
Developing Apama Applications

Version 10.11.2

January 2022

This document applies to Apama 10.11.2 and to all subsequent releases.

Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 2013-2022 Software AG, Darmstadt, Germany and/or Software AG USA, Inc., Reston, VA, USA, and/or its subsidiaries
and/or its affiliates and/or their licensors.

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or
Software AGUSA Inc. and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product namesmentioned
herein may be trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
https://softwareag.com/licenses/.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product
documentation, located at https://softwareag.com/licenses/ and/or in the root installation directory of the licensed product(s).

This software may include portions of third-party products. For third-party copyright notices, license terms, additional rights or
restrictions, please refer to "License Texts, Copyright Notices and Disclaimers of Third Party Products". For certain specific third-party
license restrictions, please refer to section E of the Legal Notices available under "License Terms and Conditions for Use of Software
AG Products / Copyright and Trademark Notices of Software AG Products". These documents are part of the product documentation,
located at https://softwareag.com/licenses/ and/or in the root installation directory of the licensed product(s).

Document ID: PAM-DEV-10112-20220131

https://www.softwareag.com/licenses/default.html
https://www.softwareag.com/licenses/default.html
https://www.softwareag.com/licenses/default.html

Table of Contents

About this Guide..11
Documentation roadmap..12
Online Information and Support...13
Data Protection...14

I Developing Apama Applications in EPL..15
1 Getting Started with Apama EPL..17

Introduction to Apama Event Processing Language..18
How EPL applications compare to applications in other languages...............................19
About dynamic compilation in the correlator...20
About the Apama development environment in Software AG Designer.......................20
Terminology..21
Defining event types...26
Working with events...29

2 Defining Monitors...33
About monitor contents..34
Example of a simple monitor...37
Spawning monitor instances..39
Communication among monitor instances..45
About service monitors...52
Adding predefined annotations..52
Subscribing to channels..54
Adding service monitor bundles to your project..57
Utilities for operating on monitors..57

3 Defining Queries..59
Introduction to queries...60
Format of query definitions..68
Defining metadata in a query..70
Partitioning queries...71
Defining query input...77
Finding and acting on event patterns...103
Implementing parameterized queries..129
Restrictions in queries...134
Best practices for defining queries..135
Testing query execution..138
Communication between monitors and queries...140

4 Defining Event Listeners..143
About event expressions and event templates..144
Specifying the on statement...147
Using a stream source template to find events of interest...148
Defining event expressions with one event template...148
Terminating and changing event listeners...153
Specifying multiple event listeners...155
Listening for events that do not match...156
Specifying completion event listeners..157

Developing Apama Applications 10.11.2 iii

Improving performance by ignoring some fields in matching events...........................159
Defining event listeners for patterns of events..160
Specifying and/or/not logic in event listeners...162
How the correlator executes event listeners..168
Defining event listeners with temporal constraints..175
Understanding time in the correlator...180
Out of band connection notifications..186

5 Working with Streams and Stream Queries..189
Introduction to streams and stream networks..190
Defining streams..191
Using output from streams..192
Defining stream queries..195
Defining custom aggregate functions...223
Working with lots that contain multiple items..227
Stream network lifetime..231
Using dynamic expressions in stream queries..234
Troubleshooting and stream query coding guidelines...241

6 Defining What Happens When Matching Events Are Found..247
Using variables...248
Defining actions...252
Defining static actions...264
Getting the current time..265
Generating events..266
Handling the any type..271
Handling any values of different types with the switch statement...............................274
Assigning values..275
Defining conditional logic with the if statement...275
Defining conditional logic with the ifpresent statement..276
Defining loops..277
Exception handling..278
Logging and printing..281
Sample financial application..285

7 Implementing Parallel Processing...287
Introduction to contexts..288
Creating contexts...290
How many contexts can you create?...291
Using channels to communicate between contexts..291
Obtaining context references..292
Spawning to contexts..293
Channels and contexts..294
Sending an event to a channel...295
Sending an event to a particular context..296
Sending an event to a sequence of contexts...297
Common use cases for contexts...299
Samples for implementing contexts..299
Contexts and correlator determinism...306
How contexts affect other parts of your Apama application..306

8 Using Correlator Persistence..309
Description of state that can be persistent...310
When persistence is useful...311

iv Developing Apama Applications 10.11.2

Table of Contents

When non-persistent monitors are useful..311
How the correlator persists state...312
Enabling correlator persistence...313
How the correlator recovers state..316
Designing applications for persistence-enabled correlators...318
Upgrading monitors in a persistence-enabled correlator..319
Sample code for persistence applications..320
Requesting snapshots from EPL..322
Developing persistence applications..322
Backing up the persistence database while the correlator is running............................323
Using EPL plug-ins when persistence is enabled...325
Using the MemoryStore when persistence is enabled...325
Comparison of correlator persistence with other persistence mechanisms..................327
Restrictions on correlator persistence...328

9 Common EPL Patterns in Monitors..329
Contrasting using a dictionary with spawning...330
Factory pattern...331
Using quit() to terminate event listeners..332
Combining the dictionary and factory patterns..333
Testing uniqueness..334
Reference counting..334
Inline request-response pattern...336
Writing echo monitors for debugging..337
Versioning and upgrading monitors...338

10 Using EPL Plug-ins...341
Overhead of using plug-ins..342
When to use plug-ins..342
When not to use plug-ins..343
Using the TimeFormat Event Library...343
Using the MemoryStore..375
Using the distributed MemoryStore...390
Using the Management interface...416
Using the JSON plug-in..420
Using MATLAB® products in an application...421
Using the R plug-in...429
Interfacing with user-defined EPL plug-ins..431
About the chunk type..431

11 Making Application Data Available to Clients...433
Adding the DataView Service bundle to your project...435
Creating DataView definitions..435
Deleting DataView definitions...436
Creating DataView items..436
Deleting DataView items..437
Updating DataView items..438
Looking up field positions..439
Using multiple correlators..439

12 Testing and Tuning EPL monitors...441
Optimizing EPL programs...442
Best practices for writing EPL..442
Structure of a basic test framework...444

Developing Apama Applications 10.11.2 v

Table of Contents

Using event files...444
Handling runtime errors..445
Capturing test output..447
Avoiding listeners and monitor instances that never terminate.....................................447
Handling slow or blocked receivers...448
Diagnosing infinite loops in the correlator..448
Tuning contexts..449

13 Generating Documentation for Your EPL Code...453
Code constructs that are documented..454
Steps for using ApamaDoc...454
Inserting ApamaDoc comments..455
Inserting ApamaDoc tags...456
Inserting ApamaDoc references..459
Inserting EPL source code examples...460
Generating ApamaDoc from the command line...461
Generating ApamaDoc from an Ant script..463

II Developing Apama Applications in Java..465
14 Overview of Apama JMon Applications..467

Introducing JMon API concepts..469
About event types..470
About monitors..476
About event listeners and match listeners...477
Description of the flow of execution in JMon applications...479
Parallel processing in JMon applications...480
Identifying external events...483
Optimizing event types...483
Logging in JMon applications..485
Using EPL keywords as identifiers in JMon applications..486

15 Defining Event Expressions...487
About event templates..488
Specifying parameter constraints in event templates...490
Obtaining matching events..492
Emitting, routing, and enqueuing events...493
Specifying temporal sequencing..495
Defining advanced event expressions..497
Optimizing event expressions..509
Validation of event expressions...510

16 Concept of Time in the Correlator..511
Getting the current time..512
About timers and their trigger times..513

17 Developing and Deploying JMon Applications..517
Steps for developing JMon applications in Software AG Designer...............................518
Java prerequisites for using Apama's JMon API...519
Steps for developing JMon applications manually...520
Deploying JMon applications..520
Removing JMon applications from the correlator..521
Creating deployment descriptor files...521
Package names and namespaces in JMon applications..529

vi Developing Apama Applications 10.11.2

Table of Contents

Sample JMon applications..529

III Developing EPL Plug-ins..531
18 Introduction to EPL Plug-ins...533
19 Providing an EPL Event Wrapper for a Plug-in..535
20 Writing EPL Plug-ins in C++..537

Creating a plug-in using C++...538
Using plug-ins written in C++..549

21 Writing EPL Plug-ins in Java...551
Creating a plug-in using Java...552
Using EPL plug-ins written in Java...554
Sample plug-ins in Java..560

22 Writing EPL Plug-ins in Python..563
Creating a plug-in using Python...564
Using Python plug-ins..568
Installing Python modules...570
Sample plug-ins written in Python...571

IV Protecting Personal Data in Apama Applications..573
23 Introduction..575
24 Where personal data is held within the Apama platform...577
25 Documenting personal data flows within an Apama application.....................................581
26 Handling personal data in the "in-memory" state of the correlator...................................583
27 Handling personal data "at rest" in the correlator persistence and JMS datastores........587
28 Handling personal data "in motion" from dashboards..589
29 Handling personal data "at rest" in log files..591

Example log messages containing personal data..592
Protecting and erasing data from Apama log files...593
Recommended log levels..594
Recommendations for logging by Apama application code...594

30 Handling personal data "at rest" in the correlator input log file..597
31 Handling personal data "at rest" in containerization environments.................................599

V EPL Reference...601
32 Introduction..603

Hello World example..604
33 Types..607

Primitive and string types..608
Reference types..608
Default values for types..610
Type properties summary..611
Timestamps, dates, and times..614
Type methods and instance methods...615
Type conversion...616
Comparable types..617
Cloneable types..618
Potentially cyclic types..619
Support for IEEE 754 special values..622

Developing Apama Applications 10.11.2 vii

Table of Contents

34 Events and Event Listeners..625
Event definitions..626
Event templates..628
Event listener definitions..633
Event lifecycle...633
Event listener lifecycle...634
Event processing order for monitors..635
Event processing order for queries...636
Event expressions..637
Event channels..642

35 Monitors..643
Monitor lifecycle..644
Monitor files...645
Packages..645
The using declaration..646
Monitor declarations...646
The import declaration..646
Monitor actions..647
Contexts...648
Plug-ins...649
Garbage collection...649

36 Queries..651
Query lifetime..652
Query definition...654
Metadata section..655
Parameters section...656
Inputs section...656
Query input definition..656
Find statement..658

37 Aggregate Functions...665
Built-in aggregate functions...666
Custom aggregates..666

38 Statements...669
Simple statements..670
Compound statements..675
Transfer of control statements..680

39 Expressions...683
Introduction to expressions..684
Using an expression as a statement..684
Primary expressions..685
Bitwise logical operators...685
Logical operators...687
Shift operators..688
Comparison operators...689
Additive operators...690
Multiplicative operators...691
Unary additive operators..692
Expression operators...692
Expression operator precedence..693
Postfix expressions...694

viii Developing Apama Applications 10.11.2

Table of Contents

Stream queries..695
Stream source templates...699

40 Variables..701
Variable declarations...702
Variable scope...702
Provided variables...703
Specifying named constant values..705

41 Lexical Elements..707
Program text...708
Comments...708
White space...709
Line terminators...710
Symbols...711
Identifiers..711
Keywords..711
Operators..712
Separators...713
Literals...713
Names..717
Annotations..718

42 Limits...719

A EPL Naming Conventions..721

B Testing Apama Applications Using PySys..725

Developing Apama Applications 10.11.2 ix

Table of Contents

x Developing Apama Applications 10.11.2

Table of Contents

About this Guide

■ Documentation roadmap .. 12

■ Online Information and Support ... 13

■ Data Protection ... 14

Developing Apama Applications 10.11.2 11

Developing ApamaApplicationsdescribes different technologies for developingApama applications:
EPL monitors, Apama queries, and Java. You can use one or several of these technologies to
implement a single Apama application. In addition, there are C++ and Java APIs for developing
components that plug in to a correlator. You can use these components from EPL.

Documentation roadmap

Apama provides documentation in the following formats:

HTML (available from both the documentation website and the doc folder of the Apama
installation)

PDF (available from the documentation website)

Eclipse help (accessible from Software AG Designer)

You can access the HTML documentation on your machine after Apama has been installed:

Windows. Select Start > All Programs > Software AG > Tools > Apama n.n > Apama
Documentation n.n. Note that Software AG is the default group name that can be changed
during the installation.

UNIX. Display the index.html file, which is in the doc/apama-onlinehelp directory of your
Apama installation directory.

The following guides are available:

DescriptionTitle

Describes new features and changes introducedwith the current
Apama release as well as earlier releases.

Release Notes

Summarizes all important installation information and is
intended for use with other Software AG installation guides
such as Using Software AG Installer.

Installing Apama

Provides a high-level overviewofApama, describes theApama
architecture, discussesApama concepts and introduces Software
AG Designer, which is the main development tool for Apama.

Introduction to Apama

Explains how to develop Apama applications in Software AG
Designer, which is an Eclipse-based integrated development
environment.

Using Apama with Software AG
Designer

Describes the different technologies for developing Apama
applications: EPL monitors, Apama queries, and Java. You can

Developing Apama Applications

use one or several of these technologies to implement a single
Apama application. In addition, there are C++ and Java APIs
for developing components that plug in to a correlator. You can
use these components from EPL.

12 Developing Apama Applications 10.11.2

DescriptionTitle

Describes how to connect Apama applications to any event data
source, database, messaging infrastructure, or application.

Connecting Apama Applications to
External Components

Describes how to build and use an Apama dashboard, which
provides the ability to view and interact with DataViews. An

Building and Using Apama
Dashboards

Apama project typically uses one or more dashboards, which
are created in the Dashboard Builder. The Dashboard Viewer
provides the ability to use dashboards created in theDashboard
Builder. Dashboards can also be deployed as simpleweb pages.
Deployed dashboards connect to one or more correlators by
means of a dashboard data server or display server.

Describes how to deploy components with Software AG
Command Central, how to deploy and manage queries, and

Deploying and Managing Apama
Applications

how to deploy Apama applications using Docker and
Kubernetes. It also provides information for improvingApama
application performance by using multiple correlators, for
managing and monitoring Apama components over REST
(Representational State Transfer), and for using correlator
utilities and configuration files.

In addition to the above guides, Apama also provides the following API reference information:

API Reference for EPL (ApamaDoc)

API Reference for Java (Javadoc)

API Reference for C++ (Doxygen)

API Reference for .NET

API Reference for Python

API Reference for Component Management REST APIs

Online Information and Support

Product Documentation

You can find the product documentation on our documentation website at https://
documentation.softwareag.com.

In addition, you can also access the cloudproduct documentation via https://www.softwareag.cloud.
Navigate to the desired product and then, depending on your solution, go to “Developer Center”,
“User Center” or “Documentation”.

Developing Apama Applications 10.11.2 13

https://documentation.softwareag.com/
https://documentation.softwareag.com/
https://www.softwareag.cloud/

Product Training

You can find helpful product training material on our Learning Portal at https://
knowledge.softwareag.com.

Tech Community

You can collaborate with Software AG experts on our Tech Community website at https://
techcommunity.softwareag.com. From here you can, for example:

Browse through our vast knowledge base.

Ask questions and find answers in our discussion forums.

Get the latest Software AG news and announcements.

Explore our communities.

Go to our public GitHub andDocker repositories at https://github.com/softwareag and https://
hub.docker.com/publishers/softwareag and discover additional Software AG resources.

Product Support

Support for Software AG products is provided to licensed customers via our Empower Portal at
https://empower.softwareag.com. Many services on this portal require that you have an account.
If you do not yet have one, you can request it at https://empower.softwareag.com/register. Once
you have an account, you can, for example:

Download products, updates and fixes.

Search the Knowledge Center for technical information and tips.

Subscribe to early warnings and critical alerts.

Open and update support incidents.

Add product feature requests.

Data Protection

SoftwareAGproducts provide functionalitywith respect to processing of personal data according
to the EU General Data Protection Regulation (GDPR). Where applicable, appropriate steps are
documented in the respective administration documentation.

14 Developing Apama Applications 10.11.2

https://knowledge.softwareag.com/
https://knowledge.softwareag.com/
https://techcommunity.softwareag.com/
https://techcommunity.softwareag.com/
https://github.com/softwareag/
https://hub.docker.com/publishers/softwareag/
https://hub.docker.com/publishers/softwareag/
https://empower.softwareag.com/
https://empower.softwareag.com/register/

I Developing Apama Applications in EPL

1 Getting Started with Apama EPL ... 17

2 Defining Monitors ... 33

3 Defining Queries ... 59

4 Defining Event Listeners .. 143

5 Working with Streams and Stream Queries ... 189

6 Defining What Happens When Matching Events Are Found .. 247

7 Implementing Parallel Processing .. 287

8 Using Correlator Persistence .. 309

9 Common EPL Patterns in Monitors .. 329

10 Using EPL Plug-ins .. 341

11 Making Application Data Available to Clients ... 433

12 Testing and Tuning EPL monitors ... 441

13 Generating Documentation for Your EPL Code .. 453

Developing Apama Applications 10.11.2 15

16 Developing Apama Applications 10.11.2

I Developing Apama Applications in EPL

1 Getting Started with Apama EPL

■ Introduction to Apama Event Processing Language .. 18

■ How EPL applications compare to applications in other languages 19

■ About dynamic compilation in the correlator .. 20

■ About the Apama development environment in Software AG Designer 20

■ Terminology .. 21

■ Defining event types ... 26

■ Working with events ... 29

Developing Apama Applications 10.11.2 17

The correlator is Apama's core event processing and correlation engine. The interface to the
correlator lets you inject events that the correlator analyzes. You can configure the correlator to
watch for particular events or patterns of interest. In addition, you specify the actions to undertake
when the correlator identifies such patterns. Identification of events of interest plus what to do
when such events are found constitute an Apama application's logic.

To deploy an application on the correlator, you can use either the correlator's native Apama Event
ProcessingLanguage (EPL) or theApama in-processAPI for Java (JMon). The informationpresented
in this part focuses exclusively on EPL.

This part teaches youhow towrite EPLprograms.While someprogramming experience is assumed,
no prior knowledge of EPL is assumed.

Apama EPL is an event-driven programming language. It lets you write applications that:

Monitor streams of events to find particular events or patterns of events of interest.

Analyze events (or patterns of events) of interest to determine whether some action is
appropriate.

Perform actions based on particular events or patterns of events.

This section discusses the main concepts you must understand to write applications in EPL.

Software AGDesigner provides tutorials that can help you get started with EPL. On theWelcome
page of Software AG Designer, click Tutorials under the Apama heading.

Note:
MonitorScript is the old name for EPL. You might still see the old name in the product
documentation.

Introduction to Apama Event Processing Language
EPL is a flexible and powerful "curly-brace", domain-specific language designed for writing
programs that process events. In EPL, an event is a data object that contains a notification of
something that has happened, such as a customer order was shipped, a shipment was delivered,
a sensor state change occurred, a stock trade took place, ormyriad other things. Each kind of event
has a type name and one or more data elements (called fields) associated with it. External events
are received by one or more adapters, which receive events from the event source and translate
them from a source-specific format into Apama's internal canonical format. Derived events can
be created as needed by EPL programs.

Though it contains many of the familiar constructs and features found in general-purpose
programming languages like Python or Java, EPL also has special features to make it easy to
aggregate, filter, correlate, transform, act on, and create events in a concise manner. Here is the
canonical “Hello world” example written in EPL:
monitor HelloWorld
{

action onload()
{

print "Hello world!";

18 Developing Apama Applications 10.11.2

1 Getting Started with Apama EPL

}
}

The Apama event processor, called the correlator, receives events of various types from external
sources. The EPL programs that process these events are monitors or queries.

Monitors have registered event handlers, called listeners, for events of particular typeswith specific
combinations of data values or ranges of values. When a listener detects an event of interest, it
triggers a particular action. If there are no listeners for an event, the correlator either discards it
or passes it to a listener specifically for events that have no handler. A monitor instance processes
events on one correlator and can send events to communicate with other monitors on the same
correlator or remote correlators.

Queries are scalable acrossmultiple correlators. AnApama query operates on only the input event
types you specify and you can filter which instances of those events should be processed. Apama
partitions these incoming events according to a key field that you specify, for example, theremight
be a partition for each credit card number. The query processes the events in each partition
independently of the events in every other partition. As events are added to partitions, the query
checks for a set of events thatmatches the event pattern you specified, which can optionally specify
complex conditions for there to be a match. When amatch is found the query executes procedural
code that you have defined, which can include sending events.

Event handlers in EPL are conceptually similar to methods or functions used for handling
user-interface events in other languages, such as Java Swing or SWT applications. In EPL, the
correlator executes code only in response to events.

The correlator is capable of looking for hundreds of thousands of different events or different
event patterns concurrently. When you write an EPL application, you write a set of monitors
and/or one or more queries and then you inject or load them into a running correlator. As streams
of events pass into a correlator, the monitors and their listeners and/or the queries watch for the
events or patterns of events that you have specified as being of interest. There are a variety of
actions that you can specify that you want the correlator to perform when a listener or query
detects an event or event pattern of interest. For example, the most common action for a monitor
is to generate and dispatch a message to an external receiver.

EPL is case-sensitive.

How EPL applications compare to applications in
other languages
EPL is an event-oriented programming language, as opposed to an object-oriented language.
Because EPL is part of an event-processing framework, it requires a different approach to
decomposing the problem you want to solve.

EPL syntax is similar to other scripting languages. EPL has variables, data structures, conditions,
and procedures (called actions in EPL). But EPL supports a paradigm that is different from that
supported by other scripting languages:

A monitor or a query is the basic module in EPL programs.

All communication is by means of message passing.

Developing Apama Applications 10.11.2 19

1 Getting Started with Apama EPL

All processing is triggered in response to events.

Monitors spawn instances of themselves to generate multiple units of execution and/or to
initiate parallel processing. A query uses a key to partition incoming events and can share the
same data across multiple correlators.

EPL requires a different way of developing applications.

About dynamic compilation in the correlator
EPL is dynamically compiled. You inject (load) EPL source files into a running correlator. The
correlator compiles the files into optimized byte-code representations.

The EPL compiler is strict. There is no implicit type conversion. You cannot discard return values.
To minimize the chance of runtime errors, your code must be explicit and not make assumptions.
The correlator terminates execution of a program at the first runtime error.

The dynamic compilation approach removes the need for a byte code interpreter that supports
older versions of byte code. Also, the correlator can apply new optimization techniques during
byte code generation.

About the Apama development environment in
Software AG Designer
Software AG Designer provides an integrated environment for developing Apama applications.
The process of developing anApama application is centered around anApamaproject. In Software
AG Designer, you create a project and then you use Software AG Designer to:

Add and manage the component files that make up the application.

Write the EPL for your application.

Specify the adapters and dashboards that are necessary for the application.

Specify the configuration properties necessary for launching the application.

Run and monitor the application.

Export the initialization information necessary for deploying the application.

Export your EPL files to a correlator deployment package (CDP).

See Using Apama with Software AG Designer for detailed information.

In addition to using Software AG Designer to create Apama projects, you can also do this using
the apama_project command-line tool. See "Creating and managing an Apama project from the
command line" in Deploying and Managing Apama Applications for more information.

As you add components to your application, Software AG Designer automatically generates the
boilerplate EPL code for the application's standard features and launches the appropriate editor
where you add the code to implement the component's behavior.

20 Developing Apama Applications 10.11.2

1 Getting Started with Apama EPL

A central Apama feature in Software AG Designer is the EPL editor. The EPL editor provides
support for writing EPL, for example:

Automatic EPL validation

Content assistance

Auto-completion

Hovering over an event declaration displays the event's type definition

Automatic indenting and bracketing

A separate panel shows the hierarchy of the EPL that appears in the editor

Ability to define templates for frequently-used fragments of EPL

In Software AG Designer, you can examine the EPL files that are part of the Apama demo
applications.

See "Overview of Developing Apama Applications" inUsing Apama with Software AG Designer for
more information.

Terminology
This topic provides a definition of each important EPL term. The definitions are organized into
several groups.

Basic modules

DefinitionEPL Term

An Apama application consists of one or more collaborating monitors
and/or one or more queries.

Application

Amechanism for qualifyingmonitor, query and event names.Monitors,
queries and global events in the samepackagemust each have a unique
name within the package.

Package

Contexts allow EPL applications to organize work into threads that the
correlator can concurrently execute.

Context

A monitor is a basic unit of program execution. Monitors have both
data and logic.Monitors communicate by sending and receiving events.
A monitor is defined in a .mon file.

Monitor

In a monitor, you can create multiple contexts and divide processing
among multiple contexts.

A monitor cannot contain an Apama query.

Developing Apama Applications 10.11.2 21

1 Getting Started with Apama EPL

DefinitionEPL Term

An Apama query is a basic unit of program execution. It partitions
incoming events according to a key and then independently processes

Query

the events in each partition. Processing involves watching for an event
pattern and then executing a block of procedural codewhen that pattern
is found. A query is defined in a .qry file.

In a query, you do not create contexts. Apama automatically uses
multiple contexts as needed to process your query.

An Apama query cannot contain a monitor.

A string name that monitor instances and receivers can subscribe to in
order to receive particular events. Adapter and client configurations

Channel

can specify the channel to deliver events to. In EPL, you can send an
event to a specified channel.

Queries do not subscribe to channels.

An event is a data object. All events have an event type and an ordered
set of event fields. An event type might also have zero or more defined
event actions that operate on the event fields.

Event (type)

A data element of an event.Field

A method is a predefined action. A given EPL type has a given set of
methods that it supports.

Method

Data types

DefinitionEPL Term

Usually referred to as simply type. EPL supports the following value
types: boolean, decimal, float, integer, and the following reference

Data type

types: action, Channel, chunk, context, dictionary, event, Exception,
listener, location, optional, sequence, StackTraceElement, stream,
string. Also, monitor is a very limited pseudo-type.

An EPL type used to hold an ordered set of objects (referenced by
position).

sequence

An EPL type used to hold a keyed set of objects (referenced by key).dictionary

An EPL type used to hold either zero elements or one element.optional

An EPL type that represents a rectangular area in a two-dimensional
unitless Cartesian coordinate plane.

location

AnEPL type that references an opaque data set, the data items ofwhich
are manipulated only in an EPL plug-in.

chunk

22 Developing Apama Applications 10.11.2

1 Getting Started with Apama EPL

DefinitionEPL Term

You can assign an event listener or a stream listener to a variable of this
type and then subsequently call quit() on the listener to remove the
listener from the correlator.

listener

AnEPL type that references an action. Actions in EPL are the equivalent
of methods in object-oriented languages. Actions are user-defined

action

methods that you can define in monitor and query definitions, event
type definitions, and custom aggregate function definitions.

An EPL type that provides a reference to a context. A context lets the
correlator concurrently process events.

context

An EPL type that refers to a stream object. Each stream is a conduit
through which items flow. A stream transports items of only one type,
which can be any Apama type. Streams are internal to a monitor.

stream

An EPL type that contains a string or a context. A contained string is
the name of a channel. A contained context lets you send an event to
that context. Defined in the com.apama namespace.

Channel

Values of Exception type are objects that contain information about
runtime errors. Defined in the com.apama namespace.

Exception

A StackTraceElement type value is an object that contains information
about one entry in the stack trace.

StackTrace Element

Monitors

DefinitionEPL Term

Each monitor has a name that can be used to delete the monitor from
the correlator.

Monitor name

The set of source statements that define a monitor.Monitor definition

A monitor instance is created whenever a monitor is loaded into the
correlator. Subsequent monitor instances are created whenever a

Monitor instance

monitor instance spawns. As one time, amonitor instancewas referred
to as a sub-monitor.

A monitor instance was previously referred to as a sub-monitor.Sub-monitor

Queries

See also “Query terminology” on page 63.

Developing Apama Applications 10.11.2 23

1 Getting Started with Apama EPL

DefinitionEPL Term

Each Apama query has a name that can be used to delete the query
from the correlator.

Query name

The set of source statements that define an Apama query.Query definition

A query instance is created whenever a non-parameterized query is
loaded into the correlator. When a parameterized query is loaded, no

Query instance

instances are created until parameter values are provided. After
specification of parameter values, Apama creates an instance of the
query, which is referred to as a parameterization. A query definition
supports multiple parameterizations.

A query key identifies one or more fields in the event types that the
query specifies as input event types. Each query input event type must
specify the same key.

Query key

A partition contains a set of events that all have the same key value.
One or more windows contain the events added to each partition.

Query partition

Events

DefinitionEPL Term

Every event must identify its event type. Event types are identified by
a unique event name. The event name can also be used to remove the
event definition from the correlator.

Event name

The set of source statements that define an event type.Event definition

All events of a given event type have the same structure. An event type
defines the event name, the ordered set of event fields and the set of
event actions that can be called on the event fields.

Event type

A data element of an event.Event field

An action defined within an event definition. The action can operate
only on the fields of the event and any arguments passed into the action
call.

Event action

Listeners

DefinitionEPL Term

A construct that monitors the events passed to, or routed within, a
correlator context. When the event pattern matches the event pattern

Event listener

specified in an event listener, the correlator invokes the event listener's
code block.

24 Developing Apama Applications 10.11.2

1 Getting Started with Apama EPL

DefinitionEPL Term

In monitors, it is up to you to define event listeners. In queries, Apama
defines event listeners for you.

EPL statement that defines an event listener. An on statement specifies
an event expression and a listener action.

on statement

A construct that continuously watches for items from a stream and
invokes the listener code block each time new items are available.

Stream listener

EPL statement that defines a stream listener. A from statement specifies
a source stream, a variable, and a code block. The from statement

from statement

coassigns each streamoutput item to the specified variable and executes
the statement or block once for each output item.

The action, statement or block part of a listener.Listener action

It is possible to assign the handle (reference) to a listener to a listener
variable. This variable can then be used to quit the listener.

Listener handle

Specifies an event type and the set of (or set of ranges of) event field
values to match.

Event template

Relational, logical, or temporal operator that applies to an event
template and that you specify in an event expression.

Event operator

An expression, constructed using event operators and event templates,
that identifies an event or pattern of events to match.

Event expression

Streams

See also the above definitions for the stream data type, stream listener, and the from statement.

DefinitionEPL Term

A stream query is defined in a monitor. A stream query is a query that
the correlator applies continuously to one or two streams. The output
of a stream query is one continuous stream of derived items.

Stream query

A stream query is a completely different construct than an Apama
query.

An event template preceded by the all keyword. It uses no other event
operators. A stream source template creates a stream that contains
events that match the event template.

Stream source template

Network of stream source templates, streams, stream queries, and
stream listeners. Upstream elements feed into downstream elements
to generate derived, added-value items.

Stream network

Developing Apama Applications 10.11.2 25

1 Getting Started with Apama EPL

DefinitionEPL Term

When the passage of time or the arrival of an item causes a stream
network or an element in a stream network to process items.

Activation

Defining event types
Conceptually, an event is an occurrence of a particular item of interest at a specific time. Examples
of events include:

A price of $100 for a share of IBM stock at noon on November 7, 2014

Purchase of 1000 shares of IBM stock at $80 per share at 12:01 PM on December 12, 2014

RFID tag 123-456-789 was scanned at 10:05 AM at loading dock 3

Purchase order 55555 for 10,000 widgets sent to Acme Motor Supply

TCP/IP address 123.4.56.789 just accessed server 5

Container X was overfilled greater than 0.2 grams more than standard amount

An event usually corresponds to a message of some form. The correlator is designed to take in
huge numbers ofmessages per second, and sift them for the events or patterns of events of interest.
When the correlator detects interesting events or patterns it can undertake a variety of actions.

A correlator can receive events in several ways:

You use Software AG Designer to send events from a file.

From an adapter that receives an event from an external source. Apama adapters translate
events from non-Apama format to Apama format.

You run the Apama engine_send utility to manually send events into the correlator.

A monitor or query generates an event within the correlator.

You can write an application in C, C++, Java, or .NET that uses the Apama client API to send
events into the correlator.

The correlator propagates information by sending events.

In EPL, each event is of a specific type. An event type has a name and a particular set of fields.
Each field has a name and is one of a selection of types. Every event instance of a given event type
has the same set and order of fields. For the correlator to process an event of a specific event type,
it needs to have the event type definition for that type. Having the definition for an event type,
lets the correlator

Operate on the messages of that event type

Create optimal indexing structures for finding events of that type that are of interest

An event type definition specifies the event type's name and the name and type of each of its fields.

26 Developing Apama Applications 10.11.2

1 Getting Started with Apama EPL

See also “Specifying named constant values” on page 251.

Allowable event field types
A field in an event can be any Apama type. See also “Types” on page 607.

Certain field types are valid only within a certain scope and you cannot pass events with such
field types outside that scope. The details are as follows:

context—When an event contains a context type field, you can send the event to other
monitors within the same correlator but you cannot send the event outside the correlator. In
other words, you can send or route the event. See “Generating events” on page 266.

chunk, listener and stream—An event that contains one or more of these types of fields is
valid only within the monitor that creates it. You cannot send, route, or enqueue an event that
contains a field of type chunk, listener or stream.

If an event contains a chunk, listener, or stream field you cannot listen for that event.

For more information, see the description of event in the API Reference for EPL (ApamaDoc).

Format for defining event types
In EPL, the format for an event type definition is as follows:
event event_type {

[
[wildcard] field_type field_name; |
constant field_type field_name := literal; |
action_definition
] ...

}

Syntax description

DescriptionSyntax Element

This EPL keyword is required. It indicates an event type
definition.

event

Replace event_typewith a name that you choose for this
event type. An EPL best practices convention is to specify

event_type

an initial capital in event type names, and to capitalize
subsequent words in the name. For example: StockTick.

Enclose the field definitions in curly braces.{ }

Specify the wildcard keyword in front of a field definition
when you are certain that youwill never specify that field

wildcard

in the match criteria for this event type. In other words,

Developing Apama Applications 10.11.2 27

1 Getting Started with Apama EPL

DescriptionSyntax Element

when the correlatorwatches for certain events of this type,
the value of a wildcard field is always irrelevant.

Formore details, see “Improving performance by ignoring
some fields in matching events” on page 159.

Replace field_typewith the name of a type. If you specify
action, sequence, stream or dictionary, you must also

field_type

specify the type of the action's argument(s) and return
value if there are any, the type of the values in the
sequence or stream, or the type of the dictionary's key as
well as the type of the values in the dictionary. For
example: dictionary<integer,string>. For more details,
see the descriptions of the dictionary and sequence types
in the API Reference for EPL (ApamaDoc).

Replace field_namewith a name that you choose for this
field.

field_name

An event can have zero or more fields. You might define
an eventwith no fields in a situationwhere only detection
of the event is needed to start some process.

While there is no limit to the number of fields in an event,
the correlator can index up to 32 fields per event. This
means that the correlator canmatch on up to 32 fields per
event. If an event type has more than 32 fields, you must
specify the wildcard keyword for the additional fields.
Note that if the type of an event field is location, that field
counts as 2. For example, if you have 28 non-location type
fields and 2 location fields, then you have reached the
limit of 32 indexed fields. If you try to inject an event
definition that specifies more than 32 fields and you do
not specify the wildcard keyword for additional fields,
the correlator rejects the file. You must add the wildcard
keywords to be able to inject the file.

Specify the constant keyword in front of a field definition
whose type is boolean, decimal, float, integer, or string
and whose value never changes.

constant

If you specify the constant keyword, you must assign a
literal to that field. The type of the literal must be the same
as the field_type you specified for this field.

literal

When you specify an action in an event type definition
you can call that action on an instance of the event (see

action_definition

“Specifying actions in event definitions” on page 255),
unless it is a static action, in which case you can instead

28 Developing Apama Applications 10.11.2

1 Getting Started with Apama EPL

DescriptionSyntax Element

call it on the event type itself (see “Defining static
actions” on page 264).

Example event type definition
For example, the EPL definition of an event type for simple financial stock price ticksmight include
the stock's name and its price:
event StockTick {

string name;
float price;

}

To represent a specific instance of an event, use the following form:
event_type (field1_value, field2_value ...)

For example, a StockTick event describing Acme's new price of 55.20 looks like this:
StockTick("ACME", 55.20)

The reading order of fields in an event type definition and in instances of that event type must
always match and is always left-to-right and then top-to-bottom. That is, "ACME" is the value of
the name field and 55.20 is the value of the price field.

Working with events
After you define an event type, there are built-in methods you can call on it, and there are various
ways that you can make that event available to monitors and queries.

You can call a number of methods on any event type. For an overview of these methods, see the
description of event in the API Reference for EPL (ApamaDoc).

Making event type definitions available to monitors and queries
Amonitor or querymust have information about the type definitions of the events that it processes.
You can provide this information as follows:

Define the event type in a separate file that contains only event definitions. An event type
definition file has a .mon extension. It is still an EPL file even though it contains only event
type declarations.

You can define any number of event types in a single file. A common practice is to define the
event interface to a service in a file that is separate from the implementation of that service.
You might have a single event interface file and multiple implementations of services that
process those event types.

An event type definition file is the onlyway tomake event type definitions available to queries.

Developing Apama Applications 10.11.2 29

1 Getting Started with Apama EPL

Define the event type in the monitor. Only instances of that monitor can process events of that
type. Also, events of that type cannot be sent into the correlator fromoutside.When you define
an event type inside a monitor it has a fully qualified name. For example:
monitor Test
{

event Example{}
}

The fully qualified name for the Example event type is Test.Example and the toString() output
for the event name is "Test.Example()".

After the optional package specification, define the event type at the beginning of an EPL file
that also definesmonitors. All event type declarationsmust be before themonitor declarations.
After you inject this file into the correlator, the following monitors can process events of that
type:

All monitors that you define in the same file

All monitors that you inject after you inject the file that contains the event definition.

You might have a need for different event type definitions to have the same event type name. In
this situation, define each event type in a different package. Remember that event types to be used
by queries must be defined in event type definition files. Then, in your monitor or query, use one
of the following ways to make the appropriate event type definition available. In the monitor or
query:

Specify the fully qualified name of the event type, for example:

com.apamax.test.Status

After any package declaration and before any other declarations, specify a using declaration.
For example:

using com.apamax.test.Status;

In your code, you can then simply refer to the Status event type.

Do not create EPL structures in the com.apama namespace. This namespace is reserved for future
Apama features. If you inadvertently create an EPL structure in the com.apama namespace, the
correlator might not flag it as an error in this release, but it might flag it as an error in a future
release.

See also “Name Precedence” on page 717.

An event type definitionmust be injected into the correlator before amonitor that processes events
of that type. After you inject an event type definition into the correlator, any monitor that you
inject after that can process events of that type.

During development, when you use Software AGDesigner to launch a project, it ensures that files
are injected in the right order. Whenmore than one project requires the same event definition file,
do one of the following:

In each project, declare an external dependency on the common event definition file. See
"Specifying dependencies for a single-user project" in Using Apama with Software AG Designer.

30 Developing Apama Applications 10.11.2

1 Getting Started with Apama EPL

Create a project that contains the common event definition file. In each project that requires
these event definitions, declare a dependency on the project that contains the common event
definition file. See "Specifying projects" in Using Apama with Software AG Designer.

Channels and input events
Adapters, Apama client applications, and tools such as the engine_send correlator utility send
events into the correlator. Each incoming event is associated with a channel either explicitly or
implicitly. An event that has a channel explicitly set is delivered on the specified channel. An event
that does not have a channel explicitly set is delivered on the default channel. The default channel's
name is the empty string.

An incoming event that is sent on the default channel goes to each public context. In addition,
contexts can subscribe to channels of interest (see “Subscribing to channels” on page 54). An
incoming event for which a channel is explicitly set goes to each context that is subscribed to its
associated channel. If there are no contexts subscribed to the specified channel the event is discarded.

Any running Apama queries receive events that come in on the default channel. In addition,
Apama queries run in contexts that are subscribed to receive events sent on the com.apama.queries
channel. So queries also receive events sent on that channel.

Events sent into the correlator from, for example, clients and adapters, are not normally delivered
to external receivers. However, external receivers can specify the com.apama.input channel in their
configuration. This is awildcard for all events coming into the correlator. Also, an external receiver
can specify com.apama.input.channel_name to receive correlator input events that are associated
with that particular channel.

When two events are sent to different channels there is no ordering guarantee. The only guarantee
is that events going from the same source to the same destination on the same channel will be
delivered in order. Also, if there is an external connection with, for example, an adapter or client,
then the events must use the same connection for them to be delivered in the same order.

All routable event types can be sent to channels, including event types defined in monitors.

An Apama application can use Software AG's Universal Messagingmessage bus to deliver events
on specified channels. If a correlator is configured to connect to Universal Messaging, then a
channel might have a corresponding Universal Messaging channel.

See "Choosing when to use Universal Messaging channels and when to use Apama channels" in
Connecting Apama Applications to External Components.

Developing Apama Applications 10.11.2 31

1 Getting Started with Apama EPL

32 Developing Apama Applications 10.11.2

1 Getting Started with Apama EPL

2 Defining Monitors

■ About monitor contents .. 34

■ Example of a simple monitor .. 37

■ Spawning monitor instances .. 39

■ Communication among monitor instances ... 45

■ About service monitors ... 52

■ Adding predefined annotations ... 52

■ Subscribing to channels ... 54

■ Adding service monitor bundles to your project ... 57

■ Utilities for operating on monitors ... 57

Developing Apama Applications 10.11.2 33

A monitor is one of the basic units of EPL program execution.

Note:
The other basic unit is a query. A monitor cannot contain a query. A query cannot contain a
monitor. For information about writing queries, see “Defining Queries” on page 59. For a
comparison of queries and monitors, see "Architectural comparison of queries and monitors"
in Introduction to Apama.

Monitors have both data and logic. Monitors communicate by sending and receiving events. You
define amonitor in a .mon source file.When you load the .mon file into the correlator, the correlator
creates an instance of the defined monitor.

Amonitor instance can operate like a factory and spawn additionalmonitor instances. A spawned
monitor instance is a duplicate of the monitor instance that spawned it except that the correlator
does not clone any active listeners or stream queries. Spawning lets a single monitor instance
generate multiple instances of itself. While generally, the spawned monitor instances all listen for
the same event type, each one can listen for events that have different values in particular fields.

It is good practice to define monitors and events in separate files. An advantage of doing this is
that queries, as well as monitors, can use the same event definitions. When you inject files into the
correlator, be sure to load event type definitions before you load the monitors and/or queries that
process events of those types.

The topics below provide information and instructions for defining monitors. For reference
information, see “Monitors” on page 643. Apama provides several sample monitor applications,
which you can find in the samples\epl directory of your Apama installation directory.

See also: "Overview of DevelopingApamaApplications" inUsing Apamawith Software AGDesigner
and "Overview of Deploying ApamaApplications" inDeploying andManaging Apama Applications.

About monitor contents
A file that defines a monitor has the following form:

1. An optional package declaration

2. Followed by

a. Zero or more using declarations

b. Zero or more custom aggregate function definitions

c. Zero or more event type definitions

3. One or more monitor definitions

When you define monitors that are closely related, it is your choice whether to define them in the
same file or different files.

A monitor must have information about any event types it processes. Hence, the correlator must
receive and parse all of the event types used by the monitor before it is able to correctly parse the
monitor itself.

34 Developing Apama Applications 10.11.2

2 Defining Monitors

Amonitor can contain one or more global variables. A global variable declaration appears inside a
monitor but outside any actions. The variable is global within the scope of the monitor.

A monitor can also contain a number of actions. Actions are similar to procedures. Finding an
event, or pattern of events, of interest can trigger an action. You can also trigger an action by
invoking it from inside another action.

Any construct that you declare inside a monitor is available only from within that monitor. In
other words, its use is restricted to the scope of the monitor.

Below is a minimal monitor:
monitor EmptyMonitor {

action onload() {
}

}

Themonitor above does not do anything; it does not register interest in any event or event pattern,
it does not have variables, and it does not do anything in its single action statement. However, it
does show the minimum structure of a monitor:

It specifies the monitor keyword followed by the name of the monitor. In the example, the
name of the monitor is EmptyMonitor. The name of the monitor and the name of the file that
contains the monitor do not need to be the same. A single file can contain multiple monitors.

It declares the onload() action. When you inject a monitor into the correlator, the correlator
executes the monitor's onload() action. Every monitor must contain an onload() action. The
onload() action is similar to the main() function in C/C++.

If you define two ormoremonitors in the same file, the correlator executes the onload() actions
of the monitors in the order in which you define the monitors. If there is an onload() action
whose execution is dependent on the results of the execution of the onload() action of another
monitor, but sure you define that other monitor earlier in the same file. If you define that other
monitor in a separate file, be sure you inject that file first. Tip: it is better to avoid these
dependencies as much as possible by using initialization events. See “Using events to control
processing” on page 51.

EPL provides a number of actions, such as onload(), onunload(), and ondie(). You can define
additional actions, and assign a name of your choice that is not an EPL keyword. See also
“Keywords” on page 711.

Do not create EPL structures in the com.apama namespace. This namespace is reserved for future
Apama features. If you do inadvertently create an EPL structure in the com.apama namespace, the
correlator might not flag it as an error in this release, but it might flag it as an error in a future
release.

Loading monitors into the correlator
During development, you use Software AG Designer to load your project, including monitors,
into the correlator. Software AG Designer ensures that files are loaded in the required order.

At any time, you can use the engine_inject correlator tool to load EPL files into the correlator.
See "Injecting code into a correlator" in Deploying and Managing Apama Applications.

Developing Apama Applications 10.11.2 35

2 Defining Monitors

In a deployment environment, you can load monitors into the correlator in any of the following
ways:

Use the engine_inject tool.

Write a program in C++, Java, or .NET and use the corresponding Apama client API.

If you try to inject a monitor whose name is the same as a monitor that was already injected, the
correlator rejects the monitor. You can inject two monitors with the same name into the correlator
only if they exist in different packages. To specify the package for a monitor or event type, add a
package statement as the first line in the EPL file that contains the monitor/event definition. For
example:
package com.mycompany.mypackage;
monitor Foo {

...
}

Terminating monitors
A monitor instance terminates when one of the following events occurs:

The monitor instance executes a die statement in one of its actions.

A runtime error condition is raised.

The monitor is terminated externally (for example, with the engine_delete utility). When the
correlator deletes a monitor it terminates all instances of that monitor.

Themonitor instance has executed all its code and there are no active event or stream listeners.
This will occur rapidly if the monitor's onload() action does not create any listeners. See also
“Beware of accidental stream leaks” on page 245.

When a monitor instance terminates, the correlator invokes the monitor's ondie() action, if it is
defined. You cannot spawn in an ondie() action.

Unloading monitors from the correlator
The correlator unloads a monitor in the following situations:

All of the monitor's instances have terminated.

An external request kills the monitor. This kills any instances of the monitor.

If the monitor defines an onunload() action, the correlator executes it just before it unloads the
monitor. You cannot spawn in an onunload() action.

If an owningmonitor has an internal event type, it is possible for another dependentmonitor to hold
an instance of that internal event type in a variable of the any type (see the description of the any
type in theAPI Reference for EPL (ApamaDoc)) if the owningmonitor has sent or routed an instance
of the monitor-internal event. In this case, a monitor is not completely unloaded, even if all of its
monitors have terminated, because another monitor still depends on one of the monitor-internal
types. Themonitor namewill stay in the correlator, but therewill be nomonitor instances running.

36 Developing Apama Applications 10.11.2

2 Defining Monitors

The onunload() action, if defined, still executes when the last monitor instance is terminated. The
monitor is not automatically deleted in this case. The monitor name needs to be explicitly deleted
with the engine_delete tool or by using the client API, which can only be done if the monitors
that are dependent on the internal type are either no longer dependent or have been deleted
themselves. See also "Deleting code froma correlator" inDeploying andManagingApamaApplications.

Example of a simple monitor
The empty monitor discussed in “About monitor contents” on page 34 does not do anything. To
write a useful monitor, add the following:

An event type definition

A global variable declaration

An event expression that indicates the pattern to monitor for

An action that operates on an event that matches the specified pattern

For example, the EPL below

Defines the StockTick event type, which is the event type that the monitor is interested in.

Defines the newTick global variable, which is accessible by all actions within this monitor. The
newTick variable can hold a StockTick event.

Registers an interest in all StockTick events.

Invokes the processTick() action when it finds a StockTick event. The processTick() action
uses the log statement to output the name and price of all StockTick events received by the
correlator.

Lines startingwith // are comments. EPL also supports the standardC++/Java /* ... */multi-line
comment syntax.
// Definition of the event type that the correlator will receive.
// These events represent stock ticks from a market data feed.
event StockTick {

string name;
float price;

}

// A simple monitor follows.
monitor SimpleShareSearch {

// The following is a global variable for storing the latest
// StockTick event.
StockTick newTick;

// The correlator executes the onload() action when you inject the
// monitor.
action onload() {

on all StockTick(*,*):newTick processTick();
}
// The processTick() action logs the received StockTick event.
action processTick() {

log "StockTick event received" +

Developing Apama Applications 10.11.2 37

2 Defining Monitors

" name = " + newTick.name +
" Price = " + newTick.price.toString() at INFO;

}
}

About the variable in the example

The single global variable is of the event type StockTick. A variable can be of any primitive type
(boolean, decimal, float, integer, string), or any reference type (action, context, dictionary,
event, listener, location, sequence or stream).

About the onload() action

In this example, the onload() action contains only one line of code:
on all StockTick(*,*):newTick processTick();

This line specifies the following:

on all StockTick(*,*) indicates the event to look for.

The on statement begins the definition of an event listener. It means, “when the following event
(or a pattern of events) is received …”. This event listener is looking for all StockTick events.
The asterisks indicate that the values of the StockTick event fields do not matter.

:newTick processTick(); indicates what to do when a StockTick event is found.

If the event listener finds a StockTick event, the coassignment (:) operator indicates that you
want to copy the found event into the newTick global variable. The onload() action then invokes
the processTick() action.

About event listeners

The on statement must be followed by an event expression. An event expression specifies the
pattern you want to match. It can specify multiple events, but this simple example specifies a
single event in its event expression. For details, see “About event expressions and event
templates” on page 144.

The all keyword extends the on statement to listen for all events that match the specified pattern.
Without the all keyword, the event listener would listen for only the first matching event. In this
example, without the all keyword, the event listener would terminate after it finds one StockTick
event.

In the sample code, the event expression is StockTick(*,*). Each event expression specifies one
or more event templates. Each event template specifies one event that you want to listen for. The
StockTick(*,*) event expression contains one event template.

The first part of an event template defines the type of event the event listener is looking for (in
this case StockTick). The section in parentheses specifies filtering criteria for contents of events of
the desired type. In this example, the event template sets both fields to wildcards (*). This declares
an event listener that is interested in all StockTick events, regardless of content.

38 Developing Apama Applications 10.11.2

2 Defining Monitors

When an event listener finds a matching event, the listener can use the as operator to place the
event into an implicitly declared variable only available in the scope of the listener processing
block or the : assignment operator to place that event in a global or local variable. For example:
on StockTick(*,*) as newTick {

processTick(newTick);
}

This copies a StockTick event into the newTick variable which is only in scope of the processing
block. This is known as implicit coassignment.

Or:
on all StockTick(*,*):newTick processTick();

This copies a StockTick event into the newTick global variable. This is known as a variable
coassignment.

Finally, the on statement invokes the processTick() action. For all received StockTick events,
regardless of content, the sample monitor copies the matching event into the newTick global
variable, and then invokes the processTick() action. For details, see “Using global variables” on
page 248.

About the processTick() action

The processTick() action executes the log statement to output some data on the registered logging
device, which by default is standard output. This log statement is used to report some of the fields
from the received event. For details, see “Logging and printing” on page 281.

Accessing fields in events

EPL uses the . operator to access the fields of an event. You can see that the processTick() action
uses the . operator to retrieve both the name (newTick.name) and price (newTick.price) fields of
each event.

The log statement requires strings as fields, so the processTick() action specifies the built-in
.toString() operation on the non-string value:
newTick.price.toString()

Spawning monitor instances
It is frequently necessary to enable a single monitor to concurrently listen for multiple kinds of
the same event type. For example, you might want one monitor to listen for and process stock
ticks that each have a different stock name. You accomplish this is by spawningmonitor instances
as described in the topics below.

See also “Spawning to contexts” on page 293.

Developing Apama Applications 10.11.2 39

2 Defining Monitors

How spawning works
In a monitor, you spawn a monitor instance by specifying the spawn keyword followed by an
action. When the correlator spawns a monitor instance, it does the following:

1. Creates a new instance of the monitor that is spawning.

2. Copies the following, if there are any, to the new monitor instance:

Current values of the spawning monitor instance's global variables

Any arguments declared in the action that is specified in the spawn statement

Anything referred to indirectly by means of the copied variables and arguments

3. Executes the named action with the specified arguments in the new monitor instance.

The newmonitor instance does not contain any active event listeners, stream listeners, streams or
streamqueries thatwere in the spawningmonitor instance. For example, data held in local variables
that are bound to a listener are not copied from the spawningmonitor instance to the newmonitor
instance. The figure below illustrates this process:

The figure shows a monitor that spawns when it receives a NewStock event. Initially, the monitor
has one active event listener. When the event listener finds the first NewStock event, the monitor

1. Copies the name IBM to the chosenStock variable.

2. Spawns a monitor instance.

40 Developing Apama Applications 10.11.2

2 Defining Monitors

The spawnedmonitor instance duplicates the initial monitor instance's state. In this example, this
means that the value of the chosenStock variable in the spawned monitor instance is IBM. When
the initial monitor instance receives another NewStock event (the value of the name field is ATT), it
again copies the stock's name to the chosenStock variable and spawns. The same occurs for the
XRX event, resulting in three spawned monitor instances.

Each newmonitor instance starts with no active event listeners. It then creates a new event listener
for StockTick events of the chosen stock (see the sample code in the next topic). The initial monitor
instance's event listener for NewTick events remains active after spawning. However, because the
action to create a new StockTick event listener is executed only in the spawnedmonitor instances,
the initial monitor instance continues to listen for only NewTick events.

Sample code for spawning
EPL that implements the example described in “How spawning works” on page 40 is as follows:
// The following event type defines a stock that a user is interested
// in. The event type includes the name of the stock (name) and the
// user's personal name (owner).
//
event NewStock {

string name;
string owner;

}

event StockTick {
string name;
float price;

}

monitor SimpleShareSearch {
NewStock chosenStock;
integer numberTicks;
StockTick newTick;

// Listen for all NewStock events. When a NewStock event is found
// assign it to the chosenStock variable and spawn with a call to
// the matchTicks() action. This clones the state of the monitor
// and launches a monitor instance that executes matchTicks().
action onload() {

numberTicks := 0;
on all NewStock (*, *):chosenStock spawn matchTicks();

}

// In the spawned monitor instance, listen for only those StockTick
// events whose name matches the name in the chosenStock variable.
action matchTicks() {

on all StockTick(chosenStock.name,*):newTick processTick();
}

action processTick() {
numberTicks := numberTicks + 1;
log "A StockTick regarding the stock "

+ newTick.name + "has been received "
+ numberTicks.toString() + " times. This is relevant for "
+ " Trader name: " + chosenStock.owner

Developing Apama Applications 10.11.2 41

2 Defining Monitors

+ " and the price is " + newTick.price.toString()
+ "." at INFO;

}
}

This example defines a new event type named NewStock. Traders dispatch this event when they
want to look for a specific kind of stock event. The code example spawns amonitor instance when
themonitor finds a NewStock event. For example, if three newStock events are received by the initial
monitor instance, there will be three spawned monitor instances. Other than spawning, the
difference between this code sample and the sample in “Example of a simple monitor” on page 37
is that this one specifies an owner in each NewStock event and the monitor's state now includes a
counter.

In this example, after spawning, all processing is within a spawned monitor instance. Processing
begins with execution of the matchTicks action. This action starts by defining an event listener for
StockTick events whose name field matches the name field in the spawned monitor instance's
chosenStock variable.When there aremultiple, spawnedmonitor instances, each spawnedmonitor
instance listens for only the StockTick events that match their chosenStock name.

The numberTicks counter variable and the chosenStock event variable, which contains the stock
name and the owner's name, are available in the cloned state of the spawned monitor instance.
This lets the processTick() action in each spawned monitor instance

Customize output to include the originating trader's name

Maintain a counter of how many StockTicks for a particular stock have been detected for a
trader

The really important aspect that distinguishes spawning is that the entire variable space is cloned
at the moment of spawning. In the example, every spawned monitor instance has a copy of the
chosenStock variable that contains the NewStock event that triggered spawning.Also, every spawned
monitor instance has a copy of the numberTicks variable, which is always set to 0when the initial
monitor instance spawns. This ensures that each spawned monitor instance can maintain an
accurate count of how many matching StockTick events have been found.

The initial monitor instance listens for NewStock events. Remember that spawning does not clone
active listeners, so the spawned monitor instances do not have listeners that watch for NewStock
events. Each spawned monitor instance listens for only those StockTick events that contain name
fields that match that spawned monitor instance's value for the chosenStock variable.

Typically, spawning is not an expensive operation. However, its overhead does increase as the
size of the monitor being spawned increases. When writing an EPL application avoid repeated
spawning of monitors that contain a large number of variables.

Spawnedmonitor instances contain copies of all global state from the spawningmonitor instance.
It does notmatter whether the spawnedmonitor instance is going to use that state or not. To avoid
wasting memory, a typical practice is to hold state in events that are referred to by local variables,
which are not copied during spawning. This ensures that you do not have a lot of state information
in global variables when the monitor instance spawns. Alternatively, you can insert code so that
the new monitor instance clears unneeded state immediately after it starts running.

For information about spawning to actions that aremembers of events, see “Spawning” onpage 256.

42 Developing Apama Applications 10.11.2

2 Defining Monitors

Terminating monitor instances
The example discussed in “Sample code for spawning” on page 41 spawns a monitor instance for
each newStock event that the initial monitor instance receives. This is not always desirable. For
example, if two identical newStock events are received, two identicalmonitor instances are spawned.
To prevent this, you can use the die statement to delete a monitor instance if a more recent one
(with the same spawning properties) has been created. For example:
action onload() {

on all NewStock(*, *):chosenStock spawn matchTicks();
}
action matchTicks() {

on NewStock (chosenStock.name, chosenStock.owner) die;
// ...

}

In this fragment, the monitor spawns when it receives a NewStock event. In the spawned monitor
instance, the initial on statement activates an event listener for a NewStock event that is identical
to the one that caused the spawning. In other words, the spawned monitor instance is listening
for a NewStock event where the fields are the same as that held by the chosenStock variable. If such
an event arrives, the monitor instance terminates. This structure ensures that only one monitor
instance for each stock name and owner exists at any one time. The same NewStock event kills the
existing monitor instance and causes spawning of a newmonitor instance. That is, the same event
triggers the concurrent event listeners of the initial monitor and the spawned monitor instance.

In this solution, when a NewStock event kills an existing monitor instance and spawns a new
monitor instance, the value of the numberTicks variable in the new instance is zero. Often, this
kind of behavior is required. You want to ignore the state of the old monitor instance and start
afresh.

Note that the event that triggers the initialmonitor instance's event listener and causes the spawning
of amonitor instance does not get processed by the spawnedmonitor instance's new event listener.
An event is available to only those event listeners that are active when the correlator receives the
event.

You can also use the die statement to kill a monitor instance at will. For example, consider the
following fragments:
event StopStock {

string name;
string owner;

}

action onload() {
on all newStock(*, *):chosenStock spawn matchTicks();

}

action matchTicks() {
on StopStock (chosenStock.name, chosenStock.owner) die;
// . . .

}

Developing Apama Applications 10.11.2 43

2 Defining Monitors

Traders would send StopStock events when they are no longer interested in a particular stock.
Receiving a matching StopStock event kills the monitor instance that is listening for that stock.
You can use this technique to explicitly kill any monitor instance.

About executing ondie() actions
A monitor instance can terminate for any of the following reasons:

It executes all its code and has no active listeners or streaming elements.

It executes a die statement in one of its actions.

The engine_delete utility or an Apama client API removes the monitor from the correlator.

A runtime error is detected in the monitor's code, which causes that instance of the monitor
to die.

In all of these situations, if the monitor defines an ondie() action, the correlator invokes it. Like
the onload() and onunload() actions, ondie() is a special action because the correlator invokes it
automatically in certain situations.

Suppose that amonitor that defines the ondie() action spawns ten times, and eachmonitor instance
dies. The correlator invokes ondie() eleven times: once for each spawned monitor instance, and
once for the initial monitor instance. Then, just before the monitor's EPL is unloaded from the
correlator, the correlator invokes the onunload()action only once, and it does so in the context of
the last remaining monitor instance.

The correlator executes each ondie() operation in the context of its monitor instance. Therefore,
the ondie() operation can access the variables in the monitor instance being terminated.

You cannot spawn in an ondie() or an onunload() action.

There are two forms of the ondie action: one form can have no argument and the other form can
have optional<com.apama.exceptions.Exception> and optional<string> arguments. If themonitor
instance terminates due to an uncaught exception, this exception is passed as a first argument to
the ondie action. The second argument of the ondie action is populated with the reason if monitor
instance terminated without an exception. Constants for the reason string are defined on the
monitor type. See the API Reference for EPL (ApamaDoc) for more information.

Example:
action ondie(optional<com.apama.exceptions.Exception> exc, optional<string>
reasonCode) {

ifpresent exc {
// do something

}
ifpresent reasonCode {

if reasonCode = monitor.DIE or reasonCode = monitor.NO_LISTENERS
or reasonCode = monitor.ENGINE_DELETE {

//do something
}

}
}

44 Developing Apama Applications 10.11.2

2 Defining Monitors

Specifying parameters when spawning
When spawning a monitor instance, you can pass parameters to an action. For example:
monitor m {

action onload() {
spawn forward("a", "channelA");
spawn forward("b", "channelB");

}

action forward(string arg, string channel) {
on all Event(arg) as e {

send e to channel;
}
on StopForwarding(arg) {

die;
}

}
}

Communication among monitor instances
In EPL applications, everything in amonitor instance is private. There is no directway for amonitor
instance to invoke an action or access the state of another monitor instance. Instead, messages, in
the form of events, are the mechanism for communication among monitor instances. All events
are visible to all interested monitor instances.

Consequently, how you divide your application operations into monitors and what events the
monitor instances use to communicate are crucial design decisions. An understanding of the order
in which the correlator processes events for monitors helps you determine where and when to
allocate events.

The topics below provide information for making these decisions.

You can use the MemoryStore to share state between monitors, see “Using the MemoryStore” on
page 375. If you aremixingmonitors and queries in your application, see “Communication between
monitors and queries” on page 140.

Organizing behavior into monitors
Typically, an Apama application consists of several monitors each doing a specific task. For
example, a simple algorithmic trading system might consist of the following monitors:

A monitor that manages order processing by spawning a monitor instance for each order.

One or more market data monitors. Each monitor listens for a different type of market data
(such as tick data, market depth) required to process orders. Each of these monitors typically
spawns a monitor instance for each stock you want to observe.

A more complex application might organize its orders into portfolios or split sets of orders into
smaller orders for wave trading or some other purpose.

Developing Apama Applications 10.11.2 45

2 Defining Monitors

In an Apama application, each monitor can usually be categorized as a core processing monitor
or a service monitor. A core processing monitor performs the tasks you want to accomplish. A
service monitor provides data needed by the core processing monitors. Typically, the core
processing monitors spawn multiple monitor instances. These monitor instances will consume
data from the same servicemonitors. For example, allmonitor instances thatmanage the individual
orders for a given stock would obtain tick data from the same instance of a service monitor. The
ordinality of the solution elements (for example, N order processors that require data from 1 tick
data provider) often dictates how the solution code should be organized into separate monitors.
See also “About service monitors” on page 52.

The ordinality of the solution elements often dictates how the solution code should be organized
into separate monitors. For example, there is an N:1 relationship between the N order processor
monitor instances that requiremarket data for a given stock and the 1market data servicemonitor
instance that supplies it.

Event processing order for monitors
As mentioned earlier, contexts allow EPL applications to organize work into threads that the
correlator can execute concurrently.When you start a correlator it has amain context. In amonitor,
you can create additional contexts to enable the correlator to concurrently process events.

Note:
In a query, you do not create contexts. Instead, Apama automatically creates contexts as needed
to process the incoming events.

Each context, including the main context, has its own input queue, which receives

Events sent specifically to that context from other contexts.

Events sent to a channel that amonitor in the context is subscribed to. See “Channels and input
events” on page 31.

