a second query. In this case, the correlator
always executes the first query before the second. Again, in a particular release, the execution
order is always the same.

Because of these points, it is best to avoid actions with side effects in expressions executed in
stream queries. Such actions can make a program more difficult to understand and debug. Instead,
execute any such actions in stream listeners.

A method or expression that produces a value has a side effect if it modifies something or interacts
with something outside the program. This includes, but is not limited to:

® Modifying a global variable

®m Changing the value of an argument

» Calling plug-in methods

= Routing, enqueuing, emitting or sending an event
m Calling another action that has side effects

m Setting up event listeners or new streams

236 Developing Apama Applications 10.11.2

5 Working with Streams and Stream Queries

Understanding when the correlator evaluates particular

expressions

All expressions in a stream query can contain dynamic elements. To understand the behavior of
a query that specifies dynamic elements, it is necessary to know under what circumstances the
correlator re-evaluates an expression and uses the result in the query.

Using dynamic expressions in windows

A window definition can contain some or all of the following:

®m A partition key expression

m The window duration, size or both duration and size

® An every batch period or size

® The key for awith unique clause

The following table shows when the correlator evaluates each of these:

Window Definition

Description

retain n

retain n every m

within d

within d every p

The correlator evaluates n every time an item arrives on the stream.
The correlator uses the new value of n to calculate what should be
in the window.

The correlator stores incoming items until the current value of m
is satisfied. When m is satisfied, the correlator evaluates both n and
m. The correlator uses the new value of n to calculate what should
be in the window;, including the stored items. Because m is
evaluated only after it has been satisfied, meeting that condition
is always based on the old value of m.

The correlator evaluates d every time an item arrives on the stream
and every time an item is due to be removed from the window.
The correlator uses the new value of d to calculate what should be
in the window.

The correlator stores incoming items until p seconds have elapsed.
When p seconds have elapsed, the correlator evaluates p and d
only if there are any items in the window or stored. The correlator
uses the new value of d to calculate what should be in the window,
including stored events. The correlator uses the new value of p to
determine the next time the window can change.

If there are no items in the window or waiting to enter the window
then, for efficiency, the correlator does not evaluate p. When the
correlator evaluates p, it is always based on the old value of p.

Developing Apama Applications 10.11.2

237

5 Working with Streams and Stream Queries

Window Definition Description

...retain n Ifawithinorwithin every window definition also specifies retain,
the correlator evaluates n whenever the window content can
change. The correlator uses the new value of n to calculate what
should be in the window.

If the window definition specifies every, the window content can
change only when p is satisfied.

Otherwise, the window content can change when an item arrives
on the stream and when an item is due to be removed from the
window.

partition by ki[, k2]... If the window definition specifies a timed every p clause, the
correlator evaluates each partition expression when p seconds
have elapsed. Otherwise, the correlator evaluates each key
expression when an item arrives on the stream. The correlator uses
the new value of each key expression to calculate what should be
in each partition.

with unique w The correlator evaluates w once for each item whenever that item
is about to enter the window. If there is an every clause, an item
can enter the window only when m or p is satisfied. Otherwise, an
item can enter the window when it arrives on the stream.

Using dynamic expressions in equi-joins

The format of a query that contains an equi-join is as follows:

from x in sl join y 1in s2 on jl equals j2 ...

Suppose that j1 and j2 are dynamic expressions that return the left and right join keys for each
input item. The correlator evaluates these expressions once for each input item when it enters the
window. This is regardless of how many items are joined from the other side.

Using dynamic expressions in where predicates

The correlator evaluates the predicate in a where clause once for each item. This happens as soon
as a join operation produces an item, or if there is no join operation, as soon as an item enters a
window.

Using dynamic expressions in projections

In a simple projection, the correlator evaluates the select expression once for each item. The
correlator evaluates the select expression as soon as a join operation produces an item, or if there
is no join operation, as soon as an item enters a window.

238 Developing Apama Applications 10.11.2

5 Working with Streams and Stream Queries

In a simple projection, regardless of whether the select clause specifies the rstream keyword, the
correlator evaluates expressions in the projection when the items would be present on the insert
stream and the results are stored until needed for the remove stream.

In an aggregate projection, the correlator evaluates expressions in the projection when the items
would be present on the insert stream.

If an aggregate projection contains a group by clause the correlator evaluates the group key once
for each item. This happens as soon as a join operation produces an item, or if there is no join
operation, as soon as an item enters a window.

The correlator evaluates aggregate and grouped expressions in two stages. The correlator evaluates
arguments to aggregate functions once for each item as soon as it is produced by a join or if there
is no join, as soon as it arrives in the window. The correlator evaluates the rest of the aggregate
expression once for each lot.

Examples of using dynamic expressions in stream queries

Following are some examples of using dynamic elements in stream queries. These examples are
simplified, for brevity.

Example of altering query window size or period

The following code fragment shows part of a monitor that accepts requests from external entities
to monitor/generate the volume-weighted average price (VWAP) for a given symbol. After you
create a monitor like this, an external entity can, at any time, change the parameters that control
the period over which the monitor calculates the VWAP and/or the output frequency of the VWAP
events.

monitor VwapMonitor {
VwapRequestParams params;
action onload() {
on all VwapRequest() as v spawn monitorVwap(v);
// Simplified. Assumes no duplicate requests.

}
action monitorVwap (VwapRequest v) {
params := v.params;
from t in all Ticks(symbol=v.symbol)
within params.duration
every params.period
select Vwap(t.symbol,wavg(t.price,t.volume)) as vwap {
route vwap;
}
on all VwapRequestUpdate(symbol=v.symbol) as u {
params := u.params;
}
}

3

When accumulating the raw tick data to generate the VWAP price, no prescience is involved.

There is no anticipation that the window size is to be increased. Changing the within duration to
a larger value causes the window duration to increase but does not recover historic events. Hence
the effective sample duration over which the monitor calculates the VWAP will, over time (as new

Developing Apama Applications 10.11.2 239

5 Working with Streams and Stream Queries

tick items arrive), extend from the smaller setting to the larger setting. When switching from a
larger within duration to a smaller one, the change takes effectimmediately. The correlator discards
the items that are no longer in the within duration.

Example of altering a threshold

The following code fragment shows part of a monitor that accepts requests from external entities
to monitor the value of the trades for a given symbol. After you create a monitor like this, an
external entity can, at any time, change the thresholds at which the monitor recognizes the trade
as a high value trade.

monitor CountHighValueTicks {
float threshold;
action onload() {
on all CountHighValueTicksRequest() as r {spawn
monitorHighValueTicks (r);
3

// Simplified. Assumes no duplicate requests.

}
action monitorHighValueTicks(CountHighValueTicksRequest r) {
threshold := r.threshold;
stream<Tick> filtered := from t in all Tick(symbol=r.symbol)
where t.price*t.volume > threshold
select t;
from t in filtered within 60.0 every 60.0 select count() as c {
print "Count of high value trades 1in previous minute: " +
c.toString();

3
on all CountHighValueTicksRequestUpdate(symbol=r.symbol) as u {

threshold := u.threshold ; }

This example uses two queries. The first query filters out any ticks with values below the threshold.
The second query accumulates the high-value ticks received in the last minute and outputs the
count of high-value ticks in that period. This could have been written as a single query with the
filtering performed after the window operation. For example:

from t in all Ticks(symbol=v.symbol) within 60.0 every 60.0
where t.price*t.volume > threshold select count();

However this query's window contains all of the low value ticks received in the last 60 seconds,
as well as the high value ticks. This is not an optimal use of memory resources. Hence the two
query approach is preferred.

Alternatively, you can specify an embedded query to amalgamate the two queries into a single
statement:

from t in
(from t2 1in ticks where t2.pricext2.volume > threshold select t2)
within 60.0 every 60.0
select count() as ¢c { ... }

The parentheses around the embedded query are optional.