Concurrently, in each context, the correlator

Processes events in the order in which they arrive on the context's input queue

Completely processes one event before it moves on to process the next event

When the correlator processes an event within a given context, it is possible for that processing to
route an event. A routed event goes to the front of that context's input queue. The correlator
processes the routed event before it processes the other events in that input queue.

If the processing of a routed event routes one or more additional events, those additional routed
events go to the front of that context's input queue. The correlator processes thembefore it processes
any events that are already on that context's input queue.

For example, suppose the correlator is processing the E1 event and events E2, E3, and E4 are on the
input queue in that order.

46 Developing Apama Applications 10.11.2

2 Defining Monitors

While processing E1, suppose that events En1 and En2 are created in that order or sent to the context.
Assuming that there is room on the input queue of that context, those events go to the end of the
input queue of that context:

While still processing E1, suppose that events R1 and R2 are created in that order and routed. These
events go to the front of the queue:

When the correlator finishes processing E1, it processes R1. While processing R1, suppose that two
event listeners trigger and each event listener action routes an event. This puts event R3 and event
R4 at the front of the context's input queue. The input queue now looks like this:

It is important to note that R3 and R4 are on the input queue in front of R2. The correlator processes
all routed events, and any events routed from those events, and so on, before it processes the next
routed or non-routed event already on that queue.

Now suppose that the correlator is done processing R1 and it begins processing R3. This processing
causes R5 to be routed to the front of that context's input queue. The context's queue now looks
like the following:

See also “Understanding time in the correlator” on page 180.

Developing Apama Applications 10.11.2 47

2 Defining Monitors

Allocating events in monitors

Note:
The principles described here apply to variables of any type, not just to any event type or any
reference type.

When writing monitors consider when and where to declare and populate event variables. You
can declare event variables at themonitor level or inside an action. Event variables that you declare
at the monitor level are similar to global variables.

Events are reference types. This means that, for example, a variable of event type Foo is not an
instance of Foo. The variable is a reference to an instance of Foo.

You cannot initialize the fields of a monitor-level variable. You can, however, initialize a
monitor-level instance of the event that the variable refers to. For example:
Foo a := Foo(1, 2.3);

This instantiates a Foo event and specifies that a refers to that event. Now suppose you declare
the following:
Foo b := a;

This does not instantiate a new Foo event. It only initializes b as an alias for a.

When you declare an event at themonitor level, the correlator can automatically use default values
for the event's fields. You can, but you do not have to, initialize field values. This is because the
correlator implicitly transforms a statement such as this:
Foo a;

into this:
Foo a := new Foo;

Before you use a locally declared event variable in an action, youmust either assign it to an existing
event of the same type, or you must specify the new operator to create a new event to assign to the
variable. Note that each event field of an event created using new initially has the default value for
that event field type.

The following code illustrates these points:
event Foo
{

integer i,
float x;

}

monitor Bar
Foo a; // Global (monitor-level) declaration.

// The correlator creates a Foo event with default
// values for fields.

action onload() {
a.i := 10; // Assign non-default value.

48 Developing Apama Applications 10.11.2

2 Defining Monitors

a.x := 20.0; // Assign non-default value.
Foo b; // Local (in an action) declaration.

// The correlator does not create an event yet.
b := new Foo; // Create a default Foo event and assign

// it to local event.
b.i := 10; // Assign a non-default value.
b.x := 20.0; // Assign a non-default value.
Foo c := a; // You can assign a locally declared event to

// reference an existing event.
// Variables a and c alias the same event.

c.i := 123 // The value of a.i is now also 123.
Foo d := Foo(15,30.0);

// Create an event and also initialize it.
}

Sending events to other monitors
After you inject a monitor into the correlator, it can communicate with other injected monitors
under the following conditions:

If the source monitor instance and the target monitor instance are in the same context, the
source monitor instance can route an event that the target monitor instance is listening for. A
routed event goes to the front of the context's input queue. The correlator processes all routed
events before it processes the next non-routed event on the context's input queue. If the
processing of a routed event routes another event, that event goes to the front of the input
queue and the correlator processes it before it processes any other routed events on the queue.
See “Event processing order for monitors” on page 46.

If the source monitor instance and the target monitor instance are in different contexts, the
source monitor instance must have a reference to the context that contains the target monitor
instance. The source monitor instance can then send an event to the context that contains the
target monitor instance. The target monitor instance must be listening for the sent event or the
context that contains the target monitor instance must be subscribed to the channel that the
event is sent on. See “Sending an event to a particular context” on page 296 and “Subscribing
to channels” on page 54.

Within a context, an application can use routed events and completion event listeners to initiate
and complete a service request inline, that is, prior to processing any subsequent events on the
input queue. See “Specifying completion event listeners” on page 157.

In the following example, the event listeners trigger in the order in which they are numbered.
monitor Client {
...

listener_1:= on EventA() { route RequestB(...) }
listener_5:= on ResponseForB () { doWork(); }
listener_6:= on completed EventA() { doMoreWork(); }

...
}

monitor Service1{
...

listener_2:= on RequestB(...)
route RequestC();
listener_4:= on ResponseForC{

Developing Apama Applications 10.11.2 49

2 Defining Monitors

route ResponseForB ();
}

...
}

monitor Service1a{
...

listener_3:= on RequestC (...)
route ResponseForC();

}

Best practices for working with routed events include:

Keep them small; preferably zero, one, or two fields.

Specify wildcards wherever appropriate in definitions of events that will be routed.

See also “Generating events with the route statement” on page 266.

Defining your application's message exchange protocol
Monitors use events to communicate with each other. Consequently, an EPL application will have
a well-defined message exchange protocol. A message exchange protocol defines the following:

Types and structure of events that function as messages between monitor instances.

Relationships among these events.

Sequence and flowof events—which events are sent in response to receiving particular events.

Which monitors need to be able to handle which events, and conversely, which monitors
should not receive which events.

Which channels these events are sent to, or whether they are sent directly between contexts.

When you define your application's message exchange protocol, keep in mind that any event that
the correlator processes is potentially available to all loaded monitors. Consequently, you want
to follow conventions that prevent the inadvertent matching of events with event listeners. These
conventions are:

Use packages to restrict the scope of event names (for example, MyPackage, YourPackage).

Use duplicate event definitions with different event names (for example, MyStartEvent,
YourStartEvent).

Use discriminating/addressing information in the event (for example, Request{integer
senderId;...}, Response { integer toSender;...}).

While event definitions provide partial support for a robust message exchange protocol, they lack
the ability to specify event patterns, request-response associations, and so on. You should insert
structured comments in your event definition files to define this part of the message exchange
protocol. The comments that describe the relationships among the events define the contract that
the participating monitors must adhere to. It is up to you to document the expected flows and
patterns and to ensure that your monitors comply with the contract.

50 Developing Apama Applications 10.11.2

2 Defining Monitors

Some common message exchange patterns are:

Request/response

Publish/subscribe/unsubscribe

Start/stop

To identify the event types that a core monitor needs to support, consider the following:

What actions do you want to perform on the object that the monitor represents? You might
want to define an event that is dedicated to each action. For example, for an order processing
monitor, you might define an event type for each of the following actions:

Place an order

Change an order

Cancel an order

Suspend trading

Resume trading

What initialization and termination events are needed? Keep in mind that a core monitor is
typically a factory that creates monitor instances that each represent a single entity. You
probably want to define at least one event type for initialization and one event type for
termination.

Do you need other control events? For example, in the order processing example, do you need
a control event that suspends all trading and applies to all orders? See “Using events to control
processing” on page 51.

Do you need to add any events to observe what is happening in the monitor? For example,
each order processingmonitor could support a request/response protocol to inquire of its state
or it could simply send an OrderProcessingState event each time there is a significant state
change.

Using events to control processing
In addition to using events to share data, you can use events to control processing. Control events
are like switches. You use them to move a monitor from one state to another. Control events
typically contain little or no data; that is, they have one or no fields.

A common use for control events is to initialize or terminate a process. For example, rather than
use an onload() statement to set things up, it is good practice to use amonitor's onload() statement
to create an event listener for a start event. This practice defers initialization until the start event
is received. Similarly, you can use a stop event to signal to a monitor that it should perform
shutdown actions such as deallocating resources before you terminate the correlator.

For example, consider the following action:
action initialize() {

on EndAuction() and not BeginAuction() startNormalProcessing();

Developing Apama Applications 10.11.2 51

2 Defining Monitors

on BeginAuction() and not EndAuction() startAuctionProcessing();
route RequestAuctionState(); //A service monitor will respond with

//an EndAuction or BeginAuction event
}

In this code, EndAuction and BeginAuction can be viewed as control events. Receipt of one of these
events determines whether the monitor executes the logic associated with being in an auction or
out of an auction.

About service monitors
Of course, all monitors can be considered to be providing some kind of service. However, as
mentioned earlier, it can be helpful to view the monitors that make up your application as either
core processingmonitors or servicemonitors. It is common for a single instance of a servicemonitor
to provide data to a set of monitor instances spawned from a core processing monitor instance.

Apamaprovides a number of servicemonitors that fit this pattern. These servicemonitors provide
support for the following:

DescriptionName

Exposes read-only data to dashboards. This data comes from
EPL and Java applications. See “Making Application Data
Available to Clients” on page 433.

DataView Service

Supports retrieval of passwords from implementation-specific
providers.

Password Service

Provides support for interacting with the application using the
Scenario Service API. See "Scenario Service API" in Connecting
Apama Applications to External Components.

Scenario Service

In addition, there are a number of service monitors for use by adapters:

DescriptionName

Provides event capture andplayback in conjunctionwithApama's
Data Player in Software AG Designer. Also monitors Java

ADBC Adapter

database connectivity (JDBC) and open database connectivity
(ODBC).

Monitors connectivity with an adapter.IAF Status Manager

Adding predefined annotations
Some EPL language elements can take predefined annotations. They provide the runtime and
Software AG Designer with extra information about these language elements. These predefined
annotations can appear immediately before the following:

52 Developing Apama Applications 10.11.2

2 Defining Monitors

Event declarations

Actions in monitors or event definitions

Annotations have packaged names like events. Thus, either their full name, or (preferably) a using
declaration should be added to the file to allow the name to be used without having to specify its
full name. Annotations are written as an at symbol (@) followed by the name of the annotation,
followed by parameters in parentheses. The values used in annotation parametersmust be literals.
If both annotations and ApamaDoc are specified, the order should be: ApamaDoc, followed by
annotations, followed by the language element that they apply to.

The following annotations are available:

DescriptionParametersAnnotation

This annotation is part of the com.apama.epl
package and applies to action definitions. It tells

NoneSideEffectFree

the EPL compiler that this action has no side
effects. When called from a log statement, the
compiler is free to not call an action if it has no
side effects and the log level is such that the log
statement would not print anything to the log
file. See “Logging and printing” on page 281.

This annotation is part of the com.apama.queries
package and applies to event definitions. It tells

NoneOutOfOrder

the query runtime that these events may occur
out of order. See “Out of order events” on
page 97.

This annotation is part of the com.apama.queries
package and applies to event definitions. It tells

stringTimeFrom

the query runtime the default action name on
the event definition to obtain source time from.
See “Using source timestamps of events” on
page 90.

This annotation is part of the com.apama.queries
package and applies to event definitions. It tells

stringHeartbeat

the query runtime the default heartbeat event
type to use. See “Using heartbeat events with
source timestamps” on page 96.

This annotation is part of the com.apama.queries
package and applies to event definitions. It tells

stringDefaultWait

the query editor in Software AG Designer the
default time to wait to use. See “Using source
timestamps of events” on page 90.

This annotation is part of the
com.softwareag.connectivity package and

stringExtraFieldsDict

Developing Apama Applications 10.11.2 53

2 Defining Monitors

DescriptionParametersAnnotation

applies to event definitions. It names a field of
type dictionary<string,string>where the
apama.eventMap connectivity host plug-in will
place unmapped entries. See "Translating EPL
events using the apama.eventMap host plug-in"
in Connecting Apama Applications to External
Components.

This annotation is part of the
com.softwareag.connectivity package and

stringMessageId

applies to event definitions. It names a field of
an event type that should contain the unique
identifier of the connectivity plug-in message
that the event came from.

The fieldmust be of type string and it can refer
to a field nested in another event, for example:
MessageId("nestedEvent.fieldOfEvent")

You should not name a field that you expect to
have a real value. See "Using reliable transports"
and "Reliable messaging with Digital Event
Services" in Connecting Apama Applications to
External Components.

Example:
using com.apama.epl.SideEffectFree;

monitor SomeMonitor {
action onload() {

on all Event() as e {
log prettyPrint(e) at DEBUG;

}
}

@SideEffectFree()
action prettyPrint(Event e) returns string {

return e.field1 +" : "+e.field2.toString();
}

}

Subscribing to channels
Adapters and clients can specify the channel to deliver events to. In EPL, you can send an event
to a specified channel. To obtain the events delivered to particular channels, monitor instances
and external receivers can subscribe to those channels.

54 Developing Apama Applications 10.11.2

2 Defining Monitors

In a monitor instance, to receive events sent to a particular channel, call the subscribe()method
on the monitor pseudo-type by using the following format:
monitor.subscribe(channel_name);

Replace channel_namewith a string expression that indicates the name of the channel you want
to subscribe to. You cannot specify a com.apama.Channel object that contains a string.

Call the subscribe()method from inside an action. Any monitor instance in any context can call
monitor.subscribe().

The subscribe()method subscribes the calling context to the specified channel. When a context
is subscribed to a channel events delivered to that channel are processed by the context, and can
match against any listeners in that context. This includes listeners from monitor instances other
than the instance that called subscribe(). However, the subscription is owned by the monitor
instance that called monitor.subscribe(). If thatmonitor instance terminates, then any subscriptions
it owned also terminate.

A subscription ends when the monitor instance that subscribed to the channel terminates or
executes monitor.unsubscribe.

Whether an event is coming into the correlator or is generated inside the correlator, it is delivered
to everything that is subscribed to the channel. If the target channel has no subscriptions from
monitor instances nor external receivers then the event is discarded.

For example:
monitor pairtrade
{

action onload()
{

on all PairTrade() as pt {
spawn start_trade(pt.left, pt.right) to context(pt.toString());

}
}

action start_trade(string sym1, string sym2)
{

monitor.subscribe("ticks-"+sym1);
monitor.subscribe("ticks-"+sym2);
// Next, set up listeners for sym1 and sym2.
. . .

}
}

This code spawns a monitor for each trade pair. The spawned monitor subscribes to just the ticks
for the symbols passed to it. If a symbol in one pair is slow to process, any unrelated pairs of
symbols are unaffected. See "Event association with a channel" in Deploying and Managing Apama
Applications..

In a context, any number of monitor instances can subscribe to the same channel. When multiple
monitors in a context require data from a channel the recommendation is for each monitor to
subscribe to that channel. This ensures that the termination of one monitor does not affect the
events received by other monitors. Subscriptions are reference counted. The result of multiple

Developing Apama Applications 10.11.2 55

2 Defining Monitors

subscriptions to the same channel from the same context is that each event is delivered once as
long as any of the subscriptions are active. An event is not delivered once for each subscription.

Suppose that in onemonitor instance you unsubscribe from a channel but anothermonitor instance
in the same context is subscribed to that channel. In the monitor instance that unsubscribed, be
sure to terminate any listeners for the events from the unsubscribed channel. Events from the
unsubscribed channel continue to come in because of the subscription from the other monitor
instance.

To explicitly terminate a subscription, call monitor.unsubscribe(channel_name). In a given context,
if you terminate the last subscription to a particular channel then the context no longer receives
events from that channel. If events from the previously subscribed channel were delivered but
not yet processed (they are waiting on the input queue) those events will be processed. This could
include the processing of any listener matches. It is an error to unsubscribe from a channel that
the calling monitor instance does not have a subscription to, and this will throw an exception.

If a monitor is going to terminate anyway there is neither requirement nor advantage to calling
unsubscribe(). Calling unsubscribe() can be useful when a monitor listens to configuration data
during startup but does not need to listen to it during normal processing.

Note:
The subscribe() and unsubscribe()methods are static methods on the monitor type. However,
it is not possible to use instances of the monitor type. For example, there cannot be variables or
event members of type monitor.

See also “Channels and contexts” on page 294.

Apama queries cannot subscribe to channels. However, events sent on the default channel as well
as events sent on the com.apama.queries channel are received by all running Apama queries. See
“Defining Queries” on page 59.

If a correlator is configured to connect to Universal Messaging, then a channel might have a
corresponding Universal Messaging channel. If there is a corresponding Universal Messaging
channel, the monitor is subscribed to the Universal Messaging channel. See "Choosing when to
use Universal Messaging channels and when to use Apama channels" in Connecting Apama
Applications to External Components.

About the default channel
The name of the default channel is the empty string.

Public contexts, including themain context, are always subscribed to the default channel. Contexts
that Apama queries run in are also always subscribed to the default channel.

When an adapter or client that is sending events to the correlator does not specify a target channel
the event goes to the default channel. There is no need for a public context to subscribe to the
default channel.

Events generated by the route statement are not delivered to the default channel.

56 Developing Apama Applications 10.11.2

2 Defining Monitors

An adapter that is using Universal Messaging to send events cannot use the default channel. See
"Configuring IAF adapters to useUniversalMessaging" inConnectingApamaApplications to External
Components.

About wildcard channels
An external receiver can be configured to listen on the com.apama.input channel, which is awildcard
channel for all events that come into the correlator. This can be useful for diagnostics, testing, or
auditing, but it is not recommended for production. In a production environment, the
recommendation is to explicitly specify the channels that the receiver should listen on.

A monitor instance cannot subscribe to com.apama.input.

To configure an external receiver to process all events generated in the correlator, specify that the
receiver listens on the default channel (""). With this specification, a receiver would get all events
generated by the send...to channel and emit statements regardless of the channel the event was
directed to. Events generated by the route statement are not delivered to the default channel.

Adding service monitor bundles to your project
Depending on what your Apama application does, it might require one or more provided service
monitors. Apama organizes service monitors into bundles. To use the service, you add the bundle
to yourApamaproject in SoftwareAGDesigner. See also "Specifying the project bundles properties"
in Using Apama with Software AG Designer.

When the bundle has been added in Software AG Designer, expand the bundle directory to see
the contents. To understand exactly what each service monitor provides, open the service's EPL
file. The comments in the EPL file explain the purpose of each service monitor and how to use it.

You can also write your own service monitors. Best practices for doing this include:

Follow good engineering practices for defining message exchange protocols.

Copy the conventions used in the Apama-provided service monitors as these monitors
implement common patterns.

Utilities for operating on monitors
Apamaprovides the following command-line utilities for operating onmonitors. For details about
using these utilities, see "Correlator Utilities Reference" in Deploying and Managing Apama
Applications.

engine_inject— injects files into the correlator.

engine_delete— removes items from the correlator.

engine_send— sends Apama-format events to the correlator.

engine_receive— lets you connect to a running correlator and receive events from that
correlator.

Developing Apama Applications 10.11.2 57

2 Defining Monitors

engine_watch— lets you monitor the runtime operational status of a running correlator.

engine_inspect— lets you inspect the state of a running correlator.

engine_management— lets you shut down a running correlator or obtain information about a
running correlator. You can also use this utility to manage other types of components, such
as adapters and continuous availability processes.

58 Developing Apama Applications 10.11.2

2 Defining Monitors

3 Defining Queries

■ Introduction to queries .. 60

■ Format of query definitions ... 68

■ Defining metadata in a query ... 70

■ Partitioning queries ... 71

■ Defining query input ... 77

■ Finding and acting on event patterns ... 103

■ Implementing parameterized queries ... 129

■ Restrictions in queries .. 134

■ Best practices for defining queries ... 135

■ Testing query execution .. 138

■ Communication between monitors and queries ... 140

Developing Apama Applications 10.11.2 59

A query is one of the basic units of EPL program execution.

Note:
The other basic unit is a monitor. A monitor cannot contain a query. A query cannot contain a
monitor. For information about writing monitors, see “Defining Monitors” on page 33. For a
comparison of queries and monitors, see "Architectural comparison of queries and monitors"
in Introduction to Apama.

Apama queries are suitable for applications where the incoming events provide information
updates about a very large set of real-world entities. Apama provides several sample query
applications, which you can find in the samples\queries directory of your Apama installation
directory.

The topics below provide information and instructions for defining queries.

For reference information, see “Queries” on page 651.

See also: "Using Query Designer" in Using Apama with Software AG Designer and "Deploying and
Managing Queries" in Deploying and Managing Apama Applications.

Introduction to queries
An Apama query is a self-contained processing element that communicates with other queries,
and with its environment, by sending and receiving events. Queries are designed to be
multithreaded and to scale across machines.

You use Apama queries to find patterns within, or perform aggregations over, defined sets of
events. For each pattern that is found, an associated block of procedural code is executed. Typically
this results in one or more events being transmitted to other parts of the system.

Note:
If a license file cannot be foundwhile the correlator is running, several restrictions are enforced
on queries. See "Running Apama without a license file" in Introduction to Apama.

Example of a query
The following code provides an example of a query. This query monitors credit card transactions
for a large set of credit card holders. The goal is to identify any fraudulent transactions. While this
example illustrates query operation, it is not intended to be a realistic application.
query ImprobableWithdrawalLocations {

parameters {
float period;

}
inputs {

Withdrawal(value>500) key cardNumber within period;
}
find Withdrawal as w1 -> Withdrawal as w2

where w2.country != w1.country {
log "Suspicious withdrawal: " + w2.toString() at INFO;

}
}

60 Developing Apama Applications 10.11.2

3 Defining Queries

Each query definition is in a separate file that has a .qry file name extension. The example shows
several query features:

Parameters section

Queries can be parameterized.When a query has no parameters, a single instance of the query
is automatically created when the query is loaded into a correlator. If one or more parameters
are defined for a query, when the query is loaded into a correlator, no instances are created
until you define an instance and specify a set of parameter values for that instance.

Inputs section

The inputs section identifies the events that the querywill operate on, that is, the event inputs.
This section contains one ormore definitions. Each definition identifies the type of input event
(Withdrawal in the example) together with details identifying which Withdrawal events are
input, how those events are distributed, and what state, or event history, is to be held.

The query key is a fundamental concept. If a key is defined, then the incoming events are
partitioned into different sets based on the value of the key. Query processing operates
independently for each set/partition. In the example query, events for each cardNumberwill be
independently processed.

For each event input, the definition identifies the set of events that are current. When looking
for pattern matches or evaluating aggregates, only current events are used. For each event
input, the set of events that is current is referred to as the event window.

Find statement

The find statement identifies an event pattern to bematched and defineswhat event processing
actions are takenwhen amatch is found. A find statement consists of an event pattern followed
by a find block.

The event pattern can specify conditions that determine whether there is a match. A where
condition specifies a Boolean expression that must evaluate to true for there to be a match. A
within condition specifies that certain elements within the pattern must occur within a given
time period. A without condition specifies an event whose presence can prevent a match.

Statements in a find block can send events to communicate with other queries, with monitor
instances, and with external system elements in a deployment, such as adapters, correlators,
or other deployed processes. Some EPL statements, such as on, spawn, from, and die are not
allowed in queries.

Use cases for queries
Apama queries are useful when you want to monitor incoming events that provide information
updates about a very large set of real-world entities such as credit cards, bank accounts, cell phones.
Typically, you want to independently examine the set of events associated with each entity, that
is, all events related to a particular credit card account, bank account, or cell phone. A query
application operates on a huge number of independent sets with a relatively small number of
events in each set.

Developing Apama Applications 10.11.2 61

3 Defining Queries

One use case for Apama queries is to detect subsequent withdrawals from the same bank account
but from locations thatmake it improbable that thewithdrawals are legitimate. Very large numbers
of withdrawal events would stream into your application. A query can segregate the transactions
for each bank account from the transactions of any other bank account. Your query application
can then check the transaction events for a particular account to determine if there have been
withdrawals within, for example, a two-hour period from locations that are more than two hours
apart. You can write a query application so that if it finds this situation the response is to contact
the credit card holder.

Another use case is to detect repeated maximum withdrawals from the same automatic teller
machine (ATM) within a short period of time. This might be due to a criminal with a stack of
copied cards and identification numbers. In this case, a query can segregate events by ATMs. That
is, the transactions conducted at a particular ATMwould be in their own partition, separate from
transactions conducted at any other ATM. Your query application can check the events in each
partition to determine if, for example, there are repeated withdrawals of $500 within one hour. If
such a situation is found your query can be written to send an alert message to the local police.

Another use case for Apama queries is to offer a better data plan to new smartphone users. Large
numbers of events related to cell phone customers would come into the system. Your query
application can create sets of events where each set, or partition, contains the events related to one
cell phone customer. When your query detects an upgrade from a flip phone to a smart phone,
your application can automatically send a message to that customer that outlines a better data
plan.

In summary, the characteristics of an Apama query application include:

You want to monitor a very large number of real-world entities.

You want to process events on a per-entity basis, for example, all events related to one credit
card account.

The data you need to retain in order to run Apama queries is either too large to fit on to a
single machine or there is a requirement to place it in shared, fast-access storage (a cache) to
support resilience/availability requirements.

More information about the use cases for queries can be found in "Understanding queries" in
Introduction to Apama.

Delayed and out of order events
In many of the typical applications envisaged for Apama queries, the input events may be either
delayed or out of order. For example, cars and othermobile sources of events such as smart phones
and tablet computers might normally send regular streams of events, but when such devices are
out of network coverage, these events will have to be batched and sent when back in range. Many
older generation factory robots store events and only send periodic batches by design. And in
other cases, events may be sent out of order. Television set top boxes, for example, often employ
distinct channels for tuning information and diagnostics. This means that a “channel changed”
eventmay be received before a “set top box crashed” event, and somay be thought to have caused
it, even though the event in fact happened after it, and was causally unconnected.

62 Developing Apama Applications 10.11.2

3 Defining Queries

Delayed or out of order events can create problems for the query runtime because it assumes that
events should be treated as being in the order in which they are processed, and the time of each
event is the correlator's time at the point the event is processed. However, provided that the input
events contain a timestamp recording the time that the event was created at the source, these
problems can be overcome by using the Apama queries source timestamp functionality. This
allows the queries runtime to wait for specified periods before processing events, and then to
process those events on the basis of their source timestamps rather than the time theywere received
by the correlator. (For out of order events, the Apama event definitionsmust have the appropriate
annotation; for more information, see “Out of order events” on page 97).

Events can also be supplemented by heartbeat eventswith timestamps fromdata sources to inform
the query runtime when communication with the data source is working correctly, which avoids
long delays waiting for events to occur in case they are delayed.

See “Using source timestamps of events” on page 90 for details on how to configure Apama
queries to use source timestamps.

Query terminology
The following table defines important query terms.

DescriptionTerm

Aself-contained processing unit. It partitions incoming events according
to a key and then independently processes the events in each partition.

query

Processing involves watching for an event pattern and then executing
a block of procedural code when that pattern is found.

An event type that a query operates on. An input definition specifies
an event type plus details that indicate how to partition incoming events
and what state, or event history, is to be held.

input

A query key identifies one or more fields in the events being operated
on. Each input definition must specify the same key.

key

A partition contains a set of events that all have the same key value.
One or more windows contain the events added to each partition.

partition

For each input, awindow contains the events that are current. The query
operates on only current events.

window

The latest event is the event that wasmost recently added to a partition.latest event

The events that are in the window(s) of a partition.set of current events

Specification of the event or sequence of events or aggregation that you
are interested in. A pattern can include conditions and operators.

pattern

A match set is the set of events that matches the specified pattern. A
match set always includes the latest event.

match set

Developing Apama Applications 10.11.2 63

3 Defining Queries

DescriptionTerm

A query definition that specifies parameters is a parameterized query.
An instance of a parameterized query is referred to as a
parameterization.

parameterization

The time an event occurred at its source. This may be before it is
processed if there is some delay or disruption in delivering the event

source timestamp

from the source to the query runtime. This will be data in one or more
fields of an input event. Queries can use the source timestamp if an
action is provided to obtain the source timestamp in the correct form.
See “Using source timestamps of events” on page 90.

An event that a query uses to determine when communication with a
data source is working correctly, and it has not missed any events that

heartbeat event

are delayed. With heartbeat events, received input events can be
processed as they are considered definitive. Without these, the query
runtime needs to wait for the input's wait time specified in the query
definition to ensure it avoids missing delayed events.

The point in time for which the query runtime has been told that it can
assume it has received all the events it is going to receive. All events at

definitive time

or before this point in time are considered definitive and can be used
to evaluate the query. This applies when using the source timestamp
functionality.

Overview of query processing
WhenApama executes queries, it does so in parallel, making use ofmultiple CPU cores as available.
This is good for performance, but uses more resources on the hosts running the correlator and
can, in edge cases, cause events to be processed in an order that is different from the order inwhich
they were delivered to the correlator. To simplify testing, a serial mode is supported where events
are processed in order, no matter how quickly they are sent.

Apama processes queries as follows:

1. Based on the inputs section of a query, the query subsystem creates listeners for the required
events.

2. Running Apama queries receive events sent on the default channel and on the
com.apama.queries channel.

3. Events matching those listeners are forwarded to the query subsystem that processes the
events.

4. The events are processed in parallel. That is, multiple threads of execution are employed,
thereby achieving vertical scaling on machines that have multiple cores.

5. The query subsystem must locate the relevant events for the query partition. That is, the
previously encountered events that are still current according to the defined event windows

64 Developing Apama Applications 10.11.2

3 Defining Queries

for that query. The information in the incoming event, that is, the key, is all that is required to
locate these events.

6. The window contents are updated, adding the new event and discarding any events that are
no longer current.

7. The system then checks the updatedwindow contents to determine if there are any newpattern
matches.

8. For each new pattern match the associated find block statements are executed.

In a single correlator solution, events in a particular partition are held in one or more Apama
MemoryStore records. The key from the incoming event is used to locate these records. In a
multi-correlator solution, the records are held in a distributed cache, accessed by means of the
MemoryStore API. All of this is internal, however, you should consider timing constraints when
deciding whether a query-based solution is appropriate for a given problem. See "Understanding
queries" in Introduction to Apama.

After injecting a query into a correlator, eventsmay be immediately sent to that query. If necessary,
Apama stores these events until the query is prepared. That is, the query might be opening
local/remote stores. Events are delivered when the query is ready to process them. There is no
guarantee that the order in which the events arrived in the correlator is the same order in which
the query processes them. See “Event ordering in queries” on page 138.

When testing, either send events at a realistic event rate, with pauses in between each set of events,
or use single context mode. To send events with pauses, you can place BATCH entries in the .evt
file. See "Event timing" in Deploying and Managing Apama Applications.

By default, the query subsystem determines the size of the machine it is running on (the number
of cores) and scales accordingly. If other services are affected by the load on the host machine, or
for testing, then send one of the following events to the correlator (for example, by creating an
.evt file in Software AG Designer and sending it as part of the Run Configuration) to configure
how the correlator executes queries:

com.apama.queries.SetSingleContext()

com.apama.queries.SetMultiContext()

Overview of query application components
While queries canmake up the central logic of anApamadeployment, deploying anApama query
application also requires event definitions, and connections to event sinks and event sources.
Optionally, anApamaquery application canmake use of EPLplug-ins, EPL actions, and interactions
with EPL monitors.

In addition to queries, the following components are required to implement a query application.

Event definitions. This includes event types used by adapters ormapped frommessage busses
(see below) or used internally within application components. Typically, event types specific
to an adapter or to existing messages on a message bus would be written by those creating or
configuring the adapter.

Developing Apama Applications 10.11.2 65

3 Defining Queries

Connections between event sources and queries and also between queries and event sinks.
This is typically handled by adapters or by mapping to messages on a message bus by means
of JMS. For testing, it is possible to use Software AG Designer or command line tools to send
and receive messages.

A correlator process. Several queries can share the same correlator process. Queries can be
started by Ant scripts, which can be exported from an Apama project. For testing, Software
AG Designer can start the queries.

Optionally, queries can use a library of functions that you provide. These would be written in
EPL and can call EPL plug-inswritten in C++ or Java. Functions in such a library can be invoked
from different points in a query.

Optionally, a query can interact with monitors. See “Communication between monitors and
queries” on page 140.

For additional information, see "Query application architecture" inDeploying andManaging Apama
Applications.

Writing event definitions

Event definitions are defined in Apama .mon files. When writing event type definitions be sure to
consider the following:

An inputs block in a query can specify filters on event fields of type boolean, decimal, float,
integer, string or location.

An event field to be specified as a query key must be of type boolean, decimal, float, integer,
string or location.

An event field to be specified in an inputs block, whether as a filter or a key, cannot be marked
with the wildcardmodifier in the event type definition.

A where condition in a query canmake use of all actions and fields of events, includingmembers
of reference types such as sequence, dictionary and other events.

Specifying an event filter in an inputs block is very efficient because it prevents any part of
the query from executing if the filter condition does not match. However, a filter in an inputs
block can operate on only contiguous ranges and can compare only a single field to a constant
or parameter value.

Specifying an event filter in a where condition is more expensive than specifying an event filter
in an inputs block. However, a filter in a where clause can be more powerful because it can
specify any EPL expression.

A query cannot use an event that contains an action variable or fields of type chunk or listener.

If you want to take advantage of the source timestamp functionality, be sure to add an event
field that records the time of the creation of the data encapsulated in the event, and an action
that returns this time in the form of a float representing the number of seconds since the epoch
(midnight , 1 Jan 1970 UTC). If the time data is not in this format, you can use the TimeFormat
event library to perform the relevant conversions (for further information, see “Using the
TimeFormat Event Library” on page 343).

66 Developing Apama Applications 10.11.2

3 Defining Queries

For example, consider the following event definitions:
event Slice {

integer quantity;
float price;

}
event UsableEvent {

integer quantity;
string username;
wildcard string auxData;
sequence<Slice> slices;
action averagePrice() returns float {

float t:=0;
Slice s;
for s in slices {

t:=t+s.price;
}
return t/(slices.length().toFloat());

}
}
event InternalEvent {

action<> returns float averager;
}

UsableEvent.quantity and UsableEvent.username can be used in a query inputs block or in a query
where condition.

UsableEvent.auxData, UsableEvent.slices and UsableEvent.averagePrice() can be used in where
conditions but not in inputs blocks.

InternalEvent cannot be an input to a query because it has an action variable. However, an
instance of InternalEvent could be used in a where condition or in triggered EPL code in a find
block.

For example, the find statement in a query can be written as follows:
find UsableEvent as e1 and UsableEvent as e2

where e1.averagePrice() > e2.averagePrice()
and
e1.slices[0].price < e2.slices[0].price

Action definitions can supply helper actions such as the averagePrice() action above. This can be
useful in both event types used by adapters and in internal event types. For example, some event
types may have no members but simply be a named container for useful library actions.

To make use of EPL plug-ins written in C, C++ or Java, it is recommended to write an EPL event
type or set of event types that wrap the plug-in. This provides a more consistent interface and can
add type safety to the use of chunks, which are opaquely-typed C, C++ or Java objects. These EPL
actions can then be called from queries, as can any EPL action.

Event sinks and sources

A typical deployment includes adapters that connect the Apama system to external sources of
data or provide the means to send events out of Apama. This can include:

Developing Apama Applications 10.11.2 67

3 Defining Queries

Adapters hosted in the Apama IAF. See "Using the IAF" in Connecting Apama Applications to
External Components.

Connections to a JMSmessage bus with mapping of JMS messages to Apama event types. See
"Using the JavaMessage Service (JMS)" inConnectingApamaApplications to External Components.

Connections to a database by means of ADBC. See "The Database Connector IAF Adapter
(ADBC)" in Connecting Apama Applications to External Components.

Connections to other components using the Apama engine_client library. See "Developing
Custom Clients" in Connecting Apama Applications to External Components.

For testing purposes, SoftwareAGDesigner can send / receive events from / to files, and command
line tools are provided as well.

Correlator process

When developing queries in Software AG Designer, launching a configuration starts a correlator
and injects queries into it by default. It is also possible to export the Apama launch configuration
to an Ant script, which can be copied onto another machine such as a server to run your project
on that machine.

It is possible to runmultiple correlators that are configured to use the same distributed cache store.
These correlators share query state. In such deployments, the recommendation is to use a JMS
message queue. Typically, these deploymentswould use correlators on separate physicalmachines
so a failure of one does not affect others. For testing, it is possible to run several correlators on a
single machine provided a separate port number is allocated to each correlator. Take care to use
the correct port number when interacting with the correlators.

Format of query definitions
A query searches for an event pattern that you specify. You define a query in a file with the
extension .qry. Each .qry file contains the definition of only one query. The following sample
shows the definition of a simple query that will search for a Withdrawal event pattern:
query ImprobableWithdrawalLocations {

metadata {
"author":"Apama",
"version":"1"

}
parameters {

float period;
}
inputs {

Withdrawal() key cardNumber within (period);
}
find

Withdrawal as w1 -> Withdrawal as w2
where w2.country != w1.country {
log "Suspicious withdrawal: " + w2.toString() at INFO;

}
}

68 Developing Apama Applications 10.11.2

3 Defining Queries

The format for a query definition is as follows:
query name {

[metadata { metadata_block }]
[parameters { parameters_block }]
inputs { inputs_block }
find pattern block
[action_definition ...]

}

DescriptionSyntax Element

Specify the query keyword followed by a name for your query. Like
monitors and event types, the identifier you specify as the name of a
query must be unique within your application.

query name

The metadata section is optional. If you specify a metadata section, it
must be the first section in the query. Metadata are specified as a list

metadata

of key-value pairs. Both key and value must be string literals. For
more information, see “Defining metadata in a query” on page 70.

The parameters section is optional. If you specify a parameters section,
it must follow the metadata section, if there is one, and precede the
inputs section. Parameters must be of the following types:

parameters

integer

decimal

float

string

boolean

Specify one or more data_type parameter_name pairs. The parameter
name can use any of the characters allowed for EPL identifiers (see
“Identifiers” on page 711). Any parameters you specify are available
throughout the rest of the query. For more information about
parameters and how parameters get their values, see “Implementing
parameterized queries” on page 129.

The inputs section is required and it must follow the parameters
section, if there is one, and precede the find statement. In the inputs

inputs

section, you must define at least one input. If you specify more than
one input each input must be a different event type.

The inputs section specifies the events that the query operates on. An
input definition can include the keyword, key, followed by one or
more fields in the specified event. This is the query key. The correlator
uses the key to partition incoming events into separate windows. For
example, the cardNumber key indicates that there is a separatewindow
for the Withdrawal events for each card number. In other words, each

Developing Apama Applications 10.11.2 69

3 Defining Queries

DescriptionSyntax Element

window can contain Withdrawal events associated with only one
account.

For details, see “Defining query input” on page 77.

After the inputs section, you must specify a find statement. A find
statement specifies the event pattern of interest and a block that

find statement

contains procedural code. This code can define EPL actions you want
to performwhen there is amatch. Formore information, see “Finding
and acting on event patterns” on page 103.

After the find statement, you can optionally specify one or more
actions in the same form as in EPL monitors. An expression in a find

action_definition

statement can reference an action defined in that query. See “Defining
actions in queries” on page 128.

Defining metadata in a query
You can record information about a query in the metadata section. This can be, for example, the
recording author, the version number, or the lastmodified date of a query. Once defined,metadata
information about a query can be viewed in the Scenario Browser. See also "Using the Scenario
Browser view" in Using Apama with Software AG Designer.

Format for defining query metadata

You define query metadata in the metadata section of a query definition. The metadata section is
optional. If you specify a metadata section, it must be the first section in the query. The format for
specifying the metadata section is as follows:
metadata {

key:value
[, key:value]...

}

key and valuemust be string literals. Both are case-sensitive.

value can be a multi-line string.

keymust be a valid EPL identifier (see “Identifiers” on page 711). Therefore, keymust not include
spaces, hyphens, dots or any other characters that are not allowed in EPL identifiers.

All key definitions that are contained in a single metadata section of a query must be unique.

It is recommended to use lowerCamelCase style for the key. The prefix “apama” should not be
used for the key as it is reserved for future use.

70 Developing Apama Applications 10.11.2

3 Defining Queries

Partitioning queries
Based on the values of selected fields in incoming events, the correlator segregates events into
many separate partitions. Partitions typically relate to real-world entities that you are monitoring
such as bank accounts, cell phones, or subscriptions. For example, you can specify a query that
partitions Withdrawal events based on their account number. Each partition could contain the
Withdrawal events for one account. Typically, a query application operates on a huge number of
partitions with a relatively small number of events in each partition.

Each partition is identified by a unique key value. You specify a key definition in each input
definition in the query's inputs block. The key definition specifies one or more fields or actions in
the event type you want to monitor. The number, order and type of the key fields must be the
same in each input definition in a query.

A query operates on the events in the windows in each partition independently of the other
partitions.

Note:
Several restrictions are enforced on queries if a license file cannot be found while the correlator
is running. See "Running Apama without a license file" in Introduction to Apama.

Defining query keys
At runtime, each partition is identified by a unique key value, which is the value of one or more
fields or actions in the events that the query operates on.

Note:
Using a key is optional. If you do not specify a key, all events the query operates on are in one
partition. Since this is an unusual use case for queries, the documentation assumes that you
always choose to specify a key.

An event member that is declared as a constant cannot be used as a query key.

In a query, each input definition in the inputs section specifies the query key in the key definition.
The key definition specifies one ormore fields or actions in the event that thewindowwill contain.
For example:
query ImprobableWithdrawalLocations {

inputs {
Withdrawal() key cardNumber within (600.0);

}
find (Withdrawal as w1 -> Withdrawal as w2)

where (w1.country != w2.country) {
getAccountInfo();
sendEmail();

}
}

In this example, the definition for Withdrawal events specifies that the cardNumber field is the key.
When the correlator processes a Withdrawal event, it adds the event to the partition identified by
the Withdrawal event's cardNumber value.

Developing Apama Applications 10.11.2 71

3 Defining Queries

Suppose the input definition in this example specifies two key fields:
inputs {

Withdrawal() key cardNumber, cardType within (600.0);
}

Each partition is now identified by a combination of the cardNumber value and the cardType value.
When you specify two or more key fields, insert a comma after each field except the last one. It is
allowable to specify key fields in an order that is different than the order of the fields in the event.

When you specify more than one input in a query, each input definition must specify the same
number and data type order of key fields. For example:
inputs {

Withdrawal() key cardNumber within (600.0);
AddressChange() key cardNumber retain 1;

}

For each input in this example, the key is the cardNumber field. The data type of the cardNumber
field in the Withdrawal event must be the same as the data type of the cardNumber field in the
AddressChange event.

Sometimes, a field in one event contains the same information as a field in another event but the
two fields have different names. For example, information about the type of a card could be in the
cardType field in Withdrawal events and the typeOfCard field in AddressChange events. In this
situation, you must specify an alias for one of the event field names. You do this in the input
definition's key definition. In the following example, as cardType in the second input definition
specifies the alias:
inputs {

Withdrawal() key cardNumber, cardType within (600.0);
AddressChange() key cardNumber, typeOfCard as cardType retain 1;

}

When you specify more than one input, the key definition in each input definition must specify
the same number of fields in the same order. Also, the data type of a field in one key definition
must be the same as the data type of its corresponding field in every other key definition in the
same inputs block. If the names of corresponding key fields are not the same, you must use the
as keyword to specify an alias.

While specification of an alias for a key field name is sometimes required, it is always an option
you can choose to use. For example:
inputs {

Withdrawal() key number as cardNumber, cardType within (600.0);
AddressChange() key number as cardNumber, typeOfCard as cardType retain 1;

}

An alias maps a field in an event to a key field. You cannot use an alias as a field of the event. For
example, consider the following query:
query Q {

inputs {
A() key surname as lastName, dob as dateOfBirth retain 5;
B() key lastName, dateOfBirth retain 4;

}

72 Developing Apama Applications 10.11.2

3 Defining Queries

find A as a -> B as b ...
}

In the find block of this query, you can use the following

a.surname, a.dob - Names of event fields

b.lastName, b.dateOfBirth - Names of event fields

lastName, dateOfBirth - Names of key fields

Defining actions as query keys
A query may also use the result of an action call on the event as the key for a query. To use an
action as a query input key, youmust provide the action name, parameters and an alias. The action
call must always return a value (chunk, listener and action are invalid return types).

The following example calls the getName() action within the A event to generate the input key:
query Q {

inputs {
A() key getName() as name retain 1;

}
find A as a ...

}

The parameters passed to an input key action can include query parameters or literals, or can be
blank in which case empty parenthesis must still be supplied. Passing a query parameter allows
for specializing the partitions depending on the query parameter, which can reduce duplicating
query code when only the input keys differ.

The following example calls the getName() actionwithin the B event, supplying the query parameter
nameToPartition into the action. The action can then return a different field (firstname or surname)
depending on the parameters of this query instance:
query Q {

parameters {
string nameToPartition;

}
inputs {

B() key getName(nameToPartition) as name retain 1;
}
find B as b ...

}

An alias must always be supplied and can be used to identify the returned value of the action call
in the find block. For example, the alias namewill identify the value returned from the call to
getName() and can be used in the find block:
find B as b {
print name;

}

If using multiple input events, the action return type must match the type for the key in all other
inputs, and the alias must match between inputs. The following example uses both action and

Developing Apama Applications 10.11.2 73

3 Defining Queries

field input keys; the surname field and the return from getName()must be the same type, and they
are both mapped to the alias name:
query Q {

inputs {
A() key surname as name retain 1;
B() key getName("Surname") as name retain 1;

}
find A as a -> B as b ...

}

We suggest that query parameters that are passed into action keys are not updated. Updating
them can cause unexpected partitioning as the returned value from the action call may not be as
expected.

Query partition example with one input
A key can be one event field. For example:
query ImprobableWithdrawalLocations {

inputs {
Withdrawal() key cardNumber within (600.0);

}
find (Withdrawal as w1 -> Withdrawal as w2)

where (w1.country != w2.country) {
getAccountInfo();
sendEmail();

}
}

In the previous code fragment, the key is the cardNumber field in the incoming Withdrawal event
type.When a Withdrawal event arrives the correlator adds it to thewindow in the partition identified
by the value of the Withdrawal event's cardNumberfield. For each partition, each unique card number
in this example, the correlator maintains the window and evaluates the pattern separately from
every other partition.

Suppose that cardNumber is the first field in Withdrawal events. The following table shows what
happens at runtime.

Window ContentsGoes IntoWindow in Partition
Identified by This Key Value

Incoming Event

Withdrawal (12345, 50.0, ...)12345Withdrawal (12345, 50.0, ...)

Withdrawal (24601, 60.0, ...)24601Withdrawal (24601, 60.0, ...)

Withdrawal (12345, 50.0,
...),

12345Withdrawal (12345, 10.0, ...)

Withdrawal (12345, 10.0, ...)

In the execution of this query, there is no interaction between the Withdrawal events for account
number 12345 and the Withdrawal event for account number 24601.

74 Developing Apama Applications 10.11.2

3 Defining Queries

Query partition example with multiple inputs
The following query provides an example of partitioning with two inputs. This query operates
on APNR (Automatic Plate Number Recognition) events and Accident events:
query DetectSpeedingAccidents {

inputs {
APNR() key road within(150.0);
Accident() key road within(10.0);

}
find APNR as checkpointA -> APNR as checkpointB -> Accident as accident

where checkpointA.plateNumber = checkpointB.plateNumber
and checkpointB.time - checkPointA.time < 100
// Which indicates the car was speeding

{
emit NotifyPolice(accident.road, checkpointA.plateNumber);

}
}

The road field in an APNR event must be the same type as the road field in an Accident event.
Assuming that road is a string, each partition is identified by a unique value for that string.

Suppose the correlator processes the following events in top to bottom order and that road is the
first field in each event:

Accident("M11")

APNR("A14", "FAB 1", ...)

APNR("A14", "BSG 75", ...)

APNR("M11", "ZC 158", ...)

APNR("A14", "BSG 75", ...)

APNR("M11", "ZC 158", ...)

APNR("A14", "FAB 1", ...)

Accident("A14")

The following table shows which events are in which partitions. Note that in each partition, the
APNR events are in one window and the Accident events are in another window. Although the
events are in separate windows, the correlator time-orders the events across all windows in a
partition.

Events in Partition Identified by "A14"Events in Partition Identified by "M11"

APNR("A14", "FAB 1", ...)Accident("M11")

APNR("A14", "BSG 75", ...)APNR("M11", "ZC 158", ...)

APNR("A14", "BSG 75", ...)APNR("M11", "ZC 158", ...)

APNR("A14", "FAB 1", ...)

Developing Apama Applications 10.11.2 75

3 Defining Queries

Events in Partition Identified by "A14"Events in Partition Identified by "M11"

Accident("A14")

In each partition, the query evaluates the event pattern against the events in the windows in that
partition. The query does this for each partition separately from every other partition. In this
example, when the correlator adds the Accident("A14") event to the partition identified by "A14"
the event pattern is triggered if the where clause in the find statement evaluates to true. The event
pattern is not triggered in the partition identified by "M11".

About keys that have more than one field
A key can be made up of several event fields. For example, a Transaction event might contain a
field that indicates the transaction source account and another field that indicates the transaction
destination account. You can specify that you want to partition Transaction events according to
each unique source/destination combination:
query TransactionMonitor {

inputs {
Transaction() key source, dest within PERIOD;

}
...
}

In this example, there is a partition identified by the value of each source/dest combination. Each
of the following events is added to a window in a different partition:

Is Added to the Window in the Partition
Identified By

This Event

1, 100Transaction(1, 100, ...)

1, 102Transaction(1, 102, ...)

2, 100Transaction(2, 100, ...)

2, 102Transaction(2, 102, ...)

Regardless of the event pattern in the query, this query monitors the transfer of money from one
specific account to another specific account. This query handles each transfer between the same
two accounts separately from all other transactions.

Now suppose that there is an Acknowledgement event that acknowledges that a transaction has
succeeded. It also has account source and account destination fields, but they are inverted when
compared to the transaction event fields. That is, the source account for an acknowledgment is
the destination account of the transaction. To ensure that the acknowledgments are added to the
same partition as the corresponding transactions, the key definition specifies the as keyword:
inputs {

Transaction() key source as txSource, dest as txDest within PERIOD;
Acknowledgement() key dest as txSource, source as txDest within PERIOD

}

76 Developing Apama Applications 10.11.2

3 Defining Queries

The query partitions events according to the combined values of the fields identified by txSource
and txDest. The following table shows the partition that each event is added to.

Is Added to a Window in the Partition
Identified By

This Event

1, 100Transaction(1, 100, ...)

1, 100Acknowledgement(100, 1, ...)

1, 102Transaction(1, 102, ...)

2, 100Transaction(2, 100, ...)

2, 100Acknowledgement(100, 2, ...)

As you can see, a Transaction event and its Acknowledgement event are each added to a window
in the same partition.

Defining query input
In a query definition, you must specify an inputs block that defines at least one input. The input
definitions identify the events that you want the query to operate on. An input definition can
specify particular content and it can also specify a number of events or a time period. For example:
query FraudulentWithdrawalDetection {

inputs {
Withdrawal(amount > 10.0)

key cardNumber, cardType
within 600.0;

AddressChange()
key cardNumber, typeOfCard as cardType
retain 1;

}
find (Withdrawal as w1 -> Withdrawal as w2)

where (w1.country != w2.country or w1.city != w2.city)
without AddressChange as ac {

getAccountInfo();
if preferredContactType = "Email" {

sendEmail();
}
if preferredContactType = "SMS" {

sendSMS();
}

}
}

The previous code defines two inputs. For each input, there is an associated window of events.
The first inputwindow contains Withdrawal events and the second contains AddressChange events.

The input definition for the Withdrawal events specifies that each Withdrawal event in the window
must have a value greater than 10.0 in the amount field. The input definition for the AddressChange
events does not specify an event filter. Therefore, each AddressChange event that arrives is eligible
to be in the window.

Developing Apama Applications 10.11.2 77

3 Defining Queries

The next element in an input definition is the key definition. The key definition indicates how you
want to partition the incoming events. If you define more than one input, the number, type and
order of the key fields must be the same for each input. In the previous sample code, assume that
the key fields for Withdrawal events, cardNumber and cardType are integer and string, respectively,
and that the key fields for AddressChange events, cardNumber and typeOfCard are also integer and
string, respectively. The two input keys match in number, type and order of key fields.

After the key definition, you can specify a within clause, a retain clause, or both. If you specify
both, the within clause must be before the retain clause. A within clause specifies a period of
time. Only events that arrive within that period of time are in the window. In the window that
contains Withdrawal events, only Withdrawal events that have arrived in the last 10 minutes (600.0
seconds) are in the window. A retain clause specifies how many events can be in the window. In
the window that contains AddressChange events, only the last AddressChange event that arrived
can be in the window. When an AddressChange event arrives, if an AddressChange event is already
in the window it is ejected.

After the duration, you can optionally specify a with unique clause to prevent repeated values
appearing in the window. If specified, the with unique clause lists one or more fields or actions
on the event type (action names should be followed by open and close parentheses). If there is
more than one event in the window after the within and retain specifications, then all but the
latest are discarded. See “Matching only the latest event for a given field” on page 101.

The final, optional, element of an input definition is the specification of the event source timestamp
and the associated wait period. If you expect that input events from a source will be subject to
delays or may be received out of order, then you can specify a time from clause with the name of
an action that returns a float specifying the number of seconds from the epoch (midnight, 1 Jan
1970UTC) that the eventwas created. If you do this, youmust also add a wait clausewhich requires
a float or time literal specifying the maximum delay expected for these events. This tells the query
runtime how long it must wait if it has not received any events before it can continue processing
the events it has received. Both of these clauses require that the event definitionmust have a source
timestamp recording the time of creation of the event, and a corresponding action that returns
that timestamp in the form of a float representing the number of seconds since the epoch. In the
example below, the query is gathering data from cars, which may be delayed if a vehicle goes out
of network coverage. Accordingly, the input definitions specify that the source timestamps of the
events are to be obtained from the events' getEcuTime actions which simply return the value of
the events' ts float field. Further, the input definitions specify that in each case, the runtime should
wait for up to 1 hour before continuing to process any events already received to allow for possible
delays. For further details, see “Using source timestamps of events” on page 90.
event CarRPM {

string carId;
float ts;
float rpm;

action getEcuTime() returns float {
return ts;

}
}

event CarEngineTemp {
string carId;
float ts;

78 Developing Apama Applications 10.11.2

3 Defining Queries

float temp;

action getEcuTime() returns float {
return ts;

}
}

event CarEngineMisfire {
string carId;
float ts;

action getEcuTime() returns float {
return ts;

}
}

query DetectEnginePerformanceProblems {

inputs {
CarEngineTemp() key carId within 1 hour time from getEcuTime wait 1 hour;
CarRPM() key carId within 1 hour time from getEcuTime wait 1 hour;
CarEngineMisfire() key carId within 1 hour time from getEcuTime wait 1 hour;

}

find CarEngineTemp as t and CarRPM as r -> wait 1 minute
where t.temp > T_THRESHOLD
where r.rpm > R_THRESHOLD
without CarEngineMisfire as misfire {
log "Possible engine performance problem" + t.toString() + r.toString();

}
}

Typically, you define one to four inputs. If you definemore than one input, eachmust be a different
event type. In other words, two inputs to the same query cannot be the same event type.

Queries can share windows

All query instances that have the same input definitions share the same windows. Two queries
have the same input definitions when they specify:

the same input event types (the order can be different)

the same keys

the same (if any) input filters

the same use of source timestamps - that is, the same action named in time from clauses (wait
times may be different)

the same use of heartbeat events

Any wait, within, retain or with unique specifications can be different.

When two query instances have the same input definitions and no parameters are used in any
input filters, then all instances of those query definitions can share window data. If parameters

Developing Apama Applications 10.11.2 79

3 Defining Queries

are used in input filters, then parameterizations with different parameter values each store data
separately. This increases total storage requirements and cost of processing the queries.

If a query is already running and you inject a query that defines the same inputs or create a
parameterization that defines the same inputs then the newquery instance or newparameterization
uses the same windows as the query that was already running. This means that events that were
received before the new query was injected or before the parameterization was created can be in
a match set for the new query instance or new parameterization. This can happen when an event
arrives after the new query is injected or after the parameterization is created and that event
completes the pattern that the new instance or parameterization is looking for.

To reduce the amount of memory storage required to run queries, you might want to adjust the
input definition for a query so that it is the same as another query. For example, suppose query Q
is consuming inputs A, B, and X, while query P is consuming inputs A, B, and Y. If both queries
define both X and Y as inputs (as well as A and B) then they can share the same windows. This can
be an advantage when there are many A and B events but comparatively few X and Y events. If
many queries can be written with similar input sections then they can share windows, which can
lead to very efficient use of memory.

If the reason for adding an input using source timestamps is simply in order to share window
contents, then the wait time for this input can be zero to avoid unnecessary delays.

Format of input definitions
In a query definition, you define one or more inputs in the inputs block. The format of the inputs
block is as follows.
inputs {

event_type(event_filter)
key query_key [within_clause] [retain_clause]
[with_unique_clause]
[time_from_clause wait_clause [or_clause]] ;

[event_type(event_filter)
key query_key [within_clause] [retain_clause]
[with_unique_clause]
[time_from_clause wait_clause [or_clause]] ;]...

}

DescriptionSyntax Element

Name of the event type that you want to operate on. The event
type must be parsable. See “Type properties summary” on
page 611.

event_type

Event type names can come from the root namespace, a using
declaration, or a local package as specified in a package
declaration.

Optionally filter which events of this type you want to be in the
window. For example, you might define the window to contain

event_filter

only the events whose amount field is greater than 10. The rules

80 Developing Apama Applications 10.11.2

3 Defining Queries

DescriptionSyntax Element

for what you can specify for the event filter are the same as for
what you can specify in an event template in EPL. See “Event
templates” on page 628.

Specify one ormore event fields or actions. You can specify event
fields of type boolean, decimal, float, integer, string or

query_key

location. When an action is used as an input key, an alias must
be supplied.

The correlator uses the key to partition the events. Each partition
is identified by a unique key value. One or two keys is typical.
Three is unusual and rarely needed. More than three key values
is discouraged.

When you define more than one input in a query

The number, type, and order of the key fields in each input
definition must be the same.

If the names of the key fields are not the same in each input
definition, youmust specify aliases so that the namesmatch.
For details, see “Partitioning queries” on page 71.

Optionally specify retain followedby anEPL integer expression
that indicates how many events to hold in the window. For

retain_clause

example, if you specify retain 1, only the last event that arrived
that is of the specified type and that has the key value(s)
associatedwith that partition is in thewindow. Youmust specify
a retain clause or a within clause or both.

While it is possible to retain any number of events, you must
ensure that you define an input that allows a match with the
event pattern specified in the corresponding find statement. For
example, the following query never finds a match:
query Q {

inputs {
A() key k retain 3;

}
find A as a1 -> A as a2 -> A as a3 -> A as a4 {

print a1.toString()+ " - "+a4.toString();
}

}

Optionally specify within followed by a float expression or time
literal that specifies the length of time that an event remains in

within_clause

thewindow. Youmust specify a retain clause or a within clause
or both. See “Specifying event duration inwindows” on page 83.

Optionally specify a set of secondary keys which constrains the
window to only include the latest event for each value for the

with_unique_clause

Developing Apama Applications 10.11.2 81

3 Defining Queries

DescriptionSyntax Element

set of keys. See “Matching only the latest event for a given
field” on page 101.

Optionally specify time from followed by the name of an action
that specifies how the source timestamp of the event can be

time_from_clause

obtained. The named action must be an action defined on that
input event type. It must take no parameters and must return a
float. This is taken to be when the event occurred, specified as
seconds since the epoch.

Note:
You are not permitted to use the event's built-in getTime()
method. This method returns the time when the correlator
either processed or created the event, which defeats the
purpose of the source timestamp functionality.

If a time_from_clause is provided, a wait_clause is required,
which specifies wait followed by a float expression or time

wait_clause

literal which specifies the maximum delay expected for events.
This is how long a querywill wait for events if it has not received
any events. See also “Using heartbeat events with source
timestamps” on page 96 and “Out of order events” on page 97.

Optionally specify a heartbeat event type which informs the
query runtimewhen communicationwith the data source is not

or_clause

delayed. See “Using heartbeat eventswith source timestamps” on
page 96. This can only be specified if the time_from_clause and
wait_clause are specified.

Behavior when there is more than one input
The correlator orders the events in a window according to the time it processes each event, that
is, the time it adds the event to its window. When a query defines more than one input then, for
each partition, the correlator maintains a single time-order for all events in all windows.

Suppose the correlator adds an event to a window and within 0.1 seconds the correlator adds a
different event to the same window or to another window in the same partition. Outside a query,
these two eventsmight have the same timestampbecause default correlator behavior is to increment
the timestamp only every tenth of a second. In a query, however, if an event is added to a window
within 0.1 seconds after another event was added to a window, the correlator assigns the second
event a timestamp with enough significant digits to ensure that time order is preserved. The
following code fragment shows the result of calling the getTime()method on two events that
arrive within 0.1 seconds of each other:
find E as e -> F as f {

print e.getTime().toString(); // Yields "1365761429.1"
print f.getTime().toString(); // Yields "1365761429.100001"

}

82 Developing Apama Applications 10.11.2

3 Defining Queries

The order of the events is important when the event pattern in a find statement specifies the
followed-by operator. Consider this example:
query Q {

inputs {
A() key k retain 20;
B() key k retain 10;

}
find A as a -> B as b { ... }

}

This pattern does not trigger when the correlator adds an A event to the Awindow. But if there is
already an A event in the Awindow then this pattern triggers when a B event is added to the B
window.

In a partition, at any one time, it is possible for the set of windows to containmultiple sets of events
that, each taken in isolation,wouldmatch the defined event pattern. In this case, the eventmatching
policy determines which of the candidate sets triggers an action. See “Event matching policy” on
page 126 for a description of how the query chooses the event set that triggers an action. To illustrate
event matching policy, that topic provides an example of query behavior when there is more than
one window.

Specifying event duration in windows
In an input definition, you can specify an optional within clause that indicates the length of time
that an event remains in the window. For example:
query FraudulentWithdrawalDetection {

inputs {
Withdrawal() key userId within 1 hour;

}
find Withdrawal as w1 -> Withdrawal as w2

where w1.city != w2.city {
log "Suspicious withdrawal: " + w2.toString() at INFO;

}
...

}

In this example, a Withdrawal event remains in thewindow for 1 hour. After 1 hour in thewindow,
an event is ejected. Each time an event is added to one of the windows in a partition, the correlator
evaluates the find pattern for that partition. Ejection of an event from a window does not trigger
pattern evaluation. There are two formats for specifying a within clause:

within time_literal

within float_expression

Parentheses in within clauses are allowed. The rules for specifying a time literal are:

Specify one or more integer or float literal(s) and follow each one with a keyword that
indicates a time unit.

Time unit keywords are:

day, days

Developing Apama Applications 10.11.2 83

3 Defining Queries

hour, hours

min, minute, minutes

sec, second, seconds

msec, millisecond, milliseconds

Outside a query, you can use these keywords as identifiers. Inside a query, you cannot use
these keywords as identifiers unless you prefix them with a hash symbol (#). See also
“Keywords” on page 711.

A space is required between an integer or float literal and its time unit. A space is required
after a time unit if it is followed by an integer or float literal. Additionalwhitespace is allowed.

If you specify more than one time unit keyword they must be in the order of decreasing size.
For example, daysmust be before minutes.

You need not specify all time units.

Each time unit keyword must represent a different time unit, that is, you cannot, for example,
specify both day and days.

Examples of valid time literals:

10 hours

1 days 12 hours

1 day 2 hours 30 minutes 4 sec

2 days 5 minutes

2.5 sec

10 seconds - This is equivalent to specifying the float expression 10.0.

Note:
While it is possible to define time literals using float values, for example, 3.5 days 12.5 hours
33.3 min, it is recommended that you use only integer values when the specification includes
more than one time unit. For example, rather than specifying 2 days 65.75 minutes, you should
specify 2 days 1 hour 5 min 45 sec.