240 Developing Apama Applications 10.11.2

5 Working with Streams and Stream Queries

Example of looking up values in a dictionary

The following statement shows a query that calculates the current value of a basket of stocks based
on the most recent prices for those stocks. When using dictionaries in this way, be careful to ensure
that all values used as keys are in the dictionary. A missing key value causes a runtime error and
the correlator terminates the monitor instance. In the example, it is assumed that the prices stream
was filtered to contain prices for only the stocks in the basket.

stream<Tick> basketPrices :=
from p in prices
partition by p.symbol
retain 1
select sum(p.price x basketVolume[t.symbol]);

Example of actions and methods in dynamic expressions

Actions and methods can be considered to be dynamic elements. There are various reasons why
you might want to use actions and methods in queries:

m If you are using a particular common complex expression in several places in queries within
a monitor, it might be preferable to implement this as an action.

m If you are using a method that is implemented in a plug-in.

m Toadd protection to expressions that, if unprotected, might cause runtime errors. For example:

stream<Tick> basketPrices :=
from p in prices
partition by p.symbol
retain 1
select sum(p.price * getBasketVolume(t.symbol));

action getBasketVolume(string symbol) returns float {
if (basketVolume.hasKey(t.symbol)) {
return basketVolume[t.symbol];
1 else {
return 0.0;

}

Troubleshooting and stream query coding guidelines

This section provides high-level guidelines for writing stream query applications that implement
best practices.

Prefer on statements to from statements

Do not use streams unnecessarily. If an event expression in an on statement meets your needs, use
it. Take advantage of mixing code elements for listeners and event expressions, stream processing,
and responsive program actions, all in the same monitor.

Developing Apama Applications 10.11.2 241

5 Working with Streams and Stream Queries

Know when to spawn and when to partition

As arule, you should listen for only those events or streams that you are interested in now. Apama
applications typically define monitors that spawn to handle a new situation, for example, to
automatically manage the trading of a new large order. Each monitor instance is usually interested
in only one particular substream of a larger stream, for example, Tick events for a particular stock
rather than all Tick events.

Consequently, the common pattern is to create a new monitor instance and for that instance to set
up stream queries that process the events of interest, for example, to calculate the average price.
This is more efficient than defining a monitor that processes all events (for example, all Tick events
for all stocks), generates added-value items and then forwards these items to client monitors.
However, there are situations when the latter approach is required. You should decide which
solution approach is best in which circumstances.

Filter early to minimize resource usage

To minimize processing and memory overhead, it is preferable to filter streams as early as possible
in the processing chain or network. Filtering early can reduce the number of items processed or
retained in memory and can also reduce the size of the items held. If possible, filter items right at
the beginning of the query chain, that is, in the event template.

For example, it is preferable to rewrite this query:

from 1 in all LargeEvent()
within largeWindowPeriod
where 1.key = key
select mean(l.value);

If the key is static, rewrite it this way:

from 1 in all LargeEvent(key=key)
within largeWindowPeriod
select mean(l.value);

If the key is dynamic, rewrite it this way:

from v 1in
from 1 in all LargeEvent()
where 1l.key = key select l.value
within largeWindowPeriod select mean(v);

In the static case, the correlator filters the large event before the event gets to the window. In the
dynamic case, the embedded query filters the event before the event gets to the window in the
enclosing query. Because the select statement specifies only 1.value, the correlator discards the
rest of the event. There is no need to bring the whole event into the window.

Avoid duplication of stream source template expressions

When you are maintaining code, you might add a stream query whose streamexpr is an event
template that is already used in a query elsewhere in the same monitor. However, duplicated

242 Developing Apama Applications 10.11.2

5 Working with Streams and Stream Queries

stream source template expressions do not always produce the behavior you want. Consider the
following two code fragments:

stream<float> means := from t in all Temperature()
within 10.0
select mean(t.temperature);
from t in all Temperature()
from m in means select t-m as d {
print "Difference from mean is " + d.toString();

}

The first fragment behaves differently than this fragment:

stream<float> temperatures := all Temperature();
stream<float> means := from t in temperatures
within 10.0

select mean(t.temperature);
from t in temperatures
from m in means
select t-m as d {
print "Difference from mean is " + d.toString();

3

Of the two code fragments above, the second one has the desired behavior. The first example
creates two event listeners, one for each all Temperature() clause. Each listener matches each
incoming Temperature event, but the listeners trigger independently, one after the other. This
means that there is no time when the second query has an item in each of its source streams.
Consequently, the cross-join never produces any output.

In the second example, there is a single Temperature event listener that places matching events in
the temperatures stream. The temperatures stream is the source stream for two queries. Now both
source streams of the last query contain items at the same time and the query generates output.

Avoid using large windows where possible

In Apama, all data being processed is held in memory, including data within stream windows. If
you specify query windows that contain a large number of items or hold items for a long period
of time, the memory that the application uses necessarily increases.

A memory requirement that is more than the memory available to the application causes paging
to occur, which can decrease application throughput. Where possible, consider reducing the size
of any stream query windows by doing one or more of the following:

m Filter items to reduce the number or size of the items in the window.
m Use a complex event expression to achieve the same result.

m Use retain allinstead of specifying a within clause. See “In some cases prefer retain all to a
timed window” on page 244 for details.

Developing Apama Applications 10.11.2 243

5 Working with Streams and Stream Queries

In some cases prefer retain all to a timed window

When you specify retain allina stream query, the correlator does not retain the items indefinitely.
The correlator processes each new item when it arrives (for example, it might execute an aggregate
function) and then discards it. Consequently, queries that specify retain all use less memory
than queries that define time-based or size-based windows.

A situation that typically tempts you to define a time-based window is when you want to calculate
some aggregate values for a session. For example, a session could be from the start of a day to the
end of a day, or an incoming event could initiate a session that requires aggregated values such
as placing an order in an automated trading system.

After the session begins, interest in the aggregated values usually continues until the session ends,
for example, at the end or day or when the full volume of the placed order has been traded. In
situations such as these, use a retain all window instead of a within session window.

Prefer equi-joins to cross-joins

In a query using an equi-join, the items from the two input sets are joined based on equality of
key values. The identification of matching items is very efficient.

Cross-joins have no expressions, so it is more efficient to calculate them than equi-joins. However,
cross-joins are less preferable to equi-joins if they produce unwanted items that must subsequently
be filtered out.

Be aware that time-based windows can empty

Consider the query below:

from s in Shipment(destination="SPQ")
within 604800.0
select sum(s.qty)/count()

After creation of the query, suppose that several shipments are sent in the first week and no
shipments are sent in the second week. The value of the count () aggregate function drops to zero,
which results in an attempt to divide by zero. This terminates the monitor instance.

Be aware that fixed-size windows can overflow

Consider the following example:

stream<temperature> batchedTemperatures :=
from t in all Temperature(sensorId="SE01")
within 60.0 every 60.0 select t;

from t in batchedTemperatures
retain 5
select count() as c { print c.toString(); }

During execution of the first query, suppose that more than 5 matching events are found within
one minute. The query outputs all of the matching events as a single lot. A lot that contains more

244 Developing Apama Applications 10.11.2

5 Working with Streams and Stream Queries

than 5 items overflows the retain window in the second query. All but the most recent five items
are lost. Calculations operate on only the most recent 5 items.

Note that you are unlikely to need the query combination shown in the code example above.

Beware of accidental stream leaks

Just as it is possible to leak event listeners, it is also possible to leak streams. Suppose that you
create a stream but you do not specify the stream as input to any query. This stream still remains
in existence, keeps a monitor instance alive, and consumes resources so it is considered to be a
stream leak. A stream leak causes memory to be used and not freed. It can also cause unnecessary
computation to occur.