If you open and edit a query in Apama's Query Designer in Software AG Designer, it modifies
the time literal (if necessary) such that it contains only integers. Also, the allowable range of
integers is 0 to 23 for hours, 0 to 59 for minutes, 0 to 59 for seconds, and 0 to 999 for milliseconds.
Where necessary, theQueryDesigner rounds up to awhole number ofmilliseconds. For example,
suppose you specify the following time literal in EPL code:

3.5 days 4 hours 27.5 minutes 1002.75 milliseconds

The Query Designer converts this to 3 days 16 hours 27 minutes 31 seconds 3 milliseconds. The
actual Query Designer display is: 3d 16h 27m 31s 3ms.

When you specify a float expression it indicates a number of seconds.

84 Developing Apama Applications 10.11.2

3 Defining Queries

Consider the example at the beginning of this topic as the following events are added to their
appropriate windows:

Event Added to WindowTime

Withdrawal("Dan", "London")10:00

Withdrawal("Dan", "Dublin")10:30

Withdrawal("Dan", "Paris")10:45

Withdrawal("Ray", "Honolulu")11:15

Withdrawal("Dan", "Rome")11:30

For the partition identified by user ID Dan, the query evaluates the pattern at the following times:

Matching EventsWindow ContentsTime

Withdrawal("Dan", "London")10:00

w1=Withdrawal("Dan", "London")Withdrawal("Dan", "Dublin")10:30

w2=Withdrawal("Dan", "Dublin")Withdrawal("Dan", "London")

w1=Withdrawal("Dan", "Dublin")Withdrawal("Dan", "Paris")10:45

w2=Withdrawal("Dan", "Paris")Withdrawal("Dan", "Dublin")

Withdrawal("Dan", "London")

w1=Withdrawal("Dan", "Paris")Withdrawal("Dan", "Rome")11:30

w2=Withdrawal("Dan", "Rome")Withdrawal("Dan", "Paris")

An event remains in its window for exactly the specified duration. For example, at 11:00,
Withdrawal("Dan", "London") is no longer in thewindowandat 11:30, Withdrawal("Dan", "Dublin")
is no longer in the window. Although the contents of the window have changed, ejection of an
event does not cause evaluation of the event pattern.

At 11:15, there is no evaluation of the event pattern for the partition identified by user ID Dan
because an event is added to a window in the partition identified by user ID Ray.

Using the output of another query as query input
While it is possible to have a query send an event explicitly containing all of the coassignments
in the pattern or aggregates using the %send construct, this requires setting each field and defining
an event type, which currently can only be defined in EPL. In this case, however, this event
definition needs to be kept in syncwith the query. If the query pattern ismodified, then the query's
%send construct and the event definitionmay both need to be updated. It is therefore recommended
that you use the query output event to chain queries together.

Developing Apama Applications 10.11.2 85

3 Defining Queries

Every query will automatically generate a query output event, which can be used as an input to
other queries. This makes it easy to connect multiple queries together. One query may compute
an aggregate such as an average over a sensor reading, while another query checks if a number
of averaged readings match some condition.

The query output event

With each query definition, a query output event definition is automatically defined which is
named after the query (see below) and has all of the values available to actions defined as fields.

The query output event definition comprises:

All parameters.

All keys (using the alias name).

For find patterns:

All “positive” event coassignments (that is, excluding without events and wait nodes).

For find every patterns (that is, a query which contains aggregates):

All aggregate select values.

Consider the two examples below, where we assume that the Measure event is defined as follows:
event Measure {

string deviceId;
integer userId;
float value;

}

Example 1
query Q1 {

parameters {
float threshold;

}

inputs {
Measure() key deviceId within 5 minutes;
Error() key deviceId within 5 minutes;

}
find Measure:m1 -> (Measure:m2 or Error:e1)

without Error:err {
}

}

Query output event definition for Q1:
event Q1 {

float threshold;
string deviceId;
Measure m1;
optional<Measure> m2;
optional<Error> e1;

}

86 Developing Apama Applications 10.11.2

3 Defining Queries

In query Q1, the parameter threshold of type float, the solitary input key deviceId of type string,
and the positive coassignments m1, m2 and e1 are mapped in the query output event Q1. m2 and e1
are wrapped in optional since they might or might not contain any value (just m2 or e1 is enough
to trigger the find pattern).

Example 2
package com.apamax.mypkg;
query Q2 {

inputs {
Measure() key deviceId, userId as id within 5 minutes;

}
find every Measure:m1

select mean(m1.value):avg_value
select last(m1.userId):last_value{

}
}

Query output event definition for Q2:
package com.apamax.mypkg;
event Q2 {

string deviceId;
integer id;
float avg_value;
integer last_value;

}

In query Q2, which uses aggregates, both the keys deviceId of type string and userId (aliased as
id) of type integer are mapped in the query output event Q2. The query contains two select
statements both of whose values are also mapped in the query output event.

Note that the query output event definition resides in the same package as the query, and that it
can be used in any EPL application in the usual way you use any external event definition.

Note:
Only the first 32 fields of indexable event types can be used in listeners. Beyond this, fields will
bemarked aswildcard fields. See “Improving performance by ignoring some fields inmatching
events” on page 159 for more information on wildcards.

When is the query output event generated?

Whenever a query's find statement triggers, the query output event is routed, no matter whether
it was triggered by an event or a timer firing. Another query can use this query output event as
an input, thus allowing the “chaining” of one query to another.

For example, query Q3 below uses both Q1 and Q2 as input:
using com.apamax.mypkg.Q2;
query Q3 {

inputs {
Q1() key deviceId within 5 minutes;
Q2() key deviceId within 5 minutes;

}
find Q1: q1 and Q2 : q2 {

print "Query Q3 is triggered";

Developing Apama Applications 10.11.2 87

3 Defining Queries

}
}

Q3will trigger on receiving the inputs of type Q1 and Q2. Hence, Q3will trigger when both queries
Q1 and Q2 trigger.

Note:
It is recommended to use separate packages for queries (and hence the query output event) and
any external event definitions defined in EPL. This makes it clear where the event definitions
are and avoids name clashes.

Cycles are illegal. For example, if a query Q2 uses Q1 as input and if Q1 in turn also uses Q2 as
input, any such cyclic dependency is illegal to use.

Specifying maximum number of events in windows
In an input definition, you can specify a retain clause that indicates how many events can be in
the window. For example:
query FraudulentWithdrawalDetection2 {

inputs {
Withdrawal() key userId retain 3;

}
find Withdrawal as w1 -> Withdrawal as w2 where w1.city != w2.city {

log "Suspicious withdrawal: " + w2.toString() at INFO;
}

}

In this query, only the most recent three Withdrawal events can be in the window. In other words,
the window cannot contain more than three events. If only zero, one or two Withdrawal events
with a particular key have arrived since the applicationwas started then there would be only zero,
one or two events, respectively, in the window.

The correlator evaluates the event pattern each time an event is added to the window. Suppose
that at the indicated times the following events are added to thewindow in the partition identified
by user ID Dan:

Event Added to WindowTime

Withdrawal("Dan", "Dublin")10:00

Withdrawal("Dan", "London")10:10

Withdrawal("Dan", "London")10:20

Withdrawal("Dan", "London")10:30

Withdrawal("Dan", "Paris")11:30

For the partition identified by user ID Dan, the query evaluates the pattern at the following times:

88 Developing Apama Applications 10.11.2

3 Defining Queries

Matching EventsWindow ContentsTime

Withdrawal("Dan", "Dublin")10:00

w1=Withdrawal("Dan","Dublin")Withdrawal("Dan", "Dublin")10:10

w2=Withdrawal("Dan","London")Withdrawal("Dan", "London")

w1=Withdrawal("Dan","Dublin")Withdrawal("Dan", "Dublin")10:20

w2=Withdrawal("Dan","London")Withdrawal("Dan", "London")

Withdrawal("Dan", "London")

Withdrawal("Dan", "London")10:30

Withdrawal("Dan", "London")

Withdrawal("Dan", "London")

w1=Withdrawal("Dan","London")Withdrawal("Dan", "London")11:30

w2=Withdrawal("Dan","Paris")Withdrawal("Dan", "London")

Withdrawal("Dan", "Paris")

It is important to note that at 10:30, the Withdrawal("Dan", "Dublin") event that arrived at 10:00
is no longer in the window because the window retains three events at most and there are three
Withdrawal events that have been added to the window more recently.

Specifying event duration and maximum number of events
In an input definition, you can specify a within clause that indicates how long an event can remain
in the window and a retain clause that indicates how many events can be in the window. When
you specify both a within clause and a retain clause the within clause must be before the retain
clause. For example:
query FraudulentWithdrawalDetection3 {

inputs {
Withdrawal() key userId within 1 hour retain 3;

}
find Withdrawal as w1 -> Withdrawal as w2 where w1.city != w2.city {

log "Suspicious withdrawal: " + w2.toString() at INFO;
}

}

In this query, a Withdrawal event can be in the window for up to one hour and only the three most
recent Withdrawal events, if each one arrived during the previous hour, can be in the window. In
otherwords, thewindow cannot contain an event that arrivedmore than an hour ago and it cannot
contain more than three events. If only two Withdrawal events arrived in the previous hour then
there would be only two events in the window.

Suppose that at the indicated times the following events are added to the window in the partition
identified by user ID Dan:

Developing Apama Applications 10.11.2 89

3 Defining Queries

Event Added to WindowTime

Withdrawal("Dan", "Dublin")10:00

Withdrawal("Dan", "London")10:10

Withdrawal("Dan", "London")10:20

Withdrawal("Dan", "London")10:30

Withdrawal("Dan", "Paris")11:30

For the partition identified by user ID Dan, the query evaluates the pattern at the following times:

Matching EventsWindow ContentsTime

w1=Withdrawal("Dan","Dublin")Withdrawal("Dan", "Dublin")10:00

w2=Withdrawal("Dan","London")

w1=Withdrawal("Dan","Dublin")Withdrawal("Dan", "Dublin")10:10

w2=Withdrawal("Dan","London")Withdrawal("Dan", "London")

Withdrawal("Dan", "Dublin")10:20

Withdrawal("Dan", "London")

Withdrawal("Dan", "London")

Withdrawal("Dan", "London")10:30

Withdrawal("Dan", "London")

Withdrawal("Dan", "London")

Withdrawal("Dan", "Paris")11:30

It is important to note that at 10:30 the Withdrawal("Dan", "Dublin") event that arrived at 10:00
is no longer in the window because the window retains three events at most and there are three
Withdrawal events that have been added to the window more recently. Also, at 11:30 there are no
Withdrawal("Dan","London") events in the window as they have been ejected because more than
one hour has elapsed since each one was added to the window.

Using source timestamps of events
By default, the query runtime assumes that events should be treated to be in the order in which
they are processed, and the time of each event is the correlator's time at the point the event is
processed. This is suitable if events are delivered reliably to theApama correlator in a short amount
of time and in order. However, if the events are delayed, accumulated into batches before being
sent or delivered over unreliable networks, then it may be necessary to use the time at which an
event happened at the event source, which would have to be available in the event in order for

90 Developing Apama Applications 10.11.2

3 Defining Queries

queries to use the source timestamp. For example, a car may measure the engine's temperature,
RPM and other important statistics along with a timestamp, and record these in a small computer
in the car. Periodically, when the car is connected to a wireless network, the car will send this data
as a batch of events. For the correct behavior of queries that make use of the time or ordering of
events, the query will need to be configured to use the source timestamp.

Note:
Source timestamps are not intended to be a replacement for Xclock. They can, however, be used
in conjunction with Xclock for testing purposes. Xclock is controlling the correlator's time (see
“Disabling the correlator's internal clock” on page 183). Source timestamps indicate the time at
which an event occurred.

In order to use the source timestamp:

Every event which may be delayed should contain the source timestamp in some form.

An action must be defined on the event definition, which takes no parameters and returns a
float. This should calculate the source time of the event - typically the time the event occurred
- based on the fields of the event. The return value of the action should specify the time in
seconds since the epoch (midnight, 1 Jan 1970 UTC). If the event contains the time in seconds
since the epoch (in this example, stored in a field named sourceTime), this can be as simple as
the following:
action getSourceTime() returns float { return sourceTime; }

Otherwise, the TimeFormat event library can be used to help convert from time of day and
date, and perform time zone conversions as necessary. For example, if the source timestamps
in your events are not already in the UTC time zone, then one way to do this is to include a
time zone field and then use the TimeFormat event's parseTimeWithTimeZone action to obtain
the source time in the correct form as shown in the following event definition:
using com.apama.correlator.timeformat.TimeFormat;
using com.apama.queries.TimeFrom;

@TimeFrom("getSourceTime")
event E {
integer k;
string sourceTime;
string timeZone;

action getSourceTime() returns float {
TimeFormat timeFormat := TimeFormat();
return timeFormat.parseTimeWithTimeZone("HH:MM:SS", sourceTime,

timeZone);
}

}

See also “Using the TimeFormat Event Library” on page 343.

The event definition should have a @TimeFrom annotation as in the above example (see also
“Adding predefined annotations” on page 52) or queries that use the event as an input must
specify a time from clause that names the action that provides the source time. In either case,
queries must always specify a maximum time to wait for the events (see below). If both are
specified, the time from clause in the query takes precedence.

Developing Apama Applications 10.11.2 91

3 Defining Queries

Note:
You are not permitted to use the event's built-in getTime()method. This method returns the
time when the correlator either processed or created the event, which defeats the purpose of
the source timestamp functionality.

Waiting for delayed events

If using source timestamps, we assume events may be delayed between the source time at which
they occur and being processed by theApama correlator. If no events are received by the correlator,
it needs to distinguish between no events having occurred and events being delayed. If events are
delayed, the query runtime will wait before evaluating the query, as it does not have a definitive
view of all of the events. A query that uses source timestamps must specify the maximum wait
time that a query will wait before it will process events. This is the maximum delay that the query
will tolerate and themaximumdelay between an event having occurred and the query processing
that event. The wait time is inclusive - that is, an event delayed by exactly the value specified in
the wait clause will be considered valid.

Themaximumwait timemust be specified andmust be set to a reasonable value, as it can increase
the number of events stored by the query runtime, and processing of the query may be delayed
by up to that duration. The maximum wait time for an input may be less than or more than the
within duration, but should not represent a large number of events for typical event rate for that
input.

The wait time must be specified in a query using the wait clause in an input declaration. The wait
clause can specify a time as a time literal (using days, hours, minutes and seconds) or as a float
expression. Both the source timestamp action and wait clause must be specified (or neither). The
source timestamp action can be specified via the time from clause in the query or a @TimeFrom
annotation on the event type definition.

It is possible to mix inputs that have source times and events that do not have source times in a
single query. Event inputs without a source time are equivalent to using currentTime (that is, the
correlator's current time, see “currentTime” on page 704) as the source time, and a wait time of 0.

Event definitions may have an annotation defined @DefaultWaitwhich specifies the default value
to use for the wait time (see also “Adding predefined annotations” on page 52). This is only
informational and used by the Design tab in Software AG Designer when editing query files as
a means of setting the default wait time. The query must always specify the wait time, even if it
is using the default value. Note that the editorwill copy the value from the annotation, so changing
the annotation will not affect existing query definitions.

Definitive time of a query event source

Given that input events may be delayed or out of order, how does the query runtime know when
it is safe to process events? To answer this question, we introduce the concept of definitive time.
The point in time for which the query runtime is entitled to think that it has received all the events
it is going to receive is called the “definitive time”. All events at or before this point in time are
considered definitive and can be used to evaluate the query. Events after the definitive time will
not be processed until they become definitive (that is, the definitive time has changed so that the
events are now at or before the definitive time). The query runtime will assume that no further

92 Developing Apama Applications 10.11.2

3 Defining Queries

events will be received with a time before the definitive time, and will only evaluate events that
have occurred before the definitive time.

In the case of an individual query input, the definitive time of that input is the latest of:

The timestamp of the latest event received (unless the event definition is marked as occurring
out of order, see “Out of order events” on page 97).

The timestamp of the latest heartbeat event, if specified (see “Using heartbeat events with
source timestamps” on page 96).

The correlator's current time less the maximum wait time of a query.

The query's overall definitive time is then determined as the minimum or earliest of the definitive
times for each input.

If no events (either input or heartbeat events) are received, then a query may need to wait in order
to evaluate the events it has received (particularly if using the wait operator in the pattern, ormore
than one input, where some inputs have no events received).

The concept of definitive time is best explained using worked examples. Consider, first, a query
with a single input event type.
using com.apama.queries.TimeFrom;

@TimeFrom("getSourceTime")
event E {

integer k;
float sourceTime;

action getSourceTime() returns float {
return sourceTime;

}
}

query SingleInput {

inputs {
E() key k within 1 hour wait 2 hours;

}
find E as e1 -> E as e2 where e2.getSourceTime() - e1.getSourceTime() > 600.0
{

log "Time gap " + (e2.getSourceTime() - e1.getSourceTime()).toString();
}

}

In this case, where there is only a single input type, the definitive time will be the latest or most
recent of either: the source timestamp of the last event, or the current time minus the wait time (2
hours in this example). The following table shows how the query runtime keeps track of the
definitive time as it receives input events.

ExplanationResultQuery definitive
time

E event source
timestamp

Wall Time

08:0007:0010:00

Developing Apama Applications 10.11.2 93

3 Defining Queries

ExplanationResultQuery definitive
time

E event source
timestamp

Wall Time

Nothing - events
are too old.

08:0507:3010:05

08:3008:3010:10

Nothing - event
timestamps were

08:3208:3210:24

only 2 minutes
apart.

Time gap 18
minutes

08:5008:5010:26

Nothing - only 1
event in the

10:3010:3010:30

"within 1 hour"
window.

Now consider a more complex case where the query has two input event types. Events of type E
are defined as above, but we add another definition for events of type X.
@TimeFrom("getSourceTime")
event X {

integer k;
float sourceTime;

action getSourceTime() returns float {
return sourceTime;

}
}

query MultipleInputs {

inputs {
E() key k within 1 hour wait 1 hour;
X() key k within 1 hour wait 1 hour;

}

find E as e1 -> E as e2 without X as x {
log "Got (" + e1.sourceTime.toString() + ", "

+ e2.sourceTime.toString() + ")";
}

}

Once again the table below shows how the definitive time of the query is determined. In this case,
the runtime must take the definitive time as being the earliest of the definitive times of the input
types because, as the pattern depends on all input types, it is only up until that point that it has a
definitive view of all the query inputs.

For example, at wall time 09:22, even though the runtime has got E events with source timestamps
08:32 and 08:40, it is not entitled to conclude that we have a match for the query pattern because

94 Developing Apama Applications 10.11.2

3 Defining Queries

the most recent X event has a timestamp of only 08:25, so we do not yet know if there was an X
event between 08:32 and 08:40 that would prevent a match. The wait time of 1 hour has not yet
elapsed, so the definitive time of the query remains at 08:25, which is the source time of the most
recent X event.

It is not until wall time 09:23 that we receive another X event with a source timestamp of 08:50.
At this point, given that in this example we know that events are being delivered in order, it is
safe for the runtime to assume that there were no other X events between 08:25 and 08:50 and so
it can proceed to execute the query and match for the two pairs of E events ("08:30, 08:32" and
"08:32, 08:40"). Further, at this time (wall time 09:23) the receipt of the X eventwith source timestamp
08:50 allows the runtime to update the definitive time of the overall query to 08:40, which has
become the earliest of the definitive times of the query inputs.

ExplanationResultQuery
definitive time

X event source
timestamp

E event source
timestamp

Wall Time

08:2508:2508:3009:20

Nothing yet.
Still waiting for
an X.

08:2508:3209:21

08:2508:4009:22

Got (08:30,
08:32)

08:4008:5009:23

Got (08:32,
08:40)

No 08:40 - 08:55
match, there is
an X at 08:50.

08:5008:5509:24

Nothing yet -
still waiting for
X after 08:50.

08:5009:0009:25

No 08:55 - 09:00
match, there is
an X.

08:5708:5709:26

Nothing yet -
still waiting for
X after 08:57.

08:5709:1009:27

We waited for
1 hour for an X.

Got (09:00,
09:10)

09:1010:10

Developing Apama Applications 10.11.2 95

3 Defining Queries

Using heartbeat events with source timestamps
When using source timestamps, if a query's input has no events for a period of time, then the
query will wait for the specified wait time for that query before evaluating events. This can cause
unacceptable delays in processing events from other inputs. Some data sources may provide
heartbeat events with timestamps which signal that communication from the data source to the
queries system is working correctly. If these events occur but no input events have been received,
then the query can infer that no input events, or only the input events received, have occurred,
and thus the query's input is definitive upon receiving a heartbeat, without having to wait any
further. If communication is disrupted or delayed, then the heartbeat events will similarly be
delayed, and the query will wait, as it has to in order to process delayed events.

Heartbeat events are specified on the input event type's definition or per input of the query. They
are only used if a query input is using source timestamps, that is, it has a wait clause specified.
The heartbeat can be specified as a @Heartbeat annotation on the event definition, which should
name the fully qualified event type to use as heartbeat events.

If a query input contains a time from clause, then the heartbeat must be explicitly named with an
or heartbeat-type clause after the wait clause. For example, these two are equivalent:
@TimeFrom("getEcuTime")
@Heartbeat("CarHeartbeat")
event CarEngineTemp { .. }
...
query ... {

inputs {
CarEngineTemp() key carId within 1 hour wait 6 hours;

}
...

or:
query ... {

inputs {
CarEngineTemp() key carId within 1 hour time from getEcuTime

wait 6 hours or CarHeartbeat;
}
...

The following rules apply for the heartbeat event:

The heartbeat event cannot be filtered.

The heartbeat eventmust share the same key fields and the same types as the input event type.
In the above example, both CarEngineTemp and CarHeartbeatmust have a field named carId
which is of the same type in each event type. If actions are used in the input key, the heartbeat
event must also supply the same action with the same signature (same parameters and return
type).

The heartbeat event must have a matching action for obtaining the source time. In the above
example, both CarEngineTemp and CarHeartbeatmust have an action of the signature action
getEcuTime() returns float. Typically, these would have the same implementation, as the
heartbeat would have source timestamps in the same form as the input events; but the

96 Developing Apama Applications 10.11.2

3 Defining Queries

implementation of these methods may be different for heartbeat events (see “Out of order
events” on page 97.)

The heartbeat event cannot be used as an input in the pattern, unless it is also listed as an input
event in its own right.

The same heartbeat event type may be used for different inputs of the same query (this is
typical, as a query may use a number of different types of events from the same data source,
such as a car in the above example).

When a heartbeat event is received and processed, it will step forward the definitive time for all
inputs that specify that heartbeat event. Thus, if all inputs use the same heartbeat event, then that
heartbeat can step forward the definitive time, allowing the query to evaluate events received on
some inputs without having to wait for the input wait time on other inputs where no input events
were received.

Typically, heartbeat events will be delivered regularly. The rate at which heartbeat events are sent
is dependent on the data source, but the queries systemmust be able to handle all of the heartbeat
events from all data sources aswell as the input events. Some devicesmay only send the heartbeats
under certain conditions, for example, a car may only send heartbeats if the engine is running or
the car is occupied. If no heartbeat events are received, then querieswill use thewait time specified
in the input before evaluating any events received, as needed.

Note that queries assume that the heartbeat events are delivered in the same order as input events.
If an input event arrives with a timestamp before a previous heartbeat event, it will be discarded.

Typically, heartbeat events will be events that come from the same data source as the input events
they are used with. Thus, any communications disruption affecting the input events will affect
the heartbeat events in the sameway. This is not a requirement; if some other systemhas knowledge
of when a data source is connected or disconnected, the heartbeat events could be sent from that
system - but if the system incorrectly sends heartbeat events and input events are delayed, then
input events may be discarded.

Out of order events
When using source timestamps (see also “Using source timestamps of events” on page 90), the
query runtime by default expects events to arrive in order. If an event arriveswith an earlier source
timestamp than a previous event for that same partition, it will be discarded. However, there are
two cases where this behavior does not occur (see below), and queries will store events which
arrive out of order and re-order them so that when they are processed, they are processed in order
according to the source time.

Note:
In both cases described below (with the @OutOfOrder() annotation and delayed events), heartbeat
events (if specified) are always considered definitive, even if they are delayed. You cannot use
an event definition with an @OutOfOrder() annotation as a heartbeat event. Note that as soon
as a heartbeat event is processed, the query will ignore any events with earlier timestamps.

Developing Apama Applications 10.11.2 97

3 Defining Queries

Case 1: Using the @OutOfOrder() annotation on the event definition

If the event definition (in an EPL file) has the @OutOfOrder() annotation which is available in the
package com.apama.queries (see also “Adding predefined annotations” on page 52), then the
queries runtime will treat it as not occurring in order.

This means that definitive time is not affected by the timestamp on the events. Thus, events will
not be processed until the specified wait time has elapsed since their source time, or a heartbeat
event (if specified) with a later timestamp has been processed (and all inputs have had their
definitive time moved forward).

It is recommended to use heartbeats when using @OutOfOrder() events. They are not required, but
if not used, the query execution will be delayed by the longest input wait specified in the query.

The following example compares the behavior if @OutOfOrder() is or is not specified on the input:
query FindAdjacentAEvents {

inputs {
A() within 30.0 wait 20 seconds;

}
find A as a1 -> A as a2 {

print "a1 = "+a1.toString()+"; a2 = "+a2.toString();
}

}

In the following tables, the events are listed in the order in which they are processed, but they
occur in the order A(1), A(2), A(3), A(4). Note that A(2) is delayed by more than the wait time of
the query (the actual eventswould have a source timestamp, butwe show that as a separate column
for clarity).

The following table applies if the event definition does have @OutOfOrder():

Query outputQuery
definitive time

NotesCorrelator timeInput event
timestamp

Input event

10:00:0010:00:2010:00:10A(1)

10:00:1010:00:3010:00:20A(4)

10:00:1210:00:3210:00:15A(3)

a1=A(1);
a2=A(3)

10:00:1520 seconds
after A(3)'s
source time
(10:00:15)

10:00:35

10:00:17discarded -
more than 20
seconds old

10:00:3710:00:12A(2)

98 Developing Apama Applications 10.11.2

3 Defining Queries

Query outputQuery
definitive time

NotesCorrelator timeInput event
timestamp

Input event

a1=A(3);
a2=A(4)

10:00:2020 seconds
after A(4)'s
source time
(10:00:20)

10:00:40

The following table applies if the event definition does not have @OutOfOrder():

Query outputQuery
definitive time

NotesCorrelator timeInput event
timestamp

Input event

10:00:1010:00:2010:00:10A(1)

a1=A(1);
a2=A(4)

10:00:2010:00:3010:00:20A(4)

(nothing -
event is

10:00:2010:00:3210:00:15A(3)

discarded as it
is out of order)

10:00:20discarded -
more than 20
seconds old

10:00:3710:00:12A(2)

Case 2: Events are delayed

Even in the case where events are normally delivered in order from the data source, if there is a
delay which is then resolved, a number of delayed events may all be processed in a very short
space of time. Even if they are delivered to Apama correlators in the correct order, the query
runtime runs in parallel within the correlator, so events processed close together in time may be
processed out of order, even if they do not have an @OutOfOrder() annotation on the event definition.
If an event is delayed, then the query runtime will wait before considering the event's time as
definitive for that input.

By default, the query runtime considers an event as delayed if its source time is more than 10
seconds before the correlator's time at the point it is processed, and it will wait for 10 seconds
before considering the event's time as definitive for that input. These settings can be modified by
sending in a SetDelayedEventsLeeway(delayLeeway, reorderBuffer) event:
com.apama.queries.SetDelayedEventsLeeway(5, 20.0)

The above examplewould set the query runtime to consider events older than 5 seconds as delayed,
and would not consider them definitive until 20 seconds after they were received.

To consider all events in order regardless of delay, send an eventwith the first value set to infinity
(as all actual delays must be less than infinity):

Developing Apama Applications 10.11.2 99

3 Defining Queries

com.apama.queries.SetDelayedEventsLeeway(infinity, 0.0)

These events should be sent to all correlators in a cluster, typically as part of the initialization of
the correlator along with injecting the query definitions.

The following example compares the behavior with different configurations and some delayed
events:
query FindAdjacentAEvents {

inputs {
A() within 30 minutes wait 10 minutes;

}
find A as a1 -> A as a2 {

print "a1 = "+a1.toString()+"; a2 = "+a2.toString();
}

}

The following table lists the events where the A event does not have @OutOfOrder(). The last three
columns give the behavior with different configurations:

Default config. A.Matcheswith the default values: 10 seconds delay threshold and 10 seconds
reorder buffer.

Config. B.Matches if SetDelayedEventsLeeway(300, 10) is sent: 5minutes (300 seconds) delay
threshold and 10 seconds reorder buffer.

Config. C.Matches if SetDelayedEventsLeeway(10, 60) is sent: 10 seconds delay threshold
and 1 minute reorder buffer.

Config. CConfig. BDefault
config. A

Definitive
time of the
query for
default
leeway
values

Correlator
time

Input event
timestamp

Input event

10:00:30 (10
minutes ago)

10:10:3010:06:10A(1)

a1=A(1);
a2=A(4)

10:00:31 (10
minutes ago)

10:10:3110:06:20A(4)

(A(3) out of
order and
discarded)

10:00:32 (10
minutes ago)

10:10:3210:06:15A(3)

(A(2) out of
order and
discarded)

10:00:33 (10
minutes ago)

10:10:3310:06:13A(2)

100 Developing Apama Applications 10.11.2

3 Defining Queries

Config. CConfig. BDefault
config. A

Definitive
time of the
query for
default
leeway
values

Correlator
time

Input event
timestamp

Input event

a1=A(1);
a2=A(2)

10:06:20
(latest A
event
received)

10:10:43

a1=A(2);
a2=A(3)

a1=A(3);
a2=A(4)

a1=A(1);
a2=A(2)

10:11:33

a1=A(2);
a2=A(3)

a1=A(3);
a2=A(4)

a1=A(4);
a2=A(6)

a1=A(4);
a2=A(6)

a1=A(4);
a2=A(6)

10:12:05
(latest A
event
received)

10:12:1010:12:05A(6)

(none - event
A(5) is
discarded)

(none - event
A(5) is
discarded)

(none - event
A(5) is
discarded)

10:12:05
(latest A
event
received)

10:12:1110:12:04A(5)

Note that A(6) is treated as occurring in order, as it is delayed by less than the delayLeeway value.
Thus A(5) is discarded, as it has occurred out of order.

Matching only the latest event for a given field
A query input can optionally limit the window to only contain the most recent item for each value
of a given field or action of the event. This is performed by the with unique operator, which is
followed by one or more fields or actions of the input event type.

For example, consider a query looking at sensor data from a number of sensors on the same
production line, with events that specify the productionLine and sensorId. The query compares
sensor values between different machines and sensors on the same production line, so the query
can be keyed on the productionLine field of events, but not on the sensorId field. However, only
the latest event for each sensor is required. By specifying a with unique sensorId clause, only the
latest value of each sensor is used.

Developing Apama Applications 10.11.2 101

3 Defining Queries

If you add a with unique clause, if there is more than one item in the window that has the same
value for all the fields or actions listed in the with unique clause, then only the most recent event
is considered to be in thewindow and canmatch the pattern. The suppression of duplicates occurs
after the within and/or retain clauses apply. For example:
inputs {

Sensor() key productionLine retain 3 with unique sensorId;
}

Given the following events, the window contains only those marked in the third column of the
following table (assuming all are for the same productionLine):

NotesWindow containssensorIdEvent

1(A)A1

1(A), 2(B)B2

1(A), 2(B), 3(C)C3

Event 1 is discarded due to retain 3. Event 2 is
discarded as event 4 has the same sensorId.

3(C), 4(B)B4

3(C), 4(B), 5(D)D5

Event 3 is discarded due to retain 3.4(B), 5(D), 6(C)C6

Event 4 is discarded due to retain 3. Event 5 is
discarded as event 7 has the same sensorId.

6(C), 7(D)D7

Note that the with unique is applied after the retain expression. Any with unique expression does
not affect window sharing (see also “Queries can share windows” on page 79) nor how much
data is stored.

The with unique clause comes after the sizing of thewindow (within, retain) and before, if present,
the time from, wait or or clauses used for specifying source time.

with unique can list a number of comma-separated members or calls to actions, where the action
name is followed by parentheses. Actions used in a with unique clause must take no parameters
and return a value. The ordering is unimportant.

For example, using with unique upperName() for an event definition such as the following would
only keep one event for each value of the name field, ignoring case:
event E {

string name;
action upperName() returns string { returns name.toUpper(); }

}

102 Developing Apama Applications 10.11.2

3 Defining Queries

Finding and acting on event patterns
In a query, the find statement specifies the event pattern you are interested in. At runtime, for
each event that the correlator adds to a window, the query checks for a match. Depending on the
definition of the event pattern, the set of events that matches the pattern contains one or more
events. This is the match set. A match set

Always contains the latest event, which is the event that wasmost recently added to awindow.

Satisfies the event pattern.

Is always the most recent set that matches the event pattern. This is important when there is
more than one set that is a candidate for the match set.

The format of a find statement is as follows:
find pattern block

DescriptionSyntax Element

The event pattern that you want to find. See “Defining event
patterns” on page 103.

pattern

The procedural code to execute when a match is found. See
“Acting on pattern matches” on page 127.

block

Defining event patterns
In a query definition, you specify a find statement when you want to detect a particular event
pattern. The find statement specifies the event pattern of interest followed by a procedural block
that specifies what you want to happen when a match is found. For example:
query ImprobableWithdrawalLocations
{

inputs {
Withdrawal() key cardNumber within 24 hours;

}
find

Withdrawal as w1 -> Withdrawal as w2 where w2.country != w1.country {

log "Suspicious withdrawal: " + w2.toString() at INFO;
}

}

In this example, the window that the query operates on contains any Withdrawal events that have
arrived in the last 24 hours. The key is the card number so each partition contains only Withdrawal
events that have the same value in their cardNumber field. In other words, each partition contains
the Withdrawal events for one particular account. For more information about input definitions,
see “Defining query input” on page 77.

The find statement specifies that the event pattern of interest is a Withdrawal event followed by
another Withdrawal event.

Developing Apama Applications 10.11.2 103

3 Defining Queries

In each partition, the where clause filters the Withdrawal events so that there is a match only when
the values of their country fields are different. The two event templates in the find statement
coassign matching Withdrawal events to w1 and w2, respectively.

In this example, the two matching Withdrawal events might or might not have arrived in the
partition consecutively. For details, see “Query followed-by operator” on page 106.

When there is a match the query executes the action in the find block.

The format for defining a find statement is as follows:
find

[every] [wait duration as identifier]
event_type as identifier [find_operator event_type as identifier]...
[wait duration as identifier]
[where_clause] [within_clause] [without_clause]
[select_clause] [having_clause] {

block
}

DescriptionSyntax Element

Name of the event type you are interested in. You must
have specified this event type in the inputs section.

event_type

Specify the optional everymodifier in conjunctionwith the
select and having clauses. This lets you specify a pattern

every

that aggregates event field values in order to finddata based
on many sets of events. See “Aggregating event field
values” on page 122.

Specify the optional waitmodifier followed by a time literal
or a float expression. A waitmodifier indicates a period

wait

of elapsed time at the beginning of the event pattern and/or
at the end of the event pattern. A float expression always
indicates a number of seconds, See “Query wait
operator” on page 112.

Coassign the matching event to this identifier. A
coassignment variable specified in an event pattern iswithin

identifier

the scope of the find block and it is a private copy in that
block. The exception to this is in an aggregating find
statement, only the projection expression can use the
coassignments from the pattern. The procedural block of
code can use projection coassignments and any parameters,
but it cannot use coassignments from the pattern. Changes
to the content that the variable points to do not affect any
values outside the query.

Unlike EPL event expressions, you need not declare this
identifier before you coassign a value to it.

104 Developing Apama Applications 10.11.2

3 Defining Queries

DescriptionSyntax Element

In an event pattern in a find statement, each coassignment
variable identifier must be unique. You must ensure that
an identifier in an event pattern does not conflict with an
identifier in the parameters section, or inputs section.

Optionally specify and or -> and then specify an event_type
and coassignment variable. Parentheses are allowed in the

find_operator

pattern specification andyou can specifymultiple operators,
each followed by an event_type and coassignment variable.
For example, the following is a valid find statement:
find (A as a1 -> ((A as a2)) -> (A as a3) ->
(A as a4 -> A as a5 -> A as a6) ->
(((A as a7) -> A as a8) -> A as a9) ->
A as a10)

{
print "query with 10: "+a1.toString()+ "
- "+a10.toString();
}

You can use either as or the colon (:) as the coassignment
operator.

To filter which events match, specify where followed by a
Boolean expression that refers to the events you are

where_clause

interested in. The Boolean expressionmust evaluate to true
for the events to match. The where clause is optional.
Coassignment variables specified in the find or select
statements are in scope in the where clause. Also available
in a where clause are any parameter values and key values.
This where clause applies to the event pattern and is referred
to as a find where clause to distinguish it from a where clause
that is part of a without cause, which is referred to as a
without where clause. See “Query conditions” on page 113.

A within clause sets the time period during which events
in the match set must have been added to their windows.

within_clause

Apattern can specify zero, one, ormore within clauses. See
“Query conditions” on page 113.

A without clause specifies event types whose presence
prevents a match. See “Query conditions” on page 113.

without_clause

A select clause indicates that aggregate values are to be
computed. See “Aggregating event field values” onpage 122.

select_clause

A having clause restricts when the procedural code is
invoked for a pattern that aggregates values. See
“Aggregating event field values” on page 122.

having_clause

Developing Apama Applications 10.11.2 105

3 Defining Queries

DescriptionSyntax Element

Specify one ormore statements that operate on thematching
event(s). For details about code that is permissible in the
find block, see “Acting on pattern matches” on page 127.

block

Items available in a find block can include:

Any parameters defined in the parameters section

Coassignment variables specified in the event pattern
(or projection coassignments in the case of aggregating
find statements).

Key values

Query followed-by operator

You can specify the -> (followed-by) operator in the find statement. The -> operator matches
events that come after each other. The event on the left of the operator always arrives in the
correlator before the event on the right. In other words, the -> operator is always between two
distinct events. For example, A as a1 -> A as a2 requires the arrival of two instances of an A event
for the query to find a match. Also, any where clauses in the find statement must evaluate to true
for an event pattern to match. Finally, the match set always includes the latest event.

Thus, the rules forwhen there is amatch for an event pattern that specifies one ormore followed-by
operators are as follows. All of these requirements must be met for there to be a match.

There are events in the partition that match the subpatterns on both sides of the followed-by
operator(s).

There is amatch for the subpattern on the left of a followed-by operator before there is amatch
for the subpattern on the right of a followed-by operator. One event cannot match more than
one subpattern in an event pattern.

If a subpattern contains a where clause then the where clause must evaluate to true for the
subpattern to match.

The match set contains the latest event.

If there ismore than one candidate event set for thematch set then it is themost recent candidate
event set that is the match set. See “Event matching policy” on page 126.

The following sections provide examples that illustrate these rules.

Two coassignments

Consider the following code in which the Withdrawal event contains only one field of interest,
which is the country. Assume that the query partitions arriving Withdrawal events into windows
according to the account number field.
find Withdrawal as w1 -> Withdrawal as w2

106 Developing Apama Applications 10.11.2

3 Defining Queries

where w1.country = "UK" and w2.country = "Narnia" {
// Recent card fraud in Narnia against UK customers
emit SuspiciousWithdrawal(w2);

}

To make it easier to understand the behavior of the -> operator in more populated windows, the
following example events omit the account number field but include a unique identifier field.
Suppose the window for this query contains the following events, in arrival order top to bottom:
Withdrawal("Belgium", 1)
Withdrawal("UK", 2)

Although there is a Withdrawal event followed by another Withdrawal event, the where clause does
not evaluate to true so there is no match. Now suppose the window contains these events:
Withdrawal("UK", 3)
Withdrawal("Narnia", 4)

Now the query finds a match. There is a Withdrawal event followed by another Withdrawal event,
and the where clause evaluates to true. Withdrawal("UK, 3") is coassigned to w1 and
Withdrawal("Narnia", 4) is coassigned to w2. The query executes the statements in its find block,
which in this example is to emit the event that triggered the match.

In this example, the Withdrawal events in the match set arrived consecutively. However, this is
not a requirement. Consider a window that contains the following events:
Withdrawal("UK", 5)
Withdrawal("Belgium", 6)
Withdrawal("Belgium", 7)
Withdrawal("Narnia", 8)

When Withdrawal("Narnia", 8) is added to its window, the query finds a match because the
Withdrawal("UK", 5) event is followed by the Withdrawal("Narnia", 8) event and the where clause
evaluates to true for those two events. The effective behavior is that all combinations of events in
the window are inspected to find a combination that matches. The Withdrawal("UK, 5") event is
coassigned to w1 and Withdrawal("Narnia, 8") is coassigned to w2. The query executes the
statements in its find block.

A match must include the event that arrived most recently in the window (the latest event). This
ensures that a query does not detect more than one match for the same combination of events. In
the previous example, the query found amatchwhen the Withdrawal("Narnia", 8) event arrived.

Imagine that another Withdrawal event arrives and thewindownow contains the following events:
Withdrawal("UK", 5)
Withdrawal("Belgium", 6)
Withdrawal("Belgium", 7)
Withdrawal("Narnia", 8)
Withdrawal("Belgium", 9)

While the window still contains the Withdrawal("UK", 5) event followed by the
Withdrawal("Narnia", 8) event, the arrival of the Withdrawal("Belgium", 9) event does not trigger
a newmatch because it is not part of that combination.However, suppose the Withdrawal("Narnia",
10) event arrives. The window now contains the following events:
Withdrawal("UK", 5)

Developing Apama Applications 10.11.2 107

3 Defining Queries

Withdrawal("Belgium", 6)
Withdrawal("Belgium", 7)
Withdrawal("Narnia", 8)
Withdrawal("Belgium", 9)
Withdrawal("Narnia", 10)

Now the query finds a newmatch. The Withdrawal("UK", 5) event is followed by the just arrived
Withdrawal("Narnia", 10) event and the where clause evaluates to true for these two events. This
match set contains Withdrawal("UK", 5) and Withdrawal("Narnia", 10). While this match set
contains the same Withdrawal("UK", 5) event that was in the previousmatch set, it is a newmatch
set because it contains the event that arrived most recently, which is the Withrawal("Narnia", 10)
event.

Suppose that the Withdrawal("Narnia", 14) event has just arrived in the following window:
Withdrawal("Belgium", 11)
Withdrawal("UK", 12)
Withdrawal("UK", 13)
Withdrawal("Narnia", 14)

In this situation, there is a match set that contains the two most recently arrived events, that is,
Withdrawal("UK", 13) and Withdrawal("Narnia", 14). The Withdrawal("UK", 12) event is not part
of the match set because it is not the most recently arrived Withdrawal event whose country field
is "UK".

Three coassignments

The code example below shows three coassignments in the find statement. This query partitions
the arriving events into windows according to their Automated Transaction Machine identifier
numbers (atmId).
query RepeatedMaxWithdrawals {

inputs {
Withdrawal() key atmId within 4 minutes;

}
find Withdrawal as w1 -> Withdrawal as w2 -> Withdrawal as w3

where w1.amount = 500 and w2.amount = 500 and w3.amount = 500 {

log "Suspicious withdrawal: " + w3.toString() at INFO;
}

}

Each window contains the Withdrawal events that occurred in the last four minutes at a particular
ATM. For simplicity, the following examples showonly the amount and transactionId event fields.
Suppose the following events are in thewindow and that they arrived in order from top to bottom:
Withdrawal(500, 101) w1
Withdrawal(500, 102) w2
Withdrawal(500, 103) w3

After the third event arrives, the event pattern is matched, the where clause evaluates to true, and
the events are coassigned to w1, w2, and w3 as shown above.

Another event arrives in the window:
Withdrawal(500, 101)

108 Developing Apama Applications 10.11.2

3 Defining Queries

Withdrawal(500, 102) w1
Withdrawal(500, 103) w2
Withdrawal(500, 104) w3

When the fourth event arrives there is a newmatch and the events are coassigned as shown above.
The Withdrawal(500, 101) event is not part of the newmatch set. Amatch set always includes the
most recent events that satisfy the event pattern and that allow the where clause to evaluate to
true.

Another event arrives and the window now contains these events:
Withdrawal(500, 101)
Withdrawal(500, 102)
Withdrawal(500, 103)
Withdrawal(500, 104)
Withdrawal(100, 105)

The latest event, Withdrawal(100, 105), does not have 500 in its amount field. Consequently, its
arrival in the window does not trigger a new match because a match set must always include the
latest event. While the window still contains three events that satisfy the event pattern, the actions
in the find block are not executed as a result of the arrival of Withdrawal(100, 105) because it did
not trigger a new match.

Another event arrives and the window now contains these events:
Withdrawal(500, 101)
Withdrawal(500, 102)
Withdrawal(500, 103) w1
Withdrawal(500, 104) w2
Withdrawal(100, 105)
Withdrawal(500, 106) w3

With the arrival of the Withdrawal(500, 106) event, there is a new match and the events are
coassigned as shown above. The coassigned events are the three most recently arrived events that
satisfy the event pattern. It does not matter that Withdrawal(100, 105) arrived after some events
that are in the match set. That event does not satisfy the event pattern and so it is not included in
the match set.

Finally, suppose all of the following events have arrived in the window within the specified four
minutes:
Withdrawal(500, 101)
Withdrawal(500, 102)
Withdrawal(500, 103)
Withdrawal(500, 104)
Withdrawal(100, 105)
Withdrawal(500, 106) w1
Withdrawal(500, 107) w2
Withdrawal(100, 108)
Withdrawal(100, 109)
Withdrawal(500, 110) w3

As you can see, the latest event causes a newmatch. Thismatch set does not include the two events
that arrived just before the latest event. Those two events do not satisfy the event pattern.

Developing Apama Applications 10.11.2 109

3 Defining Queries

Query and operator

In a find statement, you can specify the and operator in the event pattern. The events on both sides
of the and operator must be matched for the query to fire. The condition on each side of an and
operator can be a single event template or a more complex expression.

In the next example, assuming that an X event and a Y event have already been added to their
respective windows, adding an A event to its window causes a match.
(X as x -> A as a1) and (Y as y -> A as a2)

In the second example, suppose events were added to their windows in this order: X(1), A(1),
Y(1), A(2). The A(1) event is not included in the match set. Only A(2) is in the match set because
it is the most recent A event to follow X(1) as well as the most recent A event to follow Y(1).

When a single event is used in more than one coassignment you must coassign the event, A in
these examples, to distinct identifiers, a1 and a2 in these examples.

Specification of an and operator implies that there are no requirements regarding the order in
which the events specified in the event pattern are added to the window. For example, events
specified in the right-side condition can be added to their windows before events specified in the
left-side condition. When conditions specify multiple events, the events that cause one side of the
and operator to evaluate to true:

can all be added to their windows before the events that cause the other side to evaluate to
true;

can all be added to their windows after the events that cause the other side to evaluate to true;

can arrive in their windows at times interleaved with the arrival of the events that cause the
other side to evaluate to true;

can contain the events that cause the other side to evaluate to true;

can be contained by the events that cause the other side to evaluate to true.

When there is an order requirement or when you require multiple instances of the same event
type, specify the followed-by (->) operator.

The and operator has a higher precedence than the followed-by (->) operator, and lower precedence
than the or operator. For clarity, use brackets in expressions that specify more than one type of
operators.

Query or operator

In a find statement, you can specify the or operator in the event pattern. The events on one side
or the other of the or operator must be matched for the query to fire. The condition on each side
of an or operator can be a single event template or a more complex expression.

In the next example, assuming that a FlagAccount event and an OrderPlaced event have already
been added to the query's window, adding either a CreditCardAdded or OrderCancelled event to
its window causes a match.

110 Developing Apama Applications 10.11.2

3 Defining Queries

FlagAccount as account -> (CreditCardAdded as added or
(OrderPlaced as placed and OrderCancelled as cancelled))

A pattern normally only matches one side of an or operator, as it matches the most recent events.
However, if one event matches both sides of an or operator, then both events may be coassigned.

Optional or-terms

Events on one side of the or operator are not required to be present when matching the pattern.
In the example above, the added, placed and cancelled coassignments are not all required to be
present. It will match if either an added event, or a placed and canceled event appears in the
query's window. These terms are referred to as “or-terms”. It is possible for the pattern to match
with matching only some of those events, and others are left without an event assigned to them.
These or-terms are thus optional rather than definitely having a value matched by the pattern.
The following rules apply to or-terms:

Or-terms can only be used in where clauses (see “Query conditions” on page 113) if the where
clause does not make use of or-terms on the opposite side of the or operator in the pattern. In
the above example, added is opposite placed and cancelled. Therefore, the following where
clauses are not legal:

where added.cardId = placed.cardId

where added.cardId = 5 or placed.cardId = 5

(but see the next point for an example of how to express these conditions)

If one of the where clauses uses or-terms that are not being matched by the pattern, then they
are ignored as they cannot be evaluated. For example, only one of the following where clauses
is required to match (as it is not possible for both to match):

where added.cardId = 5

where placed.cardId = 5

In the action of the query (see “Acting on patternmatches” on page 127), the type of an or-term
is optional<EventType>. The types in the above example are:

optional<CreditCardAdded>

optional<OrderPlaced>

optional<OrderCancelled>

Use the ifpresent statement to handle the contents of such events. See “Defining conditional
logic with the ifpresent statement” on page 276 for further information.

If using the %send construct (see "Adding query send event actions" inUsingApamawith Software
AGDesigner), any or-terms required by the fields of the event should be included in an ifpresent
entry of the %send. This uses the ifpresent statement, thus the contents of the or-terms events
are available to the send action.When using the Query Send Event Action dialog in Software
AG Designer, the ifpresent is automatically filled out.

Developing Apama Applications 10.11.2 111

3 Defining Queries

If one side of an or term matches and the other side is incomplete, then no or-terms from the
incomplete side of the or operator are included in the matched events. Each side of an or
operator can either match completely or not at all. In the above example, if a CreditCardAdded
event occurs, the OrderPlaced event is discarded, despite being present in the window. Thus,
detecting the presence of just the placed or canceled eventwith ifpresent is sufficient to detect
which side of the or has matched.

Aggregates (see “Aggregating event field values” on page 122) cannot use or-terms.

The or operator has a higher precedence than the and operator, and lower precedence than the
followed-by (->) operator. For clarity, use brackets in expressions that specify more than one type
of operator.

Query wait operator

You can specify the wait operator in an event pattern. The wait operator indicates that there must
be a time interval either at the beginning of the matching pattern or at the end of the matching
pattern. The format for specifying the wait operator is as follows:
wait (durationExpression) as coassignmentId

You can use either as or the colon (:) as the coassignment operator.

DescriptionSyntax Element

A time literal (such as 2 min 3 seconds) or a float
expression. A float expression can use constants and
parameters. It indicates a number of seconds.

durationExpression

An identifier. You can specify this identifier only in a
between clause. See “Query condition ranges” on page 118.

coassignmentId

Typically, you specify the wait operator in conjunction with an event pattern condition. For
example:
find A as a -> B as b -> wait(10) as t

without X as x between (b t)

There is a match for this pattern when these things happen in this order:

1. An A event is added to a window in a partition.

2. A B event is added to a window in the same partition.

3. Ten seconds go by without an X event being added to a window in that partition.

The wait operator can be unambiguously at the beginning of a pattern that uses the followed-by
operator or unambiguously at the end of a pattern that uses the followed-by operator. For example:
X as x -> wait(1.0) -> Y as y // Not allowed
X as x and wait(1.0) and Y as y // Not allowed
X as x and Y as y and wait(1.0) // Not allowed
wait(1.0) -> (X as x and Y as y) // Allowed
wait(1.0) -> X as x -> Y as y -> wait(1.0) // Allowed

112 Developing Apama Applications 10.11.2

3 Defining Queries

The following code fragment detects the opening of a door without security authorization:
find wait(5 seconds) as p -> DoorOpened as e

without SecurityAuthorization as s where s.doorId = e.doorId {
emit UnautorizedAccess(e.doorId);
}

Suppose the following events were received:

EventTime

SecurityAuthorization("door1")00

DoorOpened("door1")02

DoorOpened("door1")07

DoorOpened("door2")15

The first DoorOpened event for door1 does not generate an alert because a SecurityAuthorization
event was received within the 5 seconds that preceded the first DoorOpened event and the doorId
field is the same for both events. That is, because the Boolean expression in the where clause of the
without clause evaluates to true, a match is prevented and so an alert is not sent.

The second DoorOpened event for door1 causes an UnautorizedAccess alert because the
SecurityAuthorization event was received more than 5 seconds before the second DoorOpened
event for door1.

The DoorOpened event for door2 causes an UnauthorizedAccess alert because a SecurityAuthorization
event was not received within the 5 seconds that preceded that DoorOpened event. Since there was
no SecurityAuthorization event, the Boolean expression in the where clause that is in the without
clause evaluates to false, which allows a match.

Query conditions

A find statement can specify conditions that determine whether there is a match for the specified
event pattern. The following table provides an overview of the conditions you can specify.

withoutwithinwhereCondition:

Event type coassigned to
an identifier

Time periodBoolean expressionSpecifies:

An event of a specified
type was not added to a

Events in the pattern (or,
if specified, the between

The Boolean expression
evaluates to true.

Latest event can
cause amatchwhen:

window after therange) must have been
addition of the oldestreceived within the time
event in the potentialspecified. That is, the
match set nor before theelapsed time from when
addition of the latest
event.

the first event was
received towhen the last

Developing Apama Applications 10.11.2 113

3 Defining Queries

withoutwithinwhereCondition:

event was receivedmust
be less than the within
time period.

Zero or moreZero or moreZero or moreNumber allowed:

3rd2nd1stOrder when all
conditions are
specified:

without typeId as
coassignmentID

within time_literalwhere
boolean_expression

Format:

You can use either as or
the colon (:) as the
coassignment operator.

Optionally, after each
without clause you can

Alternatively, you can
specify within

where x where y

is equivalent to

Notes:

specify one where clause,expression. The
where x and y which is referred to as a

without where clause to
expressionmust evaluate
to a float.

A where clause that
precedes any within or

distinguish it from a find
where clause.Optionally, after each

within clause, you canwithout clauses is
Optionally, after each
without clause, you can

specify a between clause.
See “Query condition
ranges” on page 118.

referred to as a find
where clause.

specify a between clause.
See “Query condition
ranges” on page 118.

Query where clause

A where clause filters which events match. A where clause consists of the where keyword followed
by a Boolean expression that refers to the events you are interested in.

Coassignment variables specified in the find statement are in scope in the find where clause. Also
available in the find where clause are any parameter values and key values. However, each where
clause cannot use or-terms (coassignments that are not required as they are on one side of an or
operator in the pattern) from both sides of an or operator in the pattern. Each where clause can
only use coassignments from at most one side of every or operator in the pattern. Different where
clauses can use coassignments from different sides of an or operator (see “Query or operator” on
page 110). Thus, whenwriting where clauseswhich apply to either side of an or, use separate where
clauses for each condition. They cannot be combined into a single where clause with an or or and
operator in the where clause; they may require both sides to be evaluated.

For example, instead of
find OrderPlaced:placed or OrderCancelled:cancelled

114 Developing Apama Applications 10.11.2

3 Defining Queries

where placed.orderId = 1 or cancelled.orderId = 2

write the following:
find OrderPlaced:placed or OrderCancelled:cancelled

where placed.orderId = 1
where cancelled.orderId = 2

For where clauses that do not use any coassignments, all of the Boolean expressions must evaluate
to true for the events to match.

For where clauses that use or-terms, they only apply if the events they make use of are matched
by the pattern. If they use or-terms that have not been matched by the pattern, then those where
clauses are ignored as they cannot be evaluated.

All of the where clauses that can be evaluated must be true for the pattern to match. If a single
where clause combines (with an and or or operator) conditions on an or-term and a normal
coassignment, then the entire where clause is ignored if the or-term is not matched.

The where clause is optional. You can specify zero, one or more where clauses.

Note:
You can specify a find where clause that applies to the event pattern and you can also specify a
without where clause that is part of a without clause. Any where clauses that you want to apply
to the event pattern must precede any within or without clauses.

Query within clause

A within clause sets the time period during which events in the match set must have been added
to their windows. A pattern can specify zero, one, ormore within clauses. Thesemust appear after
any find where clauses and before any without clauses. The format of a within clause is as follows.
The between clause is optional.
within durationExpression [between (identifer1 identifier2 ...)]

The durationExpressionmust be a time literal (such as 2 min 3 seconds) or it must evaluate to a
float value. A float expression can use constants and parameters. It indicates a number of seconds.

For example, consider the following find statement:
find LoggedIn as lc -> OneTimePass as otp

where lc.user = otp.user
within 30.0 {

emit AccessGranted(lc.user);
}

If specified, the between clause lists two or more items. Each item can be a coassigned event in the
pattern.A wait coassignment can also be specified. These itemsdefine a range. See “Query condition
ranges” on page 118. For example:
find wait(1.) as w -> A as a {
...
within (5.0) between w a

Now assume that the following events arrive:

Developing Apama Applications 10.11.2 115

3 Defining Queries

Access Granted?EventTime

LoggedIn("Andy")10

Yes. Both events received within 30 seconds.OneTimePass("Andy")15

LoggedIn("Mike")20

No. OneTimePass event received more than 30
seconds after corresponding LoggedIn event.

OneTimePass("Mike")60

LoggedIn("Sam")60

No. OneTimePass event received exactly 30
seconds after corresponding LoggedIn event.

OneTimePass("Sam")90

For there to be a match, the OneTimePass event
must be received less than 30 seconds after its
corresponding LoggedIn event.

As mentioned earlier, a find statement can specify multiple within clauses. This is useful when
the pattern of interest refers to multiple events and you specify a between range as part of each
within clause. When you specify multiple within clauses they must all be satisfied for there to be
a match.

Query without clause

A without clause specifies event types, which must be specified in the inputs block of the query,
whose presence prevents a match. For example, if a potential match set contains 3 events, it can
be a match only if a type specified in a without clause was not added to a window neither after
the first event nor before the third event. Any event type that can be used in the find pattern can
be used in the without clause.

Optionally, after each without clause, you can specify one where clause, which is referred to as a
without where clause to distinguish it from a find where clause. The following table compares find
where clauses and without where clauses.

Without where clauseFind where clause

false allows amatch. Think of this as a negative
where clause.

true allows a match. Think of this as a positive
where clause.

Can only be part of a without clauseCan only be before any within or without clauses

Applies to the event specified in its without
clause

Applies to the event pattern

Can refer to event specified in without clauseCannot refer to event specified in without clause

The absence of an event of a type specified in a without clause has the same effect as the presence
of an event for which the without where clause evaluates to false.

116 Developing Apama Applications 10.11.2

3 Defining Queries

In addition to being able to refer to parameters and coassignment identifiers in the event pattern,
a without where clause can refer to the one event mentioned in its without clause. When a without
where clause evaluates to true, the presence of the without event prevents a match. If a without
where clause is false, then that without event instance is ignored; that is, a match is possible.

A without clause cannot use the -> or and pattern operators. However, you can specify multiple
without clauses. If there aremultiple without clauses each one can refer to only its own coassignment
and not coassignments in other without clauses. However, all without clauses can make use of the
pattern's standard coassignments, such as od.user in the example at the end of this topic.

If there are multiple without clauses a matching event for any one of them prevents a pattern
match.Multiple without clauses can use the same type and the same coassignment,which is useful
only when their where conditions are different.

Typically, a without where clause references the event in its without clause, but this is not a
requirement.

Optionally, after each without clause, you can specify a between clause, which lists two or more
coassigned events. It can also list a wait coassignment. For an event to cause a match, the type
specified in the without clause cannot be added to the window between the points specified in
the between clause. See “Query condition ranges” on page 118.

Any without clauses must be after any find where clauses and within clauses. If you specify both
optional clauses, the without where clause must be before the between clause.

When a without clause includes both optional clauses, where and between, the format looks like
this:
without typeId as coassignmentId

where boolean_expression
between (identifier1 identifier2...)

As mentioned previously, a find where clause applies to the event pattern while a without where
clause applies to the event specified in its without clause. The following table shows the resulting
behavior according to the type of the where clause and the value of its Boolean expression:

Boolean expression evaluates
to false

Boolean expression evaluates
to true

Type of where clause

Prevents matchAllows matchFind where clause applies to
event pattern

Allows matchPrevents matchWithout where clause applies to
its without event

Example

Consider the following find statement:
find OuterDoorOpened as od -> InnerDoorOpened as id

where od.user = id.user
without SecurityCodeEntered as sce where od.user = sce.user {

emit Alert("Intruder "+id.user);

Developing Apama Applications 10.11.2 117

3 Defining Queries

}

Now suppose the following events arrive:

ResultEvent Received

OuterDoorOpened("Andrew")

Causes the without where clause to evaluate to
true, which prevents a match.

SecurityCodeEntered("Andrew")

No alert is set.InnerDoorOpened("Andrew")

OuterDoorOpened("Brian")

Because there is no intermediate
SecurityCodeEntered event, there is a match and

InnerDoorOpened("Brian")

the query sends an alert. This is an example of
how the absence of an event of a type specified in
a without clause has the same effect as the
presence of an event for which the without where
clause evaluates to false.

OuterDoorOpened("Chris")

Causes the without where clause to evaluate to
false, which allows a match.

SecurityCodeEntered("Charlie")

Causes a match and the query sends an alert.InnerDoorOpened("Chris")

OuterDoorOpened("Dan")

Causes the without where clause to evaluate to
false, which allows a match.

SecurityCodeEntered("David")

Causes the without where clause to evaluate to
true, which prevents a match.

SecurityCodeEntered("Dan")

Causes the without where clause to evaluate to
false, which allows a match.

SecurityCodeEntered("Densel")

There is no match because one of the
SecurityCodeEntered events caused the without

InnerDoorOpened("Dan")

where clause to evaluate to true, which prevents
a match.

Query condition ranges

The within and without clauses (see “Query conditions” on page 113) can each have an optional
between clause that restricts which part of the pattern the within or without clause applies to. The
format for specifying a range is as follows:
between (identifer1 identifier2 ...)

118 Developing Apama Applications 10.11.2

3 Defining Queries

At least two identifiers that are specified in the event pattern are required. The identifiers specify
a period of time that starts when one of the specified events is received and ends when one of the
other specified events is received. A between clause is the only place in which you can specify a
coassignment identifier that was assigned in a wait clause. You cannot specify identifiers used in
a without clause. Also, the same event cannotmatch both the coassignment identifier in the without
clause and an identifier in a between clause.

The condition that the between clause is part of must occur in the range of identifiers specified in
the between clause. For example, consider the following find pattern:
find A as a and B as b and C as c without X as x between (a b)

For there to be a match set for this pattern, no X event can be added to its window between the
arrivals of the a and b events. If events are received in the order B A X C, then there is a match set
because the X event is not between the a and b events. If the events are received in the order B C
X A, then there is no match set because an X event occurred between the a and b events.

Here is another example:
find A as a -> B as b -> (C as c and D as d)

within 10.0 between (a b)
within 10.0 between (c d)

DescriptionRange

This duration starts when an A event is received because the pattern is looking
for an A event followed by a B event. For there to be a match, the B event must
arrive less than 10 seconds after the A event.

(a b)

After an A event followed by a B event has been received, this duration starts
when either a C event or a D event is received. Since the pattern is looking for a

(c d)

C and a D, it does notmatter which event is received first. For there to be amatch,
the event that is not received first must be received less than 10 seconds after
the first event.

The following table provides examples of match sets.

Match SetEvent ReceivedTime

A(1)10

B(1)15

D(1)20

A(1), B(1), D(1), C(1)C(1)25

No match. More than 10 seconds elapsed between C(1) and D(2).D(2)37

A(1), B(1), D(2), C(2)C(2)40

Developing Apama Applications 10.11.2 119

3 Defining Queries

The range is exclusive. That is, the range applies only after the first event is received and before
the last event is received. For example, consider this pattern:
find A as a1 -> A as a2 without A as repeated between (a1 a2)

A match set for this pattern is two consecutive A events. If three consecutive A events are added
to thewindow, the first and third do not constitute amatch set event though the first Awas followed
by the third A. This is because the second Awas added between the first and the third A events. In
other words, the events that match a1 and a2 are excluded from the range in which the repeated
event can match. The following table provides examples of match sets for this pattern. It assumes
that A(1) is still in the window when A(4) is added.

Not a Match SetMatch SetEvent Added to Window

A(1)

A(1), A(2)A(2)

A(1), A(3)A(2), A(3)A(3)

A(1), A(4) and A(2), A(4)A(3), A(4)A(4)

The query below is a real world example of the pattern just discussed. It emits the average price
change in the last minute.
query FindAveragePriceMove {

inputs {
Trade() key symbol within 1 minute;

}
find every Trade as t1 -> Trade as t2

without Trade as mid between (t1 t2)
select avg(t2.price - t1.price) as avgPriceChange {

emit AveragePriceChange(symbol, avgPriceChange);
}

}

It is illegal to have two within clauses with identical between ranges. This would be redundant,
as only the shortest within duration would have any effect. It is, however, legal to have more than
one without clause with the same between range. Typically, these would refer to different event
types or where conditions.

If or-terms (see “Query or operator” on page 110) are included in the range of a condition, then if
an or-term is not matched, that coassignment is ignored in the range. If this means that the range
has less than two points, the condition is ignored. Theremust be a combination of events forwhich
there are at least two coassignments definitely in the range. Using only or-terms on opposite sides
of an or operator in the pattern is an error, as the condition will never apply.

Special behavior of the and operator

To optimize performancewhen evaluating a query where clause, the correlator evaluates each side
of an and operator as early as possible even if evaluation is not in left to right order. This behavior
is different from the behavior outside a query. That is, outside a query, the left side of an and
operator is guaranteed to be evaluated first. See “Logical intersection (and)” on page 687.

120 Developing Apama Applications 10.11.2

3 Defining Queries

For example, suppose you specify the following event pattern:
A as a -> B as b where a.x = 1 and b.y = 2

Consider what happens when the following events are added to their windows:
A(1), A(2), A(3), B(5), B(4), B(3)

The correlator can identify that

only the a coassignment target is needed to evaluate the a.x = 1 condition;

only the b coassignment target is needed to evaluate the b.y = 2 condition.

Because none of the B events cause the b.y = 2 condition to evaluate to true, the correlator does
not evaluate the a.x = 1 condition.

In a where clause, because the right side of an and operator might be evaluated first, you should
not specify conditions that have side effects. Side effects include, but are not limited to:

print or log statements

route, emit, enqueue...to statements

Modifying events, sequences, dictionaries, etc.

Causing a runtime error

Calling an action that has a side effect statement in it

Calling plug-ins that have side effects

If a where clause calls an action that has a side effect, you should not rely on when or whether the
action is executed.

Whether the correlator can optimize evaluation of the where clause depends on how you specify
the where clause conditions. For example, consider the following event definition:
event Util {

static action myWhereClause(A a, B b) returns boolean {
return a.x = 1 and b.y = 2;

}
}

Suppose you specify the following event pattern:
A as a -> B as b where Util.myWhereClause(a, b)

If the same A and B events listed above are added to their windows, the result is the same as the
result of evaluating the following:
A as a -> B as b where a.x = 1 and b.y = 2

However, evaluation might take longer because the correlator cannot separate evaluation of b.y
= 2 from evaluation of a.x = 1. The myWhereClause() action returns a.x = 1 and b.y = 2 as a
single expression. Consequently, the correlator evaluates Util.myWhereClause(a, b) for each
combination of a and b. Given the A and B events listed above, this is a total of 9 times.

Developing Apama Applications 10.11.2 121

3 Defining Queries

While the correlator might evaluate some where clause conditions in a right-to-left order, the
correlator always evaluates each where clause condition as soon as it is ready to be evaluated.
When multiple conditions become ready to be evaluated at the same time then the correlator
evaluates those conditions in the order they arewritten. For example, the typical pattern of checking
whether a dictionary contains a key before operating on the value with that key continues to work
reliably:
E as e -> F as f where e.dict.hasKey("k") and e.dict["k"] = f.x and f.y = 1

In this example, f.y = 1might be evaluated before the other two conditions, but e.dict.hasKey("k")
is always evaluated before e.dict["k"] = f.x, and the latter is not evaluated if the hasKey()
method returns false.

Aggregating event field values

A find statement can specify a pattern that aggregates event field values in order to find data
based on many sets of events. A pattern that aggregates values specifies the everymodifier in
conjunction with select and having clauses.

Based on a series of values, an aggregate function computes a single value, such as the average of
a series of numbers. See theAPI Reference for EPL (ApamaDoc) for detailed information on all built-in
aggregate functions.

Note:
If a built-in aggregate function does not meet your needs, you can use EPL to write a custom
aggregate function. A custom aggregate function that you want to use in a query must either
be a bounded function or itmust support both bounded andunbounded operation. See “Defining
custom aggregate functions” on page 223.

For example, the following query watches for a withdrawal amount that is greater than some
thresholdmultiplied by the averagewithdrawal amount of the ATMWithdrawal events in thewindow,
which might be as many as 20 events. This query uses the last() aggregate function to identify
the event added to the window most recently and uses the avg() aggregate function to find the
average withdrawal amount of the events in the window. The having clause must evaluate to true
for the query to send the SuspiciousTransaction event, passing the transaction ID of the suspicious
withdrawal. You can use either as or the colon (:) as the coassignment operator.
using com.apama.aggregates.avg;
using com.apama.aggregates.last;
query FindSuspiciouslyLargeATMWithdrawals {

parameters {
float THRESHOLD;

}
inputs {

ATMWithdrawal() key accountId retain 20;
}
find every ATMWithdrawal as w

select last(w.transactionId) as tid
having last(w.amount) > THRESHOLD * avg(w.amount){
send SuspiciousTransaction(tid) to SuspiciousTxHandler;

}
}

122 Developing Apama Applications 10.11.2

3 Defining Queries

To use an aggregate function in a find statement, specify the everymodifier and specify one or
more select or having clauses. A select clause indicates that aggregate values are to be computed.
Each select clause specifies a projection expression and a projection coassignment. The projection
expression can use coassignments from the pattern if the coassignments are within a single
aggregate function call. For example, the following pattern computes the average value of the x
member of event type A in the query's input and coassigns that average value to aax.
find every A as a select avg(a.x) as aax

A select clause can use parameter values. For example the following two select clauses are both
valid if there is a parameter param:
find every A as a

select avg(param * a.x) as apax
select param * avg(a.x) as paax

You can specify multiple select clauses to produce multiple aggregate values.

In an aggregating find statement, only the projection expression can use the coassignments from
the pattern. The procedural block of code can use projection coassignments and any parameters,
but it cannot use coassignments from the pattern.

The first() and last() built-in aggregate functions are useful if you want to refer to the
coassignment value of the oldest or newest event, respectively, in the window.

The following example determines the average price of trades other than your own:
find every Trade as t

where t.buyer != myId and t.seller != myId
select wavg(t.price, t.amount) as avgprice

Match sets used in aggregations

In find statements without the everymodifier, only the most recent set of events that match the
pattern are used to invoke the procedural code block. With the everymodifier, every set of events
that matches the pattern is available for use by the aggregate function, provided that the latest
event is present in one of the sets of events. Any events or combinations of events that do not
match the pattern or do not match the where clause, or are invalidated due to a within or without
clause, are ignored; their values are not used in the aggregate calculation.

For example, consider the following find statement:
find every A as a -> B as b

where b.x >= 2
select avg(a.x + b.x) as aabx {
print aabx.toString();

}

The following table shows what happens as events are added to the window.

Developing Apama Applications 10.11.2 123

3 Defining Queries

Value of aabxAverage OfMatch SetsEvent Added
to Window

NoneA(1)

NoneA(2)

3.53 and 4A(1), B(2)B(2)

A(2), B(2)

None because B(1) causes the
where clause to be false.

B(1)

43, 4, 4, and 5A(1), B(2)B(3)

A(2), B(2)

A(1), B(3)

A(2), B(3)

Note:
Only coassignments that definitely have a value may be used in aggregates. Or-terms that are
on one side of an or operator in the pattern may not be used in aggregate expressions (see also
“Query or operator” on page 110).

Using aggregates in namespaces

Aswith event types, an aggregate function is typically defined in a namespace. To use an aggregate
function, specify its fully-qualified name or a using statement. The built-in aggregate functions
are in the com.apama.aggregates namespace. For example, to use the avg() aggregate function you
would specify the following in the query:
using com.apama.aggregates.avg;

Filtering unwanted invocation of procedural code

Each select clause defines an aggregate value to be produced. You can also specify one or more
having clauses to restrict when the procedural code is invoked. For example, consider the following
find statement:
find every A as a

select avg(a.x) as aax
having avg(a.x) > 10.0 {
print aax.toString();

}

This example calculates the average value of a.x for the set of A events in the window. However,
it executes the procedural block only when the average value of a.x is greater than 10.0.

124 Developing Apama Applications 10.11.2

3 Defining Queries

Multiple having clauses

You can specify multiple having clauses and you can use parameter values in having clauses. For
example,
find every A as a

select avg(a.x) as aax
select sum(a.y) as aay
having avg(a.x) > 10.0
having sum(a.y) > param1
having max(a.z) < param2
{
print aax.toString(), + " : " + aay.toString();

}

When you specify more than one having clause it is equivalent to specifying the and operator, for
example:

...
having avg(a.x) > 10.0 or sum(a.y) > param1
having max(a.z) < param2
...

is equivalent to
...
having (avg(a.x) > 10.0 or sum(a.y) > param1) and (max(a.z) < param2)
...

Using a select coassignment in a having clause

Rather than specifying an aggregate expression twice, once in a select clause and then subsequently
in a having clause, it is possible to refer to the aggregate value by using the select coassignment
name. For example:
find every A as a

select avg(a.x) as aax
having avg(a.x) > 10.0 {
print aax.toString();

}

You can rewrite that as follows:
find every A as a

select avg(a.x) as aax
having aax > 10.0 {
print aax.toString();

}

Using a having clause without a select clause

When you want to test for an aggregate condition but you do not want to use the aggregate value,
you can specify a having clause without specifying a select clause. For example,
find every A as a

Developing Apama Applications 10.11.2 125

3 Defining Queries

having avg(a.x) > 10.0 {
print "Average value is greater than ten!";

}

Event matching policy
It is possible for the windows for a given key to contain multiple sets of events that, each taken in
isolation, would match the defined event pattern. In this case, the matching policy determines
which of the candidate event sets is the match set that triggers the query. There are two event
matching policies:

Recent — This is the only policy followed for queries that to not specify the every keyword,
that is, they do not specify aggregate functions.

Every — This is the only policy followed for queries that specify the every keyword. That is,
they specify aggregate functions.

For both policies, the match set must include the latest event. The latest event is the event that was
most recently added to the set of windows identified by a particular key.

For the recent matching policy, to identify which candidate match set triggers the query, the
correlator compares the times of the second-most-recent events in the candidate event sets. If one
of these events is more recent than its corresponding event(s) then the candidate event set it is in
is thematch set. However, if two ormore candidate event sets share the second-most-recent event,
then the correlator compares the times of the third-most-recent events in those candidate event
sets. The correlator continues this until it finds an event that is more recent than its corresponding
event(s) in other candidate event set(s). The candidate event set that becomes the match set is
referred to as the most recent set that matches the event pattern.

Once the correlator determines which candidate event set is the match set, it ignores the order of
any earlier events in any event sets. This means that it is possible for the most recent set of events
to contain an event that was added earlier than an event in a set that is not the most recent set.
The following event definitions and sample query illustrate this.
event APNR {

// Automatic Plate Number Recognition
string road;
string plateNumber;
integer time; // Represents time order for illustration purposes

}

event Accident {
string road;

}

event NotifyPolice {
string road;
string plateNumber;

}

The following query uses these events:
query DetectSpeedingAccidents {

inputs {

126 Developing Apama Applications 10.11.2

3 Defining Queries

APNR() key road within(150.0);
Accident() key road within(10.0);

}
find APNR as checkpointA -> APNR as checkpointB -> Accident as accident

where checkpointA.plateNumber = checkpointB.plateNumber
and checkpointB.time - checkPointA.time < 100
// Which indicates the car was speeding

{
emit NotifyPolice(accident.road, checkpointA.plateNumber);

}
}

Suppose the following events are in the query windows:

APNR("MyRoad", "2N2R4", 1000)

APNR("MyRoad","FAB 1", 1010)

APNR("MyRoad","FAB 1", 1080)

APNR("MyRoad","2N2R4", 1090)

Accident("MyRoad")

There are two candidate event sets:

Another candidate event setA candidate event setCoassignment
identifier

APNR("MyRoad","FAB 1", 1010)APNR("MyRoad", "2N2R4", 1000)checkpointA

APNR("MyRoad","FAB 1", 1080)APNR("MyRoad", "2N2R4", 1090)checkpointB

Accident("MyRoad")Accident("MyRoad")accident

Both sets match against the single Accident event. The next most recent events are
APNR("MyRoad","2N2R4", 1090) and APNR("MyRoad","FAB 1", 1080). The APNR("MyRoad", "2N2R4",
1090) event is more recent. Consequently, after the Accident event is added to its window, there
is a match and the match set includes the Accident event and the 2N2R4 APNR events. This is the
most recent set of events.

In this example, in themost recent set of events, the earliest event, APNR("MyRoad", "2N2R4", 1000)
is earlier than the earliest event, APNR("MyRoad", "FAB 1", 1010), in the other set of events.

Acting on pattern matches
When a query finds a set of events that matches the specified pattern it executes the statements in
its find block. The find block specifies one or more statements that operate on the matching
event(s). The items available in a find block include:

Any parameters defined in the parameters section.

Coassignment variables specified in the event pattern.

Developing Apama Applications 10.11.2 127

3 Defining Queries

In the case of an aggregating find statement, only the projection expression can use the
coassignments from the pattern. The find block can use projection coassignments, but it cannot
use coassignments from the pattern.

Key values.

Actions that are defined in the same query after the find block. Any expression in the find
statement pattern or block can reference an action defined after the find block.

EPL constructs and statements that are allowed in queries. See “Restrictions in queries” on
page 134.

Defining actions in queries
In a query, after a find statement, you can define one or more actions in the same form as in EPL
monitors. See “Defining actions” on page 252.

In a given query, an action that you define can be referenced from any expression in that query's
find statement, including any statements in its find block. For example:
query CallingQueryActions {

parameters {
float distanceThreshold;
float period;

}
inputs {

Withdrawal() key account within period;
}
find Withdrawal as w1 -> Withdrawal as w2

where distance(w1.coords, w2.coords) > distanceThreshold
{
logIncident(w1, w2);
sendSmsAlertToCustomer(

getTelephoneNumber(w1), getAlertText(w1,w2));
}

action distance(Coords a, Coords b) returns float {
integer x := a.x - b.x;
integer y := a.y – b.y;
return (x*x + y*y).sqrt();

}

action logIncident (Withdrawal w, Withrawal w2) { ... }
action getTelephoneNumber(Withdrawal w) returns string { ... }
action getAlertText (Withdrawal w1, Withrawal w2) returns string { ... }
action sendSmsAlertToCustomer(string telephoneNumber, string text) { ... }

}

Note:
In a query, do not define an action whose name is onload, ondie, onunload, onBeginRecovery, or
onConcludeRecovery. In EPLmonitors, actionswith these names have specialmeaning. Formore
information, see “Monitor actions” on page 647.

128 Developing Apama Applications 10.11.2

3 Defining Queries

Implementing parameterized queries
AnApama query can define parameters and then refer to those parameters throughout the query
definition. This enables a query definition to function as a template for multiple query instances.

A query that defines parameters is referred to as a parameterized query. An instance of a
parameterized query is referred to as a parameterization.

A parameterized query offers the following benefits:

Patterns of interest (find patterns) may be customized from a single generic query. This can
significantly reduce the amount of code that needs to be written and maintained.

Parameterizations exist only at runtime. There is no need to maintain a file for each instance.

Parameters can be used throughout the query in which they are defined. For example, you
can use them in the definition of inputs, in find actions, and in user-defined actions. Values
do not need to be hardcoded.

You define query parameters in the parameters section of a query definition. See also “Format of
query definitions” on page 68. The format for specifying the parameters section is as follows:
parameters {

data_type parameter_name;
[data_type parameter_name;]...

}

In the following example, the parameters section is in bold as are the references to the parameters.
query FaultyProduct {

parameters {
string product;
float thresholdCost;
float warrantyPeriod;

}
inputs {
Sale() key customerId within warrantyPeriod;
Repair() key customerId retain 1;

}
find Sale() as s1 -> Repair() as r1
where s1.product = product
and r1.product = product
and r1.cost >= thresholdCost

{
log "Cost of warranty covered repair for product \"" + product +

"! above threshold $" + thresholdCost.toString() + " by $
" + (r1.cost - thresholdCost).toString() at INFO;

}
}

See also: “Query lifetime” on page 652.

Developing Apama Applications 10.11.2 129

3 Defining Queries

Parameterized queries as templates
When a parameterized query is injected into a correlator no instances of the query are created
until a request to create a parameterization is sent using the Scenario Service (that is, the
com.apama.services.scenario client API). This request must include valid values for the query's
parameters. For example, if the query in the previous topic is injected, the request to create a
parameterization must include valid values for the product, thresholdCost, and warrantyPeriod
parameters. Only then does the query become active.

A parameterized query lets you define a generic query find pattern that operates on a particular
group of input types and that can be customized for particular criteria. The query in the previous
topic could be created for any product with the threshold cost and warranty period specified as
required. To achieve the same result with a non-parameterized query, you would have to define
a query such as the following:
query FaultyProduct {

inputs {
Sale() key customerId within 1 week; //warrantyPeriod
Repair() key customerId retain 1;

}
find Sale() as s1 w-> Repair() as r1

where s1.productId = "Mobile device A" // productId
and r1.productId = "Mobile device A" // productId
and r1.cost >= 50.00 // thresholdCost

{
log "Cost of warranty covered repair for product \"Mobile device A\
" above threshold $50.00 by $" + (r1.cost - 50.00).toString() at INFO;

}
}

While this query is valid it has the drawback that whenever you want to perform a similar query
for a product that differs by type, warranty coverage period or threshold repair cost then a new
query will need to be written (or most likely copied and pasted) with the new set of values and
then injected into the correlator. The benefit of a parameterized query is that only one query
definition needs to be injected into the correlator and you can thenmanually or programmatically
create as many different instances for the different product-value combinations as required.

Using the Scenario Service to manage parameterized queries
There are several ways to manage (create/edit/remove) parameterizations:

Use the ScenarioServiceAPI in Java or .NET client libraries. See "Developing CustomClients"
in Connecting Apama Applications to External Components.

Use Apama's Scenario Browser view in Software AG Designer. See "Scenario Browser view"
in Using Apama with Software AG Designer.

Write dashboards that control the instances of a parameterized query. See "BuildingDashboard
Clients" in Building and Using Apama Dashboards.

The Scenario Service is also used to read and manage instances of DataViews and MemoryStore.

130 Developing Apama Applications 10.11.2

3 Defining Queries

To these tools, a query will appear with the fully qualified name declared in the .qry file prefixed
with QRY_ to highlight that the entity being viewed is a query. For parameterized queries, instances
can be created, edited or deleted. For unparameterized queries, a single instance will appear as
soon as the query is injected. This instance cannot be edited nor deleted, nor new instances created.

When there is a request to create a parameterization, the Scenario Service tries to validate the
supplied parameter values. If the values are valid, the result is as if a query with those values had
just been injected.

End users have the ability to define conditions on parameter values when setting them in
dashboards. Parameter values can be modified only by the Scenario Service. Updates by the
Scenario Service do not occur atomically across all contexts if the query is running in multiple
contexts. Consequently, it is possible to observe the effects of the old parameter values interleaved
with the effects of the new parameter values. For example, consider a query that has a pattern
such as the following:
find A as a -> wait(paramValue) as t

The wait period will be based on the value the parameter had when the wait period started. If the
parameter value is edited after the A event enters the partition the wait still fires according to the
old value. Such transitions are typically short. The actual time required depends on various factors
such as machine load and memory.

Some important differences between parameterized queries and other strategies include:

Parameterized queries have input variables but not output variables. DataViews and
MemoryStore have both input variables and output variables. All queries have an empty list
of output variables.

Requests to create or update a parameterization with values that are invalid will be denied.
Invalid values are values that would cause wait, within or retain clauses to evaluate to less
than or equal to zero, orwould cause them to fail to evaluate, for example, by causing a runtime
exception to be thrown.

For example, consider the following query:
query ParameterizationExample {

parameters {
integer intParam;
integer floatParam;

}

inputs {
A() key id retain (10/intParam);
B() key id within (5.0 - floatParam);

}

find A as a -> B as b -> wait(-1.0 * floatParam)
where (a.intField/intParam > 0) {
log "Found match" at INFO;

}

Suppose that there is a request to create a parameterization of this query. The request indicates
that intParam is equal to 0 and floatParam is equal to 10.0. If the parameterization were created
then every expression that contains a parameter value would immediately throw an exception or

Developing Apama Applications 10.11.2 131

3 Defining Queries

be invalid. In the inputs block, evaluation of the retain expressionwould result in a divide-by-zero
exception. The within expression would evaluate to -5.0, which is not valid. Similarly, upon
evaluating the elements in the find block the wait expression would be a negative value and the
where clause would also result in a divide-by-zero exception. Since a parameterization such as this
would lead to either invalid expressions or exceptions being thrown, these values are not allowed.
If you try to pass disallowed values to the Scenario Service createInstance()method then the
Scenario Service returns null. Similarly, if you try to pass invalid values to the Scenario Service
editInstance()method, then the Scenario Service returns false, which indicates an error.

Referring to parameters in queries
You can refer to parameters throughout a query definition.

You cannot change parameter values in the query code itself. Parameter values can be modified
only by the Scenario Service.

CAUTION:
Apama recommends that you do not change parameter values used in input filters because it
is possible tomiss events that would cause amatch. In a given parameterization, when an input
filter refers to a parameter and you change the value of that parameter, it causes the
parameterization to stop and restart. Events sent during the changeover are ignored. Also, there
might have been earlier events that match the new parameter value but that did not make it
into the window because they did not match the previous parameter value. An alternative is
to use a parameter in a where clause in the find statement instead. This can be more efficient
when the parameter value needs to be changed frequently. Using parameter values in input
filters can also increase memory usage, see “Queries can share windows” on page 79.

Examples of using parameters in queries:

In retain and within expressions that are in the inputs block:
parameters {

integer maxRetention;
float maxDuration;

}
inputs {

A() key id retain maxRetention;
B() key id with maxDuration;

}

In the filter of the event template in the inputs block:
parameters {

float threshold;
}
inputs {

Withdrawal(amount > threshold) key k;
}

In where and within clauses that are in the find pattern:
parameters {

float maxDuration;
float maxDifference;

132 Developing Apama Applications 10.11.2

3 Defining Queries

}
inputs {

A() key id retain 2;
}
find A as a1 -> A as a2 where (a2.cost - a1.cost) >

maxDifference within maxDuration {
...

}

In wait expression(s) that are in the find pattern:
parameters {

float interval;
}
inputs {

A() key id retain 2;
}
find A as a1 -> wait(interval) as w1 -> A as a2 {

...
}

In an aggregate expression that is in the find pattern:
parameters {

float avg;
}
inputs {

A() key id within 1 day;
}
find every A as a

select avg(a.cost - avg) as avgDeviation {
...

}

In an action that is in the find block:
parameters {

float avg;
}
inputs {

A() key id retain 1;
}
find A as a {

log "Deviation from mean = " + (a.value - avg).toString();
}

In a user-defined action block:
parameters {

float avg;
}
inputs {

A() key id retain 1;
}
find A as a {

log "Deviation from mean = " + getDeviation(a).toString();
}
action getDeviation(A a) returns float {

return (a.value - avg);
}

Developing Apama Applications 10.11.2 133

3 Defining Queries

While parameter values can be used anywherewithin the query it is illegal tomutate the parameter
values. They can be modified only by the Scenario Service.

Scaling and performance of parameterized queries
Depending on the machine architecture a user can expect to be able to create several hundred
parameterizations, which all concurrently process events.

As a result of the time required to process a parameterization edit request, the recommendation
is to avoidmultiple simultaneous edit requests for the sameparameterization. There is no guarantee
that all of the threads executing the parameterization will hold the same parameter values during
the update period.During the update period, theremight be amix of results based on old parameter
values and results based on new parameter values. Any requests to the same parameterization
should be spaced approximately 1 second apart to allow time for requests to be executed throughout
the parameterization. This applies to create, edit and delete requests.

In a cluster of correlators, the correlators share the same set of parameter values across the cluster.
While a Scenario Service client can connect to any correlator in the cluster, it is not recommended
to edit the same parameterization frommultiple Scenario Service clients concurrently, as the results
will be undefined.

Restrictions in queries
There are some EPL elements that are appropriate for monitors but not queries, for example spawn
and die. This is because queries scale automatically, withmultiple threads of execution processing
the events for different partitions as and when they arrive. Hence, within query code, the spawn
and die operations are meaningless. Queries operate on the events in their windows and do not
need to set up event listeners, stream queries, or stream listeners. Also, queries cannot subscribe
to receive events sent to particular channels.

The following EPL features cannot be used in queries:

Event listeners, that is, on statements

Stream queries and stream listeners

spawn and spawn...to statements

die statements

monitor.subscribe() and monitor.unsubscribe()

An identifier cannot start with two consecutive underscore characters. For example, __MyEvent
is an invalid event type name in a query (it is valid in a monitor). A single underscore at the
beginning of an identifier is valid.

Predefined self variable

Of course, you cannot call an action on an event when that action uses a restricted feature listed
here.

134 Developing Apama Applications 10.11.2

3 Defining Queries

The recommended means to send events from queries to monitors is by sending to a channel. See
“Generating events with the send statement” on page 267.

The debugger does not support debugging query execution - it is not possible to set breakpoints
in a query file. Use of the debugger can also affect how quickly queries are ready to respond to
events, and should not be used in a production system (where it would cause significant pauses
of the correlator).

Note:
Several restrictions are enforced on queries if a license file cannot be found while the correlator
is running. See "Running Apama without a license file" in Introduction to Apama.

Best practices for defining queries

Use values for the length of the window that will not store too much data in the
window.

Given the expected incoming event rate, set the within and/ or retainwindow lengths so that
typically less than a hundred events per partition will be within the window.With more than that
the cost of executing queries can become excessive and the system will not perform efficiently.
There is no limit on the number of events within any partition. If a very small proportion of
exceptional partitions has many more, then that is not a problem. The important factor is that if
the average number is large, this can affect the performance of executing queries.

Use parameters instead of creating many similar queries.

Rather than writing many separate queries which are very similar in structure and differ only in
values, it may be easier to write a template query and create multiple parameterizations of it. See
also “Parameterized queries as templates” on page 130.

If a query requires different fields for its keys depending on the query parameters, it should use
an action as a query key. See also “Defining actions as query keys” on page 73.

Use within in input durations if the partition values change over time

In some queries, the key used by the query may correspond to a transient object, that is, any given
value for the partition is not permanent. For example, if tracking parcels being delivered, then
each consignment ID will be short-lived. Once a parcel is delivered, there would in most cases be
no more events for that consignment ID (and future deliveries may never re-use the same
consignment ID). In these cases, over long periods, the number of different key values processed
will only increase, as new IDs are generated. Such queries should include a within specification
in the inputs for all event types. Otherwise, if inputs only have a retain specification, then the
events will be held forever, and more and more storage will be required by the queries system.
This is not typically necessary if the key corresponds to more permanent objects, such as ATMs
or distribution depots.

Developing Apama Applications 10.11.2 135

3 Defining Queries

Use input within that is larger than the value of all waits, withins in the pattern

If your inputs specify a within and there is wait or within in the pattern, then the input within
should be larger than the longest wait and within in the pattern. If not, the pattern will not have
the intended effect, as events will be expired from the input windowwhile a wait or within in the
pattern is still active.

Use same set of inputs to allow sharing of data

If you have many queries of different types and they are using a lot of memory or are running
slowly, then check if they are using the same inputs definitions (see also “Queries can share
windows” on page 79). Memory usage can be reduced and performance increased by making
multiple queries use the same set of input definitions, even if some queries have some event types
in their inputs that they are not using.

Understand the difference between filters and where clauses

Filters in the input section filter events before they are stored in the distributed cache. By contrast,
the where clause filters events (or combinations of events) after they have been stored in the
distributed cache. The where clause is more powerful, but also more expensive, especially if most
events do not match the where clause.

A filter applies before the event window. Thus, events not matching the filter are ignored and
do not need to be stored anywhere. This makes filtering a very cheap way of reducing the
number of events that need to be processed. The retain count only applies to the events that
match the filter. For example, the following query input will match events where there have
been two events with value = 5; it will match if another event for the same k has occurred
between them with value not equal to 5.
query Q1 {

inputs {
Event(value = 5) key k retain 2;

}
find Event as e1 -> Event as e2 {
}

}

Compare the above with:
query Q2 {

inputs {
Event() key k retain 2;

}
find Event as e1 -> Event as e2 where e1.value = 5 and e2.value = 5 {
}

}

This only matches if the last two events for a given value of k both have the value 5 - as we
only retain 2 events and after retaining 2 events, check that they have value = 5.

A filter applies to all events. Note that in query Q2 above we had to repeat the value = 5 check.

136 Developing Apama Applications 10.11.2

3 Defining Queries

A where clause does not affect the definition of the inputs. Query Q2 could share window
contents with other queries that are concerned with different values of value, or do not filter
at all.

A filter is restricted to range or equalitymatches per field of the incoming events. where clauses
can bemore complex (for example, where e1.field1 + e2.field2 = 10 is valid, as is e1.isTypeA
or e1.isTypeB; but neither could be expressed in a filter).

Avoid changing parameter values used in filters

If using parameters in filters, avoid changing the values of those parameters. As this changes
which events should be stored in the window, this is similar in effect to stopping a query instance
and creating a new query instance. It involves creating new tables in the distributed cache, and
events that are delivered to correlators while a new table is opened will be dropped. It may be
more desirable to use a where clause to restrict which events match a pattern.

Use custom aggregates to get data from multiple match sets

As well as the built-in aggregates, it is possible to define new aggregates in EPL to collate
information about all events that matched a pattern. For example, it may be desirable to have a
list of all events that matched a pattern. This can be achieved by writing a new custom aggregate.
For example:
// file MyAggregates.mon:
aggregate CollateEvents(Event e) returns sequence<Event> {

sequence<Event> allEvts;
action add(Event e) {

allEvts.append(e);
}

action value() returns sequence<Event> {
return allEvts;

}
}

// file PrintAllEvents.qry:
query PrintAllEvents {

inputs {
Event() within 2 hours;

}

find every Event as e1 select CollateEvents(e1) as c1 {
Event e;
for e in c1 {

print e.toString();
}

}
}

Developing Apama Applications 10.11.2 137

3 Defining Queries

Testing query execution
Whenwriting queries, as with any programming, it is important to test that the query is behaving
as expected. Testing can be as simple as a small Apama project with the event definitions, the
queries, and an .evt file of events to send to the query. You can use this project to check whether
the query sends out the correct events. In Software AG Designer, use the Engine Receive view
to observe the output of the query. Whether or not a query is written to send output events, you
can add log statements to the query file to verify whether it has or has not triggered.

Be sure to test queries in an environment that is separate from your production environment. Of
course, preventing problems is the best way to avoid the need to troubleshoot so ensure that
queries are sufficiently tested before deploying them.

The following background information and troubleshooting tips provide some guidance. See also
“Overview of query processing” on page 64.

Exceptions in queries

In a query, exceptions can occur in the following places:

Procedural code in a find statement block

having clause

retain clause

select clause

wait clause

All where clauses

All within clauses

An exception in the inputs block (retain or within clause) or the find block's wait or within clause
causes the query to terminate. If there is an exception elsewhere, the query continues to process
incoming events. An exception that occurs in a where or having clause causes the Boolean expression
to evaluate to false.

Event ordering in queries

Unlike EPL monitors, the order in which queries process events is not necessarily the order in
which they were sent into the correlator. In particular, if two events that will be processed by the
same query with the same key value are sent very close together in time (both events received less
than about .1 seconds of each other) then they may be processed as if they had been sent in a
different order. For example, consider a query that is looking for an A event followed by an A event.
If two A eventswith the same key arrive 1millisecond apart then the eventsmight not be processed
in the order in which they were sent.

Queries usemultiple threads to process events and to scale acrossmultiple correlators onmultiple
machines. To do this efficiently, there is no enforcement that the events are processed in order.

138 Developing Apama Applications 10.11.2

3 Defining Queries

However, when events that have the same key arrive roughly about .5 seconds apart or more then
out-of-order processing is typically avoided provided the system can keep up with the load.
Therefore, you want to specify a query so that it operates on partitions in which the arrival of
consecutive events is spaced far enough apart. For example, consider a query that operates on
credit card transaction events, which could mean thousands of events per second. You want to
partition this query on the credit card number so that there is one event or less per partition per
second. By following this recommendation, it becomes possible to process events that are generated
at rates of up to 10,000 events per second.

When creating an .evt file for testing purposes, the recommendation is to begin the file with a
&FLUSHING(1) line to cause more predictable and reliable event-processing behavior. See "Event
timing" in Deploying and Managing Apama Applications.

Query diagnostics

To help you monitor queries that are running on a given correlator, Apama provides data about
active queries in DataViews. See "Monitoring running queries" in Deploying and Managing Apama
Applications.

When deploying Apama queries it is possible to enable generation of diagnostic information.
These are log statements that explain some of the internal workings of the query evaluation. In
particular, events coming into the query and the contents of the windows before the pattern is
evaluated are both logged. This can aid understanding of how the query evaluation occurs. If a
query is misbehaving then providing this diagnostics logging to Apama support can help in
understanding the issue.

Note:
Diagnostic logs contain the event data. You may want to consider using fake data rather than
real data if the real data is sensitive.

Logging in where statements

It can be useful to modify a query so that rather than including the expression that needs to be
evaluated in a where clause, the query calls an action on the query to execute the expression used
by the where clause. This allows logging of inputs and the result of the expression. For example,
instead of a query that contains the following:
find A as a -> B as b where a.x >= b.x { ...

Write the query this way:
action compareAB(A a, B b) returns boolean {
log "compareAB; inputs: A as a = "+a.toString()+ ", B as b = "+b.toString();
boolean r:= (a.x >= b.x);
log "compareAB; result is "+r.toString();
return r;

}

find A as a -> B as b where compareAB(a, b) { ...

You can then use these log statements to check if the query is behaving as expected.

Developing Apama Applications 10.11.2 139

3 Defining Queries

Divide and conquer

One of the advantages of testing a query with a known set of input events is that it is possible to
see how changing the query affects the results. For example, if a query is not matching any events
and has many within and without clauses, try removing all of them. One way to do this is to place
them onto separate lines and use // as a comment at the beginning of the lines in the source view.
If the query still does not fire, use query diagnostics to check that events are being evaluated. If
the query is firing, then add within and without clauses one at a time until the query stops firing.
The problem is at the condition that stops it from firing when it should.

Query performance

A critical factor that affects the performance of queries is the size of the windows specified in the
inputs block of the query. Aim for windows that contain no more than 100 events. Depending on
the distributed cache used to store data, it may also be necessary to change the number of parallel
contexts per correlator. Experiment with different values for the number of worker contexts. See
also “Overview of query processing” on page 64.

Using external clocking when testing

When testing queries, as well as switching into single context execution, it is often useful to use
external clocking. This allows &TIME events to be sent into the correlator to simulate the passage
of time, which allows queries involving long durations (for example, multiple days) to be tested
easily. To ensure the correct ordering of processing between events and &TIME events, you should
also include &FLUSHING(1) at the beginning of the event file, before any events. See “Externally
generating events that keep time (&TIME events)” on page 184 and "Event timing" in Deploying
and Managing Apama Applications.

Communication between monitors and queries
Queries can be used with or without monitors written in EPL. The following statements can be
used to send events between queries, or between queries and monitors or vice versa:

route statement. A route statement from a query sends the event to be processed by other
query instances. This is the recommended mechanism for sending events between queries.
See also “The route statement” on page 673.

The route statement cannot be used to send events to a monitor.

send...to statement. A send...to statement can be used to send an event to all Apama
queries running on that correlator by sending it to the com.apama.queries channel or the default
channel. To send the event to a monitor, send it to a channel the monitor is listening to. See
also “The send . . . to statement” on page 673.

Note:
Queries receive events sent to the default channel, which is useful for testing.

140 Developing Apama Applications 10.11.2

3 Defining Queries

The order in which events are processed is not guaranteed for queries. See “Event ordering in
queries” on page 138.

In case the events are expected to be received by a monitor, the monitor author should make it
clear which channel they are expecting events on. The channel name can be a single name for a
givenmonitor or a name constructed from data in the event, so that different values are processed
in parallel.

If you are usingmultiple correlators, be aware that communication between queries andmonitors
normally takes place within a single correlator. However, it is possible to use engine_connect or
UniversalMessaging to connect correlators. This allows an event sent on a channel on one correlator
to be processed by a monitor subscribed to that channel on another correlator.

Unlike a query's history window, any state stored in EPL monitors, including in the listeners, is
independent in each correlator, and is not automatically moved or shared between correlators.

Developing Apama Applications 10.11.2 141

3 Defining Queries

142 Developing Apama Applications 10.11.2

3 Defining Queries

4 Defining Event Listeners

■ About event expressions and event templates ... 144

■ Specifying the on statement ... 147

■ Using a stream source template to find events of interest .. 148

■ Defining event expressions with one event template .. 148

■ Terminating and changing event listeners .. 153

■ Specifying multiple event listeners ... 155

■ Listening for events that do not match .. 156

■ Specifying completion event listeners .. 157

■ Improving performance by ignoring some fields in matching events 159

■ Defining event listeners for patterns of events .. 160

■ Specifying and/or/not logic in event listeners ... 162

■ How the correlator executes event listeners ... 168

■ Defining event listeners with temporal constraints ... 175

■ Understanding time in the correlator .. 180

■ Out of band connection notifications .. 186

Developing Apama Applications 10.11.2 143

In an EPL monitor, an on statement specifies an event expression and a listener action.

Note:
Queries do not need to set up event listeners so you cannot specify an on statement in a query.
The information about defining event listeners applies only to monitors.

When the correlator executes an on statement it creates an event listener. An event listener observes
each event processed by the context until an event or a pattern of events matches the pattern
specified in the event listener's event expression. When this happens the event listener triggers,
causing the correlator to execute the listener action. At this point, depending on the form of the
event expression, the event listener either terminates or continues listening for additionalmatching
event patterns.

An event listener analyzes the event stream until one of the following happens:

The event listener finds the pattern defined in its event expression.

The quit()method is called on the event listener to kill it.

The monitor that defines the event listener dies.

The correlator determines that the event listener can never trigger.

The correlator can support large numbers of concurrent event listeners each watching for an
individual pattern.

About event expressions and event templates
To create an event listener, you must specify an event expression. An event expression

Identifies an event or event pattern that you want to match

Contains zero or more event templates

Contains zero or more event operators

An event template specifies an event or any type and encloses in parentheses the set of, or set of
ranges of, event field values to match. An event template can specify wildcards for event fields or
can specify that certain event fields must have particular values or ranges of values.

An event expression can specify a temporal operator and zero event templates.

Following are event expressions that are each made up of one event template:

DescriptionEvent Expression

The event listener that uses this event expression is
interested in all StockTick events regardless of the
event's field values.

StockTick(*,*)

The event listener that uses this event expression is
interested in NewsItem events that have a value of ACME

NewsItem("ACME",*)

144 Developing Apama Applications 10.11.2

4 Defining Event Listeners

DescriptionEvent Expression

in their first field. Any value can be in the second
field.

The event listener that uses this event expression is
interested in ChainedResponse events whose reqId

ChainedResponse(reqId="req1")

field has a value of req1. If a ChainedResponse event
has any other fields, their values are irrelevant.

The event listener that uses this event expression is
interested in all events, regardless of their type.

any()

You can specify more than one event template in an event expression by adding event operators.
The following table describes the operators that you can use in an event expression.

OperationOperatorCategory

The event listener detects a match when it finds an event
that matches the event template specified before the

->Followed by

followed-by operator and later finds an event thatmatches
the event template that comes after the followed-by
operator.

The event listener detects a match for each event that
matches the specified event template. The event listener
does not terminate after the first match.

allRepeat matching

Logical intersection. The event listener detects a match
after it finds events that match the event templates on

andLogical operators

both sides of the and operator. The order in which the
listener detects the matching events does not matter.

Logical negation. The event listener detects a match only
if an event that matches the event template that follows
the not operator has not occurred.

not

Logical union. The event listener detects a match as soon
as it finds an event that matches one of the event
templates on either side of the or operator.

or

Logical exclusive or. The event listener detects a match
if it finds an event that matches exactly one of the event

xor

templates on either side of the xor operator. For example,
consider this event: A(1,1). This event does not trigger
the following listener because it matches the event
templates on both sides of the xor operator: on A(1,*)
xor A(*,1).

The event listener triggers at specific times or repeatedly
at a specified interval.

atTemporal operators

Developing Apama Applications 10.11.2 145

4 Defining Event Listeners

OperationOperatorCategory

Limits the amount of time that an event listener can detect
a match.

wait

The event listener can find a match only within the
specified timeframe.

within

Consider the following example:
event Test
{

float f;
}

monitor RangeExample
{

action onload()
{

on Test (f >= 9.0) and Test (f <= 10.0) processTest();
}

action processTest();
{

do something }
}

The event expression is:
Test (f >= 9.0) and Test (f <= 10.0)

This event expression specifies the and operator so the event listener must detect an event that
matches both of the event expression's event templates or two events, where onematched the first
template and another matched the second. It does not have to be a single event that matches both
event templates. The order in which the templates are matched does not matter.

Consider this event expression:
A(a = "foo") xor A(b > 9)

An event listener that defines this event expression triggers for A("foo", 9) but not A("foo", 10).
On A("foo", 10), the A templates would trigger simultaneously, so the xorwould remain false.

The correlator canmatch on up to 32 fields per event. If you specify an event template for an event
that hasmore than 32 fields, youmust ensure that the correlatormaintains indexes for the particular
fields for which you specify values that you want to match.

In other words, when the event definition was loaded into the correlator, the fields that did not
have the wildcard keyword formed the set of fields that you can match on. An event template can
try to match on only those fields. If an event template specifies any of the wildcard fields, it must
be with an asterisk.

If you try to load amonitor that defines an event template that specifiesmore than 32 fieldswithout
an asterisk or a wildcard field without an asterisk, the correlator rejects the monitor. You must
correct the template in order to load the monitor.

146 Developing Apama Applications 10.11.2

4 Defining Event Listeners

Specifying the on statement
You specify an on statement to define an event listener. The format of an on statement is as follows:
[listener identifier :=] on event_expr [coassignment] listener_action;

Syntax description

DescriptionSyntax Element

Optionally, you can specify a variable of type listener
and assign the new event listener to that variable. This

identifier

gives you a handle to the event listener — if you want
to terminate it you can call the quit()method on the
listener.

The event expression identifies the event or pattern of
events that you want to match. An event expression is

event_expr

made up of one or more event templates and zero or
more event operators.

Optionally, you can coassign the matching event to a
variable. Use the as operator to implicitly declare the

coassignment

variable in the scope of the following listener_action,
or the : assignment operator to coassign to a local or
global variable of the same event type. Coassignments
are part of event templates. Each event template can
have a coassignment, so there can be multiple
coassignments in a listener.

Note:
Coassignment is not always possible for all
operations. For more details, see “Specifying the 'or'
operator in event expressions” on page 162.

The statement or block that you want the correlator to
perform when the event listener triggers.

listener_action

Examples

In the following example, the event expression contains one event template: StockTick(*,*). The
asterisks indicate that the values of the StockTick event's two fields are not relevantwhenmatching.
When this event listener detects a StockTick event, the listener triggers and causes the correlator
to execute the processTick() listener action.
on StockTick(*,*) processTick();

Following is an example that implicitly declares the newTick variable in the scope of the
listener_action.

Developing Apama Applications 10.11.2 147

4 Defining Event Listeners

on StockTick(*,*) as newTick {
processTick(newTick);

}

Following is an example that explicitly coassigns the matching event to the newTick variable. The
newTick variable must be a StockTick event type variable. Coassignment simply assigns the event
to the variable.
on StockTick(*,*):newTick processTick();

The next example begins with the declaration of a listener variable. The statement assigns the
event listener to the l variable.
listener l := on StockTick(*,*) as newTick processTick();

Suppose that after finding a matching event, the listener action includes specification of an on
statement. For example:
listener l := on StockTick(*,*) as newTick {

on StockTick(newTick.symbol, > newTick.value) as risingTick {
processRisingTick();

}
}

The correlator creates an entirely new event listener to handle the nested on statement. This new
event listener is completely independent of the enclosing event listener. For example, the enclosing
event listener does not wait for the nested event listener to find a matching event.

Using a stream source template to find events of
interest
In addition to event listeners, EPL provides stream source templates for finding events of interest.
A stream source template is an event template prefixed with the all keyword. The result of a
stream source template is a stream.

Use streams on a continuous flow of incoming items when you want to aggregate, join to other
streams, and/or narrow the scope of thematching items based on content, arrival time, or themost
recent particular number of items.

Use an event listener for discrete events or discrete patterns of events for which you want to
independently trigger the listener action.

For information about using stream source templates, see “Working with Streams and Stream
Queries” on page 189.

Defining event expressions with one event template
This section provides examples of specifying event expressions that contain just one event template.
It is important to understand the various ways that you can specify a single event template. When
you are familiar with this, it is easier to start applying operators and combining multiple event
templates in an event expression.

148 Developing Apama Applications 10.11.2

4 Defining Event Listeners

Listening for one event
Consider the following on statement:
on StockTick() processTick();

This event listener is watching for one StockTick event. The values of the StockTick event's fields
are irrelevent, as indicated by the empty parentheses. When this event listener finds a StockTick
event, it triggers and terminates.When the event listener triggers, it causes the correlator to execute
the processTick() action.

Listening for all events of a particular type
Consider the straightforward case where an event expression consists of a single event template.
When the event listener finds an event that matches its event template, the event listener triggers,
and the correlator executes the listener action. Since the event listener has found the event it was
looking for, it terminates.

In some situations, you might want the event listener to continue watching for the same event so
that you can act on each one. You do not want the event listener to terminate after it finds one
event. In this situation, specify the all keyword before the event template, as in the following
example:
on all StockTick() processTick();

When the all operator appears before an event template, when that event template finds a match,
it continues to watch for subsequent events that also match the template.

Listening for events with particular content
The sample monitor is very simple. It just logs all StockTick events. The content of the StockTick
event is not relevant when matching. See “Example of a simple monitor” on page 37. However,
you can filter events according to their content. To alter the example so that the monitor logs only
StockTick events for a given stock, youmust specify a filter on the first field in the event template.
For example, suppose you want to log only ACME stock ticks. You need to change the following
line:
on all StockTick(*,*):newTick processTick();

to this:
on all StockTick("ACME",*):newTick processTick();

Now the event listener triggers on only StockTick events whose name field matches ACME.

To filter StockTick events based on their price, youmight specify the event template shown below.
This event template specifies that you are interested in all StockTick events whose price is 50.5
or greater.
on all StockTick(*, >=50.5):newTick processTick();

Developing Apama Applications 10.11.2 149

4 Defining Event Listeners

Using positional syntax to listen for events with particular
content
You can specify that you want to listen for StockTick events that have a particular name and a
particular price. In the on statement below, the event listener is looking for StockTick events in
which the name is ACME and the price is 50.5 or less.
on all StockTick("ACME", <=50.5) as newTick processTick();

When you specify this syntax, called positional syntax, the event template must define a value (or
a wildcard) to match against for every field of that event's type. You must specify these values in
the same order as the fields in the event type definition. Consider the following event type:
event MobileUser {

integer userID;
location position;
string hairColour;
string starsign;
integer gender;
integer incomeBracket;
string preferredHairColour;
string preferredStarsign;
integer preferredGender;

}

Following is an event listener definition for this event type:
on MobileUser(*,*, "red", "Capricorn", *, *, *, *, 1) some_action();

Using name/value syntax to listen for events with particular
content
Specification of every field in an event can get unwieldy when you are working with event types
with a large number of fields and you are specifying values for only a few of them. In this case,
you can use the name/value syntax inwhich you specify only the fields of interest. In the name/value
syntax, it is as if you had specified a wildcard (*) for each field for which you do not specify a
value. For example:
on MobileUser(hairColour="red", starsign="Capricorn",

preferredGender=1) some_action();

The table below shows equivalent event expressions that demonstrate how to specify each syntax.
The table uses these event types:
event A {

integer a;
string b;

}

event B {
integer a;

}

150 Developing Apama Applications 10.11.2

4 Defining Event Listeners

event C {
integer a;
integer b;
integer c;

}

EquivalentName/Value SyntaxPositional SyntaxComparison Criterion

on A(a=3,b="string")on A(3,"string")Equality

on A(b="string",a=3)on A(=3,="string")

on B(a>3)on B(>3)Relational comparisons

on B(a in [2:3])on B([2:3])Ranges

on C(b=4)on C(*,4,*)Wildcards

on C(a=*,b=4,c=*)on C(*,*,*)

on C()

For details about the operators and expressions that you can specify in event templates, see
“Expressions” on page 683.

It is possible to mix the two syntax styles as long as you specify all positional fields before named
fields. For example:

Correct event template: on D(3,>4,i in [2:4])

Incorrect event template: on D(k=9,"error")

Listening for events of different types
A monitor is not limited to listening for events of only one type. A single monitor can listen for
any number of event types. The following sample monitor uses the StockTick event type and the
StockChoice event type, which specifies a stock name.When the event listener finds a StockChoice
event, a second event listener then looks for only stocks that match the name in the StockChoice
event.
// Definition of a type of event that the correlator will receive.
// These events represent stock ticks from a market data feed.
event StockTick {

string name;
float price;

}

// Definition of a type of event that describes the stock to process.
// These events come from a second live data feed.
event StockChoice {

string name;
}
// The following simple monitor listens for two different event types.

monitor SimpleShareSearch {

Developing Apama Applications 10.11.2 151

4 Defining Event Listeners

// A global variable to store the matching StockTick event:
StockTick newTick;

// A global variable to store the StockChoice event:
StockChoice currentStock;

// Wait for a StockChoice event and use its name field to
// filter for StockTick events.
action onload() {

on StockChoice(*):currentStock {
on all StockTick(currentStock.name, *):newTick processTick();

}
}

action processTick() {
log "StockTick event received" +

" name = " + newTick.name +
" Price = " + newTick.price.toString() at INFO;

}
}

The differences between the sample in “Example of a simplemonitor” on page 37 and thismonitor
are the following:

Definition of an additional event type (StockChoice)

Definition of a new global variable (currentStock)

A more complex onload() action

While the first two changes are straightforward, the new onload() action introduces newbehavior.
The first line in the onload() action is similar to that in the earlier example. In the new example,
themonitor creates an event listener for a StockChoice event. The content of the StockChoice event
is not relevant when matching. When the event listener finds an event of this type, it stores the
value of the StockChoicename field in the currentStock variable and triggers the creation of a second
event listener.

In this example, the first event listener defines the action of creating the second event listener
in-line. The first event listener looks for a StockChoice event. The second event listener looks for
all StockTick events whose name field corresponds to the value of currentStock.name.

Listening for events of all types
You can specify a listener which listens for all events types as shown below:
on any() as anyVar {

print "Event received : " + anyVar.toString();
}

In the above listener, the on any() event templatewill match against all events in the corresponding
context, regardless of their type.

You can provide an optional typeName to specify which type you are listening for. This must name
a routable type.

152 Developing Apama Applications 10.11.2

4 Defining Event Listeners

You can provide an optional values. This must be a dictionary<string, any>which names
indexable fields. The listener will filter to only match events where all of the specified fields are
equal. If you specify values, you must also specify the typeName. For example:
dictionary<string, any> values := {"quantity", 100};
on any(typeName="Event", values = values)

The above definition is equivalent to:
on Event(quantity=100)

Example:
event A{}
event B{}

on all any() as anyVar {
print "Event received : " + anyVar.toString();

}

route A(); //listener fires
route B(); //listener fires

You can use all event expression operators (all, and, not, -> and so on) with the any listener.

Note:
Due to unpredictable results, it is recommended that you do not use any() listeners in onload
actions. Instead, do so in response to an event (a start event or, more likely, a configuration
event) once everything has been injected.

Terminating and changing event listeners
After the correlator creates an event listener, you cannot change it. Instead of changing an event
listener, you terminate it and create a new one.

The example in “Listening for events of different types” on page 151 looks for only one StockChoice
event. The monitor would be more useful if it continued looking for subsequent StockChoice
events, and on every new StockChoice event it changed the second event listener to look for stock
ticks for the new company.

When the correlator creates an event listener, it copies from the action the value of any local
variables. However, if the variable is of a reference type, changes to the object referred to by the
value are seen by other listeners.

The steps and example below shows how to terminate an event listener with the quit() operation.
See also, “Specifying and not logic to terminate event listeners” on page 165.

When you want to change an event listener, do the following:

1. Obtain a handle to the event listener you want to change.

2. Terminate that event listener with the quit() operation.

Developing Apama Applications 10.11.2 153

4 Defining Event Listeners

3. Create a new event listener to take its place.

The following sample monitor does just this.
// Definition of a type of event that the correlator will receive.
// These events represent stock ticks from a market data feed.
event StockTick {

string name;
float price;

}

// Definition of a type of event that describes the stock to process.
// These events come from a second live data feed.
event StockChoice {

string name;
}

// The following simple monitor listens for two different event types.

monitor SimpleShareSearch {
// A global variable to store the matching StockTick event:
StockTick newTick;

// A global variable to store the StockChoice event:
StockChoice currentStock;

// A handle to the second listener:
listener l;

// Record the latest StockChoice event and use its name field
// to filter the StockTick events.
action onload() {

on all StockChoice(*):currentStock {
l.quit();
l := on all StockTick(currentStock.name, *):newTick processTick();

}
}

action processTick() {
log "StockTick event received" +

" name = " + newTick.name +
" Price = " + newTick.price.toString() at INFO;

}
}

The differences between the example in “Listening for events of different types” on page 151 and
this example are as follows:

The monitor in this example declares an additional global variable, l, whose type is listener.

The initial on statement now specifies the all operator. After this event listener finds a
StockChoice event, it watches for the next StockChoice event.

The onload() action specifies a new listener action. Each time the first event listener finds a
StockChoice event, the listener action:

154 Developing Apama Applications 10.11.2

4 Defining Event Listeners

Terminates the second event listener by calling the l.quit()method. Of course, upon
finding the first StockChoice event there is no second event listener to terminate. This is
not a problem as in this case the l.quit()method does not do anything.

Creates a new event listener to seek StockTick events for the company named in the
StockChoice event just detected.

Stores a handle to the new event listener in the l global variable. The first event listener
uses this handle when it needs to terminate the second event listener.

Specifying multiple event listeners
When the correlator encounters an on statement, it creates an event listener to watch for events
that match the event expression specified in the on statement. When the event listener finds a
matching event, the event listener triggers and the correlator executes the listener action. Ordinarily
the event listener then dies. That is, the event listener processes only a single matching event.

When you require multiple matching events specify the all operator before the template for the
event for which you want multiple matches. This prevents termination of the event listener upon
an event match.

Another way tomatchmultiple events is to define two (ormore) event listeners for the same event
type. If you specify two on statements that require the same event, they both trigger when they
find that event. The order in which they trigger is not defined. For example:
on all StockTick(*,*) as newTick1 { print newTick1.name; }
on all StockTick(*,*) as newTick2 { print newTick2.name; }

When the correlator receives a single StockTick event, the correlator populates both the newTick1
variable and the newTick2 variable with the event value. The correlator then prints the value of
the name field in each variable. This means that an event of the format StockTick("ACME", 50.10)
causes this output:
ACME
ACME

Adding further on statements to those abovewould increase the number of times the stringACME
is printed. This is true regardless of where (that is, in which action) the on statements are defined.
For example:
action action1() {

on all StockChoice("ACME") as currentStock processTick();
}
action action2() {

on all StockChoice("ACME") as currentStock processTick();
}

If both the action1() and action2() actions have been invoked, bothwill invoke the processTick()
action when an "ACME" StockChoice event is received.

Now consider the following example:
on all StockTick("ACME", *) action1();
on all StockTick(*,50.0) action1();

Developing Apama Applications 10.11.2 155

4 Defining Event Listeners

The event StockTick("ACME", 50.0)will trigger both event listeners. It is not possible to determine
which one will execute the action first but the actions will be executed atomically. That is, the
correlatorwill start executing action1(), finish it, and only thenwill the correlator execute action1()
again. The correlator processes only one listener action at a time.

See “Spawning monitor instances” on page 39 for another way to have multiple event listeners.

Listening for events that do not match
Sometimes it is useful to catch events that do not match other event templates. To do this, specify
the unmatched keyword in an event template. An unmatched event templatematches against events
for which both of the following are true:

Except for completed and unmatched event templates, the event does not cause any other event
expression in the same context as the unmatched event template to match. For information
about completed event templates, see the next topic.

The event matches the unmatched event template.

The correlator processes an event as follows:

1. The correlator tests the event against all normal event templates. Normal event templates do
not specify the completed or unmatched keyword.

2. If the correlator does not find amatch, the correlator tests the event against all event templates
that specify the unmatched keyword. If the correlator finds one or more matches, the matching
event templates now evaluate to true. That is, if there are multiple unmatched event templates
that match the event, they all evaluate to true.

The scope of an unmatched event template is the context that contains it. Suppose an event goes to
two contexts. In one context, there is a matching event listener and in the other context there is a
match against an unmatched event template. Both matches trigger the listener actions.

Specify the unmatched keyword with care. Be sure to communicate with other developers. If your
code relies on an unmatched event template, and someone else injects a monitor that happens to
match some events that you expected to match your unmatched event template, you will not get
the results you expect. The firing of an event-specific unmatched listener is suppressed if an on
any() listener matches the event (not just a type-specific listener).

A typical use of the unmatched keyword is to spawn a monitor instance to process a particular
subset of events. For example:
event Tick{ string stock; ... }
monitor TickProcessor {

Tick tick;
...
action onload() {

on all unmatched Tick():tick spawn processTick();
}
action processTick() {

on all Tick(stock=tick.stock) ...;
}
...

156 Developing Apama Applications 10.11.2

4 Defining Event Listeners

}

You can use the unmatched keyword with an any() listener as shown below:
on unmatched any() {

print "An unmatched any() listener triggered!";
}

An unmatched any() event template will match against all unmatched events (as defined above)
in the context, regardless of the event's type.

See also:

“Example using unmatched and completed” on page 158.

“Writing echo monitors for debugging” on page 337

Specifying completion event listeners
In some situations, youwant to ensure that the correlator completes all work related to a particular
event before your application performs some other work. In your event template, specify the
completed keyword to accomplish this. For example:
on all completed A(f < 10.0) {}

Suppose an A event whose f field value is less than 10 arrives in the correlator. What happens is
as follows:

1. If there are normal or unmatched event listeners whose event expression matches this A event,
those event listeners trigger.

2. The correlator executes listener actions and then processes any routed events that result from
those actions, and any routed events that result from processing the routed events, and so on
until all routed events have been processed.

3. The completed event listener triggers.

A common situation in which the completed keyword is useful is when a piece of data comes into
the system and that piece of data causes a cascade of event listeners to trigger. Each listener action
updates some data. When all listener actions have been executed, you want to take a survey of
the new state of things and do something in response.

For example, consider a pricing engine made up of many individual pricing engines. When a new
piece of market data arrives all pricing engines update their prices and then the controller uses
somemetric to pick the best price, which it publishes. The controller should publish the new price
only after all individual engines have updated their output. The controller achieves this by listening
for all the updates but only publishing when the market data event causes the completed event
listener to trigger. The EPL for this scenario follows.
// Request/return best price from *all* markets
event RequestSmartBestPrice{ string stock; integer id; }
event BestSmartPriceReply{ integer id; float price; }

Developing Apama Applications 10.11.2 157

4 Defining Event Listeners

//Request/return best price from individual market(s)
event RequestBestPrice{ string stock; integer id; }
event BestPriceReply{ integer id; float price; }

// Simple example: Assume 'best' is 'lowest' and no account
// is taken of 'side'.
monitor SmartPriceGetter {

RequestSmartBestPrice request;
sequence< float > prices;

action onload() {
on all RequestSmartBestPrice(*,*):request spawn getPrices();

}

action getPrices() {
on all BestPriceReply(request.id, *) as reply

prices.append(reply.price);
on completed RequestSmartBestPrice(request.stock, request.id) {

prices.sort();
route BestSmartPriceReply(request.id, prices[0]);
die;

}
route RequestBestPrice(request.stock, request.id);

}
}

You can use the completed keyword with an any() listener as shown below:
on completed any() {

print "A completed any() listener triggered!";
}

A completed any() event template will match against all events in the context once they are
processed, regardless of their type.

Example using unmatched and completed
The following example shows the use of both the unmatched and completed keywords. After the
example, there is a discussion of the processing order.
on all A("foo", < 10) as a {

print "Match: " + a.toString();
a.count := a.count+1; // count is second field of A
route A;

}

on all completed A("foo", < 10) as a {
print "Completed: " + a.toString();

}

on all unmatched A(*,*)as a {
print "Unmatched: " + a.toString();

}

The incoming events are as follows:
A("foo", 8);

158 Developing Apama Applications 10.11.2

4 Defining Event Listeners

A("bar", 7);

The output is as follows:
Match: A("foo", 8)
Match: A("foo", 9)
Unmatched: A("foo", 10)
Completed: A("foo", 9)
Completed: A("foo", 8)
Unmatched: A("bar", 7)

A("foo", 8) is the first item on the queue. The correlator processes all matches for this event except
for any matching on completed expressions. The correlator processes those after it has processed
all routed events originating from A("foo", 8), which includes the processing of all routed events
produced from all routed events produced from A("foo", 8), and so on.

Correlator processing goes like this:

1. Processing of A("foo", 8) routes A("foo", 9) to the front of the queue.

2. Processing of A("foo", 9) routes A("foo", 10) to the front of the queue.

3. Processing of A("foo", 10) finds a match with the unmatched event expression.

4. All routed events that resulted from A("foo", 9) have now been processed. The completed
A("foo", 9) event template now matches so the correlator executes its listener action.

5. All routed events that resulted from A("foo", 8) have now been processed. The completed
A("foo", 8) event template now matches so the correlator executes its listener action.

6. Processing of A("bar", 7)matches the unmatched A(*,*) event template and the correlator
executes its listener action.

For another example of the use of unmatched and completed, see “Writing echo monitors for
debugging” on page 337.

Improving performance by ignoring some fields in
matching events
In applications where a particular field of an event type will never participate in thematch criteria
for that event type, the performance of Apama can be improved (at times drastically) by marking
that field as a wildcard field in the event type definition.

For example, consider a version of the StockTick event type that has four fields: name, volume,
price, and source. If in our application volume and source are never going to be used for matching
onwithin event templates, that is, theywill always bemarked as * (wildcard), they could be tagged
so explicitly in the event type:
event StockTick {

string name;
wildcard float volume;
float price;
wildcard string source;

}

Developing Apama Applications 10.11.2 159

4 Defining Event Listeners

The wildcard keyword tells Apama not to include this field in its internal indexing, as it will never
be required in a match operation. This not only saves memory, but can significantly improve
performance, particularlywhen there aremany such fieldswhich never occur inmatch conditions.
Note that removing fields from an event type altogether is evenmore efficient than using wildcard,
but this is not always possible. For example, the field might not be relevant in match conditions
but it might be input to calculations within an action block, or it might need to be included in an
event specified in a send...to statement.

When a field has been declared as a wildcard then any subsequent attempt to define a match
condition using that fieldwill result in a parser error, and the offendingmonitorwill not be injected.

Therefore, given the above event type definition, the following will result in a parser error:
action someAction() {

on StockTick("ACME", >125.0,*,"NASDAQ") doSomething();
}

while the following is correct:
action someAction() {

on StockTick("ACME", *, 50.0, *) doSomething();
}

Defining event listeners for patterns of events
One way to search for an event pattern in EPL is to define an event listener to search for the first
event, and then, in that listener action, define a second event listener to search for the second event
in the pattern, and so on.