A stream leak can happen if you create a stream that you want to use later on in your code. To be
able to use this stream, you must assign it to a stream variable that is in scope in the location where
you want to use the stream. If the stream variable goes out of scope or you assign another stream
to that variable, the original stream still exists within the monitor instance's internal stream network,
but it is no longer accessible. For example:

® The stream variable that references the stream goes out of scope:

action streamLeakExamplel(string s) {
stream<float> prices :=
from t in all Tick(symbol=s) select t.price;
// If the elided code does not use the stream
} // a leak occurs when the prices variable goes out of scope.

® You overwrite the stream variable that refers to an unused stream:

action streamlLeakExample2(pattern<string> symbols) {
string s;
stream<float> prices;
for s in symbols {
prices := from t in all Tick(symbol=s) select t.price;
// If the elided code does not use the prices stream
// a leak occurs when you overwrite prices.

Any code that creates a stream leak is erroneous. Code that repeatedly creates unused, inaccessible
streams quickly uses up machine resources. To avoid leaking streams:

® Avoid creating streams you do not intend to use immediately.

® Quit a stream before the variable referring to it goes out of scope.

Developing Apama Applications 10.11.2 245

5 Working with Streams and Stream Queries

246 Developing Apama Applications 10.11.2

6 Defining What Happens When Matching Events
Are Found

T O 1T o R 7= U = o] [248
I B = o1 o = Tod 1 o] F- TP 252
I B o 1 o T o IRS) v L (o= Vot 110 o - TP 264
B Getting the CUIMENT TIMEiiiiiiiii e 265
B GENEIALING EVENESiuuiiitiiiuiittitiiettteeeeeeueeeeeeeeaeeeeeeaeeeseeeeeeeseesssessessssssssssssssensssesssesnnnenees 266
B Handling the @ny (Y@ ... nnnne 271
m Handling any values of different types with the switch statementcccccccceeeeeeee 274
B ASSIQNING VAIUBS ..o 275
m Defining conditional logic with the if statementcccoooeiiiiiiiiiiiiiis 275
m Defining conditional logic with the ifpresent statementcccooeviiiiiiiiiiiiiinnns 276
B DefiNiNG [0OPS ...t e e e e e e e 277
B EXCeption handling ... 278
LT o o o g o =T To I o 1] 1V [P 281
B Sample financial apPliCALIONeuuuiiiiiiiiiiiiiiiiiiereeiree e ree e 285

Developing Apama Applications 10.11.2

247

6 Defining What Happens When Matching Events Are Found

In a monitor, when the correlator detects a matching event, it triggers the action defined by the
listener for that event. This section discusses what you can specify in the triggered actions.

In a query, when a match set is found, it triggers execution of the procedural code block in the
find statement. A subset of the EPL constructs that are available in a monitor are available in a
query. See “Restrictions in queries” on page 134 to understand what is not allowed in a query.

Using variables

EPL supports the use of variables in monitors. Depending on where in the monitor you declare a
variable, that variable is global or local:

® Global. Variables declared in monitors and not inside actions or events are global variables.
Global variables are in monitor scope.

® Local. Variables declared inside actions are local variables. Local variables are in action scope.

A variable can be of any of the primitive or reference types that are listed under “Types” on page 607
in the EPL Reference.

Information about variables is presented in the topics below.

See also “Using action type variables” on page 257.

Using global variables

Variables in monitor scope are global variables; you can access a global variable throughout the
monitor. You can define global variables anywhere inside a monitor except in actions and event
definitions. For example:

monitor SimpleShareSearch {
// A monitor scope variable to store the stock received:

/1
StockTick newTick;

This declares a global variable, newT1ick, that can be used anywhere within the SimpleShareSearch
monitor including within any of its actions.

The order does not matter. In the following example, f is a global variable:

monitor Test {

action onload() {
print getZ().toString();

}

action getZ() returns integer {
return f.z;

}

Foo f;

event Foo{
integer z;

3

248 Developing Apama Applications 10.11.2

6 Defining What Happens When Matching Events Are Found

If you do not explicitly initialize the value of a global variable, the correlator automatically assigns
a value to that global variable. See also “Default values for types” on page 610.

Using local variables

A variable that you declare inside an action is a local variable. You must declare a local variable
(specifying its type) and initialize that variable before you can use it.

Although the correlator automatically initializes global variables that were not explicitly assigned
a value, the correlator does not do this for local variables. For local variables, you must explicitly
assign a value before you can use the variable.

If you try to inject an EPL file that declares a local variable and you have not initialized the value
of that local variable before you try to use it, the correlator terminates injection of that file and
generates a message such as the following: Local variable 'var2' might not have been
initialized. EPL requires explicit assignment of values to local variables as a way of achieving
the best performance.

When you declare a variable in an action, you can use that variable only in that action. You can
declare a variable anywhere in an action, but you can use it only after you declare it and initialize
it.

For example,

action anAction(integer a) returns integer {
integer 1i;
integer j;
i 1= 10
j o= a;
return j + 1i;

}

You can use the local action variables, i and j in the action, anAction(), after you initialize them.
The following generates an error:

action anAction2(integer a) returns integer {

i := 10; // error, reference to undeclared variable i
j := a; // error, reference to undeclared variable j
integer 1i;

integer j;

i = 23

j = 5;

return j + 1i;

3

Suppose that an action scope variable has the same name as a monitor scope variable. Within that
action, after declaration of the action scope variable, any references to the variable resolve to the
action scope variable. In other words, a local action variable always hides a global variable of the
same name.

Consider again the definition for anAction2() in the previous code fragment, but with i and j
variables declared in the monitor scope. The first use of i and j resolves successfully to the values
of the i and j monitor scope variables. The second use occurs after the local declaration and

Developing Apama Applications 10.11.2 249

6 Defining What Happens When Matching Events Are Found

initialization of i and j. That use resolves to the local (within the action) occurrence. This results
in the following values:

m Global variable 1 is set to 10.

m Local variable 1 is set to 2.

m Global variable j is set to the value of a.
m Local variable j is set to 5.

Since you must explicitly initialize local variables before you can use them, the following example
is invalid because j and 1 are not initialized to any value before they are used.

action anAction3(integer a) returns integer {
integer 1i;
integer j;
return j + i; // error, i and j were not initialised

3

It is possible to initialize a variable on the same line as its declaration, as follows:

action anAction4(integer a) returns integer {
integer i := 10;
integer j := a;
return j + 1;

}

It is also possible to initialize a local variable by coassigning to it in an event listener. For example,
the following is correct:

action onload() {
on all Event() as e {
log e.toString();
}
b

You can also initialize a local variable by coassigning to it from a stream. For example:

action onload() {
from x in all X() select x.f as f {
log f.toString();
}

Using variables in listener actions

Suppose you use a local variable in a listener action, as in the following example:

monitor MyMonitor {
integer x;

action onload() {
integer y := 10;
on all StockTick(*,*x) {
log x.toString();

250 Developing Apama Applications 10.11.2

6 Defining What Happens When Matching Events Are Found

log y.toString();

}
y i= 5
}
}

In this example, x is a global variable, and y is a local variable. There are references to both variables
in the listener action.

A reference to a global variable in a listener action is the same as a reference to a global variable
anywhere else in the monitor. However, a reference to a local variable in a listener action causes
the correlator to retain a copy of the local variable for use when the event listener triggers. The
value held by this copy is the value that the local variable has when the correlator instantiates the
event listener.

When the event listener triggers the correlator executes the listener action. This will be at some
point in the future, and after the rest of the body of the enclosing action has been executed. Since
the action has already been executed, any of the original local variables no longer exist. This is
why the correlator retains a copy of the local variable to make available to the listener action when
it is executed.

In the example above, when the event listener triggers and the correlator executes the listener
action

® x has a value of o, which is the value that the correlator automatically assigns
m vy has a value of 10, which is the value it was set to when the event listener was instantiated

The value of y that the correlator retained when it instantiated the event listener is not affected by
the subsequent statement (after the on statement) that sets the value of y to 5.