However, the on statement takes an event expression, and this can bemore than just a single event
template.

Consider the following very simple example: locate a news event aboutACME followed by a stock
price update for ACME. With the EPL explored so far, one would write this as:
event StockTick {

string name;
float price;

}

event NewsItem {
string subject;
string newsHeading;

}

monitor NewsSharePriceSequence_ACME {
// Look for a news item about ACME, if successful execute the
// findStockChange() action
//
action onload() {

on NewsItem("ACME",*) findStockChange();
}

// Look for a StockTick about ACME, if successful execute the
// notifyUser() action

160 Developing Apama Applications 10.11.2

4 Defining Event Listeners

//
action findStockChange() {

on StockTick("ACME",*) notifyUser();
}

// Print a message, event sequence detected
//
action notifyUser() {

log "Event sequence detected.";
}

}

If, as in this example, you do not intend to express any custom actions after finding an event other
than searching for another event, the whole pattern of events to look for can be encoded in a single
event expression within a single on statement.

An event expression can define a pattern of events to match against. Each event of interest is
represented by its own event template. You can apply several constraints on the temporal order
that the events have to occur in to match the event expression.

In the more declarative syntax of an event expression, the above monitor would be written as
follows:
event StockTick {

string name;
float price;

}

event NewsItem {
string subject;
string newsHeading;

}

monitor NewsSharePriceSequence_ACME {
// Look for a NewsItem followed by a StockTick
action onload() {

on NewsItem("ACME",*) -> StockTick("ACME",*)
notifyUser();

}

// Print a message, event sequence detected
//
action notifyUser() {

log "Event sequence detected.";
}

}

Here, instead of just one event template, the on keyword is now followed by an event expression
that contains two event templates.

The primary operator in event expressions is ->. This is known as the followed-by operator. It
allows you to express a pattern of events to match against in a single on statement, with a single
action to be executed at the end once the whole pattern is encountered.

In EPL, an event pattern does not imply that the events have to occur right after each other, or
that no other events are allowed to occur in the meantime.

Developing Apama Applications 10.11.2 161

4 Defining Event Listeners

Let A, B, C and D represent event templates, and A', B', C' and D' be individual events that match
those templates, respectively. If a monitor is written to seek (A > B), the event feed {A',C',B',D'}
would result in a match once the B' is received by Apama.

Followed-by operators can be chained to express longer patterns. Therefore, one could write:
on A -> B -> C -> D executeAction();

Notes:

An event template is in fact the simplest form of an event expression. All event expression
operators, including ->, actually take event expressions as operands. So in the above
representation, A, B, C, D could in fact be entire nested event expressions rather than simple
event templates.

It is useful to think of event expressions as being Boolean expressions. Each clause in an event
expression can be true or false, and the whole event expression must evaluate to true before
the event listener triggers and the action is executed.

Consider the above event expression: A -> B -> C -> D

The expression starts off as false. When an event that satisfies the A event template occurs,
the A clause becomes true. Once B is satisfied, A -> B becomes true in turn, and evaluation
progresses in a similar manner until eventually all of A -> B -> C > D evaluates to true. Only
then does the event listener trigger and cause execution of the listener action. Of course, this
event expression might never become true in its entirety (as the events required might never
occur) since no time constraint (see “Defining event listeners with temporal constraints” on
page 175) has been applied to any part of the event expression.

Specifying and/or/not logic in event listeners
When the correlator creates an event listener each event template in the event expression is initially
false. For an event listener to trigger on an event pattern, the event expression defining what to
match against must evaluate to true. Consequently, in an event expression, you can specify logical
operators.

Specifying the 'or' operator in event expressions
The or operator lets you specify event expressions where a variety of event patterns could lead to
a successfulmatch. It effectively evaluates two event templates (or entire nested event expressions)
simultaneously and returns truewhen either of them becomes true.

Example:
on A() or B() executeAction();

This means that either A or B need to be detected to match. That is, the occurrence of one of the
operand expressions (an A or a B) is enough for the event listener to trigger.

A coassigned variable can only be used if the variable is initialized in all circumstances that could
cause the listener to fire. The following are both valid and invalid examples for coassignment.

162 Developing Apama Applications 10.11.2

4 Defining Event Listeners

Example 1 - valid

Only one of these A events will have been matched when triggered, but both are coassigned to
variable a, so you can use a in the action.
on A(property = value1) as a or A(property = value2) as a {

executeAction(a);
}

Example 2 - valid

Only one of a or bwill be coassigned to. However, they are global variables, so if a is coassigned
to, you will have the default initialized value of b or the old value of b from a previous triggering.
monitor Monitor {

A a;
B b;
action foo() {

on all A():a or all B():b {
executeAction(a, b);

}
}

}

Example 3 - valid

Only one of a or bwill be coassigned to when triggered. However, they already have values
assigned, so if a is coassigned to, you will have a new B in b.
monitor Monitor {

action foo() {
A a := new A;
B b := new B;
on all A():a or all B():b {

executeAction(a, b);
}

}
}

Example 4 - invalid

Only one of a or bwill be coassigned to when triggered. Neither of them already have values, so
you cannot assume that either a or b can be used.
monitor Monitor {

action foo() {
A a;
B b;
on all A():a or all B():b {

executeAction(a, b);
}

}
}

Developing Apama Applications 10.11.2 163

4 Defining Event Listeners

Example 5 - invalid

This is basically the same as example 4.
on A() as a or B() as b {

executeAction(a, b);
}

Specifying the 'and' operator in event expressions
The and operator specifies an event pattern that might occur in any temporal order. It evaluates
two event templates (or nested event expressions) simultaneously but only returns truewhen
they are both true.
on A() and B() executeAction();

This will seek “an ”A“ followed by a ”B or “a ”B“ followed by an ”A. Both are valid matching
patterns, and the event listener will seek both concurrently. However, the first to occur will
terminate all monitoring and cause the event listener to trigger.

Example event expressions using 'and/or' logic in event
listeners
The following example event expressions indicate a few patterns that can be expressed by using
and/or logic in event listeners.

DescriptionEvent Expression

Match on an A followed by either a B or a C.A -> (B or C)

Match on either the pattern A followed by a B, or just a
C on its own.

(A -> B) or C

Find an A first, and then seek for either the pattern B
followed by a C or C followed by a D. The latter patterns

A -> ((B -> C) or (C -> D))

will be looked for concurrently, but the monitor will
match upon the first complete pattern that occurs. This
is because the or operator treats its operands atomically,
that is, in this case it is looking for the patterns
themselves rather than their constituent events.

Find the pattern A followed by a B (that is, A -> B)
followed by the pattern C -> D, or else the pattern C ->

(A -> B) and (C -> D)

D followed by the pattern A -> B. The and operator treats
its operands atomically. That is, in this case it is looking
for the patterns themselves and the order of their
occurrence, rather than their constituent events. It does
not matter when a pattern starts but it occurs when the
last event in it is matched. Therefore {A',C',B',D'}

164 Developing Apama Applications 10.11.2

4 Defining Event Listeners

DescriptionEvent Expression

would match the specification, because it contains an A
-> B followed by a C -> D. In fact, the specification
wouldmatch against either of the following patterns of
event instances; {A',C',B',D'}, {C',A',B',D'},
{A',B',C',D'}, {C',A',D',B'}, {A',C',D',B'} and
{C',D',A',B'}

Specifying the 'not' operator in event expressions
The not operator is unary and acts to invert the truth value of the event expression it is applied
to.
on ((A() -> B()) and not C()) executeAction();

thereforemeans that the event listenerwill trigger executeAction only if it encounters an A followed
by a Bwithout a C occurring at any time before the B is encountered.

The not operator can cause an event expression to reach a state where it can never evaluate to
true. That is, it becomes permanently false.

Consider the above event listener event pattern: on (A() -> B()) and not C()

The event listener starts by seeking both A -> B and not C concurrently. If an event matching C is
received before one matching B, the C clause evaluates to true, and hence not C becomes false.
This means that (A -> B) and not C can never evaluate to true, and hence this event listener will
never trigger. The correlator terminates these zombie event listeners periodically.

It is possible to specify the not operator in an event expression in such a way that the expression
always evaluates to true immediately. Since this triggers the specified action without any events
occurring, you want to avoid doing this. See “Avoiding event listeners that trigger upon
instantiation” on page 169.

Specifying 'and not' logic to terminate event listeners
A typical situation is that you want to listen for a pattern only until a particular condition occurs.
When the condition occurs you want to terminate the event listener. In pseudocode, you want to
specify something like this:
on all event_expression until stop_condition

To define an event listener that behaves this way, you specify and not:

on all event_expression and not stop_condition

The following example listens for a price increase for a particular stock while the market is open.
event Price {

string stock;
float price;

Developing Apama Applications 10.11.2 165

4 Defining Event Listeners

}
on all Price("IBM",>targetPrice) as p and not MarketClosed() {
...do something}

When you inject amonitor that contains this code, the correlator sets up an event template to listen
for Price events and another event template to listen for MarketClosed events. As long as the
correlator does not receive a MarketClosed event, not MarketClosed() evaluates to true. While not
MarketClosed() evaluates to true, each time the correlator receives a Price event for IBM stock at
a price that is greater than targetPrice, this event expression evaluates to true and triggers its
listener action. When the correlator receives a MarketClosed event, MarketClosed() evaluates to
true and so not MarketClosed() evaluates to false. At that point, the event expression can no
longer evaluate to true. When the correlator recognizes an event listener that can never trigger,
it terminates it. In other words, after the market is closed the event listener terminates.

Typically, the stop condition is a condition that applies tomultiple entities. In the previous example,
the condition applies to only IBM stock, but it could easily be rewritten to apply to all stocks.

Pausing event listeners

You can also specify and notwhen you want to listen for a pattern, pause when a particular
condition occurs, and resume listening for that patternwhen some other condition occurs. Consider
the example that terminates the event listener after the market closes. Suppose instead that you
want to listen for increases in stock prices only when there is no auction. When the correlator
receives an InAuction event, youwant to pause the event listener andwhen the correlator receives
an AuctionClosed event you want the event listener to become active again. To do this, you can
write something like the following:
action initialize() {

on EndAuction() and not BeginAuction() notInAuctionLogic();
on BeginAuction() and not EndAuction() inAuctionLogic();
route RequestAuctionPhase();

}

action inAuctionLogic() {
on EndAuction() notInAuctionLogic();

}

action notInAuctionLogic() {
on all Price("IBM",>targetPrice) as p and not BeginAuction()

sellStock();
on BeginAuction() inAuctionLogic();

}

The initialize() action sets up two event listeners that determine whether to start with the
inAuctionLogic() action or the notInAuctionLogic() action. The response to the routed
RequestAuctionPhase event is an EndAuction event or a BeginAuction event. As soon as one of these
events arrive, both event listeners terminate. For example, if an EndAuction event arrives, the first
event listener terminates because its EndAuction() event template evaluates to true and its not
BeginAuction() event template also evaluates to true. The second event listener terminates because
its not EndAuction() event template evaluates to false and so the event expression can never
evaluate to true.

166 Developing Apama Applications 10.11.2

4 Defining Event Listeners

Choosing which action to execute

Another situation in which and not logic can help terminate event listeners is when you want to
specify a choice of one or more actions and terminate the event listeners after one is chosen. An
example of this appears below. This is the CEP equivalent of a case statement.
on Pattern_1() and not PatternMatched() processCase1();
on Pattern_2() and not PatternMatched() processCase2();
on Pattern_3() and not PatternMatched() processCase3();
on Pattern_1() or Pattern_2() or Pattern_3()
{

route PatternMatched();
}

When you inject a monitor that contains this type of code the correlator immediately sets up
multiple event listeners. For the example in “Pausing event listeners” on page 166, the event listeners
would be watching for these events:

Pattern_1

PatternMatched

Pattern_2

Pattern_3

Initially, all and not event templates evaluate to true. Suppose Pattern_2 arrives. This causes these
two event listeners to trigger:
on Pattern_2() and not PatternMatched() processCase2();
on Pattern_1() or Pattern_2() or Pattern_3()

It is unknown which event listener action the correlator executes first, but the order does not
matter. The correlator does all of the following:

The correlator executes the processCase2() action.

The correlator terminates the event listener that specifies processCase2() because it has found
its match and it does not specify all.

The correlator routes a PatternMatched event to the front of the context's input queue.

When the correlator processes the PatternMatched() event, the two event templates that are still
watching for and not PatternMatched become false. Consequently, those event listeners will
never trigger and the correlator terminates them.

Following is another example of specifying and not to make a choice:
on Ack() and not Nack()
{

processAck();
}
on Nack() and not Ack()
{

processNack();
}

Developing Apama Applications 10.11.2 167

4 Defining Event Listeners

Specifying 'and not' logic to detect when events are missing

Using and not logic with a time-based listener is useful for detecting the absence of an event that
is expected.

For example, consider an application that monitors the processing of customer orders. The
application listens for OrderCreate events, which indicate that a customer has placed an order.
After an OrderCreate event is found, the application listens for an OrderStepComplete event that
has an instanceid value that matches the instanceid value in the OrderCreate event and that has
a step field value of Order Shipped. If the application does not find amatching OrderStepComplete
event within an hour (3600 seconds), the listener triggers and the application generates an alert
to indicate that the order was not shipped.

Following is code that shows the listener definition.
on all OrderCreate() as oc {

on wait(3600.00) and not OrderStepComplete(
instanceid=oc.instanceid,step="Order Shipped") as os {
// Raise an alert.

}
}

This listener triggers when the event templates on both sides of the and operator evaluate to true.
The event template before and evaluates to true after an hour has elapsed. The event template
after and evaluates to true in the absence of amatching OrderStepComplete event. If the application
finds amatching OrderStepComplete eventwithin an hour then the second event template evaluates
to false and the correlator terminates the listener because it can never trigger.

In the following example, when a FileReceived event is found, the application starts to listen for
a FileProcessed event. If a FileProcessed event is not found within 30 seconds of receiving the
FileReceived event, the application generates an alert.
monitor SimpleFileSearch {

action onload() {
on all FileReceived() as f {

on wait(30.0) and not FileProcessed(id=f.id) {
// Send alert that file was not processed.
}

on FileProcessed(id=f.id) within(30.0) {
// Send confirmation that the file was processed.
}

}
}

}

How the correlator executes event listeners
An understanding of how the correlator executes event listeners can help you correctly define
event listeners. The topics below provide the needed background.

168 Developing Apama Applications 10.11.2

4 Defining Event Listeners

How the correlator evaluates event expressions
When the correlator processes an injection request, it executes the monitor's onload() statement,
which typically defines an event listener. To understand how the correlator evaluates the event
expression in the event listener, consider the following on statement:
on A()->B() and C()->D() processOrder();

The event expression consists of four templates and three operators. The operators are:
->
and
->

The correlator does not evaluate the right operand of a followed by operator until after its left
operand has evaluated to true. Hence, B and D are not evaluated initially butwill only be evaluated
after A and C, respectively, have become true. Initially, the correlator evaluates the A and C event
templates.

Suppose a C event arrives first. The C part of the event expression is now true and the correlator
now evaluates the A and D event templates. Now suppose an A event arrives next. The correlator
evaluates the B and D event templates. When a B event arrives the first term, A()->B(), of the event
expression becomes true. Finally a D event arrives and the second term, B()->D() becomes true
and so the expression as a whole evaluates to true. The event listener triggers.

As mentioned before, when the correlator instantiates an event listener each event template in the
event listener is initially false. An event template changes to truewhen the correlator finds a
matching event. In a given context, the correlator cannot find a matching event while it is setting
up an event listener because the correlator processes only one thing at a time in each context.
Everything happens in order and no two things happen simultaneously in a given context.

Of course, events are always coming into the correlator. These events go on the input queue of
each public context to wait their turn for processing. Sowhile amatching event might arrive while
the correlator is setting up an event listener, as far as correlator processing is concerned, the event
arrives later. See “Understanding time in the correlator” on page 180.

Avoiding event listeners that trigger upon instantiation
Because all event templates are initially false, it is important to think carefully before specifying
not in an event expression. It is easy to inadvertently specify the not operator in such a way that
the expression evaluates to true immediately upon instantiation. Since this triggers the specified
action without any events occurring, it is unlikely to be what you intended and you want to avoid
doing this. Consider the following example:
on (A() -> B()) or not C() myAction();

Assuming that A, B and C represent event templates, the value of each starts as being false. This
means that not C is immediately true, and hence thewhole expression is immediately true, which
triggers the specified action. If any of A, B or C is a nested event expression the same logic applies
for its evaluation. Typically, the not operator is used in conjunction with the and operator. See
“Choosing which action to execute” on page 167.

Developing Apama Applications 10.11.2 169

4 Defining Event Listeners

When an event listener triggers the correlator sends a request to the front of the context's input
queue to execute the event listener action. For example:
route D();
on not E() {

print "not E";
}
route F();

The route keyword sends the specified event to the front of the context's input queue. The correlator
processes this code in the following order:

1. The correlator processes event D.

2. The correlator prints "not E".

3. The correlator processes event F.

When the correlator terminates event listeners
The correlator terminates event listeners in the following situations:

The event listener's event expression evaluates to true, and does not specify the all keyword.
The correlator executes the specified action. Since the single defined match was found, the
correlator terminates the event listener.

The correlator recognizes that an event listener's event expression can never evaluate to true.
For example:

on (A() -> B()) and not C()

The event listener starts by seeking both A() -> B() and not C() concurrently. If an event
matching C is received before one matching B, the C clause evaluates to true, and hence not C
becomes false. This means that (A() -> B()) and not C() can never evaluate to true, and
hence this event listener will never trigger its action. The correlator terminates these zombie
event listeners periodically.

You obtain a handle to an event listener and call the quit()method on that event listener. See
“Terminating and changing event listeners” on page 153.

How the correlator evaluates event listeners for a series of
events
Suppose there are seven event templates defined, which are represented as A, B, C, D, E, F and G.
Now, consider a series of incoming events, where Xn indicates an event instance that matches the
event template X. Likewise, Xn+1 indicates another event instance thatmatches against X, but which
need not necessarily be identical to Xn.

Consider the following pattern of incoming events:
C1 A1 F1 A2 C2 B1 D1 E1 B2 A3 G1 B3

170 Developing Apama Applications 10.11.2

4 Defining Event Listeners

Given the above event pattern, what should the event expression A() -> B()match upon?

In theory the combinations of events that correspond to “an ”A“ followed by a ”B are {A1, B1}, {A1,
B2}, {A1, B3}, {A2, B1}, {A2, B2}, {A2, B3} and {A3, B3}. In practice it is unlikely that youwant your event
listener to match seven times on the above example pattern, and it is uncommon for all the
combinations to be useful.

In fact, within EPL, on A() -> B()will only match on the first instance that matched the template.
Given the above event pattern the event listenerwill trigger only on {A1, B1}, execute the associated
action and then terminate.

Evaluating event listeners for all A-events followed by B-events
You might want to alter the behavior described in the previous topic, and have the event listener
match on more of the combinations. To do this, specify the all operator in the event expression.

If the event listener's specification was rewritten to read:
on all A() -> B() success();

the event listener would match on every A and the first B that follows it.

The way this works is that upon encountering an A, the correlator creates a second event listener
to seek the next A. Both event listeners would be active concurrently; one looking for a B to
successfully match the pattern specified, the other initially looking for an A. If more As are
encountered the procedure is repeated; this behavior continues until either the monitor or the
event listener are explicitly killed.

Therefore on all A() -> B()would return {A1, B1}, {A2, B1} and {A3, B3}.

Note that all is a unary operator and has higher precedence than ->, or and and. Therefore
on all A() -> B()

is the same as both of the following:
on (all A()) -> B()
on ((all A()) -> B())

The following table illustrates how the execution of on all A() -> B() proceeds over time as the
pattern of input events is processed by the correlator. The timeline is from left to right, and each
stage is labeled with a time tn, where tn+1 occurs after tn. To the left are listed the event listeners,
and next to each one (after the ?) is shown what event template that event listener is looking for
at that point in time. In the example, assuming Lwas the initial event listener, L', L'' and L''' are
other sub-event-listeners that are created as a result of the all operator.

Guide to the symbols used:

indicates the followingThis symbol

A specific point in time when a particular event is received.

Developing Apama Applications 10.11.2 171

4 Defining Event Listeners

indicates the followingThis symbol

No match was found at that time.

The listener has successfully located an event that matches its current active
template.

A listener has successfully triggered.

A new listener is going to be created.

The parent event listener denoted by on all A() -> B()will never terminate as there will always
be a sub-event-listener active that is looking for an A.

172 Developing Apama Applications 10.11.2

4 Defining Event Listeners

Evaluating event listeners for an A-event followed by all
B-events
Consider an event listener defined as follows:
on A() -> all B() success();

The monitor would now match on all the patterns consisting of the first A and each possible
following B.

For clarity this is the same as:
on (A() -> (all B())) success();

The way this works is that the correlator creates a second event listener after finding a matching
B. The second event listener watches for the next B, and so on repeatedly until the monitor is
explicitly killed.

Therefore on A() -> all B()would match {A1, B1}, {A1, B2} and {A1, B3}.

Graphically this would now look as follows:

Developing Apama Applications 10.11.2 173

4 Defining Event Listeners

The table shows the early states of L' and L'' in light color because those event listeners actually
never really went through those states themselves. However, since they were created as a clone
of another event listener, it is as though they were.

The parent event listener denoted by on (A() -> all B())will never terminate as therewill always
be a sub-event-listener looking for a B.

Evaluating event listeners for all A-events followed by all B-
events
Consider the following event listener definition:
on all A() -> all B() success();

or
on ((all A()) -> (all B())) success();

Now the monitor would match on an A and create another event listener to look for further As.
Each of these event listeners will go on to search for a B after it encounters an A. However, in this
instance all event listeners are duplicated once more after matching against a B.

The effect of this would be that on all A -> all Bwould match {A1, B1}, {A1, B2}, {A1, B3}, {A2, B1},
{A2, B2}, {A2, B3} and {A3, B3}. That is, all the possible permutations. This could cause a very large
number of sub-event-listeners to be created.

Note:
The all operator must be used with caution as it can create a very large number of
sub-event-listeners, all looking for concurrent patterns. This is particularly applicable if multiple
all operators are nested within each other. This can have an adverse impact on performance.

Now consider the example,
on all (A() -> all B()) success();

This will match the first A followed by all subsequent Bs. However, as on every match of an A
followed by B, (A() -> all B()) becomes true, then a new search for the "next" A followed by
all subsequent Bswill start. Thiswill repeat itself recursively, and eventually there could be several
concurrent sub-event-listeners that might match on the same patterns, thus causing duplicate
triggering.

Give the same event pattern as described in “Evaluating event listeners for all A-events followed
by B-events” on page 171, this would be evaluated as follows:

174 Developing Apama Applications 10.11.2

4 Defining Event Listeners

Thusmatching against {A1, B1}, {A1, B2}, {A1, B3}, and twice against {A3, B3}. Notice how the number
of active event listeners is progressively increasing, until after t12 there would actually be six
active event listeners, three looking for a B and three looking for an A.

Defining event listeners with temporal constraints
So far this section has shown how to use event expressions to define interesting patterns of events
to look for, where the events of interest depend not only on their type and content, but also on
their temporal relationship to (whether they occur before or after) other events.

Developing Apama Applications 10.11.2 175

4 Defining Event Listeners

Being able to define temporal relationships can be useful, but typically it also needs to be constrained
over some temporal interval.

Listening for event patterns within a set time
Consider this earlier example:
event StockTick {

string name;
float price;

}

event NewsItem {
string subject;
string newsHeading;

}

monitor NewsSharePriceSequence_ACME {
// Look for a NewsItem followed by a StockTick
//
action onload() {

on NewsItem("ACME",*) -> StockTick("ACME",*)
notifyUser();

}

// Print a message, event sequence detected
//
action notifyUser() {

log "Event sequence detected.";
}

}

This will look for the event pattern of a news item about a company followed by a stock price tick
about that company. Once improved this could be used to detect the beginning of a rise (or fall)
in the value of shares of a company following the release of a relevant news headline.

However, unless a temporal constraint is put in place, themonitor is not going to be that pertinent,
as it might trigger on an event pattern where the price change occurs weeks after the news item.
That would clearly not be so useful to a trader, as the two events were most likely unrelated and
hence not indicative of a possible trend.

If the event listener above is rewritten as follows,
on NewsItem("ACME",*) -> StockTick("ACME",*) within(30.0)

notifyUser();

the StockTick event would now need to occur within 30 seconds of NewsItem for the event listener
to trigger.

The within(float) operator is a postfix unary operator that can be applied to an event template
(the StockTick event template in the above example). Think of it like a stopwatch. The clock starts
ticking as soon as the event listener starts looking for the event template that the within operator
is attached to. If the stopwatch reaches the specified figure before the event template evaluates to
true, then the event template becomes permanently false.

176 Developing Apama Applications 10.11.2

4 Defining Event Listeners

In the above code, the timer is only activated once a suitable NewsItem is encountered. Unless an
adequate StockTick then occurs within 30 seconds andmakes the expression evaluate to true, the
timer will fire and fail the whole event listener.

You can apply the within operator to any event template. For example:
on A() within(10.0) listenerAction();

After the correlator sets up this event listener, the event listener must detect an A event within 10
seconds. If no A event is detected within 10 seconds, the event expression becomes permanently
false and the correlator subsequently terminates the event listener.

Waiting within an event listener
The second timer operator available for use within event expressions is wait(float).

The wait operator lets you insert a 'temporal pause' within an event expression. Once activated,
a wait expression becomes true automatically once the specified amount of time passes. For
example:
on A() -> wait(10.0) -> C() success();

Execution of this event listener proceeds as follows:

1. Set up an event template to watch for an A event.

2. After detecting an A event, wait 10 seconds. Set up an event template to watch for a C event.

In addition to being part of an event expression, wait can also be used on its own.
on wait(20.0) success();

When the correlator instantiates this event listener the event listener just waits for the number of
seconds specified (here being 20), then it evaluates to true, triggers, and causes the correlator to
execute the success() action.

Therefore a wait clause starts off being false, and then turns to true once its time period expires.
This behavior can be inverted through use of not. The expression not wait (20.0)would start off
being true, and stay true for 20 seconds before becoming false.

Consider the following example:
on B() and not wait(20.0) success();

This event listener triggers only if a B event is detected within 20 seconds after the correlator sets
up the event template that watches for B events. After 20 seconds, the not wait(20.0) clausewould
become false and prevent the event listener from ever triggering. This would therefore be the
same as
on B within(20.0) success();

By using allwith wait, you can easily implement a periodic repeating timer,
on all wait(5.0) success();

Developing Apama Applications 10.11.2 177

4 Defining Event Listeners

This event listener triggers every 5 seconds and causes the correlator to execute the success()
action each time.

See also “Specifying 'and not' logic to detect when events are missing” on page 168.

Triggering event listeners at specific times
The at temporal operator lets you express temporal activity with regards to absolute time. The at
operator allows triggering of a timer:

At a specific time, for example, 12:30pm on the 5th April.

Repeatedlywith regards to the calendar when used in conjunction with the all operator,
across seconds,minutes, hours, days of theweek, days of themonth, andmonths, for example,
on every hour, or on the first day of the month, or every 10 minutes past the hour and every
40 minutes past the hour.

Important:
Triggering using the at operator always uses the time zone in which the correlator is running.
If the time zone contains time changes (for example, Daylight Saving Time), then a listener
which would trigger during a period of time which is skipped (when the clocks go forward)
will not trigger, since that time did not occur. Listeners which would trigger during a repeated
section of time (when the clocks go back) will trigger for both the first time and the second time,
since that time occurred twice. This is true for all patterns using the at operator.

The syntax of the at operator is as follows:
at(minutes, hours, days_of_month, months, days_of_week [,seconds])

where the last operand, seconds, is optional.

Valid values for each operand are as follows:

ValuesOperand

0 to 59, indicating minutes past the hour.minutes

0 to 23, indicating the hours of the day.hours

1 to 31, indicating days of the month. For some months only 1 to 28,
1 to 29 or 1 to 30 are valid ranges.

days_of_month

1 to 12, indicatingmonths of the year, with 1 corresponding to Januarymonths

0 to 6, indicating days of the week, where 0 corresponds to Sunday.days_of_week

0 to 59, indicating seconds past the minute.seconds

The at operator can be embedded within an event expression in a manner similar to the wait
operator. If used outside the scope of an all operator it will trigger only once, at the next valid
time as expressed within its elements. In conjunction with an all operator, it will trigger at every
valid time.

178 Developing Apama Applications 10.11.2

4 Defining Event Listeners

The wildcard symbol (*) can be specified to indicate that all values are valid, for example:
on at(5, *, *, *, *) success();

would trigger at the next “five minutes past the hour”, while
on all at(5, *, *, *, *) success();

would trigger at five minutes past each hour (that is, every day, every month).

Whereas,
on all at(5, 9, *, *, *) success();

would trigger at 9:05am every day. However,
on all at(5, 9, *, *, 1) success();

would trigger at 9:05am only on Mondays, and never on any other week day. This is because the
effect of thewildcard operator is differentwhen applied to the days_of_week and the days_of_month
operands. This is due to the fact that both specify the same entity. The rule is therefore as follows:

As long as both elements are set to wildcard, then each day is valid.

If either of the days_of_week or the days_of_month operand is not a wildcard, then only the
days that match that element will be valid. The wildcard in the other element is effectively
ignored.

If both the days_of_week and the days_of_month operands are not wildcards, then the days
valid will be the days which match either. That is, the two criteria are ‘or' 'ed, not ‘and' 'ed.

A range operator (:) can be usedwith each element to define a range of valid values. For example:
on all at(5:15, *, *, *, *) success();

would trigger every minute from 5 minutes past the hour till 15 minutes past the hour.

A divisor operator (/integer, x) can be used to specify that every x'th value is valid. Therefore
on all at(*/10, *, *, *, *) success();

would trigger every ten minutes, that is, at 0, 10, 20, 30, 40 and 50 minutes past every hour.

If youwish to specify a combination of the above operators youmust enclose the element in square
braces ([]), and separate the value definitions with a comma (,). For example
on all at([*/10,30:35,22], *, *, *, *) success();

indicates the following values for minutes to trigger on; 0,10, 20, 30, 40 and 50, from 30 to 35, and
specifically the value 22.

A further example,
on all at(*/30,9:17,[*/2,1],*,*) success();

would trigger every 30 minutes from 9am to 5pm on even numbered days of the month as well
as specifically the first day of the month.

Developing Apama Applications 10.11.2 179

4 Defining Event Listeners

Using variables to specify times
If you wish to programmatically parameterize usage of the at operator, you have to use variables
in conjunction with it. You can replace any of the parameters to the at operator with a string
variable or with a sequence of integer variables.

The first alternative, using a string variable, allows you to define the matching criteria within a
string variable and then specify the variablewithin the at call. The following example shows how
this can be done. Each of the parameters can be replaced with a string variable in this way.
string minutes = "*/30";
on all at(minutes,9:17,[*/2,1],*,*) success();

The other alternative is to use a sequence of integer variable. This is only useful when you want
to specify a selection of valid values for the parameter.
sequence<integer> days = new sequence<integer>;
days.append(1); // Monday is ok
days.append(3); // and so is Wednesday
on all at(*,*,*,*,days) success();

See also the description of the sequence type in the API Reference for EPL (ApamaDoc).

Understanding time in the correlator
An understanding of how the correlator handles time is essential to writing Apama applications.
The topics below discuss time in the correlator.

See also "System clock" in Installing Apama.

Correlator timestamps and real time
When the correlator receives an event, it gives the event a timestamp that indicates the time that
the correlator received the event. The correlator then places the event on the input queue of each
public context. The correlator processes events in the order in which they appear on input queues.

An input queue can grow considerably. In extreme cases, this might mean that a few seconds pass
between the time an event arrives and the time the correlator processes it. As you can imagine,
this has implications for whether the correlator triggers listeners. However, the correlator uses
event timestamps, and not real time, to determine when to trigger listeners.

As an extreme example, suppose a monitor is looking for A -> B within(2.0). The correlator
receives event A. However, the queue has grown to a huge size and the correlator processes event
A three seconds after event A arrives. The correlator receives event B one second after it receives
event A. Some events in the queue before event B cause a lot of computation in the correlator. The
result is that the correlator processes event B five seconds after event B arrives. In short, event B
arrives one second after event A, but the correlator processes event B three seconds after it processes
event A.

180 Developing Apama Applications 10.11.2

4 Defining Event Listeners

If the correlator used real time, A -> B within(2.0)would not be triggered by this pattern. This
is because the correlator processes event Bmore than two seconds after processing event A. However,
the correlator uses the timestamp to determine whether to trigger actions. Consequently, A -> B
within(2.0) does trigger, because the correlator received event B one second after event A, and so
their timestamps are within 2 seconds of each other.

As you can see, the number of events on an input queue never affects temporal comparisons.

Event arrival time
As mentioned before, when an event arrives, the correlator assigns a timestamp to the event. The
timestamp indicates the time that the event arrived at the correlator. If you coassign an event to
a variable, the correlator sets the timestamp of the event to the current time in the context in which
the coassignment occurs. For JMon applications, this is always the current time in themain context.

The correlator uses clock ticks to specify the value of each timestamp. The correlator generates a
clock tick every tenth of a second. The value of an event's timestamp is the value of the last clock
tick before the event arrived.

When you start the correlator, you can specify the --frequency hz option if youwant the correlator
to generate clock ticks at an interval other than every tenth of a second. Instead, the correlator
generates clock ticks at a frequency of hz per second. Be aware that there is no value in increasing
hz above the rate at which your operating system can generate its own clock ticks internally. On
UNIX and some Windows machines, this is 100 Hz and on other Windows machines it is 64 Hz.

When you start the correlator, you can specify the -Xclock option to disable the correlator's internal
clock and replace it with externally generated time events. See “Externally generating events that
keep time (&TIME events)” on page 184.

About timers and their trigger times
In an event expression, when you specify the within, wait, or at operator you are specifying a
timer. Every timer has a trigger time. The trigger time is when you want the timer to fire.

When you use the within operator, the trigger time iswhen the specified length of time elapses.
If a within timer fires, the event listener fails. In the following event listener, the trigger time
is 30 seconds after A becomes true.
on A -> B within(30.0) notifyUser();

If B becomes truewithin 30 seconds after the event listener detects an A, the trigger time is not
reached, the timer does not fire, and the monitor calls the notifyUser() action. If B does not
become truewithin 30 seconds after the event listener detects an A, the trigger time is reached,
the timer fires, and the event listener fails. Themonitor does not call notifyUser(). The correlator
subsequently terminates the event listener since it can never trigger.

When you use the wait operator, the trigger time iswhen the specified pause during processing
of the event expression has elapsed. When a wait timer fires, processing continues. In the
following expression, the trigger time is 20 seconds after A becomes true. When the trigger
time is reached, the timer fires. The event listener then starts watching for B. When B is true,
the monitor calls the success action.

Developing Apama Applications 10.11.2 181

4 Defining Event Listeners

on A -> wait(20.0) -> B success();

When you use the at operator, the trigger time is one or more specific times. An at timer fires
at the specified times. In the following expression, the trigger time is five minutes past each
hour every day. This timer fires 24 times each day. When the timer fires, the monitor calls the
success action.
on all at(5, *, *, *, *) success();

Important:
Triggering using the at operator always uses the time zone inwhich the correlator is running.

At each clock tick, the correlator evaluates each timer to determine whether that timer's trigger
time has been reached. If a timer's trigger time has been reached, the correlator fires that timer.
When a timer's trigger time is exactly at the same time as a clock tick, the timer fires at its exact
trigger time. When a timer's trigger time is not exactly at the same time as a clock tick, the timer
fires at the next clock tick. This means that if a timer's trigger time is .01 seconds after a clock tick,
that timer does not fire until .09 seconds later.

When a timer fires, the current time is always the trigger time of the timer. This is regardless of
whether the timer fired at its trigger time or at the first clock tick after its trigger time. In other
words, the current time is equal to the value of the currentTime variablewhen the timerwas started
plus the elapsed wait time. For example:
float listenerSetupTime := currentTime;
on wait(1.23) {

//When the timer fires, currentTime = (listenerSetupTime + 1.23)
}

A single clock tick can make a repeating timer fire multiple times. For example, if you specify on
all wait(0.01), this timer fires 10 times every tenth of a second.

Because of rounding constraints,

A timer such as on all wait(0.1) drifts away from firing every tenth of a second. The drift is
of the order of milliseconds per century, but you can notice the drift if you convert the value
of the currentTime variable to a string.

Two timers that you might expect to fire at the same instant might fire at different, though
very close, times.

The rounding constraint is that you cannot accurately express 0.1 seconds as a float because
you cannot represent it in binary notation. For example, the on wait(0.1) event listener waits
for 0.10000000000000000555 seconds.

To specify a timer that fires exactly 10 times per second, calculate the length of time to wait by
using a method that does not accumulate rounding errors. For example, calculate a whole part
and a fractional part:
monitor TenTimesPerSecondMonitor {

// Use integers to keep track of the next timer fire time.
// This ensures that the value of the currentTime variable increases
// by exactly 1.0 after every 10 tenths of a second.
integer nextFireTimeInteger;

182 Developing Apama Applications 10.11.2

4 Defining Event Listeners

integer nextFireTimeFraction;
action onload() {

nextFireTimeInteger := currentTime.ceil();
nextFireTimeFraction := (10.0 *

(currentTime-nextFireTimeInteger.toFloat())).ceil();
setupTimeListener();

}

action setupTimeListener() {
nextFireTimeFraction := nextFireTimeFraction + 1;
if(nextFireTimeFraction = 10) {

nextFireTimeFraction := 0;
nextFireTimeInteger := nextFireTimeInteger+1;

}
on wait((nextFireTimeInteger.toFloat() +

(nextFireTimeFraction.toFloat()/10.0)) - currentTime)
{

setupTimeListener();
doWork();

}
}

action doWork()
{

// This is called 10 times every second.
log currentTime.toString();
// ...

}
}

When a timer fires, the correlator processes items in the following order. The correlator:

1. Triggers all event listeners that trigger at the same time.

2. Routes any events, and routes any events that those events route, and so on.

3. Fires any timers at the next trigger time.

Disabling the correlator's internal clock
By default, the correlator keeps time by generating clock ticks every tenth of a second. If you
specify the –Xclock option when you start a correlator, the correlator disables its internal clock.
This means the correlator does not generate clock ticks and does not assign timestamps based on
clock ticks to incoming events.

Instead, it is up to you to send &TIME events into the correlator to externally keep time. This gives
you the ability to artificially control how the correlator keeps time.

Time flows in all contexts, including private contexts. Also, different contexts can have different
internal times. This happens when one context is still processing events that arrived at an earlier
time while another is processing more recent events. The "currentTime" is always the time of the
events being processed. (As opposed to wall-clock time, which can be obtained from the Time
Manager EPL plug-in.)

Developing Apama Applications 10.11.2 183

4 Defining Event Listeners

Externally generating events that keep time (&TIME events)

A &TIME event can have one of the following formats:

It can contain a number of seconds:
&TIME(float seconds)

The seconds parameter represents the number of seconds since the epoch, 1st January 1970.
Themaximumvalue for seconds that the correlator can accept is 1012, which equates to roughly
33658 AD, and should be enough for anyone. However, most time formatting libraries cannot
produce a date for numbers anywhere near that large.

Or it can contain a time string:
&TIME(string time)

The time is a string in extended ISO8601 form, with fractional seconds. For example:

&TIME("2015-04-20T23:32:41.032+01:00")

&TIME("2015-04-20T22:32:41.032+00:00")

&TIME("2015-04-20T22:32:41.032Z")

&TIME("2015-04-20T22:32:41.032")

These all refer to the same time. Note that the first example shows the time in a different time
zone with an offset of 1 hour.

When the correlator processes an &TIME event by taking it off an input queue, the correlator sets
its internal time (the current time) in that context to the value encoded in the event. Every event
that the correlator processes after an &TIME event and before the next &TIME event has the same
timestamp. That is, they have the timestamp indicated by the value of the previous &TIME event.
For example:
&TIME(1)
A()
B()
&TIME(2)
C()

Events A and B each have a timestamp of 1. Event C has a timestamp of 2.

If you specify the -Xclock option, and you do not send &TIME events to the correlator, it is as if
time has stopped in the correlator. Every event receives the exact same timestamp. While not
sending time events is not strictly incorrect, it does mean that time stands still.

You must use great care when implementing this facility. There are EPL operations that rely on
correct time-keeping. For example, all timer operations rely on time progressing forwards. Timers
will fail to fire if time remains at a standstill, or worse, moves backwards. There is a warning
message in the correlator log if you send a time event that moves time backwards.

184 Developing Apama Applications 10.11.2

4 Defining Event Listeners

When sending &TIME events into a multi-context application, the time ticks are delivered directly
to all contexts. This can be different than the way in which events in the .evt file are sent in to the
correlator and then sent between contexts in an application. This difference can result in processing
events at an incorrect simulated time. In these cases, sending &FLUSHING(1), for example, before
sending time ticks and events can result in more predictable and reliable behavior.

Formore information, see "Event timing" in the correlator utilities section ofDeploying andManaging
Apama Applications.

About repeating timers and &TIME events

You are not required to send &TIME events every tenth of a second. You can send them at larger
intervals and timers will behave as they would when the correlator generates clock ticks. For a
repeating timer, a single &TIME event can make it fire multiple times. Consequently, sending an
&TIME event can have a lot of overhead if it is a large time jump and there are repeating timers. For
example, consider the following pattern:

1. You start the correlator and specify the -Xclock option, which sets the time to 0.

2. You inject a timer into the correlator, for example, on all wait(0.1).

3. You send an &TIME event to the correlator and this event has a relatively large value, for example,
1185898806.

The result of this pattern is that the timer fires many times because the &TIME event causes each
intermediate, repeating timer to fire. (Intermediate timers are timers that are set to fire between
the last-received time and the next-received time.) For the example given, the timer fires 1010 times,
which can take a while to process. You can avoid this problem by doing any one of the following:

Send the correlator an &TIME event and specify a sensible time before you set up any timers.
This is likely to be your best alternative.

Send the correlator an &TIME event and specify a sensible time before you inject any monitors.

Send the correlator an &SETTIME event before you send the &TIME event. See “Setting the time
in the correlator (&SETTIME event)” on page 185.

Setting the time in the correlator (&SETTIME event)

A &SETTIME event can have one of the following formats:

It can contain a number of seconds:
&SETTIME(float seconds)

The seconds parameter represents the number of seconds since the epoch, 1st January 1970.
For example:

&SETTIME(0) sets the time to “Thu Jan 1 00:00:00.0 BST 1970”.

&SETTIME(1185874846.3) sets the time to “Tue Jul 31 09:40:46.3 BST 2007”.

Or it can contain a time string:

Developing Apama Applications 10.11.2 185

4 Defining Event Listeners

&SETTIME(string time)

The time is a string in extended ISO8601 form, with fractional seconds. For example:

&SETTIME("2015-04-20T23:32:41.032+01:00")

&SETTIME("2015-04-20T22:32:41.032+00:00")

&SETTIME("2015-04-20T22:32:41.032Z")

&SETTIME("2015-04-20T22:32:41.032")

These all refer to the same time. Note that the first example shows the time in a different time
zone with an offset of 1 hour.

Normally, you do not need to send &SETTIME events. Youwould just send &TIME events. An &SETTIME
event is useful only to avoid the problem pattern described above. The only difference between
an &SETTIME event and an &TIME event is that the &SETTIME event causes an intermediate, repeating
timer to fire only oncewhile the &TIME event causes intermediate, repeating timers to fire repeatedly.
For example, on all wait(0.1) fires ten times for every second in the difference between
consecutive &TIME events. However, it fires only once when the correlator receives an &SETTIME
event.

If you decide to send an &SETTIME event before an &TIME event, you typically want to send the
&SETTIME event only before the first &TIME event. You should not send an &SETTIME event before
subsequent &TIME events. Doing so causes a jumpy quality in the behavior of time. There is a
warning message in the correlator log if you set a time that moves time backwards.

For information aboutwhen youmightwant to use external time events, see "Determiningwhether
to disconnect slow receivers" in Deploying and Managing Apama Applications.

Out of band connection notifications
Apama applications running in the correlator can make use of Apama out of band notifications.
Out of band notifications are events that are automatically sent to all public contexts in a correlator
whenever any component (an IAF adapter, dashboard, another correlator, or a client built using
the Apama SDKs) connects or disconnects from the correlator.

For example, consider an environment where correlator A and correlator B both have out of band
notifications enabled and are connected so that events from correlator A are sent to correlator B.
In this case, correlator A will receive a ReceiverConnected event and correlator B will receive a
SenderConnected event. The Apama application running in correlator A and B can listen for those
events and execute some application logic. Note that clients such as dashboards and IAF adapters
typically connect as both receiver and a sender together and, therefore, two events would be sent
in quick succession.

Out of band events are defined in the com.apama.oob package and consist of:

OutOfBandConnections

ReceiverConnected

SenderConnected

186 Developing Apama Applications 10.11.2

4 Defining Event Listeners

ReceiverDisconnected

SenderDisconnected

OutOfBandConnections contains helper functions to get currently connected senders and receivers
synchronously. These functions return a sequence of ReceiverConnected events for connected
receivers and sequence of SenderConnected events for connected senders. Your application can
call these functions at any time and can consume the ReceiverConnected and SenderConnected
events in the sameway as it consumes asynchronous out of band events. This is particularly useful
for getting information about connected senders and receivers which were already connected
before the application was injected and whose ReceiverConnected and SenderConnected events
weremissed by the application. See the "API Reference for EPL (ApamaDoc)" formore information
about the event and helper functions provided.

The ReceiverConnected and SenderConnected events contain the name of the component that is
connecting. When correlators and IAF adapters send a notification event, the format of the string
that contains the component name is as follows:
"name"

If no name is provided, however, the component name is as follows:
"name (on port port_number)"

The name is the name that was specified when the component was started. For correlators and IAF
adapters, you can specify a name with the --name option when you start the component (see
"Starting the correlator" in Deploying and Managing Apama Applications and "IAF command-line
options" inConnecting ApamaApplications to External Components). The name defaults to correlator
or iaf according to the type of component. The port_number is the port that the connecting receiver
or sender is running on.

Out of band events make it possible for developers of Apama components to add appropriate
actions for the component to take when it receives notice that another component of interest has
connected or disconnected. For example, an adapter can cancel outstanding orders or send a
notification to an external system.

To enable out of band notifications in your Apama applications, you add the Out of Band Event
Notifications bundle to your project. This bundle contains the event definitions and the monitor
that enables the notifications. See "Adding bundles to projects" in Using Apama with Software AG
Designer or "Creating and managing an Apama project from the command line" in Deploying and
Managing Apama Applications for further information. In your Apama application, you have to
create a listener for out of band events specific to the components in which you are interested.

Note:
You can also enable out of band notifications for a correlator with the engine_management tool
and its -r setOOB on option. Be sure to inject the event definitions before running the tool with
that option. For more information about using the engine_management tool, see "Shutting down
and managing components" in Deploying and Managing Apama Applications.

Developing Apama Applications 10.11.2 187

4 Defining Event Listeners

188 Developing Apama Applications 10.11.2

4 Defining Event Listeners

5 Working with Streams and Stream Queries

■ Introduction to streams and stream networks .. 190

■ Defining streams .. 191

■ Using output from streams ... 192

■ Defining stream queries ... 195

■ Defining custom aggregate functions ... 223

■ Working with lots that contain multiple items .. 227

■ Stream network lifetime .. 231

■ Using dynamic expressions in stream queries ... 234

■ Troubleshooting and stream query coding guidelines .. 241

Developing Apama Applications 10.11.2 189

EPL lets you create two kinds of queries:

Self-contained queries are processing elements that communicate with other self-contained
queries, and with their environment, by receiving and sending events. Self-contained queries
are designed to be multithreaded and to scale across machines. A self-contained query is
sometimes referred to as an Apama query. This kind of query is defined in a .qry file, which
cannot contain a monitor. See “Defining Queries” on page 59.

Stream queries operate on streams of items to generate more valuable streams that contain
derived items. Streamqueries are defined inmonitors. The following topics provide information
about stream queries.

In streamqueries, derived items can be of any EPL type. You can use standard relational operations,
such as filters, joins, aggregation, and projection, to generate items. For example, you can define
a query that converts a stream of raw tick data into a stream of volume-weighted average price
(VWAP) items.

Stream-based language elements allow operations that refine events to be expressed more clearly
and concisely thanwhen using procedural language constructs such as event listeners. In particular,
applications that need to calculate one value based on multiple items from an input stream are
simpler and more efficient when written with stream queries.

Apama provides sample code that uses streams and stream queries in the samples\epl directory
of your Apama installation directory.

Introduction to streams and stream networks
A stream query is part of a stream network. A stream network starts with one or more stream
source templates (see “Creating streams from event templates” on page 191). A stream source
template collects matching events received by the monitor instance and places them as items in a
stream. Stream queries (see “Defining stream queries” on page 195) take existing streams (a stream
created by a stream source template or by another streamquery) and generate added-value streams
that contain derived items. Finally, stream listeners (see “Using output from streams” on page 192)
bring items out of the stream network and into procedural code. In a given stream network,
upstream elements feed into downstream elements to generate derived items.

When a monitor instance receives an event that matches a stream source template, the correlator
activates the stream network. The passage of time can also cause the correlator to activate a stream
network. If, for example, a stream query operates on the items receivedwithin the last 5.0 seconds,
then 5.0 seconds after an item arrives the correlator will again activate the stream network (see
“Adding window definitions to from and join clauses” on page 201).

In a given streamnetwork activation, not all stream queries and not all stream listeners necessarily
receive items. Which queries and stream listeners receive items depends on the definitions of the
stream queries and stream listeners. However, in a given stream network activation, the correlator
passes items through all queries and stream listeners in the network that receive items. A query
or stream listener that receives an item is considered to be activated. Only when processing of all
activated queries and stream listeners is complete does the correlator process the next event on
the context's input queue.

190 Developing Apama Applications 10.11.2

5 Working with Streams and Stream Queries

In a given stream network activation, various queries can produce multiple items on their output
streams. The items in a particular stream during a particular stream network activation are called
a lot. If a stream query or stream listener receives a lot that contains multiple items, it processes
all items as part of a single stream network activation (see “Workingwith lots that containmultiple
items” on page 227, and “Coassigning to sequences in stream listeners” on page 194).

The items in a lot are always ordered, and the lots themselves are always ordered.

Defining streams
You can use a stream variable to reference a stream.A stream variable declaration has the following
form:
stream<type> name

Replace typewith the type of the items in the stream. This can be any Apama type.

Replace namewith an identifier for the stream. For example:
stream<Tick> ticks;

A stream variable can be a field in an event. However, you cannot route, enqueue, or send an event
that contains a stream variable field.

There are two ways to create a stream:

From an event template. See “Creating streams from event templates” on page 191.

From the result of a stream query on some other stream. See “Defining stream queries” on
page 195.

To obtain a reference to an existing stream, you must assign from or clone another stream value.

An inert stream never generates any output. There are a number of ways to create an inert stream
including, but not limited to, the following:

Calling new on a stream type or a type that contains a stream

Declaring a global variable of stream type, or a type that contains a stream

Spawning a monitor instance that contains a stream value

Creating streams from event templates
A stream can be created from an event template using the all keyword, including all any() to
listen for events of all types. This is referred to as a stream source template.

Example:
stream<Tick> ticks := all Tick(symbol="APMA");

This creates a stream that contains all subsequent Tick events that have the symbol APMA. You can
use any single event template this way, however, you must specify the all keyword and you

Developing Apama Applications 10.11.2 191

5 Working with Streams and Stream Queries

cannot use operators such as and or followed-by to combine several event templates. See also
“Stream network lifetime” on page 231.

Terminating streams
If a stream goes out of scope, it continues to exist until the monitor instance terminates or the
stream is explicitly terminated in some fashion. Streams are not garbage-collected. This means it
is possible to leak streams, thereby consuming memory and potentially performing unnecessary
computation, if you do not explicitly terminate streams.

To terminate a stream, call the quit()method on a stream variable that refers to the stream you
want to terminate. For example:
stream<integer> foo := all A();
...
foo.quit();

This might also terminate connected streams. See “Stream network lifetime” on page 231. It is also
possible to terminate connected streams by quitting a stream listener.

Using output from streams
A stream listener passes output items from a stream to procedural code. You use a from statement
to create a stream listener. The from statement has two forms.

The first form of the from statement creates a stream listener that takes items from an existing
stream. For example:
from sA as a {

/* Code here executes whenever an item is available from sA. */
}

The second form of the from statement contains a stream query definition, which creates a new
stream query. The stream listener takes items from the output stream of the query. For example:
from a in sA select a as a {

/* Code here executes whenever the query produces output. */
}

The syntax for the first form of the from statement is as follows:
[listener:=] from streamExpr coassignment block

DescriptionSyntax Element

Optional. You can specify a listener variable to refer to
the stream listener that the from statement creates. You can

listener

declare a new listener variable or a use an existing
listener variable.

Specifies any expression of type stream except a stream
query. This can be, for example, a stream variable or a

streamExpr

192 Developing Apama Applications 10.11.2

5 Working with Streams and Stream Queries

DescriptionSyntax Element

stream source template. If you want to specify a stream
query, use the other form of the from statement.

You must coassign the stream output into a variable. You
can either use the as operator to implicitly declare the

coassignment

variable in the scope of the following statement or the :
assignment operator to coassign to a local or global variable
of the same type as the streamoutput that has already been
declared.

For details about the characters you can specify, see
“Identifiers” on page 711.

The output from a stream is referred to as a lot. Like an
auction lot, a stream output lot can contain one or more
items. If the stream output is a lot that contains more than
one item, the from statement coassigns each item, in turn,
to the variable. See “Working with lots that contain
multiple items” on page 227.

A from statement cannot specify multiple coassignments.

Specifies a block of EPL statements, enclosed in braces. The
from statement coassigns each stream output item to the

block

specified variable and executes the block once for each
output item.

If the stream output is a lot that contains more than one
item, and you want to execute the block just once for the
lot rather than once for each item in the lot, coassign the
result to a sequence. See “Coassigning to sequences in
stream listeners” on page 194.

The syntax for the second form of the from statement is as follows:
[listener:=] StreamQueryDefinition coassignment block

DescriptionSyntax Element

Optional. You can specify a listener variable to refer
to the stream listener that the from statement creates.

listener

You can declare a new listener variable or a use an
existing listener variable.

Specifies a stream query. See “Defining stream
queries” on page 195.

StreamQueryDefinition

You must coassign the stream output into a variable.
You can either use the as operator to implicitly declare

coassignment

Developing Apama Applications 10.11.2 193

5 Working with Streams and Stream Queries

DescriptionSyntax Element

the variable in the scope of the following statement or
the : assignment operator to coassign to a local or global
variable of the same type as the stream output that has
already been declared.

For details about the characters you can specify, see
“Identifiers” on page 711.

If the query outputs lots that contain more than one
item, the from statement coassigns each item in the lot,
in turn, to the variable. See “Working with lots that
contain multiple items” on page 227.

A from statement cannot specify multiple
coassignments.

Specifies a block of EPL statements, enclosed in braces.
The from statement coassigns each stream output item

block

to the specified variable and executes the block once
for each output item.

If the stream output is a lot that containsmore than one
item, and you want to execute the block just once for
the lot rather than once for each item in the lot, coassign
the result to a sequence. See “Coassigning to sequences
in stream listeners” on page 194.

Listener variables and streams
Like event listeners, you can assign a stream listener to a listener variable. A stream listener exists
until one of the following happens:

The monitor instance that contains the stream listener is terminated.

The stream or streams the listener refers to are terminated.

If you do not want to wait for one of the above to occur, you can stop a stream listener by calling
the quit()method on a listener variable that refers to it. Note that in many cases this will also
terminate the stream that is feeding the stream listener. See “Streamnetwork lifetime” on page 231.

Coassigning to sequences in stream listeners
Unlike event listeners, a stream query might generate multiple items for each external or routed
event. This is usually due to a batched window (a window that is updated after every p seconds
or after every m items arrive) or to a join operation on two streams. In this case, the correlator
executes a stream listener action multiple times, once for each generated item.

194 Developing Apama Applications 10.11.2

5 Working with Streams and Stream Queries

In a stream query definition, a window defines the set of items from the input stream that the
query operates on. See “Adding window definitions to from and join clauses” on page 201.

To execute the stream listener action only once, and coassign all generated items at once, specify
a stream listener that coassigns to a sequence variable. The sequence must contain items of the
same type as the stream. For example:
sequence<A> seqA;
from batchedEvents: seqA {

/* seqA contains all events that arrive in this batch */
}

Defining stream queries
A stream query operates on one or two streams to transform their contents into a single output
stream. A stream query definition declares an identifier for the items in the stream so that the item
can be referred to by the operators in the stream query. Here is a simple stream query definition:
stream<integer> ints := from a in sA select a.i;

When the correlator executes a statement that contains a stream query definition, the correlator
creates a new stream query. Each stream query has an output stream (the type of which might
differ from that of the input stream).

A streamquery definition is an expression that evaluates to a streamvalue. The value is a reference
to the output stream of the generated query.

Following is an example of a simple stream query in a stream listener:
from a in sA select a.b as b {

doSomethingWith(b);
}

The following table describes the user-defined parts of this stream listener. It is important to
understand the distinctive role each one serves.

DescriptionSyntax Element

This is an identifier that represents the current item in the stream being
queried. See “Specifying input streams in from clauses” on page 199.

a

This variable represents the stream being queried.sA

This expressiondescribeswhat each query result looks like. In this example,
the query produces outputs from the b field of the events in the stream.

a.b

This is the variable that you coassign the query results to so that the
correlator can use the query result in the stream listener's code block.

b

Developing Apama Applications 10.11.2 195

5 Working with Streams and Stream Queries

Linking stream queries together
A stream query definition is an expression and its result is a stream. Consequently, with one
exception described below, you can use a stream query definition anywhere that you can use a
stream value. For example, you can assign the resulting value to a stream variable:
stream <float> values := from a in sA select a.value;

Alternatively, you can use a streamquery definition as the return value froman action. For example:
action createPriceStream (stream<Tick> ticks) returns stream<float> {

return from t in ticks select t.price;
}

Another option is to embed a stream query within another stream query. For example:
from p in (from t in ticks where t.price > threshold select t.price)
within period
select wavg(t.price,t.volume) as vwap {

processVwap(vwap);
}

You can use stream variables to link stream queries together, as detailed in the next section.

The exception is that you cannot use a stream query immediately after the from keyword in the
first form of the from statement. For example, the following is not a valid statement:
from from t in ticks select t.price as tickPrice {

print tickPrice.toString();
}

Instead, use the second form of the from statement and specify a stream variable or a stream source
template. The following example specifies a stream variable:
from t in ticks select t.price as tickPrice{

print tick.price.toString();
}

For more information on the different forms of the from statement, see “Using output from
streams” on page 192.

Simple example of a stream network
Sometimes a single from statement is all that is required to achieve your goal. For example, to
obtain a volume-weighted average price (VWAP) for a stock, you can add the following from
statement to a monitor:
from t in all Tick(symbol="APMA")

within period
select wavg(t.price,t.volume) as vwap {

processNewVwap(vwap); }

196 Developing Apama Applications 10.11.2

5 Working with Streams and Stream Queries

Often, however, you want to use the output from one query as the input to another query. For
example, here is an extract from the Statistical Arbitrage demo,which is available from theWelcome
page:
spreads :=

from a in all com.apama.demo.marketdata.Depth(symbol=order.Instrument_1)
retain 1

from b in all com.apama.demo.marketdata.Depth(symbol=order.Instrument_2)
retain 1

select (a.midPrices[0] - b.midPrices[0]);
stream<MeanSd> meanSds :=

from s in spreads within 20.0 select MeanSd(mean(s), stddev(s));
stream<integer> comparison :=

from s in spreads from m in meanSds select
compareSpreadAndBands(s, m.mean, m.sd, order.Std_Dev_Multiplier);

stream<integer> prevComparison :=
from c in comparison retain 1 select rstream c;

from c in comparison from p in prevComparison
where c!=p select c as instruction {

if state = WAIT_FOR_SPREAD and instruction = HOLD {
monitorState();

}
if state = MONITOR and instruction != HOLD {

waitForOrders(instruction);
}

}

When queries are connected like this, the set of connected queries is referred to as a streamnetwork.

A stream network is strictly within a monitor instance. Routing an event takes that event entirely
out of the stream network since the event would not be received in the same network activation
even if it is received by the same monitor. Spawning a monitor makes any stream variables point
to inert streams, so it is not possible to refer to a stream network from a different monitor instance.

Stream query definition syntax
A stream query definition contains several elements, some of which are optional and some of
which are required. These elements, and their constituent parts, are described in the following
sections. The elements appear in a stream query in this order:
FromClause [FromClause | JoinClause] [WhereClause] ProjectionDefinition

DescriptionRequired or
Optional

Element

Specifies the input stream for the query. See
“Specifying input streams in from
clauses” on page 199.

RequiredFromClause

A from clause can also specify which items
from the input stream the query should
operate on. See “Addingwindowdefinitions
to from and join clauses” on page 201.

Developing Apama Applications 10.11.2 197

5 Working with Streams and Stream Queries

DescriptionRequired or
Optional

Element

If a second from clause appears, the
correlator performs a cross-join to combine
items from the two streams. See “Defining
cross-joins with two from clauses” on
page 213.

Specifies a second stream for the query to
operate on. The correlator performs an

OptionalJoinClause

equi-join to combine items from the two
streams. See “Defining equi-joins with the
join clause” on page 215.

A join clause can also specify which items
from the input stream the query should
operate on. See “Addingwindowdefinitions
to from and join clauses” on page 201.

Applies a filtering criterion to the items in
the window or the items produced by the

OptionalWhereClause

join operation. See “Filtering items before
projection” on page 217.

Defines how the query generates output
items. See “Generating query results” on
page 218.

RequiredProjectionDefinition

Identifier scope in stream queries

Consider the following code fragment:
integer a;
stream<float> prices := from a in ticks select a.price;

In this example, the a in the query refers to the current Tick item in the stream and not to the a
integer variable. In a stream query, you can use an identifier that you have not previously declared.
If there is a variable in a containing scope that has the same name as an identifier in the query,
then for expressions in the query the identifier in the query hides the variable in the containing
scope.

Following is another example of how scope works with stream queries:
integer a := 42;
from a in ticks select a.price as p {

print a.toString(); // Prints "42" rather than one of the ticks. }

The previous code fragment illustrates that identifiers in the listener action can have the same
names as identifiers in the stream query.While this is not good practice, it is important to recognize
that the listener action is not part of the stream query. Consequently, an identifier in a stream
query is out-of-scope in the stream query's listener action.

198 Developing Apama Applications 10.11.2

5 Working with Streams and Stream Queries

Stream query processing flow
Each element of the stream query operates on the output of the previous part. To correctly define
streamqueries, it can be helpful to understand that items flow through the query and the correlator
processes the parts of the query in the order shown in the following figure. In the figure, the dashed
outlines indicate optional elements.

As items arrive on the input stream(s) and time elapses, the window definition for each stream
identifieswhich items from that stream the query should be processing at any givenmoment. This
includes partitioning, if it is specified. See “Addingwindowdefinitions to from and join clauses” on
page 201.

In queries with two input streams, the correlator combines items from the two streams by means
of a cross-join operation (a second from clause) or an equi-join operation (a join clause). See “Joining
two streams” on page 213.

The where clause, if there is one, filters items. See “Filtering items before projection” on page 217.

The projection definition defines how the query generates output items. This includes the select
clause,which has appeared in examples such as “Simple example of a streamnetwork” on page 196.
See “Generating query results” on page 218.

Specifying input streams in from clauses
In a stream query, each from clause specifies a stream that the query is operating on. The syntax
of the from clause is as follows:
from itemIdentifier in streamExpr [WindowDefinition]

DescriptionSyntax Element

Specify an identifier that youwant to use to represent the
current item in the stream you are querying. You use this

itemIdentifier

identifier in subsequent clauses in the query. For details
about the characters you can specify, see “Identifiers” on
page 711.