Note:

For reference types (see also “Reference types” on page 608), retaining as a copy of the variable
really means only retaining as a copy of its reference. Hence, if any code changes the contents
of the referenced object(s) between event listener creation and event listener triggering, then
this does affect the values used by the triggered event listener.

Specifying named constant values

In a monitor or in an event type definition, you can specify a named boolean, decimal, float,
integer, or string value as constant. The format for doing this is as follows:

constant type name := literal;
Element Description
type Specify boolean, decimal, float, integer, or string. This is the type of the

constant value.

name Specify an identifier for the constant. This name must be unique within its
scope — monitor, event, or action.

Developing Apama Applications 10.11.2 251

6 Defining What Happens When Matching Events Are Found

Element Description

literal Specify the value of the constant. The type of the value must be the type that
you specify for the constant.

Benefits of using constants include:

= Using a named constant can often be better than using a literal because it lets you define that
constant in a single place. There is no chance of one instance becoming incorrect when the
value is changed elsewhere. An alternative to using a constant would be to define a variable
to contain the value. The disadvantage with this approach is that someone could accidentally
assign a new value to the "constant", which would cause errors.

® A named constant can make code easier to read because the name can be meaningful in a way
that a magic number, such as 42, is not.

m Constants appear in memory once. For example, spawning multiple copies of a monitor that
contains a constant does not consume memory to store extra copies of the constant. A
non-constant variable takes up space in memory for every copy of the event or monitor in the
correlator.

You can refer to a declared constant in any code in the event or monitor being defined. When you
define a constant in an event you can refer to it from outside the event by qualifying the name of
the constant with the event name, for example, MyEvent.myConstant.

Following is an example of specifying and using a constant:

event Paper {
constant float GOLDEN := 1.61803398874;
float width;
action getlLength() {
return GOLDEN * width;
}
action getWidth() {
return width;
}
}

You cannot declare a constant in an action.

Defining actions

Actions are similar to procedures.

A monitor can define any number of actions. Finding an event, or pattern of events, of interest
can trigger an action.

A query can define any number of actions. If defined, actions must be after the find statement.
Expressions in the find pattern or find block can invoke the actions defined in that query.

You can also trigger an action by invoking it from inside another action. You can also declare an
action as part of an event type definition, and then call that action on an instance of that event.

252 Developing Apama Applications 10.11.2

6 Defining What Happens When Matching Events Are Found

The topics below provide information about defining actions.

Format for defining actions

The format for defining an action that takes no parameters and returns no value is as follows:

action actionName() {
// do something
}

Optionally, an action can do either one or both of the following:
® Accept parameters
® Return a value

The format for defining an action that accepts parameters and returns a value is as follows:

action actionName (typel paraml, type2 param2, ...) returns type3 {
// do something
return type3_instance;

}

For example:

action complexAction(integer i, float f) returns string {
// do something
return "Hello";

}

An action that accepts input parameters specifies a list of parameter types and corresponding
names in parentheses after the action name. Parentheses always follow the action name, in
declarations and calls, whether or not there are any parameters. Parameters can be of any valid
EPL type. The correlator passes primitive types by value and passes complex types by reference.
EPL types and their properties are described in the API Reference for EPL (ApamaDoc).

When an action returns a value, it must specify the returns keyword followed by the type of value
to be returned. In the body of the action, there must be a return statement that specifies a value
of the type to be returned. This can be a literal or any variable of the same type as declared in the
action definition.

An action can have any name that is not a reserved keyword. Actions with the names onload(),
onunload() and ondie() can only appear once and are treated specially as already described in
“About monitor contents” on page 34. It is an EPL convention to specify action names with an
initial lowercase letter, and a capital for each subsequent word in the action name.

Actions and global variables must not have the same names. See “Using action type variables” on
page 257. If you have any code that uses the same identifier for an action and a global variable,
you must change it.