Developing Apama Applications 10.11.2 199

5 Working with Streams and Stream Queries

DescriptionSyntax Element

The type of the identifier is the same as the type of the
items that are in the stream you are querying.

There is no link between an item identifier in a query and
a variable that you might define elsewhere in your code.
In other words, it is okay for an in-scope variable to have
the same name as an item identifier in a query. Inside the
query, the item identifier hides that variable. See the
second example below.

Specify an expression that returns a stream type. This is
the stream that you want to query.

streamExpr

Definewhich portion of the stream to query. See “Adding
windowdefinitions to fromand join clauses” on page 201.

WindowDefinition

Examples

The query below generates a stream of float items. The item identifier is a. The stream variable,
ticks, refers to a stream of Tick events. The select clause specifies that each query result item
contains only the price value from the Tick event. Details about the select clause are in “Generating
query results” on page 218.
stream<float> prices := from a in ticks select a.price;

The all keyword followed by an event template is an expression of type stream referred to as a
stream source template. Consequently, you can use this in a from clause. For example, you can
modify the previous example to use the stream source template directly within the stream query:
stream<float> prices :=

from a in all Tick(symbol="APMA") select a.price;

Notes

A stream query is an expression of type stream and so anywhere that you can specify a stream
expression you can use a stream query in its place. (There is one exception to this. See “Linking
streamqueries together” onpage 196.) Thismeans you cannest streamqueries to create a compound
stream query. For example, consider the following non-nested stream queries:
stream<A> sA := all A();

stream<integer> derived :=
from a in sA retain 2 select mean(a.x);

stream sB :=
from a in derived within 10.0 select B(stddev(a));

An equivalent way to write this is as follows:
stream sB :=

200 Developing Apama Applications 10.11.2

5 Working with Streams and Stream Queries

from b in
from a in all A() retain 2 select mean(a.x)

within 10.0
select B(stddev(b));

The compiler generates the same stream network in both cases, so the performance is exactly the
same. However, nesting stream queries beyond one level can make the compound stream query
hard to understand.

To define a query that operates on two streams, specify two consecutive from clauses or specify a
from clause followed by a join clause. See “Joining two streams” on page 213.

Adding window definitions to from and join clauses
The items flowing through a stream are ordered. In any given activation, there are zero or more
items that are current. By default, the stream query operates on those current items.

Alternatively, awindowmay be defined.Windowdefinitions specifywhich items the query should
operate on in each activation, based on (but not limited to) the following:

The items within a given time period

A maximum number of items

The content of the items

As the window contents change, the items in the query projectionwill also change: new itemswill
be inserted and old ones removed. The output from a query is a stream of items.

If the projection is an aggregate projection then the query output is the result of evaluation of the
select clause when the window contents change. See “Aggregating items in projections” on
page 220.

If the projection is a simple, non-aggregate projection, the default output is the insert stream (or
istream for short) of new projected items. Alternatively, if the rstream keyword is specified in the
select clause, the output is the remove stream (or rstream) of items that have become obsolete.
See also “Obtaining the query's remove stream (rstream)” on page 221.

Window definition syntax

There are a number of different formats and keywords that you can use to define a window on a
stream. Following are the alternatives you can choose from. See the subsequent topics for details.
[partition by partitionByExpr[, partitionByExpr]...]

(
within windowDurationExpr[every batchPeriodExpr]

[retain windowSizeExpr] [with unique keyExpr]

| retain windowSizeExpr [every batchSizeExpr] [with unique keyExpr]
)

| retain all

Developing Apama Applications 10.11.2 201

5 Working with Streams and Stream Queries

Every window definition specifies retain, within or both.

DescriptionSyntax Element

Optionally specifies an EPL expression that should
involve the input item in some way and that returns a

partitionByExpr

comparable type.A partition by clause effectively creates
a separate window for each encountered distinct value
of partitionByExpr.

Specifies a float expression that indicates a duration of
a number of seconds. The window contains the items

windowDurationExpr

receivedwithin the last windowDurationExpr seconds. See
“Defining time-based windows” on page 203.

Specifies a float expression that indicates an interval
period of a number of seconds. The window updates its

batchPeriodExpr

contents every batchPeriodExpr seconds. See “Defining
batched windows” on page 207.

Specifies an integer expression that indicates the number
of items you want to retain in the window. The window

windowSizeExpr

contains the most recent windowSizeExpr items. See
“Defining size-based windows” on page 204.

Specifies an EPL expression thatmust contain at least one
reference to the input item andmust return a comparable
type. See “Comparable types” on page 617.

keyExpr

If you add a with unique clause, if there is more than one
item in the window that has the same value for the key
identified by keyExpr, only the most recently received
item is considered to be in the window. See “Defining
content-dependent windows” on page 211.

Specifies an integer expression that indicates a number
of items. The window updates its contents after every

batchSizeExpr

batchSizeExpr items that match the query are found. See
“Defining batched windows” on page 207.

Omitting the window definition

The window definition is optional in a stream query. If you do not specify any window then, for
any given activation of the stream query, the stream query operates on only the items that are
current for that activation. Typically, this is a single event. However, if the source for this query
is, for example, a stream query with a batched window, then the items in each batch will be
processed together as in the following example:
stream<A> sA := from a in all A() retain 4 every 4 select a;
from a in sA select count() as c { ... }

202 Developing Apama Applications 10.11.2

5 Working with Streams and Stream Queries

The second query receives batches of four A events and will generate a single aggregate value for
each batch. For more details see “Stream queries that generate lots” on page 228.

Retaining all items

The simplest window is one that contains all items that have ever been in the stream. The
corresponding window definition is retain all. Conceptually, once an item enters a retain all
window, it remains in the window indefinitely (or until the stream query is terminated). The
following query evaluates the running mean of all items that have ever been in the values stream:
stream <decimal> means := from v in values retain all select mean(v);

The retain all clause specifies an unbounded window. Unbounded windows have restrictions
on their use:

You cannot have a partitioned or batched unbounded window.

You cannot perform a join operation on an unbounded window.

You cannot specify an unbounded window when you use rstream in the select clause of a
query.

When you use a custom (user-defined) aggregate function in a query that contains an unbounded
window, you cannot also use a bounded aggregate function. You should also be aware that, if you
use a badly implemented custom aggregate function in a query that contains an unbounded
window, then this can result in uncontrolled memory usage. See “Defining custom aggregate
functions” on page 223.

Defining time-based windows

In a time-based window, the items are held in the window for a specific duration. The syntax for
defining a time-based window is:
within windowDurationExpr

Replace windowDurationExprwith an expression that returns the number of seconds that items
should remain in the window as a float value. For example, the following query calculates the
sum of all items that arrived in a stream of float values during the last 1.5 seconds:
stream<float> sums := from v in values within 1.5 select sum(v);

The following diagram illustrates how this works in practice.

Developing Apama Applications 10.11.2 203

5 Working with Streams and Stream Queries

Each column represents a time when the query window contents change whereas each row
represents the arrival and lifetime of each event. As an event arrives in the window, it appears in
bold purple. At each given time, the current window contents is indicated by the items enclosed
by boxes. Bold purple items are new and lighter purple items are old items still in the window.
The numbers at the bottom give the contents of the stream of insertions to and removals from the
window in the case where each value is being selected independently, or when the aggregate sum
of the values in the set of items in the window is being calculated. The query before the diagram
corresponds to the aggregate projection line. The queries shown here are:

Simple istream projection:
from v in values within 1.5 select v

Simple rstream projection:
from v in values within 1.5 select rstream v

Aggregate projection:
from v in values within 1.5 select sum(v)

In a simple, non-aggregate projection, when an event arrives in the window, it appears in the
istream of the projection. It remains for 1.5 seconds, at which point it appears on the rstream of
the projection. The aggregate projection behaves differently. Whenever an item arrives in or is
removed from the window, a new sum appears on the istream of the aggregate projection.

Defining size-based windows

As well as time, you can specify windows that contain only a certain number of items. In a
size-basedwindow, as each new item arrives, it is added to thewindow. After the number of items
in the window reaches the window size limit specified in the query, the arrival of a new item
causes the removal of the oldest item from the window.

The syntax for defining a size-based window is as follows:
retain windowSizeExpr

204 Developing Apama Applications 10.11.2

5 Working with Streams and Stream Queries

Replace windowSizeExprwith an expression that returns how many items you want to retain in
the window as an integer value. For example, the following query calculates the sum of the last
two items in a stream of floats:
stream <float> sums := from v in values retain 2 select sum(v.number);

The following diagram, which uses the same notation as the previous section, illustrates how this
works in practice.

The query before the diagram corresponds to the aggregate projection. The three queries shown
here are:

Simple istream projection:
from v in values retain 2 select v.number

Simple rstream projection:
from v in values retain 2 select rstream v.number

Aggregate projection:
from v in values retain 2 select sum(v.number)

When an event arrives in the window, it appears in the istream of a simple, non-aggregate
projection. The first item remains in the window when a second item arrives. When a third item
arrives, the first item is no longer in the window and it appears on the rstream of the simple,
non-aggregate projection. Likewise, when the fourth item arrives in the window, it appears in the
istream and the second item appears on the rstream of the simple projection, and so on. The
behavior of the aggregate projection is that whenever an item arrives in or is removed from the
window, a new sum appears on the istream of the aggregate projection.

Developing Apama Applications 10.11.2 205

5 Working with Streams and Stream Queries

Combining time-based and size-based windows

Sometimes you might want to focus on the last n items received in the last d seconds. To define a
window that retains items based on both time and size, use the following format in the from clause:
within windowDurationExpr retain windowSizeExpr

The within keyword and expression must be first and the retain keyword and expression must
be second. As with separate size-based and time-based windows, replace windowDurationExpr
with an expression that returns a number of seconds, d, as a float value. Replace windowSizeExpr
with an expression that indicates how many items you want to retain in the window, n, as an
integer value. The window contains the last n items received in the last d seconds. If no items were
received in the last d seconds, the window is empty. For example:
from v in values within 2.5 retain 2 select sum(v);

The following diagram, which uses the same notation as the previous section, illustrates how this
works in practice.

The query before the diagram corresponds to the aggregate projection. The three queries shown
here are:

Simple istream projection:
from v in values within 2.5 retain 2 select v

Simple rstream projection:
from v in values within 2.5 retain 2 select rstream v

Aggregate projection:
from v in values within 2.5 retain 2 select sum(v);

The important point to note in this example is that some items drop out of the window before the
2.5 second period is passed. When e2 arrives, e0 and e1 are already in the window. Even though
e0 has been there for only 2 seconds, it is removed because e1 and e2 are now the two most recent
items received in the last 2.5 seconds.

206 Developing Apama Applications 10.11.2

5 Working with Streams and Stream Queries

Defining batched windows

The default behavior is that the contents of a window change upon the arrival of each item. The
every keyword can be used to control when the contents of thewindow change: it causes the items
to be added to the window in batches. Time-based windows can be controlled to update only
every p seconds, and size-based windows can be controlled to update only after every m events.

The syntax for a batched window is one of the following:
within windowDurationExpr every batchPeriodExpr
| retain windowSizeExpr every batchSizeExpr
| within windowDurationExpr every batchPeriodExpr retain windowSizeExpr

Here, windowDurationExpr and windowSizeExpr retain their meaning from the previous sections.
The batchPeriodExpr is an expression that returns the time, p, between updates as a float value.
The batchSizeExpr is an expression that returns the number of events between updates, m, as an
integer value.

When you specify within followedby every followedby retain, the every keyword always indicates
a number of seconds. That is, the window updates its content every p seconds.

If no items have arrived or expired since the previous window update, the window content is
unchanged and consequently the query does not execute. The correlator executes the query only
when the window content changes.

Here is an example of a stream query that defines a batched, time-based window. The correlator
creates the query at t=0.0.
from v in values within 1.5 every 1.0 select sum(v)

The following diagram illustrates how this works in practice.

The query before the diagram corresponds to the aggregate projection. The three queries shown
here are:

Simple istream projection:
from v in values within 1.5 every 1.0 select v

Developing Apama Applications 10.11.2 207

5 Working with Streams and Stream Queries

Simple rstream projection:
from v in values within 1.5 every 1.0 select rstream v

Aggregate projection:
from v in values within 1.5 every 1.0 select sum(v)

The important thing to note about the behavior of these queries is that thewindow content changes
only every second. Nothing appears on any insert or remove stream between those points. This
means that the items 10.0, 20.0 and 40.0 are not in the window at the moment they arrive, but
are kept until the next multiple of 1.0 second. Item lifetimes are calculated from the item arrival
time, not the point at which the batching allows the item into the window. Consequently, the
lifetime of the items in the window is also affected by the batching. In these examples, you can
see that the items that were delayed entering the window are only in the window for one second
because they were already 0.5 seconds old at the point they entered the window. For contrast, the
item with the value 30.0 remains in the window for 2.0 seconds because after 1.5 seconds the
batching has not occurred, and so thewindow cannot change until the nextmultiple of 1.0 second.

In the examples given here, the batch period is smaller than the duration of the window. If the
batch period is larger than the duration of the window, then some items can never enter the
window, if they would have already expired by the time the next batch arrives in the window.

Batched size-based windows behave similarly to batched time-based windows, except that the
batch criteria is waiting for a number of items to arrive. In that case, items always arrive in the
window as a multiple of the batch size.

Batched windows produce multiple items at one time. A single group of items flowing between
queries together is called a lot. A lot can contain one item or several items. A batched window is
one way of producing a lot that contains several items.

Partitioning streams

The partition by clause splits a stream into partitions, based on one or more key values. The
subsequent window operators are applied to the partitioned stream; the behavior is as if the
window operators had been applied separately to each partition. The result of using partition
by followed by a window operator is referred to as a partitioned window. You use a query with
a partitioned window to retain particular items for each partition specified by the partition by
clause.

Partitioning is introduced with the following syntax:
partition by partitionByExpr[, partitionByExpr]...

The partition by clause precedes other window operators, so a complete query would be:
from a in sA partition by a.x retain 2 select sum(a.y);

Each partitionByExpr is an expression that should contain at least one reference to the input item
and must return a comparable type. See “Comparable types” on page 617. Some examples are in
the following table. Assume that each partition by clause in the table starts with the following:
from a in all A() ...

208 Developing Apama Applications 10.11.2

5 Working with Streams and Stream Queries

DescriptionDefinition

Partition on a single primitive type field of the input event. This
is likely to be the most common case.

partition by a.x

Partition on an event's field values. The events that have identical
values for all fields are in the same partition. For example:

partition by a

from a in all A()
partition by a retain 2 select a;

Given the following input events:
A(1,1)
A(1,2)
A(1,1)

The first and third events are in the same partition, the second is
not. In this case, the event type Amust itself be a comparable type.

This is a valid partition expression, but it is not recommended. A
partition expression should reference the input item in some way.

partition by 1

This is a valid partition expression if f() is a function that returns
an appropriate type.

partition by f(a)

Another valid partition expression.partition by
a.x*globaldict[a.y]

Example:
from t in all Tick()

partition by t.symbol retain 1
select rstream t;

This query creates a separate partition for each new stock symbol it finds. Each partition contains
the most recent Tick event for that symbol. The query output, for each encountered symbol, is the
previous Tick event for that symbol. Note that it is possible for this query to consume a large
quantity of memory.

Partitions and aggregate functions

The partition by clause creates several partitions within the window. However, a stream query
has other parts in addition to the window. The other parts include the projection and optional
join or where elements. These other parts of the query operate on a single window that contains
all items from all partitions.

Likewise, when you partition a stream any specified aggregate functions aggregate over all
partitions. If you want to generate separate aggregate values for different groups of events then
youmust specify a group by clause. See “Grouping output items” on page 220. A commonuse case
is to specify matching partition by and group by clauses.

Consider the following stream query:

Developing Apama Applications 10.11.2 209

5 Working with Streams and Stream Queries

from a in all A() partition by a.x retain 2 select sum(a.y);

The window definition is retain 2, and this is partitioned by a.x, where x is the first field in A.
There is one retain 2 partition for each value of x. Suppose this streamquery receives the following
input events:
A(1,1)
A(1,2)
A(2,1)
A(2,2)
A(1,3)
A(2,3)

After these events have all arrived, one partition contains A(1,2) and A(1,3)while a second
partition contains A(2,2) and A(2,3). However, the parts of the query following the window
definition operate on the collection of all items in all partitions. In this example, the sum() aggregate
function generates 10. It does not generate a lot that contains two values of 5. Now consider the
following query:
from t in all Tick()

partition by t.symbol retain 10
group by t.symbol
select mean(t.price)

This query returns one mean value per symbol, which is the mean of the last 10 ticks for that
symbol. If you do notwant all means for all symbols in one lot, youmight prefer to spawnmonitors
so that you have an instance of the following query for each symbol:
from t in all Tick(symbol=X)

retain 10
select mean(t.price)

If you dowant the averages for all the symbols in the same stream, then you can specify the group
key in the select clause in order to later differentiate between the output events, as in the following
example:
from t in all Tick()

partition by t.symbol retain 10
group by t.symbol
select Output(t.symbol, mean(t.price))

As you can see, the partition by clause is often used in conjunction with the group by clause.

Tip:
In EPL, it is common to use spawn in amonitor to create separatemonitor instances. For example,
each monitor instance might process a separate stock symbol. Spawning separate monitor
instances might be preferable to using a single monitor instance that specifies partition by in
a stream query so that it, for example, processes all stock symbols. Spawning separate monitor
instances can be more efficient because your application processes only the subset of symbols
that are of interest. Also, the subset of symbols of interest can change through the day.
Appropriate monitor instances and queries can be created as required.

See also “IEEE special values in stream query expressions” on page 223.

210 Developing Apama Applications 10.11.2

5 Working with Streams and Stream Queries

Using multiple partition by expressions

To partition a window according to multiple criteria, you can insert multiple, comma-separated
expressions. For example, you can refine a previous query to produce values for different volume
bands as follows:
from t in all Tick()

partition by t.symbol, t.volume.floor()/100 retain 1
select rstream t;

In this example, the correlator applies retain 1 to each set of ticks that share both the same symbol
and the same volume (to within 100). As a result, an item is output only when a replacement tick
arrives for an existing symbol in an existing volume band.

Partitioning time-based windows

If awindow is purely time-based, then there is no benefit to partitioning thewindow. For example,
consider the following two queries:
from t in all Tick() within 1.0 ...
from t in all Tick() partition by t.symbol within 1.0 ...

The first query outputs every Tick received in the last second. The second query organizes the
stream of Tick events by their symbols, then gives you each one that arrived in the last second.
This is still every Tick received in the last second. The correlator ignores a partition by statement
if it is used only with a withinwindow.

If your window includes a retain clause as well as a within clause then it can be helpful to use
partition by, likewise if there is a with clause. See “Defining content-dependent windows” on
page 211. For example:
from t in all Tick() partition by t.symbol within 10.0 retain 5 ...

This window will contain at most 5 Tick events for each different symbol received within the last
10 seconds.

Defining content-dependent windows

The contents of the window can also depend on the content of individual items in the stream.
Currently, the only content-dependent window operator is the with unique clause, which limits
the window to containing only the most recent item for each key value. The with unique clause
can be added to a within or a retainwindow by following it with:
with unique keyExpr

The keyExpr follows the same rules as a partition key expression. That is, it is an expression that
should contain at least one reference to the input item and must return a comparable type. See
“Comparable types” on page 617.

If you add a with unique clause, if there is more than one item in the window that has the same
value for the key identified by keyExpr, only the most recently received item is considered to be

Developing Apama Applications 10.11.2 211

5 Working with Streams and Stream Queries

in the window. It is important to note that the with unique clause processing happens after the
rest of the window processing. Consider the following query:
from p in pairs retain 3 with unique p.letter select sum(p.number)

If the most recent two events have the same letter, there will be only two events over which the
sum is calculated. This is illustrated in the following diagram:

The query before the diagram corresponds to the aggregate projection. The three queries shown
here are:

Simple istream projection:
from p in pairs retain 3 with unique p.letter select p

Simple rstream projection:
from p in pairs retain 3 with unique p.letter select rstream p

Aggregate projection:
from p in pairs retain 3 with unique p.letter select sum(p.number)

As you can see, when the last three items received all have a unique letter, the query behaves like
a retain 3window.When the last three items received do not all have a unique letter, the duplicate
that arrived first is removed from thewindow. In this example, the arrival of c,5 causes the removal
of c,3 even though it was one of the last three items received. In other words, the with unique
clause can cause an item to be removed from the window and the sum earlier than it would
otherwise be removed.

The difference between a partitioned window and a window that is using a with unique clause
can be described as:

using partition by gives you the last three values for each key, and

212 Developing Apama Applications 10.11.2

5 Working with Streams and Stream Queries

using with unique gives you one value of each key, from the last three.

You can combine both partition by and with unique if you are using different key expressions
in each clause.

Note that you cannot specify within followed by retain followed by with unique.

See also “IEEE special values in stream query expressions” on page 223.

Joining two streams
When a stream query operates over two input streams, it is referred to as a join operation. There
are two forms of join operation available in EPL:

A cross-join joins every event fromone stream'swindowwith every event in the other stream's
window.

An equi-join joins events only when they have matching keys.

Each form takes two input streams and produces a single output stream of combined items.

Join operations, particularly cross-joins, can create many more output events than input events,
not just the same or fewer.

Defining cross-joins with two from clauses

A cross-join is defined with two from clauses, one for each stream, optionally including window
definitions. A simple example of this is:
from p1 in leftPairs retain 2

from p2 in rightPairs retain 2
select sum(p1.num * p2.num);

This is illustrated in the following diagram, whose notation differs from the previous diagrams.
Here, for each time point there are two columns, one for each side of the join. The first column,
with purple events, represents the items from the first from clause and the second column, with
cyan events represents the items from the second from clause. Events in bold arrived during this
activation of the stream query and the boxes enclose thewindows for each side. As in the previous
diagrams, the output is given for each of the three kinds of projections.

Developing Apama Applications 10.11.2 213

5 Working with Streams and Stream Queries

The query before the diagram corresponds to the aggregate projection. The three queries shown
here are:

Simple istream projection:
from p1 in leftPairs retain 2

from p2 in rightPairs retain 2
select p1.num * p2.num

Simple rstream projection:
from p1 in leftPairs retain 2

from p2 in rightPairs retain 2
select rstream p1.num * p2.num

Aggregate projection:
from p1 in leftPairs retain 2

from p2 in rightPairs retain 2
select sum(p1.num * p2.num);

As shown in the diagram, in a cross-join whenever an item arrives in a window, it is joined to
every item in the other window to produce a separate output item for each combination.

Because the number of output items is the product of the size of the two windows, cross-joins are
normally used for joins between at least one of:

A window of size 1.

A stream where you have omitted the window definition.

214 Developing Apama Applications 10.11.2

5 Working with Streams and Stream Queries

If both sides of the join omit the window definition, then for output to occur an item must arrive
on each stream during the same activation of the query.

Amore concrete example can be seen in the Statistical Arbitrage demo (available from theWelcome
page), which includes the following statement:
spreads :=

from a in all com.apama.demo.marketdata.Depth(symbol=order.Instrument_1)
retain 1

from b in all com.apama.demo.marketdata.Depth(symbol=order.Instrument_2)
retain 1

select (a.midPrices[0] - b.midPrices[0]);

This query generates the spread between the latest prices for the two identified stocks. In each
from clause, the window contains one item. Whenever a new item arrives in one window, the
query executes the calculation defined in the select clause and outputs the result.

To generate a running mean and a standard deviation for this spread value, you can define the
following query:
stream<MeanSD> averages := from s in spreads within 20.0

select MeansSD(mean(s),stddev(s));

Then, to obtain all three current values for the spread, the mean and the standard deviation, you
can perform a join between the spreads stream and the averages stream:
stream<SpreadMeanSD> all := from s in spreads

from a in averages
select SpreadMeansSD(s, a.mean, a.stddev);

This query outputs a result only when there is an item currently in both spreads and averages.

In a cross-join, you cannot specify more than two from clauses.

CAUTION:
Be aware that cross-joins have the potential to generate a great quantity of output. It is preferable
to use cross-joins onlywhere thewindow size/duration of anywindow involved in the cross-join
is small. For example, putting 8000 events through a 100x100 cross-join produces 1.6 million
output events. You cannot specify a cross-join in a query that contains an unbounded window.

Defining equi-joins with the join clause

An equi-join has a key expression for each of the two streams that are being joined. Two items are
joined into an output item only if the values of their key expressions are equal. The full syntax for
an equi-join, consisting of a from clause followed by a join clause, is:
from itemIdentifier1 in streamExpr1 [windowDefinition1]

join itemIdentifier2 in streamExpr2 [windowDefinition2]
on joinKeyExpr1 equals joinKeyExpr2

As with the partition and unique key expressions, each join key expression must return a
comparable type (see “Comparable types” on page 617. Also, joinKeyExpr1must include a reference
to itemIdentifier1 and joinKeyExpr2must include a reference to itemIdentifier2. Each join key
may not refer to the item from the other stream. An example of an equi-join is:

Developing Apama Applications 10.11.2 215

5 Working with Streams and Stream Queries

from p1 in leftPairs retain 2
join p2 in rightPairs retain 2
on p1.letter equals p2.letter
select sum(p1.num * p2.num);

This is illustrated in the following diagram:

The query before the diagram corresponds to the aggregate projection. The three queries shown
here are:

Simple istream projection:
from p1 in leftPairs retain 2

join p2 in rightPairs retain 2
on p1.letter equals p2.letter
select p1.num * p2.num

Simple rstream projection:
from p1 in leftPairs retain 2

join p2 in rightPairs retain 2
on p1.letter equals p2.letter
select rstream p1.num * p2.num

Aggregate projection:
from p1 in leftPairs retain 2

join p2 in rightPairs retain 2
on p1.letter equals p2.letter
select sum(p1.num * p2.num);

216 Developing Apama Applications 10.11.2

5 Working with Streams and Stream Queries

This diagram shows the input that was used in the cross-join example, but with the join changed
to be an equi-join. As you can see, only the items with matching letters appear in the output. The
first event on the right side of the join has the same letter as the event on the left, so an output is
produced as before. When the second event arrives on the left, however, no output is produced,
because the letter does not match the other side. When a b event arrives on the right side of the
join, that is joined with the b event on the left.

Finally, at the end of the table you can see that the join is empty because none of the events on the
left match any of the events on the right.

Here is a more concrete example of an equi-join:
from r in priceRequest

join p in prices partition by p.symbol retain 1
on r.symbol equals p.symbol
select p.price

For each new stock price request, this query generates the latest price for that stock/symbol. In an
equi-join, whenever an item enters awindowon one side, the correlator evaluates the join condition
to determine if the item matches any of the items in the window on the other side. The correlator
joins and outputs each matching pair when it finds one.

Typically, you want to create a derived event that is a function of the events on both sides of the
join operation. Here is another example:
from latest in latestSensorReadings

join average in averageSensorReadings
on latest.sensorId equals average.sensorId
select SensorAlert(latest.sensorId, latest.value, average.mean) as alert{

send alert to "output";
}

This query joins a streamof themost recent readings from all the sensorswith a streamof averages
of the same readings over some period. When a new reading appears it causes an event on the
stream of averages at the same time. This causes them to be joined to create an alert that contains
both the latest value and the latest average, which is then sent.

See also “IEEE special values in stream query expressions” on page 223.

Filtering items before projection
In a stream query, after the window definition and any join clause, you can optionally specify a
where clause to filter the items produced by the window or join. The where clause specifies an
arbitrary EPL expression and can filter items based on any criteria available to EPL. The syntax
of the where clause is as follows:
where booleanExpr

Replace booleanExprwith a Boolean expression. This expression is referred to as the wherepredicate.
Only those items for which the where predicate evaluates to true are passed by the filter. For
example:
from t in ticks retain 100

where t.price*t.volume>threshold

Developing Apama Applications 10.11.2 217

5 Working with Streams and Stream Queries

select mean(t.price)

To calculate themean price, this query operates on only the itemswhose value (t.price * t.volume)
is greater than the specified threshold.

Performance

The filtering performed by the where clause happens after any window, with or join operations.
In some cases, it is possible to rephrase the query to improve operational efficiency. For example:
from t in ticks within 60.0

where t.price*t.volume>threshold
select mean(t.price)

This query maintains a window of Tick items. Now consider this revision:
from p in

(from t in ticks where t.price*t.volume>threshold select t.price)
within 60.0
select mean(p)

In the first example, the withinwindow contains all Tick events received in the last minute. In the
second example, the where clause is before the window definition so the filtering happens before
items enter the window. Consequently, the window contains only float items for which the where
predicate is true. These types of optimization are of particular benefit in queries that include both
a where clause and a join operation (equi-join or cross-join). However, care must be taken when
refactoring queries, particularly when size-based windows are involved. For example, consider
the two queries below:
from t in ticks retain 100 where t.price*t.volume>threshold

select mean(t.price)

from p in
(from t in ticks where t.price*t.volume>threshold select t.price)
retain 100 select mean(p)

These queries are not equivalent. The first query generates the mean of a subset of the last 100
items. The where predicate evaluated to true for only the items in the subset. The second query
generates the mean of the last 100 items for which the where predicate evaluated to true.

Generating query results
The last component of a stream is the required projection definition,which specifies how to generate
items for the query's output stream. A projection definition has the following syntax:
[group by groupByExpr[, groupByExpr]...] [having havingExpr]
select [rstream] selectExpr

DescriptionSyntax Element

Each groupByExpr is an expression that returns a value of a
comparable type. These expressions form the group key, which

groupByExpr

determines which group each output item is a part of. Any

218 Developing Apama Applications 10.11.2

5 Working with Streams and Stream Queries

DescriptionSyntax Element

aggregate functions in the having or select expression operate
over each group separately. See “Grouping output items” on
page 220.

The havingExpr expression filters output items. See “Filtering items
in projections” on page 221.

havingExpr

The value you specify for selectExpr defines the items that are the
result of the query. The correlator evaluates selectExpr to generate

selectExpr

each item that appears in the query's output stream. The type of
selectExpr identifies the type of the query's output stream.

A projection can be one of the following kinds:

A simple projection does not specify any aggregate functions, nor does it specify a group by or
having clause. A simple projection can be a simple istream projection or a simple rstream
projection.

An aggregate projection specifies at least one aggregate function across the having and select
expressions.

You can specify a group by clause as part of an aggregate projection. If there is a group by
clause, the group key must be one or more expressions that take the input event and return a
value of a comparable type.

You cannot specify rstream in an aggregate projection.

The following table describes the kinds of expressions that can appear in the select expression
for each type of projection. In more complex expressions, the rules apply similarly to each
sub-expression within that expression.

ExampleDescriptionValid in
Projections

Kind of
Expression

select currentTime;An external variable,
constant, or method

Simple and
aggregate

Non-item
expression

call. It does not refer to
any of the input items.

select a.i;Areference to the input
itemor a non-aggregate

SimpleItem
expression

select sqrt(a.x)*5.0/a.yexpression that
contains at least one
reference to the input
item.

Developing Apama Applications 10.11.2 219

5 Working with Streams and Stream Queries

ExampleDescriptionValid in
Projections

Kind of
Expression

group by a.i/10 select
(a.i/10)*mean(a.x);

An expression that
returns one of the
group keys can also
occur in the projection.

AggregateGroup key
expression

select mean(a.i);An expression that
contains at least one

AggregateAggregate
function
expression aggregate function.

Arguments to the
aggregate function can
include item
expressions.

Note:
An expression might not be syntactically equivalent to a group by expression even though it
might appear to be equivalent. For example, if the group by expression is a.i*10, you cannot
specify 10*a.i as an equivalent expression. An equivalent group by expression must contain
the exact sub-expression specified in the group by clause.

Aggregating items in projections

An aggregate function calculates a single value over a window. If a select expression contains
any aggregate functions, then references to the input item can appear only in the arguments to
those aggregate functions. Any EPL expression can appear in the arguments to the function, but
other aggregate functionsmay not. EPL provides several built-in aggregate functions and you can
define additional ones. See “Defining custom aggregate functions” on page 223 and “Built-in
aggregate functions” on page 666.

Grouping output items

In a select clause, when you do not specify a group by clause any aggregate functions in the
projection operate on all values in the window. This is true even if you partitioned the window.
To group the items in the window into one or more separate groups and to calculate an aggregate
value for each group of items, use the group by clause. The syntax of the group by clause is as
follows:
group by groupByExpr[, groupByExpr]...

Each groupByExpr is an expression that returns a value of a comparable type. See “Comparable
types” on page 617.

These expressions form the group key, which determines which group each output item is a part
of. Any aggregate functions in the select expression operate over each group separately.

220 Developing Apama Applications 10.11.2

5 Working with Streams and Stream Queries

In an aggregate projection, you can refer to any group key expressions anywhere in the select
expression. However, you can refer to a query input item only in an aggregate function argument.
For example:
from t in all Tick() within 30.0

group by t.symbol select TickAverage(t.symbol, mean(t.price));

Whenever a lot arrives, this query updates one or more groups. Every group that is updated
outputs a TickAverage event, and all TickAverage events are in the same lot. Each TickAverage
event contains the symbol and the average price for that symbol over the last thirty seconds. If a
group is not updated, it does not output a TickAverage event.

You typically use a group by clause in a stream query in conjunction with a partition by clause.
In the following example, thewindow contains up to 10 events for each stock symbol. The aggregate
projection calculates the average price separately for each symbol and each average is based on
up to 10 events:
from t in ticks partition by t.symbol retain 10

group by t.symbol select mean(t.price);

Obtaining the query's remove stream (rstream)

For each query, there are items that have been added to the window in a given query activation
and items that have been removed (they were previously in the window, but are no longer in the
window). By default, a simple, non-aggregate projection returns the items that have been added
to the window. This is the insert stream (istream). To obtain the items that have been removed
from the window, add the rstream keyword to the select clause.

For aggregate projections, obtaining the remove stream is notmeaningful, and therefore the rstream
keyword is not allowed in aggregate projections.

For examples of specifying rstream, see “Defining time-based windows” on page 203, “Defining
size-based windows” on page 204, “Defining cross-joins with two from clauses” on page 213 and
“Defining equi-joins with the join clause” on page 215.

When you specify retain all, you cannot specify rstream.

Filtering items in projections

In a stream query, as part of an aggregate projection definition, you can optionally specify a having
clause to filter the items produced by the projection. The having clause specifies an arbitrary EPL
expression and can filter items based on any criteria available to EPL. The syntax of the having
clause is as follows:
having booleanExpr

Replace booleanExprwith a Boolean expression. This expression is referred to as the having
predicate. The having predicate is evaluated for each lot that arrives. When the having predicate
evaluates to false, the projection does not generate output.

Unlike the where clause, the having clause

Is part of the projection

Developing Apama Applications 10.11.2 221

5 Working with Streams and Stream Queries

Filters the output of the projection rather than what comes into the projection

Cannot refer to individual items

Can refer only to the group key or aggregates

A having clause can only be in an aggregate projection; it cannot be in a simple projection. Each
aggregate projectionmust contain at least one aggregate in a having clause or in the select clause.
Values for aggregates, whether in having expressions or select expressions, are always calculated
over the same window(s). See “Grouping output items” on page 220.

For example:
from t in all Temperature() within 60.0

having count() > 10
select mean(t.value)

This query calculates a rolling average of temperatures over the last minute. In this stream query,
the having clause permits the average to be output only when it is a reliable measure. The count()
aggregate function ensures that there are sufficient measurements (at least 10) in the previous 60
seconds to compensate for any noise or one-off errors in the readings.

Because the filtering occurs after the select expression has been processed, the average is still
being calculated invisibly in the background, and can be output the verymoment themeasurement
passes the reliability criterion. In the previous example, thismeans that after ten items have arrived,
the average of all values in the last minute is output.

Filtering grouped aggregate projections

If you specify the group by clause, the having clause operates separately on each group, just as the
select clause operates separately on each group. For example, the following code changes the
previous code so that it outputs a reliable rolling average for each zone:
from t in all Temperature() within 60.0

group by t.zone
having count() > 10
select ZoneAverage(t.zone, mean(t.value))

Just as a distinct mean is output for each group (each zone), the criterion for the having expression
are applied separately to each group. A rolling average for a zone is output only when count() >
10 is true for that zone.

Performance

It is possible for the stream network to avoid some calculations in a select clause when the having
clause evaluates to false. Since maintaining aggregates can be expensive, this can be a useful
optimization. When you know that a having clause can often evaluate to false, you can obtain
better performance by specifying a having clause in the stream query as opposed to specifying a
query like this:
from t in all Ticks(symbol="APMA") within 60.0 * 10.0

select MeanStddev(mean(t.value), stddev(t.value)) as avg_sd {
if(shouldOutput()) {

222 Developing Apama Applications 10.11.2

5 Working with Streams and Stream Queries

send avg_sd to "output";
}

}

This query computes a rolling average and standard deviation over the last tenminutes of a stock,
and sends them to a dashboard or similar. Optionally, the output feed that sends out the rolling
average and standard deviation can be turned off, and this is indicated by the return value of the
shouldOutput() action. However, even when the output is turned off, Tick events still come in
and the stream network still calculates the rolling average and standard deviation.

You can rewrite the code such that turning off the output terminates the query and turning on the
output restarts the query. This option loses the state of the window and introduces a 10-minute
lag before accurate output is available. A better option is to add a having clause so that turning
off the output removes the performance penalty without losing state. For example:
from t in all Ticks(symbols="APMA") within 60.0 * 10.0

having shouldOutput()
select AvgStddev(mean(t.value), stddev(t.value)) as avg_sd {

send avg_sd to "output";
}

The mean() and stddev() aggregates continue to accumulate state when shouldOutput() returns
false, but they do not fully calculate the rolling average and standard deviation for each incoming
item.

IEEE special values in stream query expressions
The following information about IEEE special values applies to the following expressions:

The key expression in a with unique clause

A partition by expression

The expressions that define the conditions in a join clause

A group by expression

If one of these expressions is a decimal or float value, or a container that involves a decimal or
float value, and the decimal or float value is an IEEE special value, then the following applies:

NaN—This value is illegal as all or part of an expression and terminates themonitor instance.

Positive/negative infinity — These values are legal and all positive infinities are treated as
equal as are all negative infinities.

Defining custom aggregate functions
EPL provides a number of commonly used aggregate functions that you can specify in the select
clause of a query. See “Aggregating items in projections” on page 220. If none of these functions
perform the operation you need, you can define a custom aggregate function. The format for
defining a custom aggregate function is as follows:
aggregate [bounded|unbounded] aggregateName ([arglist])

Developing Apama Applications 10.11.2 223

5 Working with Streams and Stream Queries

returns retType { aggregateBody }

DescriptionElement

Specify boundedwhen you are defining a custom aggregate
function that will work with only a boundedwindow. That
is, the query cannot specify retain all.

bounded | unbounded

Specify unboundedwhen you are defining a custom
aggregate function that will workwith only an unbounded
window. That is, the query must specify retain all.

Do not specify either bounded or unboundedwhen you are
defining a custom aggregate function that will work with
either a bounded or an unbounded window.

If you do not specify bounded, you must define the custom
aggregate function so that it can handle awindow that never
removes items. The function should not consume memory
per item in the window.

Specify a name for your aggregate function. This is the name
you will specify when you call the function in a select
clause.

aggregateName

For details about the characters you can specify, see
“Identifiers” on page 711.

Optionally, specify one or more comma-separated
type/name pairs. Each pair indicates the type and the name

arglist

of an argument that you are passing to the function. For
example, (float price, integer quantity).

Specify any EPL type. This is the type of the value that your
function returns.

retType

The body of a custom aggregate function is similar to an
event body. It can contain fields that are specific to one

aggregateBody

instance of the custom aggregate function and actions to
operate on the state. The init(), add(), remove() and
value() actions are special. They define how streamqueries
interact with custom aggregate functions.

You define custom aggregate functions outside of an event or a monitor, and the function's scope
is the package inwhich you declare it. To use custom aggregate functions in other packages, specify
the function's fully-qualified name, for example:
from a in all A() select com.myCorporation.custom.myCustomAggregate(a)

Alternatively, you can specify a using statement. For example, suppose you define the
myCustomAggregate() function in the com.myCorporation.custom package. To use that function

224 Developing Apama Applications 10.11.2

5 Working with Streams and Stream Queries

inside another package, insert a statement such as the following in the file that contains themonitor
in which you want to use the function:
using com.myCorporation.custom.myCustomAggregate;

Insert the using statement after the optional package declaration, but before any other declarations.
You can then simply specify the function name. For example:
from a in all A() select myCustomAggregate(a)

Be sure to inject the file that contains the function definition before you inject the files that contain
monitors that use the function.

See also “Names” on page 717.

Example of defining a custom aggregate function
The following example shows the definition of a custom aggregate function that returns the
weighted standard deviation of the input values.
aggregate bounded wstddev(float x, float w) returns float {

// 1st argument is the value, 2nd is the weight.
float s0;
float s1;
float s2;
action add(float x, float w) {

if (w != 0.0) {
s0 := s0 + w;
s1 := s1 + w*x;
s2 := s2 + w*x*x;

}
}
action remove(float x, float w) {

if (w != 0.0) {
s0 := s0 - w;
s1 := s1 - w*x;
s2 := s2 - w*x*x;

}
}
action value() returns float {

if (s0 != 0.0) { return ((s2 - s1*s1/s0)/s0).sqrt(); }
else { return float.NAN; }

}
}

Defining actions in custom aggregate functions
Certain actions in a custom aggregate function have special meanings, and you must define them
as follows:

init()—The init() action is optional. If a custom aggregate function defines an init() action,
it must take no arguments and must not return a value. The correlator executes the init()
action once for each new aggregate function instance it creates in a stream query.

Developing Apama Applications 10.11.2 225

5 Working with Streams and Stream Queries

add()—A custom aggregate functionmust define an add() action. The add() actionmust take
the same ordered set of arguments that are specified in the customaggregate function signature.
That is, the names, types, and order of the arguments must all be the same. The correlator
executes the add() action once for each item added to the set of items that the aggregate function
is operating on.

remove()—A bounded aggregate function must define a remove() action. An unbounded
aggregate function must not define a remove() action. If you do not specify either bounded or
unbounded, the remove() action is optional. The remove() action must take the same ordered
set of arguments as the add() action and must not return a value. The correlator executes the
remove() action once for each item that leaves the set of items that the aggregate function is
operating on. The value that remove() is called with is the same value that add()was called
with.

value()—All custom aggregate functions must define a value() action. The value() action
must take no arguments and its return type must match the return type in the aggregate
function signature. The correlator executes the value() action once per lot per aggregate
function instance and returns the current aggregate value to the query.

Custom aggregate functions can declare other actions, including actions that are executed by the
above named actions. A custom aggregate function cannot contain a field whose name is
onBeginRecovery, onConcludeRecovery, init, add, value, or remove, even if, for example, the custom
aggregate function does not define a remove() action.

Overloading in custom aggregate functions
Aswith event types, the names of custom aggregate functions must be unique. Unlike the built-in
aggregate functions, there is no overloading, so it is not possible to declare two aggregate functions
with the same name and different parameters or two aggregate functions with different bounded
and unbounded specifiers and the same name. For example:
aggregate unbounded max(float value) returns float {...}
aggregate bounded max(float value) returns float {...}

// Error! You cannot use the same function name.

aggregate unbounded maxu(float value) returns float {...}
aggregate bounded maxb(float value) returns float {...}

// Both of these queries are correct. They have different names.

In contrast, the built-in bounded and unbounded aggregate functions are overloaded.

Distinguishing duplicate values in custom aggregate functions
Each item in a stream is considered to be unique. However, when duplicate values appear in the
set of items that a custom aggregate function operates on, it is not possible for the function to
identify the particular instance of the value. If your implementation requires being able to
distinguish between instances of duplicate values, you can accomplish this by extending the
signatures of the function's add() and remove() actions.

For example, you might see the following set of float values in a stream:

226 Developing Apama Applications 10.11.2

5 Working with Streams and Stream Queries

1.0 2.0 3.0 4.0 3.0 2.0 1.0

Each occurrence of a particular value in the stream represents an individual value, separate from
any other occurrences of that value. But when a query presents these values to a custom aggregate
function (by means of the add() and remove() actions), the value alone is not enough to identify
the particular occurrence that this value represents.

To distinguish one occurrence from another, extend the action signatures as follows:

The add() action can return a value, which can be of any type.

If the add() action does return a value, then the remove() actionmust accept, as its last argument
in addition to its standard arguments, an argument of the same type as that returned by the
add() action.

When an item is added to the aggregate, the value returned by the add() action is stored with the
item.When that item is removed from the aggregate, the same valuewill be passed to the remove()
action. Thus, it is possible to distinguish between items with duplicate values by comparing the
additional data that is passed to the remove() action.

The following example shows an aggregate function that returns the entire window contents, in
order, as a sequence:
aggregate windowOf(float f) returns sequence<float> {

dictionary<integer,float> d;
integer i;
action init() { d.clear(); i := 0; }
action add(float f) returns integer {

i := i+1;
d[i] := f;
return i;

}
action remove(float f, integer k) { d.remove(k); }
action value() returns sequence<float> { return d.values(); }

}

Working with lots that contain multiple items
Each time a stream query or stream listener is activated, it might be processing more than one
item at a time. Each simultaneously processed group of items is referred to as a lot. Like an auction
lot, a lot can contain just one item or it can contain a number of items. Stream listeners can be
activated once per item or once per lot. Stream queries try to process each item in a lot as if it
arrived separately. See “Behavior of stream queries with lots” on page 228 for a discussion of cases
where this is not possible.

When a lot contains multiple items, all items in the lot appear in the output stream at the same
time. However, the correlator preserves the order in which the stream query generated the items
in the lot. When that output stream is the input stream for another stream query, the subsequent
query uses the preserved order, if necessary, to determine how to process the items.

Developing Apama Applications 10.11.2 227

5 Working with Streams and Stream Queries

Stream queries that generate lots
To generate a lot that contains multiple items, a stream query must specify a simple projection or
an aggregate projection that contains a group by clause. The stream query must also either receive
lots that contain multiple items or must contain one of the following:

A batched window.

A timed window with the rstream keyword (this must be a simple projection, and not an
aggregate projection).

A join of either type.

A query with a non-grouped aggregate projection never generates multiple items. It generates a
single item or nothing.

A timedwindowwith the rstream keyword can generate lots because multiple items can have the
same timestamp. In a timed window, when items with the same timestamp expire, they all leave
the window at the same time. However, the correlator still maintains the order in which the items
were generated or received.

Behavior of stream queries with lots
This topic provides advanced information about how queries process lots that they receive on
their input streams. The information here requires a thorough understanding of streams, queries,
and the information about lots presented so far.

To understand how stream queries behave when receiving lots that contain more than one item,
consider the window content of the query before the lot is input and the window content of the
query after the lot is input. The difference between these two states determines the output of the
query. For example, consider the following queries:
// event A { float x; }
stream<A> sA := from a in all A() retain 3 every 3 select a;
stream<float> sB := from a in sA select a.x;
stream<float> sC := from a in sA select sum(a.x);

The following diagram shows the lot output by each stream on each activation of the query.

228 Developing Apama Applications 10.11.2

5 Working with Streams and Stream Queries

As can be seen, in the queries that contain aggregate functions, the aggregate expressions (and
projections) are evaluated, at most, once per query activation. All queries, with the exception of
those containing a group by clause, behave in this way.

Size-based windows and lots

When a size-based window is processing a lot that contains more than one item, all of the items
are processed in the window before any of the rest of the stream query is processed. None of the
intermediate states are visible to the query. This means that in the following query:
from a in sA retain 3 select sum(a.i);

if the window contains the events A(1), A(2) and A(3) and a lot containing both A(4) and A(5)
arrives, those will displace A(1) and A(2) immediately. The state of the window A(2), A(3), A(4)
will never have existed. This is more relevant when the lot contains more items than will fit in the
window. In this case, if five more events arrived in a single lot, the three events will fall out of the
window, the last three events will go into the window and the two interim events will disappear
– never having been in the window at any point.

This behavior means that care must be taken with fixed-size windows when events might be
processed in lots.

Join operations and lots

The principle of updating the state of a query in a single operation without the intermediate state
being visible is most relevant for join operations. The two diagrams that follow illustrate how a
cross-join behaves when several events arrive in a single lot.

Developing Apama Applications 10.11.2 229

5 Working with Streams and Stream Queries

In the diagrams, the items on the left side of the join are represented by the numbered items that
come in from the left side, and the items on the right side of the join are represented by the lettered
items that come in from the top. Each square in the grid can be a joined event. In both diagrams,
the results of the join before the lot arrives are mostly highlighted in blue. The items joined after
the lot arrives are mostly highlighted in teal. The relevant stream query in both examples is:
from a in sA retain 3

from b in sB retain 3
select C(a, b);

The complete set of values in the table represents all of the combinations of items from sA and
items from sB that could possibly be generated by the join when considering alternative ways of
ordering the sA and sB items arriving in the lot. In general, there is no particular ordering of the
sA and sB items that is superior (moremeaningful) than all other orderings. Thus,when considering
the transitions, there is no preferred path from the initial window content to the final window
content. Hence, it is considered that the correct output for the join is achieved by taking the
difference between the initial window content and the final window content, ignoring any
intermediate states.

In the first diagram, there are nine joined events before the lot arrives. These are represented by
the seven blue squares and the two orange squares. Two items, 4 and 5, arrive on sA and displace
items 1 and 2. Also, one item, d, arrives on sB. and displaces item a. The result is nine joined events
after the lot arrives, of which two were there before (represented by the two orange squares, and
seven are new, represented by the teal squares. A non-aggregating query that outputs the istream
(as given above) would return the seven new items (shown in teal). If, instead, the query was
selecting the rstream, then it would return the seven items that are no longer a result of the join
(shown in blue).

230 Developing Apama Applications 10.11.2

5 Working with Streams and Stream Queries

In the second example, there are again nine joined events before the lot arrives. These are
represented by the nine blue squares. Four items, 4, 5, 6, and 7 arrive on sA and displace items 1,
2, and 3. Because this is a retain 3window, item 4, as the oldest item in the lot, never makes it
into thewindow. Also, items d, e, f, and g arrive on sB, which displaces items a. b, and c, and again,
because it is a retain 3window, item d never appears in the window. After the lot arrives, the
result is nine new joined events, which are represented by the teal squares.

Since there are no joined events that are present both before the lot arrives and after the lot arrives,
all nine events that were previously the result of the join would be returned by a query selecting
the remove stream of this join. The nine new events are output by the query that selects the input
stream. No events containing either 4 or d are ever visible as a result of the query, even though
both values were present on one of the inputs.

Grouped projections and lots

Suppose that a query that contains a group by clause processes a lot that contains several items.
The query generates new projected items for the groups where the state of the group after the lot
is input differs from the state of the group before the lot is input.

Stream network lifetime
After you create a stream or stream listener, it exists until one of the following happens:

You explicitly terminate it.

The monitor that contains the stream or stream listener terminates.

Developing Apama Applications 10.11.2 231

5 Working with Streams and Stream Queries

You terminate another stream or stream listener in the same stream network and that causes
the stream or stream listener to terminate.

A stream or stream listener is explicitly terminated by calling the quit()method on a variable
that refers to it. Hence, to explicitly terminate a streamor stream listener, youmust retain a reference
it. You can also terminate a stream or stream listener by terminating a related stream or stream
listener in the same stream network (as detailed below).

You can create a stream or stream listener that is not referenced by any variable and cannot be
terminated by quitting any other streams or stream listeners in the stream network. If this is
unintentional, then we refer to it as a stream or stream listener leak. This situation is similar to an
event listener leak (see “Avoiding listeners andmonitor instances that never terminate” onpage 447).
Here is an example:
action createStreamListener() returns listener {

stream <A> sA := all A();
listener l := from a in all A() select a.x as x { print x.toString(); }
return l;
// error: meant to use sA in the query above

}

Although executing the code returns a listener variable that refers to the created stream listener,
it inadvertently creates an unreferenced stream (the local variable sA did refer to this stream but
is no longer in scope).

Calling quit() on a stream or stream listener in a stream network typically has side effects. A side
effect can be one of the following:

Termination of additional streams, streamqueries, stream listeners, or stream event expressions.

Disconnection between the terminated element and another element.

When determining which queries to terminate, the correlator uses the following rule: when, due
to another stream or query terminating, a query can no longer generate any output, it is also
terminated. For example, the following diagram shows a stream network with two stream source
templates generating input events for five queries, eventually connected to two stream listeners.
There are four stream variables pointing to the streams in the network.

232 Developing Apama Applications 10.11.2

5 Working with Streams and Stream Queries

Suppose you call quit() on either r6 or r7 (the stream variables on the right). The correlator
terminates the whole of the branch from Query D down. This is because, whichever stream you
quit, nothing can be generated by anything connected to those streams. stream 4, however, is also
feeding Query C, which can still generate output. Therefore, the rest of the network, including
Query B and both stream event expressions, remains active.

If you subsequently call quit() on r5, this will terminate the stream listener and Query C, which
will then terminate stream 3 and stream 4, since they are not connected to any other queries, and
also stream 1, stream 2 and both stream source templates.

The stream variables after their streams are terminated will be dummy references. Subsequent
attempts to create a query using those streams are ignored (the result is an inert stream).

Disconnection vs termination
In the example above, quitting r6 disconnects Query D from stream 4. Because stream 4 has other
stream queries using it, this disconnection does not terminate stream 4 immediately. Streams
terminate when all the queries using them have disconnected.

If you were instead to call quit() on r4, this would terminate everything on the right side of the
diagram, no matter how many queries are using stream 4. However, the stream would just be
disconnected from Query C. Whether this terminates Query C depends on the state of the join in
Query C. If it is joining a size-basedwindow from stream 4, the items in thewindowwould remain
to be joined against new items in stream 3. If it was a time-based window, then Query Cwould
remain until everything in the window had been discarded. At that point, since nothing can ever

Developing Apama Applications 10.11.2 233

5 Working with Streams and Stream Queries

be added to that side of a join, Query C terminates, causing the rest of the network to also be
terminated.

Rules for termination of stream networks
The complete set of rules for when a part of a stream network is terminated are:

Stream listeners:

quit() is called on a listener variable pointing at that stream listener.

The stream the listener is connected to is terminated.

Streams:

quit() is called on a stream variable pointing at that stream.

The stream query generating the stream is terminated.

All the stream queries using the stream are terminated.

Stream queries:

The stream the query generates is terminated.

All of the streams the query uses are terminated and either the query does not define a
window or it defines a within or within...everywindow and there are no live items in
the window.

A live item is an item whose expiration (the item falls out of the window) can cause query
output. For example, if the only items in a timed window fail to satisfy a where clause in
the window definition, then those items cannot change query output when they expire.

If none of the items in thewindow are live, the query terminates when all items have fallen
out of the window. However, the query might terminate earlier if the correlator can
determine that none of the items are live and that all streams that the query uses have
terminated. Regardless of when such a query quits, there are no observable effects except
in two situations:

The query is the only thing keeping the monitor active. That is, when the query
terminates, then the monitor's ondie() action is called.

Calculation of the size of the window has one or more side effects.

Stream source templates:

The stream the stream source template generates is terminated.

Using dynamic expressions in stream queries
The expressions in stream queries can contain variables and action calls from EPL. Unlike
parameters to event templates, the correlator evaluates these expressions each time the query is

234 Developing Apama Applications 10.11.2

5 Working with Streams and Stream Queries

used and not just when it is created. This allows the behavior of the query to be altered during
program execution.

Behavior of static and dynamic expressions in stream queries
A static expression is an expression that refers to only static elements. Static elements are:

Constants (defined with the constant keyword)

Literal values, for example:
from a in all A() within 20.0 select sum(a.i);

Primitive types that are local variables, for example:
integer width := 10;
from a in all A() retain width select sum(a.i);

The correlator can fully evaluate static expressions when it creates the stream query.

A dynamic expression is an expression that refers to one or more dynamic elements. In a query,
the value of a dynamic expression can change throughout the lifetime of that query. Consequently,
the correlator must re-evaluate each dynamic expression at appropriate points in the execution of
the query.

Dynamic elements are:

Any reference type

Any monitor global variable

Where the stream query is created by an action on an event, the members of that event

Any action, method or plug-in call

The correlator fully evaluates an event template in a stream source template when the correlator
creates the query. For example, consider the following two queries:
from a in all A(id=currentMatch) select a;
from a in all A() where id = currentMatch select a;

During execution, if currentMatch is a global variable, a change to the value of currentMatch affects
the behavior of the second query, but it does not affect the behavior of the first query.

When to avoid dynamic expressions in stream queries
Where possible, use static expressions in preference to dynamic expressions. This allows the
compiler to optimize the query to improve performance. For example, consider the following
query:
stream<float> vwaps := from t in all ticks

within vwapPeriod
select wavg(t.price,t.volume);

Developing Apama Applications 10.11.2 235

5 Working with Streams and Stream Queries

When vwapPeriod is a monitor global variable whose value does not change, then it is preferable
to copy the value to a local variable first. For example:
float period := vwapPeriod;
stream<float> vwaps := from t in all ticks

within period
select wavg(t.price,t.volume);

Similarly, if it is known that a given action call always returns the same value, then it is preferable
to copy the result to a local variable and use this in place of the action call. For example:
float period := getVwapPeriod(symbol);
stream<float> vwaps := from t in all ticks

within period
select wavg(t.price,t.volume);

Ordering and side effects in stream queries
To determine when it is safe to use dynamic expressions in stream queries, it is important to
understand that:

In a query, the order in which the correlator executes the action calls is not defined. Although
the order is not defined, the correlator always executes the action calls in the same order for
a particular Apama release.

When processing each item passed to the query, if an action call with a given set of arguments
appearsmultiple timeswithin a streamquery, then the number of times the correlator executes
the action is not specified. It might be equal to or less than the number of times that the action
call appearswithin the query. However, this number is always the same for a particular release.

In a streamnetwork, the order inwhich the correlator executes the queries is not defined except
for when the output of a query forms the input to a second query. In this case, the correlator
always executes the first query before the second. Again, in a particular release, the execution
order is always the same.

Because of these points, it is best to avoid actions with side effects in expressions executed in
stream queries. Such actions canmake a programmore difficult to understand and debug. Instead,
execute any such actions in stream listeners.

Amethod or expression that produces a value has a side effect if it modifies something or interacts
with something outside the program. This includes, but is not limited to:

Modifying a global variable

Changing the value of an argument

Calling plug-in methods

Routing, enqueuing, emitting or sending an event

Calling another action that has side effects

Setting up event listeners or new streams

236 Developing Apama Applications 10.11.2

5 Working with Streams and Stream Queries

Understanding when the correlator evaluates particular
expressions
All expressions in a stream query can contain dynamic elements. To understand the behavior of
a query that specifies dynamic elements, it is necessary to know under what circumstances the
correlator re-evaluates an expression and uses the result in the query.

Using dynamic expressions in windows

A window definition can contain some or all of the following:

A partition key expression

The window duration, size or both duration and size

An every batch period or size

The key for a with unique clause

The following table shows when the correlator evaluates each of these:

DescriptionWindow Definition

The correlator evaluates n every time an item arrives on the stream.
The correlator uses the new value of n to calculate what should be
in the window.

retain n

The correlator stores incoming items until the current value of m
is satisfied.When m is satisfied, the correlator evaluates both n and

retain n every m

m. The correlator uses the new value of n to calculate what should
be in the window, including the stored items. Because m is
evaluated only after it has been satisfied, meeting that condition
is always based on the old value of m.

The correlator evaluates d every time an item arrives on the stream
and every time an item is due to be removed from the window.

within d

The correlator uses the new value of d to calculate what should be
in the window.

The correlator stores incoming items until p seconds have elapsed.
When p seconds have elapsed, the correlator evaluates p and d

within d every p

only if there are any items in the window or stored. The correlator
uses the newvalue of d to calculatewhat should be in thewindow,
including stored events. The correlator uses the new value of p to
determine the next time the window can change.

If there are no items in thewindoworwaiting to enter thewindow
then, for efficiency, the correlator does not evaluate p. When the
correlator evaluates p, it is always based on the old value of p.

Developing Apama Applications 10.11.2 237

5 Working with Streams and Stream Queries

DescriptionWindow Definition

If a within or within everywindowdefinition also specifies retain,
the correlator evaluates nwhenever the window content can

...retain n

change. The correlator uses the new value of n to calculate what
should be in the window.

If the window definition specifies every, the window content can
change only when p is satisfied.

Otherwise, the window content can change when an item arrives
on the stream and when an item is due to be removed from the
window.

If the window definition specifies a timed every p clause, the
correlator evaluates each partition expression when p seconds

partition by k1[, k2]...

have elapsed. Otherwise, the correlator evaluates each key
expressionwhen an item arrives on the stream. The correlator uses
the new value of each key expression to calculate what should be
in each partition.

The correlator evaluates w once for each item whenever that item
is about to enter the window. If there is an every clause, an item

with unique w

can enter the window only when m or p is satisfied. Otherwise, an
item can enter the window when it arrives on the stream.

Using dynamic expressions in equi-joins

The format of a query that contains an equi-join is as follows:
from x in s1 join y in s2 on j1 equals j2 ...

Suppose that j1 and j2 are dynamic expressions that return the left and right join keys for each
input item. The correlator evaluates these expressions once for each input item when it enters the
window. This is regardless of how many items are joined from the other side.

Using dynamic expressions in where predicates

The correlator evaluates the predicate in a where clause once for each item. This happens as soon
as a join operation produces an item, or if there is no join operation, as soon as an item enters a
window.

Using dynamic expressions in projections

In a simple projection, the correlator evaluates the select expression once for each item. The
correlator evaluates the select expression as soon as a join operation produces an item, or if there
is no join operation, as soon as an item enters a window.

238 Developing Apama Applications 10.11.2

5 Working with Streams and Stream Queries

In a simple projection, regardless of whether the select clause specifies the rstream keyword, the
correlator evaluates expressions in the projection when the items would be present on the insert
stream and the results are stored until needed for the remove stream.

In an aggregate projection, the correlator evaluates expressions in the projection when the items
would be present on the insert stream.

If an aggregate projection contains a group by clause the correlator evaluates the group key once
for each item. This happens as soon as a join operation produces an item, or if there is no join
operation, as soon as an item enters a window.

The correlator evaluates aggregate and grouped expressions in two stages. The correlator evaluates
arguments to aggregate functions once for each item as soon as it is produced by a join or if there
is no join, as soon as it arrives in the window. The correlator evaluates the rest of the aggregate
expression once for each lot.

Examples of using dynamic expressions in stream queries
Following are some examples of using dynamic elements in stream queries. These examples are
simplified, for brevity.

Example of altering query window size or period

The following code fragment shows part of a monitor that accepts requests from external entities
to monitor/generate the volume-weighted average price (VWAP) for a given symbol. After you
create a monitor like this, an external entity can, at any time, change the parameters that control
the period overwhich themonitor calculates the VWAP and/or the output frequency of the VWAP
events.
monitor VwapMonitor {

VwapRequestParams params;
action onload() {

on all VwapRequest() as v spawn monitorVwap(v);
// Simplified. Assumes no duplicate requests.

}
action monitorVwap(VwapRequest v) {

params := v.params;
from t in all Ticks(symbol=v.symbol)

within params.duration
every params.period
select Vwap(t.symbol,wavg(t.price,t.volume)) as vwap {

route vwap;
}

on all VwapRequestUpdate(symbol=v.symbol) as u {
params := u.params;

}
}

}

When accumulating the raw tick data to generate the VWAP price, no prescience is involved.
There is no anticipation that the window size is to be increased. Changing the within duration to
a larger value causes the window duration to increase but does not recover historic events. Hence
the effective sample duration over which themonitor calculates the VWAPwill, over time (as new

Developing Apama Applications 10.11.2 239

5 Working with Streams and Stream Queries

tick items arrive), extend from the smaller setting to the larger setting. When switching from a
larger withinduration to a smaller one, the change takes effect immediately. The correlator discards
the items that are no longer in the within duration.