Developing Apama Applications 10.11.2 253

6 Defining What Happens When Matching Events Are Found

Invoking an action from another action

To invoke an action from another action, specify the action name followed by parentheses. If the
action takes one or more input parameters, specify values for the parameters inside the parentheses.
For example:

// First action:

action myActionl() {
myAction2() ;

}

// Second action that is called by the first action:
action myAction2() {

/.
b

In the example above, myAction1() calls myAction2() from inside the myAction1() declaration
block. myAction2() takes no parameters and does not return a value.

When an action returns a value, you can invoke that action only from within an expression. You
cannot specify a standalone statement that invokes an action that returns a value. Discarding the
return value is illegal in EPL. For example:

action myAction3() returns string {
return "Hello";

3

action myAction4() {
string response;
response := myAction3(); // Valid
myAction3(); // Invalid

Consider this extended example:

// First action:

//

action myActionl() {
myAction2();

3

// Second action that is called by the first action:
//
action myAction2() {

string answerl, answer2;

myAction5(5, 10.5);

on anEvent() myAction5(5, 10.5);

answerl := myAction6(256, 1423.2);

answer2 := myAction7();

3
// Action that is called by myAction2:

//
action myAction5 (integer i, float f) {

}

254 Developing Apama Applications 10.11.2

6 Defining What Happens When Matching Events Are Found

// Another action that is called by myAction2:
//

action myAction6 (integer i, float f) returns string {
return "Hello";

}
// Yet another action that 1is called by myAction2:
//

action myAction7() returns string {
return "Hello again'";

3

myAction2() takes no parameters and does not return a value.
myAction5() accepts input parameters. You can invoke it from a standalone statement:

myAction5(5, 10.5);

You can also invoke it as a listener action:

on anEvent() myAction5(5, 10.5);

myAction6 () accepts input parameters and returns a value. You can invoke myAction6 () only from
within an expression:

answerl := myAction6(256, 1423.2);

myAction7 () returns a value but does not take any parameters. You can invoke it only from within
an expression:

answer2 := myAction7();

Specifying actions in event definitions

You can specify an action in an event type definition. This lets you call that action on an instance
of the event, just as you would call a built-in method on some other type, such as calling the
toString() method on the integer type.

When you define an action in an event, it behaves almost the same way as an action in a monitor
or query. For example, an action in an event can

® Set up event or stream listeners (only in a monitor)
m (Call other actions within that event
m Access members of that event

In a monitor, but not in a query, an action in an event has an implicit self argument that refers to
the event instance that the action was called on. The self argument behaves in the same way as
the this argument in C++ or Java.

Example

For example, consider the following event type definition:

Developing Apama Applications 10.11.2 255

6 Defining What Happens When Matching Events Are Found

event Circle {
action area() returns float {
return 3.14159 x radius * radius;

}

action circumference() returns float {
return 2.0 x 3.14159 * self.radius;

}

float radius;

3

The specifications here of radius and self.radius are equivalent.

You can then write code that looks like this:

Circle c := Circle(4.0);
print "Circle area = " + c.area().toString();
print "Circle circumference = " + c.circumference().toString();

Of course, the output is as follows:

Circle area = 50.26544
Circle circumference = 25.13272

Behavior

The correlator never executes actions in events automatically. In an event, if you define an onload ()
action, the correlator does not treat it specially as it does when you define the onload() action in
a monitor.

When you call an action in an event, the correlator executes the action in the monitor or query
instance in which the call was made. In a monitor, if the action sets up any listeners, these listeners
are in the context of this monitor instance. If this monitor instance dies, the listeners also die.

You can use plug-ins from within event actions. In the event definition, specify the import statement
to give the plug-in an alias within the event. Specify the import statement in the same way that
you specify it for a monitor or query. You use the plug-in alias to call functions on the plug-in in
the same way as you use it for a monitor or query.

When you define an event, there are no ordering restrictions for the definition of fields, imports,
or actions. You can define them in any order.

Spawning

From an action within an event, you can spawn to an action in the same event. The correlator
spawns a monitor instance and executes the specified action on the event instance in the new
monitor instance.

Note:
In a query, spawn and spawn. . . to sta