Example of altering a threshold

The following code fragment shows part of a monitor that accepts requests from external entities
to monitor the value of the trades for a given symbol. After you create a monitor like this, an
external entity can, at any time, change the thresholds at which the monitor recognizes the trade
as a high value trade.
monitor CountHighValueTicks {

float threshold;
action onload() {

on all CountHighValueTicksRequest() as r {spawn
monitorHighValueTicks (r);

}
// Simplified. Assumes no duplicate requests.
}
action monitorHighValueTicks(CountHighValueTicksRequest r) {

threshold := r.threshold;
stream<Tick> filtered := from t in all Tick(symbol=r.symbol)

where t.price*t.volume > threshold
select t;

from t in filtered within 60.0 every 60.0 select count() as c {
print "Count of high value trades in previous minute: " +

c.toString();
}
on all CountHighValueTicksRequestUpdate(symbol=r.symbol) as u {

threshold := u.threshold ; }
}

}

This example uses two queries. The first query filters out any tickswith values below the threshold.
The second query accumulates the high-value ticks received in the last minute and outputs the
count of high-value ticks in that period. This could have been written as a single query with the
filtering performed after the window operation. For example:
from t in all Ticks(symbol=v.symbol) within 60.0 every 60.0

where t.price*t.volume > threshold select count();

However this query's window contains all of the low value ticks received in the last 60 seconds,
as well as the high value ticks. This is not an optimal use of memory resources. Hence the two
query approach is preferred.

Alternatively, you can specify an embedded query to amalgamate the two queries into a single
statement:
from t in

(from t2 in ticks where t2.price*t2.volume > threshold select t2)
within 60.0 every 60.0
select count() as c { ... }

The parentheses around the embedded query are optional.

240 Developing Apama Applications 10.11.2

5 Working with Streams and Stream Queries

Example of looking up values in a dictionary

The following statement shows a query that calculates the current value of a basket of stocks based
on themost recent prices for those stocks.When using dictionaries in this way, be careful to ensure
that all values used as keys are in the dictionary. A missing key value causes a runtime error and
the correlator terminates themonitor instance. In the example, it is assumed that the prices stream
was filtered to contain prices for only the stocks in the basket.
stream<Tick> basketPrices :=

from p in prices
partition by p.symbol
retain 1
select sum(p.price * basketVolume[t.symbol]);

Example of actions and methods in dynamic expressions

Actions and methods can be considered to be dynamic elements. There are various reasons why
you might want to use actions and methods in queries:

If you are using a particular common complex expression in several places in queries within
a monitor, it might be preferable to implement this as an action.

If you are using a method that is implemented in a plug-in.

To add protection to expressions that, if unprotected,might cause runtime errors. For example:
stream<Tick> basketPrices :=

from p in prices
partition by p.symbol
retain 1
select sum(p.price * getBasketVolume(t.symbol));
...

action getBasketVolume(string symbol) returns float {
if (basketVolume.hasKey(t.symbol)) {

return basketVolume[t.symbol];
} else {

return 0.0;
}

}

Troubleshooting and stream query coding guidelines
This section provides high-level guidelines for writing stream query applications that implement
best practices.

Prefer on statements to from statements
Do not use streams unnecessarily. If an event expression in an on statement meets your needs, use
it. Take advantage ofmixing code elements for listeners and event expressions, stream processing,
and responsive program actions, all in the same monitor.

Developing Apama Applications 10.11.2 241

5 Working with Streams and Stream Queries

Know when to spawn and when to partition
As a rule, you should listen for only those events or streams that you are interested in now. Apama
applications typically define monitors that spawn to handle a new situation, for example, to
automaticallymanage the trading of a new large order. Eachmonitor instance is usually interested
in only one particular substream of a larger stream, for example, Tick events for a particular stock
rather than all Tick events.

Consequently, the common pattern is to create a newmonitor instance and for that instance to set
up stream queries that process the events of interest, for example, to calculate the average price.
This ismore efficient than defining amonitor that processes all events (for example, all Tick events
for all stocks), generates added-value items and then forwards these items to client monitors.
However, there are situations when the latter approach is required. You should decide which
solution approach is best in which circumstances.

Filter early to minimize resource usage
Tominimize processing andmemory overhead, it is preferable to filter streams as early as possible
in the processing chain or network. Filtering early can reduce the number of items processed or
retained in memory and can also reduce the size of the items held. If possible, filter items right at
the beginning of the query chain, that is, in the event template.

For example, it is preferable to rewrite this query:
from l in all LargeEvent()

within largeWindowPeriod
where l.key = key
select mean(l.value);

If the key is static, rewrite it this way:
from l in all LargeEvent(key=key)

within largeWindowPeriod
select mean(l.value);

If the key is dynamic, rewrite it this way:
from v in

from l in all LargeEvent()
where l.key = key select l.value

within largeWindowPeriod select mean(v);

In the static case, the correlator filters the large event before the event gets to the window. In the
dynamic case, the embedded query filters the event before the event gets to the window in the
enclosing query. Because the select statement specifies only l.value, the correlator discards the
rest of the event. There is no need to bring the whole event into the window.

Avoid duplication of stream source template expressions
When you are maintaining code, you might add a stream query whose streamExpr is an event
template that is already used in a query elsewhere in the same monitor. However, duplicated

242 Developing Apama Applications 10.11.2

5 Working with Streams and Stream Queries

stream source template expressions do not always produce the behavior you want. Consider the
following two code fragments:
stream<float> means := from t in all Temperature()

within 10.0
select mean(t.temperature);

from t in all Temperature()
from m in means select t-m as d {

print "Difference from mean is " + d.toString();
}

The first fragment behaves differently than this fragment:
stream<float> temperatures := all Temperature();
stream<float> means := from t in temperatures

within 10.0
select mean(t.temperature);

from t in temperatures
from m in means
select t-m as d {

print "Difference from mean is " + d.toString();
}

Of the two code fragments above, the second one has the desired behavior. The first example
creates two event listeners, one for each all Temperature() clause. Each listener matches each
incoming Temperature event, but the listeners trigger independently, one after the other. This
means that there is no time when the second query has an item in each of its source streams.
Consequently, the cross-join never produces any output.

In the second example, there is a single Temperature event listener that places matching events in
the temperatures stream. The temperatures stream is the source stream for two queries. Now both
source streams of the last query contain items at the same time and the query generates output.

Avoid using large windows where possible
In Apama, all data being processed is held in memory, including data within stream windows. If
you specify query windows that contain a large number of items or hold items for a long period
of time, the memory that the application uses necessarily increases.

A memory requirement that is more than the memory available to the application causes paging
to occur, which can decrease application throughput. Where possible, consider reducing the size
of any stream query windows by doing one or more of the following:

Filter items to reduce the number or size of the items in the window.

Use a complex event expression to achieve the same result.

Use retain all instead of specifying a within clause. See “In some cases prefer retain all to a
timed window” on page 244 for details.

Developing Apama Applications 10.11.2 243

5 Working with Streams and Stream Queries

In some cases prefer retain all to a timed window
When you specify retain all in a streamquery, the correlator does not retain the items indefinitely.
The correlator processes each new itemwhen it arrives (for example, it might execute an aggregate
function) and then discards it. Consequently, queries that specify retain all use less memory
than queries that define time-based or size-based windows.

A situation that typically tempts you to define a time-basedwindow iswhen youwant to calculate
some aggregate values for a session. For example, a session could be from the start of a day to the
end of a day, or an incoming event could initiate a session that requires aggregated values such
as placing an order in an automated trading system.

After the session begins, interest in the aggregated values usually continues until the session ends,
for example, at the end or day or when the full volume of the placed order has been traded. In
situations such as these, use a retain allwindow instead of a within session window.

Prefer equi-joins to cross-joins
In a query using an equi-join, the items from the two input sets are joined based on equality of
key values. The identification of matching items is very efficient.

Cross-joins have no expressions, so it is more efficient to calculate them than equi-joins. However,
cross-joins are less preferable to equi-joins if they produce unwanted items thatmust subsequently
be filtered out.

Be aware that time-based windows can empty
Consider the query below:
from s in Shipment(destination="SPQ")

within 604800.0
select sum(s.qty)/count()

After creation of the query, suppose that several shipments are sent in the first week and no
shipments are sent in the secondweek. The value of the count() aggregate function drops to zero,
which results in an attempt to divide by zero. This terminates the monitor instance.

Be aware that fixed-size windows can overflow
Consider the following example:
stream<temperature> batchedTemperatures :=

from t in all Temperature(sensorId="S001")
within 60.0 every 60.0 select t;

from t in batchedTemperatures
retain 5
select count() as c { print c.toString(); }

During execution of the first query, suppose that more than 5 matching events are found within
one minute. The query outputs all of the matching events as a single lot. A lot that contains more

244 Developing Apama Applications 10.11.2

5 Working with Streams and Stream Queries

than 5 items overflows the retainwindow in the second query. All but the most recent five items
are lost. Calculations operate on only the most recent 5 items.

Note that you are unlikely to need the query combination shown in the code example above.

Beware of accidental stream leaks
Just as it is possible to leak event listeners, it is also possible to leak streams. Suppose that you
create a stream but you do not specify the stream as input to any query. This stream still remains
in existence, keeps a monitor instance alive, and consumes resources so it is considered to be a
stream leak. A stream leak causes memory to be used and not freed. It can also cause unnecessary
computation to occur.

A stream leak can happen if you create a stream that you want to use later on in your code. To be
able to use this stream, youmust assign it to a stream variable that is in scope in the locationwhere
you want to use the stream. If the stream variable goes out of scope or you assign another stream
to that variable, the original stream still existswithin themonitor instance's internal streamnetwork,
but it is no longer accessible. For example:

The stream variable that references the stream goes out of scope:
action streamLeakExample1(string s) {

stream<float> prices :=
from t in all Tick(symbol=s) select t.price;
... // If the elided code does not use the stream

} // a leak occurs when the prices variable goes out of scope.

You overwrite the stream variable that refers to an unused stream:
action streamLeakExample2(pattern<string> symbols) {

string s;
stream<float> prices;
for s in symbols {

prices := from t in all Tick(symbol=s) select t.price;
... // If the elided code does not use the prices stream

// a leak occurs when you overwrite prices.
}

}

Any code that creates a stream leak is erroneous. Code that repeatedly creates unused, inaccessible
streams quickly uses up machine resources. To avoid leaking streams:

Avoid creating streams you do not intend to use immediately.

Quit a stream before the variable referring to it goes out of scope.

Developing Apama Applications 10.11.2 245

5 Working with Streams and Stream Queries

246 Developing Apama Applications 10.11.2

5 Working with Streams and Stream Queries

6 Defining What Happens When Matching Events

Are Found

■ Using variables ... 248

■ Defining actions .. 252

■ Defining static actions .. 264

■ Getting the current time .. 265

■ Generating events .. 266

■ Handling the any type ... 271

■ Handling any values of different types with the switch statement 274

■ Assigning values .. 275

■ Defining conditional logic with the if statement ... 275

■ Defining conditional logic with the ifpresent statement ... 276

■ Defining loops ... 277

■ Exception handling ... 278

■ Logging and printing ... 281

■ Sample financial application ... 285

Developing Apama Applications 10.11.2 247

In a monitor, when the correlator detects a matching event, it triggers the action defined by the
listener for that event. This section discusses what you can specify in the triggered actions.

In a query, when a match set is found, it triggers execution of the procedural code block in the
find statement. A subset of the EPL constructs that are available in a monitor are available in a
query. See “Restrictions in queries” on page 134 to understand what is not allowed in a query.

Using variables
EPL supports the use of variables in monitors. Depending on where in the monitor you declare a
variable, that variable is global or local:

Global. Variables declared in monitors and not inside actions or events are global variables.
Global variables are in monitor scope.

Local. Variables declared inside actions are local variables. Local variables are in action scope.

A variable can be of any of the primitive or reference types that are listed under “Types” on page 607
in the EPL Reference.

Information about variables is presented in the topics below.

See also “Using action type variables” on page 257.

Using global variables
Variables in monitor scope are global variables; you can access a global variable throughout the
monitor. You can define global variables anywhere inside a monitor except in actions and event
definitions. For example:
monitor SimpleShareSearch {

// A monitor scope variable to store the stock received:
//
StockTick newTick;

This declares a global variable, newTick, that can be used anywhere within the SimpleShareSearch
monitor including within any of its actions.

The order does not matter. In the following example, f is a global variable:
monitor Test {

action onload() {
print getZ().toString();

}
action getZ() returns integer {

return f.z;
}
Foo f;
event Foo{

integer z;
}

}

248 Developing Apama Applications 10.11.2

6 Defining What Happens When Matching Events Are Found

If you do not explicitly initialize the value of a global variable, the correlator automatically assigns
a value to that global variable. See also “Default values for types” on page 610.

Using local variables
A variable that you declare inside an action is a local variable. You must declare a local variable
(specifying its type) and initialize that variable before you can use it.

Although the correlator automatically initializes global variables that were not explicitly assigned
a value, the correlator does not do this for local variables. For local variables, you must explicitly
assign a value before you can use the variable.

If you try to inject an EPL file that declares a local variable and you have not initialized the value
of that local variable before you try to use it, the correlator terminates injection of that file and
generates a message such as the following: Local variable 'var2' might not have been
initialized. EPL requires explicit assignment of values to local variables as a way of achieving
the best performance.

When you declare a variable in an action, you can use that variable only in that action. You can
declare a variable anywhere in an action, but you can use it only after you declare it and initialize
it.

For example,
action anAction(integer a) returns integer {

integer i;
integer j;
i := 10;
j := a;
return j + i;

}

You can use the local action variables, i and j in the action, anAction(), after you initialize them.
The following generates an error:
action anAction2(integer a) returns integer {

i := 10; // error, reference to undeclared variable i
j := a; // error, reference to undeclared variable j
integer i;
integer j;
i := 2;
j := 5;
return j + i;

}

Suppose that an action scope variable has the same name as a monitor scope variable. Within that
action, after declaration of the action scope variable, any references to the variable resolve to the
action scope variable. In other words, a local action variable always hides a global variable of the
same name.

Consider again the definition for anAction2() in the previous code fragment, but with i and j
variables declared in the monitor scope. The first use of i and j resolves successfully to the values
of the i and jmonitor scope variables. The second use occurs after the local declaration and

Developing Apama Applications 10.11.2 249

6 Defining What Happens When Matching Events Are Found

initialization of i and j. That use resolves to the local (within the action) occurrence. This results
in the following values:

Global variable i is set to 10.

Local variable i is set to 2.

Global variable j is set to the value of a.

Local variable j is set to 5.

Since youmust explicitly initialize local variables before you can use them, the following example
is invalid because j and i are not initialized to any value before they are used.
action anAction3(integer a) returns integer {

integer i;
integer j;
return j + i; // error, i and j were not initialised

}

It is possible to initialize a variable on the same line as its declaration, as follows:
action anAction4(integer a) returns integer {

integer i := 10;
integer j := a;
return j + i;

}

It is also possible to initialize a local variable by coassigning to it in an event listener. For example,
the following is correct:
action onload() {

on all Event() as e {
log e.toString();

}
}

You can also initialize a local variable by coassigning to it from a stream. For example:
action onload() {

from x in all X() select x.f as f {
log f.toString();

}
}

Using variables in listener actions
Suppose you use a local variable in a listener action, as in the following example:
monitor MyMonitor {

integer x;

action onload() {
integer y := 10;
on all StockTick(*,*) {

log x.toString();

250 Developing Apama Applications 10.11.2

6 Defining What Happens When Matching Events Are Found

log y.toString();
}
y := 5;

}
}

In this example, x is a global variable, and y is a local variable. There are references to both variables
in the listener action.

A reference to a global variable in a listener action is the same as a reference to a global variable
anywhere else in the monitor. However, a reference to a local variable in a listener action causes
the correlator to retain a copy of the local variable for use when the event listener triggers. The
value held by this copy is the value that the local variable has when the correlator instantiates the
event listener.

When the event listener triggers the correlator executes the listener action. This will be at some
point in the future, and after the rest of the body of the enclosing action has been executed. Since
the action has already been executed, any of the original local variables no longer exist. This is
why the correlator retains a copy of the local variable tomake available to the listener actionwhen
it is executed.

In the example above, when the event listener triggers and the correlator executes the listener
action

x has a value of 0, which is the value that the correlator automatically assigns

y has a value of 10, which is the value it was set to when the event listener was instantiated

The value of y that the correlator retained when it instantiated the event listener is not affected by
the subsequent statement (after the on statement) that sets the value of y to 5.

Note:
For reference types (see also “Reference types” on page 608), retaining as a copy of the variable
really means only retaining as a copy of its reference. Hence, if any code changes the contents
of the referenced object(s) between event listener creation and event listener triggering, then
this does affect the values used by the triggered event listener.

Specifying named constant values
In a monitor or in an event type definition, you can specify a named boolean, decimal, float,
integer, or string value as constant. The format for doing this is as follows:
constant type name := literal;

DescriptionElement

Specify boolean, decimal, float, integer, or string. This is the type of the
constant value.

type

Specify an identifier for the constant. This name must be unique within its
scope — monitor, event, or action.

name

Developing Apama Applications 10.11.2 251

6 Defining What Happens When Matching Events Are Found

DescriptionElement

Specify the value of the constant. The type of the value must be the type that
you specify for the constant.

literal

Benefits of using constants include:

Using a named constant can often be better than using a literal because it lets you define that
constant in a single place. There is no chance of one instance becoming incorrect when the
value is changed elsewhere. An alternative to using a constant would be to define a variable
to contain the value. The disadvantage with this approach is that someone could accidentally
assign a new value to the "constant", which would cause errors.

A named constant can make code easier to read because the name can be meaningful in a way
that a magic number, such as 42, is not.

Constants appear in memory once. For example, spawning multiple copies of a monitor that
contains a constant does not consume memory to store extra copies of the constant. A
non-constant variable takes up space in memory for every copy of the event or monitor in the
correlator.

You can refer to a declared constant in any code in the event or monitor being defined. When you
define a constant in an event you can refer to it from outside the event by qualifying the name of
the constant with the event name, for example, MyEvent.myConstant.

Following is an example of specifying and using a constant:
event Paper {

constant float GOLDEN := 1.61803398874;
float width;
action getLength() {

return GOLDEN * width;
}
action getWidth() {

return width;
}

}

You cannot declare a constant in an action.

Defining actions
Actions are similar to procedures.

A monitor can define any number of actions. Finding an event, or pattern of events, of interest
can trigger an action.

A query can define any number of actions. If defined, actions must be after the find statement.
Expressions in the find pattern or find block can invoke the actions defined in that query.

You can also trigger an action by invoking it from inside another action. You can also declare an
action as part of an event type definition, and then call that action on an instance of that event.

252 Developing Apama Applications 10.11.2

6 Defining What Happens When Matching Events Are Found

The topics below provide information about defining actions.

Format for defining actions
The format for defining an action that takes no parameters and returns no value is as follows:
action actionName() {

// do something
}

Optionally, an action can do either one or both of the following:

Accept parameters

Return a value

The format for defining an action that accepts parameters and returns a value is as follows:
action actionName(type1 param1, type2 param2, ...) returns type3 {

// do something
return type3_instance;

}

For example:
action complexAction(integer i, float f) returns string {

// do something
return "Hello";

}

An action that accepts input parameters specifies a list of parameter types and corresponding
names in parentheses after the action name. Parentheses always follow the action name, in
declarations and calls, whether or not there are any parameters. Parameters can be of any valid
EPL type. The correlator passes primitive types by value and passes complex types by reference.
EPL types and their properties are described in the API Reference for EPL (ApamaDoc).

When an action returns a value, it must specify the returns keyword followed by the type of value
to be returned. In the body of the action, there must be a return statement that specifies a value
of the type to be returned. This can be a literal or any variable of the same type as declared in the
action definition.

An action can have any name that is not a reserved keyword. Actions with the names onload(),
onunload() and ondie() can only appear once and are treated specially as already described in
“About monitor contents” on page 34. It is an EPL convention to specify action names with an
initial lowercase letter, and a capital for each subsequent word in the action name.

Actions and global variables must not have the same names. See “Using action type variables” on
page 257. If you have any code that uses the same identifier for an action and a global variable,
you must change it.

Developing Apama Applications 10.11.2 253

6 Defining What Happens When Matching Events Are Found

Invoking an action from another action
To invoke an action from another action, specify the action name followed by parentheses. If the
action takes one ormore input parameters, specify values for the parameters inside the parentheses.
For example:
// First action:
action myAction1() {

myAction2();
}

// Second action that is called by the first action:
action myAction2() {

// . . .
}

In the example above, myAction1() calls myAction2() from inside the myAction1() declaration
block. myAction2() takes no parameters and does not return a value.

When an action returns a value, you can invoke that action only from within an expression. You
cannot specify a standalone statement that invokes an action that returns a value. Discarding the
return value is illegal in EPL. For example:
action myAction3() returns string {

return "Hello";
}

action myAction4() {
string response;
response := myAction3(); // Valid
myAction3(); // Invalid

}

Consider this extended example:
// First action:
//
action myAction1() {

myAction2();
}

// Second action that is called by the first action:
//
action myAction2() {

string answer1, answer2;
myAction5(5, 10.5);
on anEvent() myAction5(5, 10.5);
answer1 := myAction6(256, 1423.2);
answer2 := myAction7();

}

// Action that is called by myAction2:
//
action myAction5 (integer i, float f) {
...
}

254 Developing Apama Applications 10.11.2

6 Defining What Happens When Matching Events Are Found

// Another action that is called by myAction2:
//
action myAction6 (integer i, float f) returns string {

return "Hello";
}

// Yet another action that is called by myAction2:
//
action myAction7() returns string {

return "Hello again";
}

myAction2() takes no parameters and does not return a value.

myAction5() accepts input parameters. You can invoke it from a standalone statement:
myAction5(5, 10.5);

You can also invoke it as a listener action:
on anEvent() myAction5(5, 10.5);

myAction6() accepts input parameters and returns a value. You can invoke myAction6() only from
within an expression:
answer1 := myAction6(256, 1423.2);

myAction7() returns a value but does not take any parameters. You can invoke it only fromwithin
an expression:
answer2 := myAction7();

Specifying actions in event definitions
You can specify an action in an event type definition. This lets you call that action on an instance
of the event, just as you would call a built-in method on some other type, such as calling the
toString()method on the integer type.

When you define an action in an event, it behaves almost the same way as an action in a monitor
or query. For example, an action in an event can

Set up event or stream listeners (only in a monitor)

Call other actions within that event

Access members of that event

In a monitor, but not in a query, an action in an event has an implicit self argument that refers to
the event instance that the action was called on. The self argument behaves in the same way as
the this argument in C++ or Java.

Example

For example, consider the following event type definition:

Developing Apama Applications 10.11.2 255

6 Defining What Happens When Matching Events Are Found

event Circle {
action area() returns float {

return 3.14159 * radius * radius;
}
action circumference() returns float {

return 2.0 * 3.14159 * self.radius;
}
float radius;

}

The specifications here of radius and self.radius are equivalent.

You can then write code that looks like this:
Circle c := Circle(4.0);
print "Circle area = " + c.area().toString();
print "Circle circumference = " + c.circumference().toString();

Of course, the output is as follows:
Circle area = 50.26544
Circle circumference = 25.13272

Behavior

The correlator never executes actions in events automatically. In an event, if you define an onload()
action, the correlator does not treat it specially as it does when you define the onload() action in
a monitor.

When you call an action in an event, the correlator executes the action in the monitor or query
instance in which the call wasmade. In amonitor, if the action sets up any listeners, these listeners
are in the context of this monitor instance. If this monitor instance dies, the listeners also die.

You can use plug-ins fromwithin event actions. In the event definition, specify the import statement
to give the plug-in an alias within the event. Specify the import statement in the same way that
you specify it for a monitor or query. You use the plug-in alias to call functions on the plug-in in
the same way as you use it for a monitor or query.

When you define an event, there are no ordering restrictions for the definition of fields, imports,
or actions. You can define them in any order.

Spawning

From an action within an event, you can spawn to an action in the same event. The correlator
spawns a monitor instance and executes the specified action on the event instance in the new
monitor instance.

Note:
In a query, spawn and spawn...to statements are not needed and so they are not allowed.

It is not possible to spawn from outside a particular event to an action that is a member of that
particular event. Instead, spawn to an action that calls the action that is the event member. For
example:

256 Developing Apama Applications 10.11.2

6 Defining What Happens When Matching Events Are Found

event E {
action spawntotarget() {

spawn target(); // legal
}
action target() {

log "Spawned "+self.toString();
}

}

monitor m {
action onload() {

E e;
spawn e.target(); // not legal
spawn calltarget(e); // legal
e.spawntotarget();

}
action calltarget(E e) {

e.target();
}

}

Be sure to follow the spawn keyword with an action name identifier. Actions spawned to must
have no return value, as before. See also “Utilities for operating on monitors” on page 57.

Restrictions

To summarize, when you define an action in an event, the following restrictions apply:

If the action contains an on statement, you can coassign amatching event only to local variables.
You cannot coassign a matching event to the event's fields nor to items outside the event or in
the monitor.

In a monitor, if you declare an instance of an event that has an action member, you cannot
specify a call from that action to an action that is defined in the monitor.

You cannot assign values to the implicit self parameter, any more than you can assign to this
in Java.

Using action type variables
In addition to defining an action, you can define a variable whose type is action. This lets you
assign an action to an action variable of the same action type. An action is of the same type as an
action variable if they have the same argument list (the same types in the same order) and return
type (if any).

Defining action variables

The format for defining an action type variable is as follows:
action<[type1[, type2]...]>[returns type3]name;

Specify the keyword, action.

Developing Apama Applications 10.11.2 257

6 Defining What Happens When Matching Events Are Found

Follow the action keyword with zero, one or more parameter types enclosed in angle brackets
and separated by commas. The angle brackets are required even when the action takes no
arguments.

Optionally, follow the parameter list with a returns clause. Specify the returns keyword followed
by the type of the returned value.

Finally, specify the name of the variable. For example:
action<string> a;
action<integer, integer> returns string b;

You can use an action variable anywhere that you can use a sequence or dictionary variable. For
example, you can

Pass an action as a parameter to another action.

Return an action from execution of an action.

Store an action in a local variable, global variable, event field, sequence, or dictionary.

You cannot route, emit, enqueue or send an event that contains an action variable field.

You must initialize an action variable before you try to invoke it.

When an action variable is amember of an event the behavior of the action depends on the instance
of the event that the action is called on. Consequently, it can be handy to bind an action variable
member with a particular event instance. See “Creating closures” on page 261.

Built-in methods are treated exactly the same as user-defined actions. This means you can assign
a built-in method to an action variable. For example:
action<float> returns string f := float.toString;

Invoking action variables

The only operation that you can perform on an action variable is to call it. You do this in the
normal way by passing a set of parameters in parentheses after an expression that evaluates to
the action variable. For example:
monitor Test{

integer i;
action<string> x; // Uninitialized global action variable.
action onload() {

// Invoke the runMe action. The first argument to runMe is an
// action variable for an action having a single argument of
// type integer and no return value.
// Since the printInteger action conforms to the argument
// expected by runMe, you can pass printInteger to runMe.
runMe(printInteger, 10);

// Declare a local action variable, g. This action takes one
// integer argument and does not return a result.
// The printInteger action conforms to this so
// assign printInteger to g.

258 Developing Apama Applications 10.11.2

6 Defining What Happens When Matching Events Are Found

action<integer> g := printInteger;

// Invoke the runMe action again.
// Pass g instead of explicitly passing printInteger.
runMe(g, 20);

// Declare a local dictionary that contains action variables.
// Each action variable takes a single integer argument and
// and does not return a result.
// Add printInteger to the dictionary.
// Invoke printInteger and pass 30 as the argument.
dictionary<string, action<integer>> do := {};

do["printIt"] := printInteger;
do["printIt"] (30);

// Invoke x. Since this global variable was never
// initialized, the monitor instance terminates.
x("hello!");

}

action runMe(action<integer> f, integer i) {
f(i);

}

action printInteger(integer i) {
print i.toString();

}
}

After injection, this monitor prints
10
20
30

and then terminates upon invocation of x because xwas never initialized.

Calling an uninitialized, local action variable causes an error that prevents the correlator from
injecting themonitor.While the correlator injects code that contains an uninitialized, global action
variable, trying to call the uninitialized variable causes a runtime error and the monitor instance
terminates.

Declaring action variables in event definitions

When you define an action as amember field in an event, that action has an implicit self argument
as the first argument (see “Specifying actions in event definitions” on page 255). Youmust include
this implicit argument when determining whether an action definition conforms to an action
variable declaration. For example, the following is illegal:
event A {

action foo(float f) returns string {
return "Hello";

}
action bar() {

action<float> returns string f := A.foo;
}

Developing Apama Applications 10.11.2 259

6 Defining What Happens When Matching Events Are Found

}

In the previous code, you cannot assign the A.foo action to f because f takes a single float argument
whereas A.foo has two arguments — the implicit A argument and then the float argument. To
correct this example, specify A as the first action argument in the body of the bar action.
event A {

action foo(float f) returns string {
return "Hello";

}
action bar() {

action<A, float> returns string f := A.foo;
}

}

Actions in place of routed events

In some situations, you might find it more efficient to use action type variables instead of routing
events. For example, suppose you implement a service that takes an action variable as one of its
parameters. Now suppose that the service needs a response from an adapter or some other service
before it can send a response. When ready, the service can respond with a routed event, but that
means you have to set up an event listener for that event. Routing events and setting up event
listeners is more expensive than invoking actions. So instead of routing and listening, the service
can respond by invoking the action on the event that initiated the service request. For example:

The following sample code uses a routed event. Following this code there is a sample that uses
an action on an event.
event ServiceResponse {

string requestId;
...

}

260 Developing Apama Applications 10.11.2

6 Defining What Happens When Matching Events Are Found

event Service {
action doRequest(string requestId, ...) {
...
// when asynchronous 'service actions' are complete

route ServiceResponse(requestId, ...);
}
...

}

monitor Client {
Service service;
action onload() {

...
string id := ...;
on ServiceResponse(requestId=id)as r {

...
}
service.doRequest(id, ...);

}
}

The following sample code uses an action on a Clientmonitor:
event Service {

action doRequest(action< ... > callback, ...) {
...
// when asynchronous 'service actions' are complete
callback(...);

}
...

}

monitor Client {
Service service;
action onload() {

...
string id := ...;
service.doRequest(onServiceResponse, ...);

}
action onServiceResponse(...) {

...
}

}

Creating closures

When an action is a member of an event the behavior of the action depends on the instance of the
event that the action is called on. Consequently, you might want to bind an action member with
a particular event instance.When you bind an actionmember to an event instance you are creating
a closure. The advantages of creating a closure are:

Simpler syntax for executing the action

Greater flexibility in making assignments to action variables

Consider the following event definition:

Developing Apama Applications 10.11.2 261

6 Defining What Happens When Matching Events Are Found

event E {
integer i;
action foo() { print "Foo "+i.toString(); }
action times(integer j) returns integer { return i*j; }

}

With this definition, E(1).foo()would print "Foo 1", while E(42).foo() prints "Foo 42". The action
E.foo always has a specific instance of E to work with. You can achieve this by specifying the
action's implicit self argument when you call the action, as described earlier in this topic. When
you use this technique you identify the event instance when you call the action variable.

Alternatively, you can create a closure that binds an action member with an event instance. You
store the closure in an action variable. The action variable and the action member must be of the
same action type. That is, they must take the same argument(s), if any, and return the same type,
if any.

When you use this technique you identify the event instance when you assign the event's action
member to the action variable.

The following code shows an example of binding an event instance to an actionmember by storing
the closure in an action variable.
monitor m {

action <> a;
action onload() {

E e := E(42);
a := e.foo;
a(); // Prints "Foo 42"

}
}

In this example, e.foo denotes E.foo called on e. That is, when you assign the action e.foo to the
a action variable you are identifying which instance of E to use when you call the a action. This
closure binds a reference to E to the E.foo action and stores it in the a action variable. After you
create a closure, you can call an action on an event as though it is a simple action. This gives you
considerable flexibility in what you can assign to an action variable.

More about closures

EPL performs its own garbage collection. Consequently, you do not need to consider how long a
bound object must last. This is handled automatically.

A closure binds by reference. Consider the following example, which uses the same event E as
above:
monitor m {

action <integer> returns integer a;
action onload() {

E e := E(3);
a := e.times;
print a(2).toString(); // Prints "6"
e.i := 5;
print a(2).toString(); // Prints "10"

}
}

262 Developing Apama Applications 10.11.2

6 Defining What Happens When Matching Events Are Found

In a portion of code, you can define multiple action variables that contain closures for the same
object. For example:
event Counter {

integer i;
action increment() { i := i+1; }
action output() { print i.toString(); }

}
event Increment {}

event Finish {}

monitor m {
action <> incrementAction;
action <> outputAction;
action onload() {

Counter counter := new Counter;
incrementAction := counter.increment;
outputAction := counter.output;
on all Increment() and not Finish() { incrementAction(); }
on all Finish() { outputAction(); }

}
}

In an event type, when an action member refers to another action member in the same event type
a closure happens implicitly. For example:
event E {

action <integer> returns integer a;
}

event Plus {
integer i;
action f(integer j) returns integer { return i+j; }
action setA(E e) { e.a := f; }

}

Here, the f in e.a := f is equivalent to self.f, just as it would be if setA had called f instead of
assigning it to an action variable. This creates a closure. After setA is called on some instance of
Plus, e.awill call f on that same instance.

Other ways to specify closures

You can create a closure using any value and any action on that value. Thus, it is possible to:

Bind a built-in method to a value.

Bind actions to primitive types and other reference types instead of to events.

Bind actions to a literal or a function's return value instead of a variable's value.

For example:
// Print "E(42)"
E e := E(42);
action <> printE42 := e.toString;

Developing Apama Applications 10.11.2 263

6 Defining What Happens When Matching Events Are Found

// Print "Foo 12345"
action <> printFoo12345 := E(12345).foo;

// Take a floating-point number and return e to that power:
action <float> returns float eToTheX := 2.718282.pow;

// Return a random integer from 0 to 9 inclusive.
// (The brackets around 10 are needed so that "10." is not treated as a
// floating-point number.)
action <> returns integer randomDigit := (10).rand;

// Return the strings in a sequence, separated by colons.
action <sequence<string>> returns string j := ":".join;

Restrictions

You cannot route, enqueue, emit or send an event that contains an action variable field. It is okay
to route, enqueue, emit or send an event that contains an action definition.

An action variable cannot be a key in a dictionary. An event that contains an action field cannot
be a key in a dictionary.

JMon

In a JMon application, you cannot declare event types that have action type members.
Consequently, events that contain action type fields are invisible to JMon applications.

Defining static actions
In contrast to the regular actions that are described in “Defining actions” on page 252, static actions
do not apply to specific instances of an event. They are not as powerful as regular actions, but they
are helpful in situations where it makes more sense to use an action that is related to the event
type, and where the action is not called on an instance of that event.

Static actions can only be declared inside an event type. They are defined in just the same way as
regular actions (see “Format for defining actions” on page 253). The only differences are that they
start with static, cannot reference self, and cannot referencemembers of the event. For example:
static action staticActionName() {

// do something
}

The following example contrasts a regular action with a static action.
event MyEventType {

integer i;
action someAction() {

print i.toString(); // Valid
}
static action someStaticAction() {

print i.toString(); // Not valid
someAction(); // Not valid

}
}

264 Developing Apama Applications 10.11.2

6 Defining What Happens When Matching Events Are Found

MyEventType e := new MyEventType;
e.someAction();
MyEventType.someStaticAction();

A static action can be used, for example, if you have a factory action which constructs a new
instance of a particular event type and initializes its members to values that make sense for that
type. Although it is possible to have such code in any place, in terms of program readability, it is
more helpful to "associate" the static action with the event type that it is creating. For example:
event MyEventType {

string s;
integer i;
static action initialise() returns MyEventType {

MyEventType ret := new MyEventType;
ret.s := "Default";
ret.i := 100;
return ret;

}
...

}
MyEventType e := MyEventType.initialise();

With the above definition, the static action can then be called using a single line of code anywhere
in your program.

Getting the current time
In the correlator, the current time is the time indicated by the most recent clock tick. However,
there are some exceptions to this:

If you specify the -Xclock optionwhen you start the correlator, the correlator does not generate
clock ticks. Instead, you must send time events (&TIME) to the correlator. The current time is
the time indicated by themost recent received, externally generated, time event. See “Externally
generating events that keep time (&TIME events)” on page 184.

If you have multiple contexts, it is possible for the current time to be different in different
contexts. A particular context might be doing so much processing that it cannot keep up with
the time ticks on its queue. In other words, if contexts aremostly idle, then theywould all have
the same current time.

When the correlator fires a timer, the current time in the context that contains the timer is the
timer's trigger time. See “About timers and their trigger times” on page 181.

The information in the remainder of this topic assumes that the current time is the time indicated
by the most recent clock tick.

Use the currentTime variable to obtain the current time, which is represented as seconds since the
epoch, January 1st, 1970 in UTC. The currentTime variable is similar to a global read-only constant
of type float. However, the value of the currentTime variable is always changing to reflect the
correlator's current time.

Developing Apama Applications 10.11.2 265

6 Defining What Happens When Matching Events Are Found

In the correlator, the current time is never the same as the current system time. In most
circumstances it is a few milliseconds behind the system time. This difference increases when the
input queues of public contexts grow.

When a listener executes an action, it executes the entire action before the correlator starts to
process another event. Consequently, while the listener is executing an action, time and the value
of the currentTime variable do not change. Consider the following code snippet,
float a;
action checkTime() {

a := currentTime;
}

// ... Lots of additional code
// A listener calls the following action some time later
action logTime() {

log a.toString(); // The time when checkTime was called
log currentTime.toString(); // The time now

}

In this code, an event listener sets float variable a to the value of currentTime, which is the time
indicated by the most recent clock tick. Some time later, a different event listener logs the value
of a and the value of currentTime. The values logged might not be the same. This is because the
first use of currentTimemight return a value that is different from the second use of currentTime.
If the two event listeners have processed the same event, the logged values are the same. If the
two event listeners have processed different events, the logged values are different.

Generating events
As discussed previously, actions can perform calculations and log messages. In addition, actions
can dynamically generate events. The topics below discuss this.

Generating events with the route statement
The route statement generates a new event that goes to the front of the input queue of the current
context.

Any active listeners seeking that event then receive it. There is only one difference between an
externally sourced event (passed in through a live message feed) and an event that was generated
internally through a route statement. The difference is that internally routed events are placed at
the front of the context's input queue in the same order as they are routed within an action, and
after any previously internally routed events where multiple listener actions have been triggered
by an event. The correlator processes the routed events on the input queue before it processes the
next non-routed event on the input queue. See “Event processing order for monitors” on page 46.

For example:
action simulateCrash() {
route StockTick(currentStock.name, 50.0);
route StockTick(currentStock.name, 30.0);
route StockTick(currentStock.name, 20.0);
route StockTick(currentStock.name, 10.0);

266 Developing Apama Applications 10.11.2

6 Defining What Happens When Matching Events Are Found

route StockTick(currentStock.name, 5.0);
route StockTick(currentStock.name, 1.0);

}

The simulateCrash() action shown above routes six StockTick events for the monitor's specific
stock name, with drastically reducing prices. Other monitors (or the same monitor) may receive
these events and process them accordingly.

The route statement can operate on any values as well as events, provided that the any value is of
a routable event type.

You cannot route an event if the event (or one of its members) contains a field of an unroutable
type (action, chunk, listener, stream). There is a runtime check if the event (or one of itsmembers)
can contain an any field; an exception is thrown if the any field contains an object of type action,
chunk, listener, or stream.

Note that you can route an event whose type is defined in a monitor.

Generating events with the send statement
The send statement sends an event to a channel, a context, a sequence of contexts, or a
com.apama.Channel object.

When you send an event to a channel, the correlator delivers it to all contexts and external receivers
that are subscribed to that channel. To send an event, use the following format:
send event_expression to expression;

The result type of event_expressionmust be an event. It cannot be a string representation of an
event. The send statement can operate on any values as well as events, provided that the any value
is of a routable event type.

To send an event to a channel, the expressionmust resolve to a string or a com.apama.Channel
object that contains a string. If there are no contexts and no external receivers that are subscribed
to the specified channel, then the event is discarded. See “Subscribing to channels” on page 54.

The only exception to this is the default channel, which is the empty string. Events sent to the
default channel go to all public contexts. All running Apama queries receive events sent on the
default channel aswell as events sent on the com.apama.queries channel. See “DefiningQueries” on
page 59.

To send an event to a context, the expressionmust resolve to a context, a sequence of contexts, or
a com.apama.Channel object that contains a context. You must create a context before you send an
event to the context. You cannot send an event to a context that you have declared but not created.
For example, the following code causes the correlator to terminate the monitor instance:
monitor m {

context c;
action onload()
{

send A() to c;
}

}

Developing Apama Applications 10.11.2 267

6 Defining What Happens When Matching Events Are Found

If you send an event to a sequence of contexts and one of the contexts has not been created first,
then the correlator terminates the monitor instance. Sending an event to a sequence of contexts is
non-deterministic. You cannot send an event to a sequence of com.apama.Channel objects. For
details, see “Sending an event to a sequence of contexts” on page 297.

All routable event types can be sent to contexts, including event types defined in monitors. There
is a runtime check if the event (or one of its members) can contain an any field; an exception is
thrown if the any field contains an object of type action, chunk, listener, or stream.

If a correlator is configured to connect to Universal Messaging, then a channel might have a
corresponding Universal Messaging channel. If there is a corresponding Universal Messaging
channel, then Universal Messaging is used to send the event to that Universal Messaging channel.

See "Choosing when to use Universal Messaging channels and when to use Apama channels" in
Connecting Apama Applications to External Components.

Sending events to com.apama.Channel objects
A com.apama.Channel object is particularly useful when writing services that can be used in both
distributed and local systems. For example, by using a Channel object to represent the source of a
request, you could write a service monitor so that the same code sends a response to a service
request. You would not need to have code for sending responses to channels and separate code
for sending responses to contexts.

Consider the following Request event and Servicemonitor definitions:
event Request {

...
Channel source;

}

monitor Service {
action onload() {

monitor.subscribe("Requests");
on all Request() as req {

Response rep := Response(...);
send rep to req.source;

}
}

}

EPL code in a context in the same correlator as the Servicemonitor could send a Request event
with the source field set to context.current() and would receive the Response event that the
Servicemonitor sends. For example:
monitor LocalRequester {

action onload() {
Request req := Request(...);
req.source := Channel(context.current());
send req to "Requests";

on all Response() as rep {
...

}
}

268 Developing Apama Applications 10.11.2

6 Defining What Happens When Matching Events Are Found

}

Now consider a monitor that is in a correlator that is connected to the Servicemonitor host
correlator. For example, the correlators can be connected bymeans of engine_connect. The remote
monitor could send a Request event with the source field set to a Channel object that contains the
name of a channel that the remote monitor is subscribed to. For example:
monitor RemoteRequester {

action onload() {
monitor.subscribe("Responses");
Request req := new Request;
req.source := Channel("Responses");
send req to "Requests";
on all Response() as rep {

//...
}

}
}

In this example, if the correlators are connected by means of engine_connect then the connections
would need to be subscribed to the Requests channel and the Responses channel. As you can see,
the service monitor does not require different code according to whether the request is coming
from a local or remote context. The service monitor simply sends the response back to the source
and it does not matter whether the source is a context or a channel.

You can send a Channel object from one Apama component to another Apama component only
when the Channel object contains a string. You cannot send a Channel object outside a correlator
when it contains a context.

Enqueuing to contexts
To enqueue an event to a particular context, use the enqueue...to statement:
enqueue event_expression to context_expression;

Note:
The enqueue...to statement is superseded by the send...to statement. The enqueue...to
statement will be deprecated in a future release. Use the send...to statement instead. See
“Generating events with the send statement” on page 267.

The result type of event_expressionmust be an event. It cannot be a string representation of an
event. The result type of context_expressionmust be a context or a variable of type context. It
cannot be a com.apama.Channel object that contains a context. The enqueue...to statement can
operate on any values as well as events, provided that the any value is of a routable event type.

The enqueue...to statement sends the event to the context's input queue. Even if you have a single
context, a call to enqueue x to context.current() is meaningful and useful.

You must create the context before you enqueue an event to the context. You cannot enqueue an
event to a context that you have declared but not created. For example, the following code causes
the correlator to terminate the monitor instance:
monitor m {

context c;

Developing Apama Applications 10.11.2 269

6 Defining What Happens When Matching Events Are Found

action onload()
{

enqueue A() to c;
}

}

If you enqueue an event to a sequence of contexts and one of the contexts has not been created
first then the correlator terminates the monitor instance. For details, see “Sending an event to a
particular context” on page 296.

“Sending an event to a sequence of contexts” on page 297 is non-deterministic.

All routable event types can be enqueued to contexts, including event types defined in monitors.
There is a runtime check if the event (or one of its members) can contain an any field; an exception
is thrown if the any field contains an object of type action, chunk, listener, or stream.

Generating events to emit to outside receivers
The emit statement dispatches events to external registered event receivers, which means that the
events leave the correlator. Active listeners do not receive emitted events.

Note:
The emit statement is superseded by the send statement. See “Generating events with the send
statement” on page 267. The emit statement will be deprecated in a future release. Use send
rather than emit.

There are two formats available for using emit. You can directly emit an event, as the example
below does first, or else place the event in a string and emit that. If you use this latter format, you
must ensure that you define the string to represent a valid event. The correlator does not check
whether the string you specify represents an event that is compliant with any event type that has
been injected. In fact, you can use this mechanism to emit an event of a type that has not been
defined in EPL anywhere else.

For example, consider a revised version of an earlier example. The result, instead of being printed
as a message on the screen, is now being sent out as an event message:
event StockTickPriceChange {

string owner;
string name;
float price;

}

// A new processTicks action that dispatches an output event
// to external applications instead of logging
action processTicks() {

// The following emit format sends the event itself.
emit StockTickPriceChange(currentStock.owner,

newTick.name, newTick.price) to
"com.apamax.pricechanges";

// Or, use the following emit format, which sends a string that
// contains the event.

emit "StockTickPriceChange(\""+currentStock.owner+

270 Developing Apama Applications 10.11.2

6 Defining What Happens When Matching Events Are Found

"\",\""+newTick.name+"\", "+newTick.price.toString()+")" to
"com.apamax.pricechanges";

Events are emitted onto named channels. In the above code the StockTickPriceChange event is
being published on the com.apamax.pricechanges channel. For an application to receive events
from Apama it must register itself as an event receiver and subscribe to one or more channels.
Then if events are emitted to those channels they will be forwarded to it.

Channels effectively allow both point-to-point message delivery as well as through
publish-subscribe. As in the above example, channels can be set up to represent topics. External
applications can then subscribe to event messages of the relevant topics. Otherwise a channel can
be set up purely to indicate a destination and have only one application connected to it.

The emit statement can operate on any values as well as events, provided that the any value is of
a routable event type.

You cannot emit the following events:

An event whose type is defined inside a monitor.

An unroutable event type. There is a runtime check if the event (or one of its members) can
contain an any field; an exception is thrown if the any field contains an object of type action,
chunk, listener, or stream.

If a correlator is configured to connect to Universal Messaging, then a channel might have a
corresponding Universal Messaging channel. If there is a corresponding Universal Messaging
channel, then Universal Messaging is used to emit the event to that Universal Messaging channel.

See "Choosing when to use Universal Messaging channels and when to use Apama channels" in
Connecting Apama Applications to External Components.

Handling the any type
EPL supports an any type that can hold a value of a concrete EPL type (that is, a type other than
the any type). See the API Reference for EPL (ApamaDoc) for full details of the any type.

The switch statement is the preferred way of handling any values unless the type is known or not
important. See “Handling any values of different typeswith the switch statement” on page 274 for
details on the switch statement.

An any value may be empty and not contain a value, or it can contain a value which has a type
associated with it. The type of the value can be obtained using the getTypeName()method on the
any type.

A variable of a concrete type can be used where an any value is expected in:

assignments and initialization, for example:
any anyVariable := "string value";

return values, for example:
action a() returns any { return new sequence<integer>; }

Developing Apama Applications 10.11.2 271

6 Defining What Happens When Matching Events Are Found

passing a parameter to an action, for example:
actionWithAnyParameter("string value");

the index of a dictionarywith an any key type.

In these cases, the concrete type is automatically converted to the any type. This is always safe and
valid, and will not throw an exception.

Reflection on types

Reflection allows EPL to act on values of any type in a generic way, including altering the behavior
to adapt to what fields or actions a type has. This can be values passed as an any parameter value
to some common code, matching an any() listener (see “Listening for events of all types” on
page 152), or created via the any.newInstancemethod.

Fields or entries from an any value can be accessed using the following methods:

setEntry(any key, any value)

getEntry(any key) returns any

getEntries() returns sequence<any>

For event types, the key should be a string containing the field name. For sequences, key is the
index and should have an integer value.

The actions (includingmethods) and constants can be obtainedwith the followingmethods of the
any type:

getActionNames() returns sequence<string>

getAction(string name) returns any

getConstant(string) returns any

getConstantNames() returns sequence<string>

Actions may be cast to the correct action type and then invoked directly.

For actions, a list of the action's parameter names, a dictionarymapping from the parameter name
to the parameter type, and the name of the return type can be obtainedwith the followingmethods
of the any type:

getActionParameterNames() returns sequence<string>

getActionParameters() returns dictionary<string,string>

getActionReturnTypeName() returns string

For actions, it is also possible to use a “generic” form to call the action via the following method
of the any type, even if the signature type is not known at compile time:

getGenericAction() returns action<sequence<any>> returns any

A sequence<any> of the parameter values of the correct count and types must be supplied.

272 Developing Apama Applications 10.11.2

6 Defining What Happens When Matching Events Are Found

For detailed information on the above methods, see the any type in the API Reference for EPL
(ApamaDoc).

Cast operations

EPL supports casting of the any type to a concrete target type and vice versa.

Casting to the any type

Casting a concrete type is allowed to any only. The cast is redundant in this case. Example:
integer i := 10;

any a := <any> i; //redundant cast
any a2 := i; //valid

Example of a cast that is not redundant:
sequence<any> entries := (<any> evt).getEntries();

Casting to a concrete type
targetType tgtValue := <targetType> anyValue;

Casting an any type with an empty value throws Exceptionwith type set to CastException.
See also the Exception type in the API Reference for EPL (ApamaDoc).

If the anyValue does not contain an object of targetType, it throws Exceptionwith type set to
CastException, and with the message mentioning the actual type contained by anyValue and
targetType.

Examples:
any a := 10;

integer i := <integer> a; // Valid

// Will inject but throws a CastException during runtime.
string s := <string> a ;

Casting to the optional type
optional<targetType> opt := <optional<targetType>> anyValue ;

Casting to optional<targetType>will never throw. If the any value cannot be converted, then
an empty optional<targetType> is returned instead.

If the anyValue is empty, the cast returns an empty optional<targetType>.

If anyValue contains object of optional<targetType> type, the cast returns that object of type
optional<targetType>.

If the anyValue contains an object of targetType , the cast returns object of type
optional<targetType> containing targetType.

Developing Apama Applications 10.11.2 273

6 Defining What Happens When Matching Events Are Found

If the anyValue does not contain an object of targetType or optional<targetType>, the cast
returns an empty optional<targetType>.

Examples:
any a := 10;

// Returns optional <integer> containing the value 10.
optional<integer> opti := <optional<integer>> a;

// Returns an empty optional <string>.
optional<string> opts := <optional<string>> a;

Handling any values of different types with the switch
statement
The switch statement is used to conditionally execute a block of code. Unlike the if and if ...
else statements, the switch statement can have a number of possible execution paths.

The switch statement operates on an expression of the any type (see also “Handling the any type” on
page 271). At runtime, the type of the value is examined, and the case clause for that type is executed
if there is one, otherwise the default clause is executed. If the any value is empty, the default
clause is always executed.

If the default clause is not present and none of the case clausesmatch the type of the value passed
to the switch statement, then the switch statement throws Exceptionwith type set to
UnmatchedTypeException. See also the description of the Exception type in the API Reference for
EPL (ApamaDoc).

The switch statement names the expression as an identifier with the as keyword followed by an
identifier to name the value. In each case clause block, the identifier has the same type as the case
clause.

If the expression is a simple identifier (that is, it is referring to a variable or parameter), then the
as Identifier part can be omitted. The new local retains the same name.

The following code example shows the usage of the switch statement in an action which returns
a string, where the case clauses use return statements to return from the action. The identifier
value in each clause has the same type as the case clause.

Example:
action getStringOrBlank(any value) returns string {

switch(value) {

// value will be of type float in this block
case float : { return "float "+ value.toString(); }

// value will be of type string in this block
case string: { return value; }

// value will be of type decimal in this block
case decimal: { return "decimal "+value.toString(); }

274 Developing Apama Applications 10.11.2

6 Defining What Happens When Matching Events Are Found

// value will be of type integer in this block
case integer: { return "integer: "+ value.toString(); }

// value will be of type sequence<string> in this block
case sequence<string> : { return " ".join(value); }

// value will be of any type in this block
default: { return ""; }

}
}

See also “The switch statement” on page 679.

Assigning values
Valid examples of an assignment statement are:
integerVariable := 5;
floatVariable := 6.0;
stringVariable := "ACME";
stringVariable2 := stringVariable;

Assignments are only valid if the type of the literal or variable on the right hand side corresponds
to the type of the variable on the left hand side, or can be implicitly converted. Implicit conversions
are allowed when assigning to an any type, or to an optional (provided the contained type of the
optionalmatches the value being assigned).

When doing an assignment from a variable to another variable, the behavior of EPL depends on
the type of the variable.

In the case of primitive types, the variable on the left hand side is set to the same value as the
variable on the right hand side. The value is therefore copied and the two variables remain
distinct.

In the case of complex reference types, the variable on the left hand side is set to reference the
same object as the variable on the right hand side. Only the reference is copied, while the
underlying object remains the same. If the object is subsequently changed, both variables
would reflect the change.

In the case of the any type, setting to a primitive type creates a new object automatically to
hold the primitive value. This is transparent to EPL, but is significantly more expensive than
a simple primitive to primitive assignment.

Defining conditional logic with the if statement
EPL supports conditional if and if ... else statements.

An if statement is followed by a boolean expression followed by an optional then keyword
followed by a block. A block consists of one or more statements enclosed in curly braces, { }. If
the boolean expression is true, the contents of the block are executed.

Developing Apama Applications 10.11.2 275

6 Defining What Happens When Matching Events Are Found

The boolean expression must evaluate to the boolean values true or false.

The if statement can be optionally followed by an else keyword and a second block. This second
block is executed if the boolean expression is false. Instead of the else block, a single if statement,
not enclosed in braces, may be used.

EPL example:
if floatVariable > 5.0 {

integerVariable := 1;
} else if floatVariable < -5.0 {

integerVariable := -1;
} else {

integerVariable := 0;
}

Defining conditional logic with the ifpresent statement
The ifpresent statement is used to check if one or more values are empty (that is, whether they
have a value or not). It unpacks the values into new local variables and conditionally executes a
block of code.

The ifpresent statement is followed by one ormore expressions with an optional name of a target
variable followed by a block of code. If each expression is not empty, then the value of the expression
is placed in a new local variable whose name is supplied after the keyword as. If the expression
is a simple identifier (that is, it is referring to a variable or parameter), then the as identifier part
can be omitted; a new local variable (which shadows the original variable) is createdwith the same
name. Multiple expressions can be used in a single ifpresent statement, separated by commas.

If all the expressions have non-empty values, then the first block is executed. A block consists of
one or more statements enclosed in curly braces, { }. The new local variables are only available
in the first block of the ifpresent statement, where they are guaranteed to have non-empty values.

ifpresent can be optionally followed by an else keyword and block, which is executed if any of
the supplied expressions do not have a value.

For optional types, the new local variable is of the unpacked type (the contained type of the
optional), for example:
optional<integer> possibleNumber := 42;
ifpresent possibleNumber {

// in this block, possibleNumber is of type integer,
// so we can perform arithmetic on it:
nextNumber := possibleNumber + 1;

} else {
// in practice, won't be executed as possibleNumber
// has been initialized with a value.

}

Thus, ifpresent is the recommended way of handling optional variable types. Usually, there is
no need to call the getOrThrowmethod of the optional type. ifpresent combines the check of
whether the value is empty with extracting the value and control flow, and thus reduces the
amount of code that could throw an exception.

276 Developing Apama Applications 10.11.2

6 Defining What Happens When Matching Events Are Found

As an alternative to the ifpresent statement, you can use the getOrmethod of the optional type,
which is less verbose than using ifpresent. This is helpful if you want to treat a missing (empty)
value as having a value. For example, possibleNumber.getOr(0)will give you the number in
possibleNumber, or 0 if it is empty.

ifpresent operates on expressions of the following types:

optional

chunk

stream

listener

context

action

any

See the API Reference for EPL (ApamaDoc) for more information on these types.

See also “The ifpresent statement” on page 677.

Defining loops
EPL supports two loop structures, while and for.

An EPL example for while is:
integerVariable := 20;
while integerVariable > 10 {

integerVariable := integerVariable – 1;
on StockTick("ACME", integerVariable) doAction();

}

The for looping structure allows looping over the contents of a sequence. The counter must be an
assignable variable of the same type as the type of elements of the sequence. For example:
sequence<integer> s;
integer i;
s.append(0);
s.append(1);
s.append(2);
s.append(3);
for i in s {

print i.toString();
}

The loop will iterate through all the indices in the sequence, checking whether there are any more
indices to cover each time. In the example above, iwill be set to s[0], then s[1], and so on up to
s[3]. The counter continues incrementing by one each time, and is checked to verify whether it is
less than s.size() before a further iteration is carried out. Looping only terminates when the next

Developing Apama Applications 10.11.2 277

6 Defining What Happens When Matching Events Are Found

index would be beyond the last element of the sequence, or equal to size() (since indices are
counted from 0).

When the correlator executes a for loop, it operates on a reference to the sequence. Consequently,
if the code in the for loop assigns some other sequence to the sequence expression specified in the
for statement this has no effect on the iteration. However, if the code in the for loop changes the
contents of the sequence specified in the for statement, this can affect the iteration. For example:
sequence <string> tmp := ["X", "Y", "Z"];
sequence <string> seq := ["A", "B", "C", "D", "E"];
string s;
for s in seq {

seq := tmp;
print s;

}

The for loop steps through whatever seq referred to when the loop began. Therefore, assigning
tmp to seq inside the loop does not affect the behavior of the loop. This code prints A, B, C, D, and
E on separate lines.

In the following example, the code in the for loop changes the contents of the sequence specified
in the for statement and this affects the behavior of the loop.
sequence<string> seq := ["A", "B", "C", "D", "E"];
string s;
for s in seq {

seq[2] := "c";
print s;

}

This code prints A, B, c, D, and E on separate lines.

In the following code, the changes to the contents of the specified sequencewould prevent the for
loop from terminating.
sequence<string> seq := ["x"];
string s;
for s in seq {

seq.append(s);
}

EPL provides the following statements for manipulating while and for loops. Usage is intuitive
and as per other programming language conventions:

break exits the innermost loop. You can use a break statement only inside a loop.

continuemoves to the next iteration of the innermost loop. You can use a continue statement
only inside a loop.

return terminates both the loop and the action that contains it.

Exception handling
EPL supports the try ... catch exception handling structure. The statements in each block must
be enclosed in curly braces. For example:

278 Developing Apama Applications 10.11.2

6 Defining What Happens When Matching Events Are Found

using com.apama.exceptions.Exception;
...
action getExchangeRate(

dictionary<string, string> prices, string fxPair) returns float {
try {

return float.parse(prices[fxPair]);
} catch(Exception e) {

return 1.0;
}

}

Exceptions are a mechanism for handling runtime errors. Exceptions can be caused by any of the
following, though this is not an exhaustive list:

Invalid operations such as trying to divide an integer by zero, or trying to access a non-existent
entry in a dictionary or sequence

Methods that fail, for example trying to parse an object that cannot be parsed

Plug-ins

Operations that are illegal in certain states, such as spawn-to in an ondie() or onunload()
action, or sending an event to a context and specifying a variable that has not been assigned
a valid context object

The throw statement. See “The throw statement” on page 675 for more information.

An exception that occurs in try block1 causes execution of catch block2. An exception in try
block1 can be caused by:

Code explicitly in try block1

A method or action called by code in try block1

A method or action called by a method or action called by code in try block1, and so on.

Note that the die statement always terminates themonitor, regardless of try ... catch statements.

The variable specified in the catch clause must be of the type com.apama.exceptions.Exception.
Typically, you specify using com.apama.exceptions.Exception to simplify specification of exception
variables in your code. The Exception variable describes the exception that occurred.

The com.apama.exceptions namespace also contains the StackTraceElement built-in type. The
Exception and StackTraceElement types are always available; you do not need to inject them and
you cannot delete them with the engine_delete utility.

An Exception type has methods for accessing:

A message — Human-readable description of the error, which is typically useful for logging.

A type — Name of the category of the exception, which is useful for comparing to known
types to distinguish the type of exception thrown. Internally generated exceptions have types
such as ArithmeticException and ParseException. For a list of exception types, see the
description of the Exception type in the API Reference for EPL (ApamaDoc).

Developing Apama Applications 10.11.2 279

6 Defining What Happens When Matching Events Are Found

A stack trace — A sequence of StackTraceElement objects that describe where the exception
was thrown. The first StackTraceElement points to the place in the code that immediately
caused the exception, for example, an attempt to divide by zero or access a dictionary key that
does not exist. The second StackTraceElement points to the place in the code that called the
action that contains the immediate cause. The third StackTraceElement element points to the
code that called that action, and so on. Each StackTraceElement object hasmethods for accessing:

The name of the file that contains the relevant code

The line number of the relevant code

The name of the enclosing action

The name of the enclosing event, monitor or aggregate function

Information in an Exception object is available by calling these built-in methods:

Exception.getMessage()

Exception.getType()

Exception.getStackTrace()

StackTraceElement.getFilename()

StackTraceElement.getLineNumber()

StackTraceElement.getActionName()

StackTraceElement.getTypeName()

In the catch block, you can specify corrective steps, such as returning a default value or logging
an error. By default, execution continues after the catch block. However, you can specify the catch
block so that it returns, dies or causes an exception.

You can nest try ... catch statements in a single action. For example:
action NestedTryCatch() {

try {
print "outer";
try {

print "inner";
integer i:=0/0;

} catch(Exception e) {
// inner catch

}
} catch(Exception e) {

// outer catch
}

}

The block in a try clause can specify multiple actions and each one can contain a try ... catch
statement or nested try ... catch statements. An exception is caught by the innermost enclosing
try ... catch statement, either in the action where the exception occurs, or walking up the call
stack. If an exception occurs and there is no enclosing try ... catch statement then the correlator
logs the stack trace of the exception and terminates the monitor instance.

280 Developing Apama Applications 10.11.2

6 Defining What Happens When Matching Events Are Found

See “About executing ondie() actions” on page 44 for information about how ondie() can optionally
receive exception information if an instance dies due to an uncaught exception.

Logging and printing
The following operations are provided for debugging and textual output:

print string

log string [at identifier]

The print statement outputs its text to standard output, which is normally the active display or
some file where such output has been piped. See also “Strings in print and log statements” on
page 284.

The log statement sends the specified string to a particular log file depending on the applicable
log level. For details, see "Setting EPL log files and log levels dynamically" inDeploying andManaging
Apama Applications.

The topics below provide information for using the log statement.

Specifying log statements
The format of a log statement is as follows:
log string [at identifier]

Syntax description

DescriptionSyntax Element

Specify an expression that evaluates to a string.string

Optionally, specify the desired log level. Specify one of the
following values: CRIT, FATAL, ERROR, WARN, INFO, DEBUG or TRACE.
If you do not specify an identifier, the default is INFO.

identifier

It is recommended that you do not use the FATAL or CRIT log levels, which are present only for
historical reasons. It is better to use ERROR for all error conditions regardless of how fatal they are,
and INFO for informational messages.

For each encountered log statement, the correlator compares the specified identifier with the
applicable log level to determine whether to send the specified string to a log file. If the string is
to be sent to a log file, the correlator determines the appropriate log file to send it to.

The correlator uses the tree structure of EPL code to identify the applicable log level and the
appropriate log file. See "Setting EPL log files and log levels dynamically" inDeploying andManaging
Apama Applications.

Developing Apama Applications 10.11.2 281

6 Defining What Happens When Matching Events Are Found

Log levels determine results of log statements
The correlator supports the following log levels:

No entries go to log files.OFF0

Least amount of entries go to log files.CRIT1

|FATAL2

|ERROR3

|WARN4

|INFO5

|DEBUG6

Greatest amount of entries go to log files.TRACE7

You use log levels to filter out log strings. If the log level in effect is lower than the log level in the
log statement the correlator does not send the string to the log file. For example, if the log level in
effect is ERROR (3) and the log level in the log statement is DEBUG (6) the correlator does not send
the string to the log file since the log level in effect is lower than the log level in the log statement.

Suppose that a string expression in a log statement executes an action or has side effects. In this
situation, the correlator executes the log statement so that side effects always take place. However,
if the log level in effect is lower than the log level in the log statement the correlator still does not
send the string to the log file.

Here are some examples where the log level in effect is WARN:
log "foo bar" at CRIT; // Sends "foo bar" to the log file.
log "foo bar" at INFO; // Does not send anything to the log file.

log "foo" + "bar" + 12345.toString() at INFO;
// Does not send anything to the log file.
// The expression in the log statement is not evaluated as
// the log level is too low to send output to the log file,
// and the expression does not have side effects.

log "foo" + bar() + 12345.toString() at INFO;
// Does not send anything to the log file.
// Calls bar() since that action might have side effects,
// for example, the action could send an event.

Actions on events ormonitors are assumed to have side effects. The com.apama.epl.SideEffectFree
annotation (see “Adding predefined annotations” on page 52) can be added to an action definition
to mark it as side effect free. Note that with this annotation, actions will only be called from log
statements if the log statement would write to the log file. This is more compact than checking the
log level before executing the log statement. If the action does in fact have side effects, then changing
the log level can change the behavior of your program. It is recommended to only add the
SideEffectFree annotation on an action if a profile shows that a lot of time is spent in calling that

282 Developing Apama Applications 10.11.2

6 Defining What Happens When Matching Events Are Found

action (premature optimizations add to program complexity for no benefit). Actions called via an
action variable are always assumed to have side effects, as the EPL runtime does not knowwhich
action is invoked.

Formore information on the profile, see "Profiling EPLApplications" inUsing Apamawith Software
AG Designer.

To determine the log level in effect, the correlator checks whether you set a log level for the
following in the order specified below:

1. The monitor or event that contains the log statement.

2. A parent of the monitor or event that contains the log statement. The correlator starts with the
immediate parent and works its way up the tree as needed.

3. The correlator.

The log level in effect is the first log level that the correlator finds in the tree structure. See "Setting
EPL log files and log levels dynamically" in Deploying and Managing Apama Applications. If the
correlator does not find a log level, the correlator uses the correlator's log level. If you did not
explicitly set the correlator's log level, the default is INFO.

After the correlator identifies the applicable log level, the log level itself determines whether the
correlator sends the log statement output to the appropriate log file as follows:

For log statementswith these identifiers,
the correlator ignores log statement
output

For log statements with these identifiers,
the correlator sends the log statement
output to the appropriate log file

Log level
in effect

CRIT, FATAL, ERROR, WARN, INFO, DEBUG,
TRACE

NoneOFF

FATAL, ERROR, WARN, INFO, DEBUG, TRACECRITCRIT

ERROR, WARN, INFO, DEBUG, TRACECRIT, FATALFATAL

WARN, INFO, DEBUG, TRACECRIT, FATAL, ERRORERROR

INFO, DEBUG, TRACECRIT, FATAL, ERROR, WARNWARN

DEBUG, TRACECRIT, FATAL, ERROR, WARN, INFOINFO

TRACECRIT, FATAL, ERROR, WARN, INFO, DEBUGDEBUG

NoneCRIT, FATAL, ERROR, WARN, INFO, DEBUG,
TRACE

TRACE

An advantage of this framework is that there is no performance penalty for having log statements
that do not specify actions in your application. You control the overhead of executing such log
statements by specifying the appropriate log level.

Developing Apama Applications 10.11.2 283

6 Defining What Happens When Matching Events Are Found

Where do log entries go?
When the correlator needs to send the log statement output to a log file, the correlator checks
whether you set a log file for the following in the order specified below:

1. The monitor or event that contains the log statement.

2. A parent of the monitor or event that contains the log statement. The correlator starts with the
immediate parent and works its way up the tree as needed.

3. The correlator.

The log file that receives the log statement output is the first log file that the correlator finds. If
the correlator does not find a log file, the default is that the correlator sends the string and identifier
to stdout.

Examples of using log statements
Suppose you insert DEBUG log statements without actions in a monitor. You specify ERROR as the
log level for that monitor. The correlator ignores log statement output of log statements with
identifiers of INFO or DEBUG. But then there are some problems. You use the engine_management
correlator utility to change the log level to DEBUG. Now the correlator sends output from all log
statements to the appropriate log file.

Following is another example:
log "Log statement number " + logNo() at DEBUG;
action logNo() {

logNumber := logNumber + 1;
return logNumber.toString();

}

In this example, the correlator always executes the log statement because it calls an action.However,
the log level in effect must be DEBUG for the correlator to send the string to the log file. If the log
level is anything else, the correlator discards the string because the log level in effect is lower than
the log level in the log statement.

Strings in print and log statements
In both print and log statements, the string can be any one of the following:

Literal, for example: print "Hello";

Variable, for example:
string welcomeMessage;
...
log welcomeMessage;

Combination of both, for example:
string welcomeMessage;

284 Developing Apama Applications 10.11.2

6 Defining What Happens When Matching Events Are Found

...
print "Hello " + welcomeMessage + " Bye";

Internally, the correlator encodes all textual information as UTF-8. When the correlator outputs a
string to a console or stdout because of a print statement, or sends a string to the log, the correlator
translates the string from UTF-8 to the current machine's (where the correlator is running) local
character set. However, if you redirect stdout to a file, the correlator does not translate to the local
character set. This ensures that the correlator preserves as much information as possible.

Sample financial application
This section describes a complete financial example, using themonitor techniques discussed earlier
in this chapter. See also: “Example of a query” on page 60.

This example enables users to register interest, for notification, when a given stock changes in
price (positive and negative) by a specified percentage.

Users register their interest by generating an event, here termed Limit, of the following format:
Limit(userID, stockName, percentageChange)

For example:
Limit(1, "ACME", 5.0)

This specifies that a user (with the user ID 1) wants to be notified if ACME's stock price changes by
5%. Any number of users can register their interests, many users canmonitor the same stock (with
different price change range), and a single user can monitor many stocks.

In EPL, the complete application is defined as:
event StockTick {

string name;
float price;

}

event Limit {
integer userID;
string name;
float limit;

}

monitor SharePriceTracking {

// store the user's specified attributes
Limit limit;

// store the initial price (this may be the opening price)
StockTick initialPrice;

// store the latest price – to give to the user
StockTick latestPrice;

// when a limit event is received spawn; creating a new
// monitor instance for each user's request
action onload() {

Developing Apama Applications 10.11.2 285

6 Defining What Happens When Matching Events Are Found

on all Limit(*,*,>0.0):limit spawn setupNewLimitMonitor();
}

// If an identical request from a user is discovered
// stop this monitor and die
// If a StockTick event is received for the stock the
// user specified, store the price and call setPrice
action setupNewLimitMonitor() {

on Limit(limit.userID, limit.name, *) die;
on StockTick(limit.name, *):initialPrice setPrice();

}

// Search for StockTick events of the specified stock name
// whose price is both greater and less than the value
// specified – also converting the value to percentile format
action setPrice() {

on StockTick(limit.name, > initialPrice.price * (1.0 +
(limit.limit/100.0))):latestPrice notifyUser();

on StockTick(limit.name, < initialPrice.price * (1.0 -
(limit.limit/100.0))):latestPrice notifyUser();

}

// display results to user
action notifyUser() {

log "Limit alert. User=" +
limit.userID.toString() +
" Stock=" + limit.name +
" Last Price=" + latestPrice.price.toString() +
" Limit=" + limit.limit.toString();

die;
}

}

The important elements of this example lie in the life-cycle of different monitor states. Firstly a
monitor instance is spawned on every incoming Limit event where the limit is greater than zero.
Within setupNewLimitMonitor, the first on statement listens for other Limit events from the same
user, upon detection of which the monitor instance is killed. This effectively ensures that there is
a unique monitor instance per user per stock. This scheme also allows a user to send in a Limit
event with a zero limit to indicate that they actually no longer want to monitor a particular stock.
While this will not be caught by the original monitor instance's event listener and will not cause
spawning, it will trigger the event listener in the monitor instance of that user for that stock and
cause it to die.

Then a single on statement (without an all) sets up an event listener to look for all StockTick
events for that stock type for that user. Once a relevant StockTick is detected, new event listeners
start seeking a specific price difference for that user. If such a price change is detected it is logged.
Note that the log statement exploits data from variables used before and after the spawn statement
(that is, limit and latestPrice, respectively).

This example also demonstrates how mathematical operations may be used within event
expressions. Here, two on statements create event listeners that look for StockTickswith prices
above and below the calculated price. The calculated price in this case is based on the initial price
multiplied by the percentage specified by the user. The first event listener is looking for an increase
in the share price to 105% of its original value, while the second is looking for a decrease to 95%
of its original value.

286 Developing Apama Applications 10.11.2

6 Defining What Happens When Matching Events Are Found

7 Implementing Parallel Processing

■ Introduction to contexts .. 288

■ Creating contexts ... 290

■ How many contexts can you create? .. 291

■ Using channels to communicate between contexts .. 291

■ Obtaining context references .. 292

■ Spawning to contexts ... 293

■ Channels and contexts ... 294

■ Sending an event to a channel ... 295

■ Sending an event to a particular context .. 296

■ Sending an event to a sequence of contexts .. 297

■ Common use cases for contexts .. 299

■ Samples for implementing contexts .. 299

■ Contexts and correlator determinism ... 306

■ How contexts affect other parts of your Apama application ... 306

Developing Apama Applications 10.11.2 287

By default, the correlator operates in a serial manner. In a monitor, you have the option of
implementing contexts for parallel processing.

Note:
Queries automatically take advantage of parallel processing. You do not need to implement
parallel processing in queries. The information in this section of the documentation is for
application developers who are writing monitors.

During serial correlator operation, the correlator processes events in the order inwhich they arrive.
Each external event matches zero or more listeners. The correlator executes a matching event's
associated listeners in a rigid order. The correlator completes the processing related to a particular
event before it examines the next event.

For some applications, this serial behavior might not be necessary. In this case, you might be able
to improve performance by implementing parallel processing. Parallel processing lets the correlator
concurrently process the EPL in multiple monitor instances. To implement parallel processing,
you create one or more contexts.

Note:
If a license file cannot be found, the number of contexts that the correlator allows to be created
is limited. See "Running Apama without a license file" in Introduction to Apama.

Parallel processing in the correlator is quite different from the parallel processing provided by
Java, C++, and other languages. These languages allow shared state, and rely onmutexes, conditions,
semaphores,monitors, and so on, to enforce correct behavior. The correlator does not automatically
provide shared state. Data sharing happens by sending events between contexts and by using the
MemoryStore. See “Using the MemoryStore” on page 375. Parallel processing in the correlator is
a message-passing system.

Introduction to contexts
Contexts allow EPL applications to organize work into threads that the correlator can execute
concurrently.

In EPL, context is a reference type. When you create a variable of type context, or an event field
of type context, you are actually creating an object that refers to a context. The context might or
might not already exist. You can then use the context reference to spawn to the context or send
an event to the context. When you spawn to a context, the correlator creates the context if it does
not already exist.

What is inside/outside a context?
When you start a correlator it has a single main context. You can then create additional contexts.
A context consists of the following:

One or more monitor instances. Except, the main context exists even if it does not contain any
monitor instances.

An event input queue.

288 Developing Apama Applications 10.11.2

7 Implementing Parallel Processing

Listeners that belong to the contained monitor instances.

The correlator maintains event definitions and monitor definitions outside contexts. This lets all
contexts share the same event and monitor definitions.

Instances of the same monitor can exist in multiple contexts. Each monitor instance belongs to a
single context. For example, suppose you injectmonitor A. Monitor A spawnswithin its own context
(themain context) twice and spawns once to the alpha context. This creates three additionalmonitor
instances. Two instances are in the main context and one instance is in the alpha context. These
instances do not share any data, other than by means of passing events.

About context properties
A context has the following properties:

Name — A string that you specify when you create the context. This name does not need to
be unique. The name is a convenient identifier that you can use in your code.

ID — The correlator assigns a unique integer.

receiveInput flag — A Boolean value that indicates whether the context can receive external
input events on the default channel, which is the empty string ("").

A value of true lets the context receive external events on the default channel; this is a public
context. A value of true is equivalent to a subscription to the default channel; there is no
requirement for a monitor instance in this context to subscribe to the default channel.

A value of false indicates a private context that does not receive external events on the default
channel. This is the default.

Note that the main context is public.

Channel subscriptions — A context is subscribed to the union of the channels each of the
monitor instances in that context is subscribed to. This is a property of the monitor instances
running in a context and is not accessible by means of the context reference object.

You can spawn to other contexts. When the last monitor instance in a context terminates, that
context stops doingwork and stops consuming resources until you spawn anothermonitor instance
to it.

In a context, when you route an event, the event goes to the front of that context's input queue.
You can route events only within a context.

You can send an event to a particular context. When you do this, the event goes to the end of the
specified context's input queue. The correlator processes it after it processes any other events that
are already on the context's input queue. See “Sending an event to a particular context” on page 296.

You can use a context as part of the key for a dictionary. You can route an event that contains a
context field. You cannot parse a context. Context objects are immutable reference objects.

Developing Apama Applications 10.11.2 289

7 Implementing Parallel Processing

Context lifecycle
A context has a lifecycle that starts when a spawn...to operation occurs and ends when the last
monitor instance in the context terminates. This is completely independent of any context objects
that refer to the context. It is possible for a context to be running when no references to it exist,
and it is possible for a context object to refer to a context that is no longer running. In the latter
case, spawning to a context that is not running is permissible. The correlator restarts the context
as required.

Note:
If a license file cannot be found, the number of contexts that the correlator allows to be created
is limited. See "Running Apama without a license file" in Introduction to Apama.

Comparison of a correlator and a context
Upon injection, each monitor's initial instance runs in the main context. Youmust explicitly create
additional contexts. Conceptually, a context is like a correlator but with the following differences:

All contexts share the same namespace, and thus share all monitor and event definitions that
have been injected.

A monitor instance must have a context reference to pass an event to that context.

Execution of Java is allowed in only the main context.

The engine_receive tool receives events from all contexts or it can be configured to receive
events from only specified channels.

The engine_send tool sends events to all public contexts or to the contexts that are subscribed
to the channels it is configured to send events on.

Creating contexts
In EPL, you refer to a context bymeans of an object of type context. The context type is a reference
type.

The recommendation is to use private contexts and havemonitor instances subscribe to the channels
they require events from. This gives greater flexibility over using public contexts. For information
on the constructors needed to create a context, see the description of the context type in the API
Reference for EPL (ApamaDoc).

The name of a context does not have to be unique, and is only used for diagnostic purposes (it is
recommended that context names bemeaningful and distinct). Creating a new context object with
the same name as another context creates a reference to a different context, not the same context.
Context references are independent to the actual context wheremonitors run. A context continues
running if there are no references to it. A reference to a context may exist even though no active
monitors are running in that context. You use the context reference to spawn to the context or send
an event to the context. When you spawn to a context, the correlator creates the context if it does
not already exist.

290 Developing Apama Applications 10.11.2

7 Implementing Parallel Processing

When you start a correlator, it has a single main context. You can then create additional contexts.
Context reference objects are lightweight and creating one only creates a stub object and allocates
an ID. In other words, when you create an EPL context object, you are actually creating a context
reference.

The following example creates a reference, c, to a private context whose name is test:
context c:=context("test");

For information on the methods you can call on a context, see the description of the context type
in the API Reference for EPL (ApamaDoc).

See also “How many contexts can you create?” on page 291.

How many contexts can you create?
You can create any number of contexts. A context is a very lightweight object. Creating a context
just allocates an identifier and creates a small object. Consequently, it is possible to create a thousand
contexts with little performance penalty.

You can have any number of running contexts. A running context means that the context contains
at least onemonitor instance that haswork to do. Themore CPU cores you have, themore contexts
it is practical to be running at a given time. The performance of multiple contexts running
concurrently should scale approximately according to the number of CPU cores available on the
host.

Because the cost of each context is low, it is possible to divide applications into the finest level of
parallelism possible and let the correlator balance running those contexts across all CPU cores.
This is true even if that means creating very many contexts.

Using channels to communicate between contexts
Contexts can subscribe to channels, using the monitor.subscribe(channelName) operation. When
a monitor executes monitor.subscribe(channelName), it causes the context it is running in to be
subscribed to that channel. The subscription's lifetime is tied to the lifetime of themonitor instance
that executes subscribe(). The subscription is active until that monitor instance terminates or
executes monitor.unsubscribe(channelName).

Subscriptions are reference counted. That is, if one monitor instance subscribes twice to the same
channel then it needs to unsubscribe twice from that channel. If two monitor instances each
subscribe once to the same channel then the subscription is active while either monitor instance
exists or until both monitor instances unsubscribe from that channel.

When a context is subscribed to a channel it receives all events sent on that channel. This includes:

Events sent to the correlator from

An IAF adapter

engine_send

Developing Apama Applications 10.11.2 291

7 Implementing Parallel Processing

Another correlator connected with engine_connect and using parallelmode

Clients

Universal Messaging

Events sent from EPL using the send...to statement

Events sent from EPL plug-ins to a specific channel

It does not include events emittedwith the emit...to statement. Even if the target of an emit...to
statement is a channel that the context is subscribed to, an event sent by the emit statement goes
only to external receivers and not to any contexts.

By using a channel for each stream of data an application may be interested in, an application can
control which streams of data it receives through execution of the appropriate
monitor.subscribe(channelName) and monitor.unsubscribe(channelName)operations. The correlator
can efficiently distribute events within the correlator to multiple contexts, plug-ins or receivers
subscribed to channels. If further scale-out is required, using channels allows some application
components to be deployed to correlator processes running on other hosts, which are connected
using the engine_connect correlator tool or Universal Messaging. See "Tuning Correlator
Performance" in Deploying and Managing Apama Applications.

Obtaining context references
To obtain a reference to the context that a piece of code is running in, call the context.current()
method. This is a static method that returns a context object that is a reference to the current
context. The current context is the context that contains the EPL that calls this method.

For a monitor instance to interact with the EPL by means of a context object in another context,
themonitor instancemust have a reference to that context. Amonitor instance can obtain a reference
to another context in only the following ways:

By creating the context.

By receiving a context reference, whichmust be of type context. Amonitor instance can receive
this reference by means of a routed or sent event, or a spawn operation.

For example:
on all Calculate() as calc {

integer calcId:=integer.getUnique();
spawn doCalculation(calc, calcId, context.current())

to context("Calculation");
do something

}
action doCalculation(Calculate req, integer id, context caller) {

do something
send CalculationResponse(id, value) to caller;

}

If a monitor instance that creates a context does not send a context reference outside itself, and
does not subscribe to any channels, no other context can send events to that context, except by
means of EPL plug-ins. This affords some degree of privacy for the context.

292 Developing Apama Applications 10.11.2

7 Implementing Parallel Processing

A context object (a context reference) does not do anything. It is simply the target of the following:

spawn ActionIdentifier([ArgumentList]) to ContextExpression;

See “Spawning to contexts” on page 293.

send EventExpression to ContextExpression;

See “Sending an event to a particular context” on page 296.

Spawning to contexts
In a monitor, you can spawn to a context. The format for doing this is as follows:
spawn ActionIdentifier([ArgumentList]) to ContextExpression;

Replace ContextExpressionwith any valid EPL expression that is of the context type. Typically,
this is the name of a context variable. It is possible to spawn to only a context; it is not possible to
spawn to a channel.

This statement asynchronously creates a newmonitor instance in the target context. The correlator
can immediately create the newmonitor instance and begin processing it. The correlator does not
need to finish processing themonitor instance that spawned to the context before it starts processing
the spawned instance. The correlator might create the spawnedmonitor instance before it finishes
processing the action that spawned the new instance. Or, the correlator might create the spawned
monitor instance some time after it completes processing the action that spawned the new instance.
The order is unpredictable. For example:
action analyse(string symbol) {

context c:=context(symbol);
spawn submon(symbol) to c;
...

}
action submon(string symbol) {

...
}

If the target context does not yet exist, the correlator creates it.

It is possible for an operation that spawns to a context to block if the input queue of the target
context is full. See “Deadlock avoidance when parallel processing” on page 307.

Like the regular spawn operation, the spawn...to operation does the following:

Creates a newmonitor instance by taking a deep copy of all of the spawningmonitor instance's
global variables

Does not copy any listeners into the new monitor instance

Runs the specified action in the new monitor instance

For general information about spawning, see “Spawning monitor instances” on page 39.

Developing Apama Applications 10.11.2 293

7 Implementing Parallel Processing

Unlike the regular spawn operation, the correlator runs the new monitor instance in the specified
context. The correlator concurrently processes the new monitor instance and the instance that
spawned it.

A context processes spawn operations and events in the order in which they arrive. For example,
suppose a monitor contains the following statements:
spawn action1() to ctx;
send e1 to ctx;
spawn action2() to ctx;
send e2 to ctx;

The ctx context processes this in the following order: action1(), e1, action2(), e2.

Channels and contexts
Contexts can subscribe to particular channels to receive events delivered to those channels from
adapters and from other contexts. See “Channels and input events” on page 31 and “Subscribing
to channels” on page 54. Contexts that are public, that is, they were created with a true flag in
the context constructor, have a permanent subscription to the default channel. The name of the
default channel is the empty string.

Contexts can send events to channels without knowledge of whether the event is required by
contexts, clients, adapters, or some combination.When an event is sent from a context to a channel
the event is received by all contexts subscribed to that channel and by all external receivers that
are listening on that channel. See “Generating events with the send statement” on page 267.

An Apama query automatically runs in a context that has a permanent subscription to the default
channel and to the com.apama.queries channel.

Channels are useful for:

Identifying service monitors. If many monitors need to send events to a service monitor you
can use a well known name (which can appear in EPL as a string literal or string constant) as
a channel name. The service monitor (and only the service monitor) should subscribe to the
channel and other monitors send events to that channel. When a request-response event
protocol is required the sender can specify a channel to which it is subscribed, or a context to
send the response to.

Applications that have different contexts that consume different streams of data can use
channels to send the data to the intended contexts, even if many contexts require the same
data stream or one context requires multiple data streams. For example, statistical arbitrage
trading strategies could run inmany contexts, each subscribed to a channel for the pair of stock
symbols it is trading against each other. If the adapter where the events are coming from is
able to use a separate connection per channel, then the applicationwill scale very well as more
trading strategies on different symbols are added.

Different components of an application can be de-coupled by using an event protocol that
sends events to channels for each interaction point between components. This allows adapters
to be replaced with monitors that simulate those adapters for testing, and makes it easy to
scale an application across several hosts by running different parts on different correlators and
then connecting them.

294 Developing Apama Applications 10.11.2

7 Implementing Parallel Processing

Sending an event to a channel
In a monitor, you can send an event to a channel by using either

A string value that identifies the channel name.

A com.apama.Channel type that either names a channel or holds a context reference.

The format for sending an event to a particular context is as follows:
send EventExpression to ChannelExpression;

Replace EventExpressionwith any valid EPL expression that is of an event type.

Replace ChannelExpressionwith any valid EPL expression that is of the string or com.apama.Channel
type. Typically, this is a string value.

This statement asynchronously sends an event to everything subscribed to the specified channel.
Subscribers can include:

Contexts.

Receivers connected to external components bymeans ofApama'smessaging, JMS orUniversal
Messaging.

EPL plug-ins that have subscribed an EventHandler object.

For each target subscribed to a channel, the event goes to the back of the context's input queue.

In a target context, the correlator can immediately process the sent event. The correlator does not
need to finish executing the action that sends the event before it processes the sent event in a target
context. The correlator might process the sent event before it finishes executing the action that
sent the event. Or, the correlatormight process the sent event some time after it completes executing
the action that sent the event. The order is unpredictable. The order in which the target contexts
receive the sent event is also unpredictable. For example:
action analyse(string symbol) {

spawn submon(symbol) to context(symbol);
log "Listening for "+symbol;
on all com.apama.marketdata.Tick(symbol=symbol) as tick {

send tick to symbol;
}
on com.apama.marketdata.Finished() {

send com.apama.marketdata.Finished() to symbol;
}

}

action submon(string symbol) {
monitor.subscribe(symbol);...

}

It is possible for a send...to operation to block the sending context from further processing if the
input queue of any target (context, receiver or plug-in) is full. Either an event that you send to a
particular target arrives on the target's input queue or the sending context waits for room on the
target's input queue.

Developing Apama Applications 10.11.2 295

7 Implementing Parallel Processing

If you send an event to a channel that has no subscribers, the correlator discards the event because
there are no listeners for it. This is not an error.

See also:

“Generating events with the send statement” on page 267

“Using EPL plug-ins written in Java” on page 554

Sending an event to a particular context
In a monitor, you can send an event to a particular context, as described here, or you can send an
event to a sequence of contexts, described in the next topic. The format for sending an event to a
particular context is as follows:
send EventExpression to Expression;

or:
enqueue EventExpression to ContextExpression;

Note:
The enqueue...to statementwill be deprecated in a future release. Use the send...to statement.
Both statements perform the same operation.

Replace EventExpressionwith any valid EPL expression that is of an event type. You cannot
specify a string representation of an event. For example, you cannot send &TIME pseudo-ticks.

Replace Expression, in the first format, with any valid EPL expression that is of the context
type or with a com.apama.Channel object that contains a context. See “Sending events to
com.apama.Channel objects” on page 268.

Replace ContextExpressionwith any valid EPL expression that is of the context type. This can
be the name of a context variable or a method that returns a context. This cannot be a
com.apama.Channel object that contains a context.

This statement asynchronously sends an event to the specified context. The event goes to the back
of the context's input queue.

In the target context, the correlator can immediately process the sent event. The correlator does
not need to finish executing the action that sent the event before it processes the sent event in the
target context. The correlator might process the sent event before it finishes executing the action
that sent the event. Or, the correlator might process the sent event some time after it completes
executing the action that sent the event. The order is unpredictable. The order in which the target
contexts receive the sent event is also unpredictable. For example:
action analyse(string symbol) {

context c:=context(symbol);
spawn submon(symbol) to c;
log "Listening for "+symbol;
on all com.apama.marketdata.Tick(symbol=symbol) as tick {

send tick to c;
}

296 Developing Apama Applications 10.11.2

7 Implementing Parallel Processing

on com.apama.marketdata.Finished() {
send com.apama.marketdata.Finished() to c;

}
}
action submon(string symbol) {

...
}

The send...to and enqueue...to statements do not place the event on the special enqueued events
queue. Instead, they put the event on the end of the target context's input queue. Consequently,
it is possible for a send...to or enqueue...to operation to block the sending context from further
processing if the input queue of the target context is full. Either an event that you send to a particular
context arrives on the target context's input queue or the sending context waits for room on the
target context's input queue.

If you send an event to a context that does not contain anymonitor instances, the correlator discards
the event because there are no listeners for it.

If you do not have a reference to a particular context, then send an event to a channel. See
“Generating events with the send statement” on page 267.

In some situations, for example when you change a single-context application to use parallel
processing, youmightwant to explicitly send an event to only the context that contains themonitor
instance that contains the send statement. To send an event to only this context specify:
send eventExpression to context.current()

Youmust set a valid value to a context variable before you send an event to the context. You cannot
send an event to a context that you have declared but has not been set to a valid value. For example,
the following code causes the correlator to terminate the monitor instance:
monitor m {

context c;
action onload()
{

send A() to c;
}

}

See also “Generating events with the send statement” on page 267.

Sending an event to a sequence of contexts
In a monitor, you can send an event to a sequence of contexts. The format for doing this is as
follows:
send EventExpression to ContextSequenceExpression;

or:
enqueue EventExpression to ContextSequenceExpression;

Note:

Developing Apama Applications 10.11.2 297

7 Implementing Parallel Processing

The enqueue...to statementwill be deprecated in a future release. Use the send...to statement.
Both statements perform the same operation.

Replace EventExpressionwith any valid EPL expression that is an event. You cannot specify
a string representation of an event.

Replace ContextSequenceExpressionwith any valid EPL expression that resolves to
sequence<context>. You cannot specify a sequence that contains com.apama.Channel objects.

Each statement asynchronously sends a copy of an event to each context in the specified sequence.
The event goes to the back of the input queue of each context.

In each target context, the correlator can immediately process the sent event. The correlator does
not need to finish executing the action that sent the event (in the source context) before it processes
the sent events in the target contexts. The correlator might process a sent event before it finishes
executing the action that sent the event. Or, the correlator might process a sent event some time
after it completes executing the action that sent the event. The order is unpredictable, depending
on the relative execution speeds of the contexts.

The following example uses the sequence type:
action analyse(string symbol) {

context c1:=context(symbol + "-1");
context c2:=context(symbol + "-2");
context c3:=context(symbol + "-3");

spawn submon(symbol) to c1;
spawn submon(symbol) to c2;
spawn submon(symbol) to c3;
sequence <context> ctxs := [c1, c2, c3];

log "Listening for "+symbol;
on all com.apama.marketdata.Tick(symbol=symbol) as tick {

send tick to ctxs;
}
on com.apama.marketdata.Finished() {

send com.apama.marketdata.Finished() to ctxs;
}

}
action submon(string symbol) {

...
}

The following example uses the values()method on a dictionary of contexts to obtain a sequence
of contexts:
action analyse(string symbol) {

context c1:=context(symbol + "-1");
context c2:=context(symbol + "-2");
context c3:=context(symbol + "-3");

spawn submon(symbol) to c1;
spawn submon(symbol) to c2;
spawn submon(symbol) to c3;

dictionary <string, context>
ctxs := ["c1": c1, "c2": c2, "c3": c3];

298 Developing Apama Applications 10.11.2

7 Implementing Parallel Processing

log "Listening for "+symbol;
on all com.apama.marketdata.Tick(symbol=symbol) as tick {

send tick to ctxs.values();
}
on com.apama.marketdata.Finished() {

send com.apama.marketdata.Finished() to ctxs.values();
}

}
action submon(string symbol) {
...
}

The send...to and enqueue...to statements do not place the event on the special enqueued events
queue. Instead, they put the event on the end of the input queue of each target context.
Consequently, it is possible for a send...to or enqueue...to operation to block the sending context
from further processing if the input queue of a target context is full. The sending context does not
continue beyond a send...to or enqueue...to statement until the event has been placed on the
input queues of all target contexts.

If one of the contexts in the sequence does not contain anymonitor instances the correlator ignores
the sent event in that context because there are no listeners for it.

If one of the contexts in the sequence does not have a valid value before you send an event to it
then the correlator terminates the monitor instance.

Consider the following two code fragments:
for c in mySequence {

send myEvent to c;
}

send myEvent to mySequence;

Execution of each of these fragments is typically equivalent. However, you cannot rely on
equivalence. When the correlator executes the first fragment, it always delivers the event to the
contexts according to their order in the sequence.When the correlator executes the second fragment
it can deliver the event to contexts in any order. For example, if a context's input queue is full this
can affect the order in which the correlator delivers the event to the contexts.

Common use cases for contexts
See “Tuning contexts” on page 449.

Samples for implementing contexts
Apama provides a number of applications that illustrate the use of contexts. These examples are
in the samples\epl\contexts directory and in the samples\epl\concurrency-theory directory.

Information for using these examples is given in the topics below.

Developing Apama Applications 10.11.2 299

7 Implementing Parallel Processing

Simple sample implementation of contexts
In yourApama installation directory, in the samples\epl\contexts directory, there are two versions
of a simple application. One version implements serial processing and the other implements
parallel processing. Open the analyse-parallel.mon and analyse-serial.mon files from the Input
directory in Software AG Designer to compare the implementations.

The sample uses the PySys testing framework. To execute the sample, use pysys run. The script
runs the serial application and then the parallel version.

On a 2.4GHz Quad core Intel Q6600 machine, the serial implementation completes in about 63
seconds, while the parallel implementation completes in about 17 seconds. For an equivalent
dual-core processor, you can expect the parallel implementation to complete in about 30 seconds.

Look at serial-results.evt and parallel-results.evt to compare the results.While the per-symbol
output for each implementation is identical, the ordering of sent events for different symbols is
different. Also, in the parallel implementation, there is more variation in the time taken to process
all events for one symbol. The sample uses eight worker contexts. Each context is doing much the
same work, but on different segments of the data. While it is not required, an application that has
eight contexts typically working most of the time benefits from running on an 8-core host. You
can expect an 8-core processor to run the sample parallel implementation more than seven times
faster than it runs the serial implementation.

Running samples of common concurrency problems
Sample applications in the samples\epl\concurrency-theory directory illustrate a few common
concurrency problems. There are three implementations of a simple deposit bank:

Race — implements Get and Set events, and corresponding Response events, so that a teller
can find the value of an account, perform some modification and then set the new account
value.

Deadlock — lets tellers lock an account.

Compareswap — is similar to the race implementation but it does not rely on locking and it
does not compute values based on out-of-date information.

To run these samples

1. Start an Apama Command Prompt as described inDeploying andManaging Apama Applications
in the topic "Setting up the environment using the Apama Command Prompt".

2. Change to the samples/epl/concurrency-theory directory of your Apama installation.

3. Invoke the following:

pysys run --mode=mode

300 Developing Apama Applications 10.11.2

7 Implementing Parallel Processing

where mode can be Race, Deadlock, CompareSwap or ALL, according to which sample monitors
you want the test to run. The subsequent topics describe each sample.

The script starts a correlator on the default port (15903). Consequently, you should not have a
correlator already running on the default port. If you do, the script causes the application to be
injected into the running correlator and it also shuts the correlator downwhen the sample execution
is complete. The script creates an event file in the Output directory (which it creates). The event
file has the name of the sample with an .evt file suffix (for example, Race.evt, Deadlock.evt or
CompareSwap.evt).

About the samples of concurrency problems
The sample of concurrency problems try to implement a simple deposit bank. The customer-visible
part of the bank consists of a number of tellers, who have the ability to transfer money from one
account to another. In an effort to scale well, the bank is implemented with each teller running in
a separate context, which lets all tellerswork concurrently. Of course, the simplework of the tellers
does not require or even justify this, but the purpose of these samples is to show potential bugs,
not to be a practical system. Similarly, no security checks are enforced.

Because data cannot be shared between contexts, the application requires a separate monitor that
acts as the bank's database. The tellers send requests to the bank's database and receive responses
from the database. There is also a simple mechanism to initialize the state of the bank database
(SetupAccount event) and for tellers to discover the context in which the database is running. The
communication between the bank and the tellers typically needs to get or set an account's value.
The tellers perform the actual arithmetic on a bank account's value. Each implementation (race,
deadlock, and compareswap) differs mainly in the way the tellers and database interact with each
other.

Customer interactions with tellers are the same across all implementations. The customer sends
a TransferMoney event, specifyingwhich teller to use. It is assumed that customers know the names
of tellers, the from and to account, and the amount to transfer. The customer receives a
TransferMoneyComplete event when the transfer is complete.

The state of the bank's accounts can be inspected by sending a SendBalances event to the correlator,
which causes the correlator to log and send the balances.

To expose the problems, there are calls to the spinSleep action at key places in the implementations.
If the correlator receives an ExposeRaces event, the spinSleep action suspendswork by the specified
teller for the specified time. This simulates tellersworking at different rates, andmeans that difficult
to reproduce conflicts are easier to identify.While this is useful for exposing bugs, it is not suitable
for general-purpose sleeps because it consumes CPU time while sleeping and does not let other
work in that context get done. This strategy is useful for exposing problems only when you know
exactly where to place the sleeps.

Each implementation has its own transfer-sample_name.evt file, which the script sends as each
bug is exposed with a different set of input data.

Developing Apama Applications 10.11.2 301

7 Implementing Parallel Processing

About the race sample
The race sample is in Bank-race.mon. It implements Get and Set events, and corresponding Response
events. A teller can find the value of an account, perform some modification and then set the new
account value. To take money from one account, the protocol is as follows:

1. Send a Get event to obtain the current value of the account.

2. Wait for a GetResponse event that contains the current value.

3. Compute the new account value.

4. Send a Set event to set the new account value.

5. Wait for a SetResponse event.

This works well when a single transfer occurs at a time. However, there is a bug because between
the time that teller 1 obtains an account value and the time that teller 1 sets the new account value,
teller 2 can obtain the account value, compute a new value, and set a new account value. The
following time line demonstrates this:

Bank DatabaseTeller 2Teller 1Time

A: 100 B: 100 C: 100Transfer 50 from A to B0 (setup)

Get A, Get B

A=100, B=100

Sleep 1 second

Transfer 25 from B to C0.5

Get B, Get C

B=100, C=100

newB=75, newC=125

Set B, Set C

A: 100, B: 75, C: 125

newA=50, newB = 1501.0

Set A, Set B

A: 50, B: 150, C: 125

B's account should have 100 + 50 – 25 = 125. But it ends up with 150 because teller 1 overwrites
teller 2's value for B's account (75). Teller 1 based its calculation on values that were out of date at
the point they were sent to the database.

302 Developing Apama Applications 10.11.2

7 Implementing Parallel Processing

About the deadlock sample
While EPLdoes not provide anymutual exclusion lockingprimitives, you can implement something
similar in a monitor. The deadlock sample's bank implements a locking mechanism. Tellers can
send a Lock event for an account, and the database returns a LockResponse event when the account
is locked. If another teller tries to lock the same account, the correlator queues the request until it
processes an Unlock event to unlock the account. Note that the locking is fair; the correlator allocates
locks in the order in which they are requested.

The deadlock implementation does no checking. For example, it does not check that the unlock
event comes from the teller that locked an account, nor that a teller holds a lock for an account
before performing an operation on that account. (A robust application would of course perform
such checking.)

The deadlock sample fixes the problem shown in the race sample where a value was overwritten
by a value that resulted from computation on out-of-date values. If you replicate the race pattern
of events, teller 2 would wait to lock B's account until teller 1 had finished with it. (This assumes
all tellers follow the correct protocols. A robust implementation would perform checks to ensure
that was the case).

However, even when all tellers follow the locking protocol correctly, there is a different problem.
If teller 1 locks account A and teller 2 locks account B, and teller 1 tries to lock account B and teller
2 tries to lock account A, then each teller waits for the other teller to release a lock. The following
timeline shows this:

Bank DatabaseTeller 2Teller 1Time

A: 100 B: 100 C: 100Transfer 50 from A to B0

Lock A

A: Locked by t1

Sleep 1 second

Transfer 25 from B to A0.5

Lock B

A: locked by t1 B: locked by
t2

A: locked by t1, t2 waitingB:
locked by t2

Lock A

(waiting for
LockResponse(A))

A: locked by t1, t2 waitingB:
locked by t2, t1 waiting

Lock B

Developing Apama Applications 10.11.2 303

7 Implementing Parallel Processing

Bank DatabaseTeller 2Teller 1Time

(waiting for
LockResponse(B))

1.0

At this point, neither teller can make any further progress.

One solution to this (not implemented here) is to implement a timeout. If a lock request is
outstanding for more than some threshold, the correlator abandons the lock. When this happens,
the tellers would wait a random amount of time and try again. The random wait should prevent
the retries from overlapping, if not on the first retry, then on a subsequent retry. However, such
a mechanism invariably performs poorly in the (hopefully rare) case that a lock times out.

Alternatively, you can prevent deadlock by defining priority orders for locks. For example, you
can specify that Amust always be locked before B. Applying this priority order to all transactions
would prevent deadlock.

About the compareswap sample
This compareswap sample is more like the race sample. The protocol between tellers and the
database consists of Get and Set events, except the Set event is a CompareSet event, which contains
an expected old value. If the old value does not match the database account value, then the teller
retries the operation — getting a new value and re-computing the account value.

This has the advantage that it does not rely on locking (so does not suffer from deadlock) and does
not result in values computed from out of date data being set in the database.

The only disadvantage is that under some circumstances (the same as for the race sample), the
tellers need to re-try a calculation. However, unlike the timeout on locking, tellers know about
this as soon as they receive an event back from the database, and no timeouts are involved.

This strategy is the recommended way to share state between different contexts. Note that while
it guarantees progress is made by at least one context, an interaction between the database and a
single context can take an unbounded amount of time, as other contexts can require the context
to re-try its transaction.A further refinementwould be to use a generation counter that the correlator
increments on every successful Set event. This detects the difference between the database's value
being unchanged and the database's value being changed back to a previous value. While such a
difference might not matter in many situations, it might when you are computing interest.

Note:
Due to the requirement to retry, the compareswap implementation is slightly different from
the race implementation. One account is modified at a time; the teller transfers money from the
fromAccount, and then adds it to the toAccount.

Bank DatabaseTeller 2Teller 1Time

A: 100 B: 100 C: 100Transfer 50 from A to B0 (setup)

Get A

304 Developing Apama Applications 10.11.2

7 Implementing Parallel Processing

Bank DatabaseTeller 2Teller 1Time

A=100

newA=50

A: 50, B: 100, C:100

Set A success

Get B

B = 100

Sleep 1

Transfer 25 from B to C0.5

Get B

B=100

newB=75

Set B (old=100)

A: 100, B: 75, C: 100

Set B success

Get C

C=100

newC=125

Set C (old=100)

A: 50, B: 75, C: 125

Set C success

newB = 1501.0

Set B (old=100)

A: 50, B: 75, C: 125

Set B FAILED

Get B

B = 75

newB = 125

Developing Apama Applications 10.11.2 305

7 Implementing Parallel Processing

Bank DatabaseTeller 2Teller 1Time

Set B (old=75)

A: 50, B: 125, C: 125

Set B success

Contexts and correlator determinism
Creating one or more contexts makes the correlator non-deterministic. In other words, injecting
the same monitor can produce different results if the monitor contains statements that spawn to
contexts.

For example, suppose an application creates two contexts, spawns to each of them, and each
context runs code that calls integer.getUnique(). The assignment of unique integers to contexts
is not deterministic; if you re-run the code, each context might receive an integer that is different
from the integer it received during the previous run. Other behavior that can be non-deterministic
in a parallel processing application includes the following:

The assignment of particular IDs to particular contexts

The order in which contexts send events

The order in which contexts spawn to other contexts

See also “About input logs and parallel processing” on page 306.

How contexts affect other parts of your Apama
application
When you implement contexts in an EPL application, an understanding of how contexts affect
other parts of your Apama application is required.

The topics below provide information to help you understand the behavior.

About input logs and parallel processing
Applications that implement parallel processing might have non-deterministic behavior. While
you can inject a parallel application into a correlator that you started with the --inputLog option,
you cannot expect to use that input log to exactly duplicate correlator execution.

For applications that use multiple contexts or that send events, just re-sending the events and EPL
sent to the correlator is insufficient to reproduce the same output and state. The timing of which
context ran which send, emit, enqueue...to or other operation is important. Operations that can
affect the state of other contexts or the sent events are non-deterministic when run in parallel.

306 Developing Apama Applications 10.11.2

7 Implementing Parallel Processing

Deadlock avoidance when parallel processing
Parallel processing in the correlator uses a message passing system. Each context has a fixed-size
input queue for events (messages). A deadlock is possible when all of the following conditions
are true:

Context 1 is enqueuing an event to context 2.

Context 2 is enqueuing an event to context 1.

The input queues for context 1 and context 2 are both full.

In this situation, each context is blocked from further processing until the queue of the other context
is no longer full. Neither context can process the next event on its input queue. Such a deadlock
is not limited to two contexts but can occur with any number of contexts enqueuing events to each
other.

The correlator avoids such a deadlock by detecting the potential for it to occur and then expanding
input queues as needed. Also, the correlator logs awarning that a potential deadlockwas detected.
The correlator expands input queues only when not doing so causes a deadlock. The correlator
does not expand input queues when one or more contexts are blocked from further processing
while one ormore contexts are processing as usual. However, it is still possible to create applications
that result in out of memory errors or other kinds of deadlocks. Out of memory errors can result
from requiring excessive expansion of input queues through the deadlock avoidance mechanism,
or other means, such as creating a very large sequence.

Clock ticks when parallel processing
Since all contexts receive clock ticks, timers work in all contexts. However, it is possible for some
contexts to run behind others. That is, a timer in a particular monitor for which there are monitor
instances in multiple contexts might fire at different points in real time. In each context, the timer
can process the series of clock ticks at a speed that is different from the other contexts.

A context that is running amonitor instance in a very long running loopmight not remove entries
from its input queue for a long time. If a context has a full input queue the clock tick distributer
thread does not block. Instead, the correlator quashes clock ticks onto the end of the context's input
queue. This means that the correlator unpacks the clock tick event when the context input queue
either drains or accepts a new event. There is no perceptible difference between normally received
clock ticks and quashed clock ticks.

Using EPL plug-ins in parallel processing applications
The standard MemoryStore and Time Format plug-ins are thread safe, which means that you can
use them in parallel applications. The MemoryStore can be quite helpful in a parallel application
and is very efficient when used simultaneously by multiple contexts.

Developing Apama Applications 10.11.2 307

7 Implementing Parallel Processing

308 Developing Apama Applications 10.11.2

7 Implementing Parallel Processing

8 Using Correlator Persistence

■ Description of state that can be persistent ... 310

■ When persistence is useful .. 311

■ When non-persistent monitors are useful ... 311

■ How the correlator persists state .. 312

■ Enabling correlator persistence .. 313

■ How the correlator recovers state ... 316

■ Designing applications for persistence-enabled correlators ... 318

■ Upgrading monitors in a persistence-enabled correlator .. 319

■ Sample code for persistence applications .. 320

■ Requesting snapshots from EPL .. 322

■ Developing persistence applications .. 322

■ Backing up the persistence database while the correlator is running 323

■ Using EPL plug-ins when persistence is enabled .. 325

■ Using the MemoryStore when persistence is enabled ... 325

■ Comparison of correlator persistence with other persistence mechanisms 327

■ Restrictions on correlator persistence .. 328

Developing Apama Applications 10.11.2 309

When the correlator shuts down, the default behavior is that all state is lost. When you restart the
correlator, no state from the previous time the correlator was running is available. You can change
this default behavior by using correlator persistence.

Correlator persistence means that the correlator automatically periodically takes a snapshot of its
current state and saves it on disk. When you shut down and restart that correlator, the correlator
restores the most recent saved state.

To enable persistence, you indicate in your EPL code which monitors you want to be persistent.
Optionally, you canwrite actions that the correlator executes as part of the recovery process.When
code is injected for a persistence application, the correlator that the code is injected intomust have
been started with a persistence option.

Persistent monitors must be written in EPL. State in JMon monitors cannot be persistent. State in
chunks, with a few exceptions, also cannot be persistent.

To protect the security of personal data, see "Handling personal data "at rest" in the correlator
persistence and JMS datastores" in Developing Apama Applications.

If you plan to install a new version of Apama, see "Persistence database backup" in Installing
Apama.

Note:
If a license file cannot be found, the number of persistent monitors that the correlator allows is
limited. See "Running Apama without a license file" in Introduction to Apama.

Description of state that can be persistent
A correlator that is running with persistence enabled automatically stores state on disk and
automatically recovers state when it restarts. Saved state includes the following:

For a persistent EPLmonitor, all of thatmonitor's state is saved. This includes all events, strings,
primitives, sequences, dictionaries, action variables, closures, and global variables. It also
includes all the state of listeners, streams and queries — local variables captured by them and
all active listeners, sublisteners and queries, including the events currently flowing through
them.

All source code thatwas injected into the correlator, including any non-persistent EPLmonitors
and JMonmonitors. EPL files that were injected from a correlator deployment package (CDP)
are not stored in plain text.

Code that is not injected includes the following:

EPL plug-ins, which are imported at runtime. The actual plug-in filemust be on a specified
path that the correlator can load it from.

Any Java class files on the correlator's classpath but not injected.

The correlator runtime itself.

Contents of all context queues.

310 Developing Apama Applications 10.11.2

8 Using Correlator Persistence

Some correlator-global state including integer.getUnique() and integer.incrementCounter()
IDs and context IDs. See the API Reference for EPL (ApamaDoc) for more information on the
integer type and its built-in methods incrementCounter and getUnique.

Note:
In general, chunks cannot be persistent. However, chunks used by the Apama Time Format
plug-in and the Apama MemoryStore plug-in can be persistent.

When persistence is useful
Enabling correlator persistence is a good fit for applications in which it is unacceptable to lose any
information. For example, an application for processing mortgage requests does not need to be
available continuously. A small amount of downtime, especially outside business hours, might
be acceptable. However, losing any state associated with a mortgage application would be
unacceptable.

In such a mortgage processing application, there is unlikely to ever be a point at which there are
no open applications and thus no state to preserve. But state might change over the course of
weeks, rather than seconds. Enabling correlator persistence lets you implement complex event
expressions such as the following:
on all LoanRequest() -> (PropertyValuation() and ProofOfIncome())
within (4 * week) ...

With persistence enabled, the event expression can still be running even if weeks elapse between
when it is created and when it finally completes. Without persistence, the event expression's state
is susceptible to being lost if there are system restarts, software upgrades, and the like.

When non-persistent monitors are useful
A correlator that is running with persistence enabled can have persistent and non-persistent
monitors injected. Non-persistence is a good choice for a monitor that does one or more of the
following:

Uses legacy code that does not use the persistence feature. See “Designing applications for
persistence-enabled correlators” on page 318.

Interacts with user-defined EPL plug-ins or Apama EPL plug-ins other than the Time Format
or MemoryStore plug-ins.

Contains large amounts of fast-changing state that is undesirable to persist for performance
reasons.

Operates as a stateless utility that just responds to incoming events.

Containsminimal state that can be reconstructed by the onBeginRecovery() action on a persistent
monitor.

Also, all JMon monitors are non-persistent monitors.

Developing Apama Applications 10.11.2 311

8 Using Correlator Persistence

How the correlator persists state
When persistence is enabled, the correlator periodicallywrites data to disk to reflect the correlator's
runtime state. To do this, the correlator

1. Suspends all execution in the correlator across all contexts.

2. Takes an in-memory snapshot of what needs to be stored.

3. Resumes processing while the state is written to disk.

The correlator waits to suspend execution until all contexts have completed any in-progress event
processing and any in-progress deletions. It can take time for the correlator to pause all contexts.
Consequently, it is best practice that a single event listener does not take a long time to process.
When there is a need to perform a large amount of work, try to split the work across multiple
events.

How fine-grained to split work depends on the performance requirements of the application.
Avoid very fine-grained work units as the overhead of scheduling will start to dominate and lead
to the application running slowly.

Committing the snapshot to disk is an atomic operation. That is, a failurewhile storing state reverts
the stored data to the previously successfully stored snapshot.

By default, the correlator does the following when you enable persistence:

Takes a snapshot of state changes every 200 milliseconds. This is the snapshot interval. The
correlator tracks the in-memory objects that have changed since the last snapshot and writes
only that state to disk. If only a small fraction of the correlator's state changes, then only a
fraction of the correlator's state must be stored for each snapshot.

Automatically adjusts the snapshot interval. For example, if a significant percentage of the
correlator's state changes, then the correlator increases the snapshot interval so that the overall
throughput is not adversely affected.

Stores persistent state in the current directory, which is the directory in which the correlator
was started.

Uses persistence.db as the name of the file that contains persistent state. This is the recovery
datastore.

Copies the recovery datastore to the input log if one was specified when the correlator was
started. This happens only upon restarting the correlator.

For applications that do not use the correlator's internal clock (correlators started with the
-Xclock option), the correlator uses the time of day in the last committed snapshot as the
current time in the restarted correlator.

312 Developing Apama Applications 10.11.2

8 Using Correlator Persistence

Enabling correlator persistence
Before you enable persistence, you should design and develop your application to handle
persistence and recovery. See “Designing applications for persistence-enabled correlators” on
page 318.

Note:
If a license file cannot be found, the number of persistent monitors that the correlator allows is
limited. See "Running Apama without a license file" in Introduction to Apama.

To enable correlator persistence, you must proceed as follows:

Insert the word persistent before the monitor declaration for each monitor written in EPL
that you want to be persistent. For example:
persistent monitor Order {

action onload() {
...
}

}

For a monitor declared as persistent, the correlator persists the state of all monitor instances
of that name, and all instances of events that the monitor instances create.

You do not mark event types as persistent. Whether or not an event is persisted depends on
whether it is used from a persistent or non-persistentmonitor. If an event is on a context queue
when the correlator takes a snapshot, the event is persisted.

Optionally, define onBeginRecovery() and onConcludeRecovery() actions in your persistent
monitors. The correlator executes any such actions as part of the recovery process. To determine
whether you need to define these actions, see “Designing applications for persistence-enabled
correlators” on page 318, “Defining recovery actions” on page 317 and “Sample code for
persistence applications” on page 320.

Specify one or more persistence options when you start the correlator. To enable correlator
persistence, you specify one of the following:

the -P or -Penabled=true option, or

the --config option together with the name of a YAML configuration file that contains the
following definition:
correlator:

persistence:
enabled: true

Specify just one of the above options (without any additional persistence options) to implement
the default behavior for correlator persistence.

To change the default behavior, also specify one or more of the options described in the table
below. The correlator uses the default when you do not specify an option that indicates
otherwise. For example, if you specify -P, -PsnapshotIntervalMillis and -PstoreLocation (or
--configwith aYAMLconfiguration file that contains the corresponding options), the correlator

Developing Apama Applications 10.11.2 313

8 Using Correlator Persistence

uses the values you specify for the snapshot interval and the recovery datastore location and
uses the default settings for all other persistence behavior.

For more information on the different -P options and the --config option, see "Starting the
correlator" in Deploying and Managing Apama Applications.

For information on all of the persistence options that you can specify in a YAML configuration
file, see "Configuring persistence in a YAML configuration file" in Deploying and Managing
Apama Applications.

Note:
During development of a persistence application, it varies whether you want to specify a
persistence option when you start the correlator. In the earlier stages of development, you
might choose not to specify a persistence option since you might make many and frequent
changes to early versions of your program, thereby making recovery of a previous version
impossible. For example, you might have changed the structure and perhaps added new
variables. Once your program structure becomes relatively stable, youmust take into account
what happens during recovery and you will want to define onBeginRecovery() and
onConcludeRecovery() actions. These actions never get called in a correlator that was not
started with a persistence option. To deploy a persistence application, the correlator must
be started with a persistence option.

If you are using both correlator persistence and the compiled runtime (--runtime compiled
option), we recommend the use of the --runtime-cache option to improve recovery times. For
more information on these options, see "Starting the correlator" in Deploying and Managing
Apama Applications.

The following table describes correlator persistence behavior, the default behavior, and the options
you can specify to change default behavior.

Option for ChangingDefaultCorrelator Persistence
Behavior

-PsnapshotIntervalMillis=interval200 millisecondsThe correlator waits a
specified length of time
between snapshots. Or the corresponding option in a YAML

configuration file:

snapshotIntervalMillis: interval

Specify an integer that indicates the number
of milliseconds to wait.

-PadjustSnapshot=booleantrue. The correlator
automatically

The correlator can
automatically adjust the

Or the corresponding option in a YAML
configuration file:

adjusts the snapshot
interval.

snapshot interval according
to application behavior.

adjustSnapshot: booleanIt can be useful to set this to
false to diagnose a problem
or test a new feature.

314 Developing Apama Applications 10.11.2

8 Using Correlator Persistence

Option for ChangingDefaultCorrelator Persistence
Behavior

-PstoreLocation=pathThe directory in
which the correlator

The correlator puts the
recovery datastore in a
specified directory. Or the corresponding option in a YAML

configuration file:
was started. That is,
the current
directory. storeLocation: path

You can specify an absolute or relative path.
The directory must exist.

-PstoreName=filenamepersistence.dbThe correlator copies the
snapshot into a specified file.
This is the recovery datastore. Or the corresponding option in a YAML

configuration file:

storeName: filename

Specify a filename without a path.

-XrecoveryTime numThe time of day
captured in the last

For correlators that use an
external clock, the correlator

To change the default, specify an integer that
indicates seconds since the epoch.

committed
snapshot.

uses a specified time of day as
its starting time when it
restarts.

This behavior is useful only
for replaying input logs that
contain recovery information.

-noDatabaseInReplayLogThe correlator
copies the recovery

The correlator can
automatically copy the

Or the corresponding option in a YAML
configuration file:

datastore to the
input log.

recovery datastore to the
input log when a
persistence-enabled correlator
restarts.

includeDatabaseInInputLog

You might set this option if you are using an
input log as a record of what the correlator
received. The recovery datastore is a large
overhead that you probably do not need. Or,
if you maintain an independent copy of the
recovery datastore, you probably do not want
a copy of it in the input log.

Important:
If an option is specified both with one of the -P options on the command line and in a YAML
configuration file, the value on the command line takes precedence and a warning is logged.

Developing Apama Applications 10.11.2 315

8 Using Correlator Persistence

How the correlator recovers state
When you restart a correlator for which persistence has been enabled the correlator

Detects, recompiles, and re-injects all code that was injected and not deleted as of the last
committed snapshot.

Restarts and restores the state of all persistent monitors as of the last committed snapshot.

Restarts non-persistent EPL monitors and JMon monitors at their onload() action.

Executes any onBeginRecovery() and onConcludeRecovery() actions. See “Defining recovery
actions” on page 317.

Recovers persistent connections (connections created with engine_connect -p) and resumes
them at the first opportunity.

Code is re-injected in the order in which it was originally injected. The correlator tracks which
objects (monitors, events, Java objects) were deleted and does not re-inject them. Such objects
might have been deleted explicitlywith the engine_delete utility or implicitly aswhen all instances
of a monitor have terminated. If a snapshot shows that an object was deleted and then re-injected,
recovery ignores the first injection and re-injects the monitor or event at the point of its second
injection.

For a persistentmonitor, recovery appears to be a pause in processing. This pause has the potential
to be long enough to cause some events to be stale. All non-persistent monitors appear to have
spontaneously reverted to their onload state. Communication channels to external components
have been interrupted and can be assumed to not yet be connected. Except, the correlator treats
connections createdwith engine_connect -p, which are persistent connections, the same as it treats
persistent state. Persistent connections continue until you explicitly remove them. Upon recovery,
the correlator tries to reconnect to the external components that were connected with persistent
connections. However, events sent or received after the last committed snapshot might have been
dropped because there is no reliable delivery on persistent connections.

For a non-persistentmonitor, recovery appears the same as starting the correlator. The correlator's
current time is up-to-date. The monitor is in the state it would be if it were just injected. External
components have not yet connected to the correlator. If a monitor initiates a request of a
non-persistent monitor, then the non-persistent monitor might have to queue the request until a
connection is made to an external component, for example, the correlator subscribes to a data
stream from an external adapter.

Recovery order
When the correlator recovers state from a recovery datastore, it does the following in the following
order:

1. Recompile and re-inject all sources except for deleted events andmonitors, which are ignored.

2. Restore objects and listeners in persistent monitors. The correlator does not execute any user
code in the first two steps. While it sets up listeners, the listeners cannot yet change state.

316 Developing Apama Applications 10.11.2

8 Using Correlator Persistence

3. Set currentTime to the currentTime of the last committed snapshot,whichmight be considerably
earlier than the current time of day if the correlatorwas down for some time before recovering.

4. Initiate execution of any onBeginRecovery() actions on instances of restored events, monitors,
and custom aggregate functions in all persistent monitor instances in all contexts. The order
of execution of these actions is undefined. See “Defining recovery actions” on page 317.

5. Quiesce — The correlator waits for all events that have been sent to a context to be processed,
and alsowaits for any events that are sent to a context as a result of those events to be processed,
and so on, until no more events are generated and sent to a context. The correlator also does
this for spawn...to statements. This is similar to processing all events in all queues. Be careful
not to generate an infinite loop of send...to statements.

6. Restore events, clock ticks, pending spawn...to statements, and so on, that were waiting on
context queues when the snapshot was taken.

7. Send a single clock tick of the time at which the correlator is recovered, that is, the current time
of day. If -XrecoveryTimewas set when the correlator was started, the correlator uses that time
for the current time of day.

8. Initiate execution of onload() actions in all non-persistent monitors in injection order.

9. Quiesce.

10. Initiate execution of any onConcludeRecovery() actions on instances of restored events,monitors,
and custom aggregate functions in all persistent monitor instances in all contexts. The order
of execution of these actions is undefined. See “Defining recovery actions” on page 317.

11. Quiesce.

12. Start generating clock ticks.

13. Start taking persistence snapshots.

14. Open the server port. External components can now connect with the correlator, for example,
IAF, engine_send, and engine_receive.

Defining recovery actions
In a persistent monitor, you can define one or two actions that the correlator executes as part of
the recovery process:

onBeginRecovery()— The correlator executes this action after it re-injects all source code and
restores state in persistent monitors. The order of execution of onBeginRecovery() actions is
undefined.

onConcludeRecovery()—The correlator executes this action just before it begins sending clock
ticks, taking persistent snapshots, and becoming available for connections to external
components. The order of execution of onConcludeRecovery() actions is undefined.

Whether you define zero, one or both actions in each persistent monitor is application-dependent.
See “Designing applications for persistence-enabled correlators” on page 318 and “Sample code
for persistence applications” on page 320.

Developing Apama Applications 10.11.2 317

8 Using Correlator Persistence

You can define an event and specify one or both of these actions as fields in the event. If an event
defines a recovery action and an instance of the event is live in a persistent monitor, then the
correlator calls the action(s) on those objects aswell. A live event is reachable from a global variable
or listener-captured local variable and consequently is not a candidate for garbage collection.

You candefine onBeginRecovery() and onConcludeRecovery() actions in customaggregate functions
in the same way as you define them in events. When an aggregate function contains an
onBeginRecovery() or onConcludeRecovery() action, this action is called on each custom aggregate
function instance in a live query in a persistent monitor along with the onBeginRecovery() and
onConcludeRecovery() actions in persistent monitors and events.

The order in which the correlator executes instances of onBeginRecovery() actions and instances
of onConcludeRecovery() actions for objects in a monitor is not defined. If a monitor terminates
after execution of onBeginRecovery() and before recovered queues have been flushed, the correlator
does not call that monitor's onConcludeRecovery() action (if it has one). If the correlator terminates
all of a monitor's listeners in one execution of onBeginRecovery(), later calls to onBeginRecovery()
for that monitor instance still occur because they might instantiate new listeners. If no listeners
exist in amonitor after onBeginRecovery() and onConcludeRecovery() have been executed for every
object in that monitor, the monitor instance terminates as usual.

See “Recovery order” on page 316 for more details about when onBeginRecovery() and
onConcludeRecovery() are executed.

Simplest recovery use case
When you observe the following restrictions, the correlator's recovery behavior is straightforward:

All monitors are persistent. The correlator contains no chunks.

There are no implementations of onBeginRecovery() or onConcludeRecovery() actions.

EPL code that adheres to these restrictions appears to behave as if it is running in a completely
reliable and fault tolerant system. The downside is that while the correlator is down, incoming or
outgoing events are dropped. If you implement a “retransmit until acknowledge” protocol, then
the correlator can have a large number of events (and retransmits) to process when it restarts,
depending on how long it is down.

Designing applications for persistence-enabled
correlators
When you are designing an application that you will deploy on a persistence-enabled correlator,
you should consider the following issues:

You do not need to re-inject code after you restart a persistence-enabled correlator. During
recovery, the correlator obtains injected code from the recovery datastore.

To recover from a hardware failure, you must maintain a copy of the recovery datastore on
some form of reliable, shared storage. You want to ensure that the storage medium for the
recovery datastore is not a single point of failure. This typicallymeans putting it on a fileserver

318 Developing Apama Applications 10.11.2

8 Using Correlator Persistence

with suitable levels of redundancy (disk, power supply, network and controller) that is
accessible by two correlator host servers.

The length of time betweenwhen a correlator shuts down andwhen it restarts is unpredictable.
Consequently, youmight want to implement onBeginRecovery() actions that do the following:

Specify behavior according to how long the down time was. For example, you could write
a listener that ignores a subset of old events but matches on a new event.

Terminate on all wait(...) listeners. Such listeners have the potential to fire many times
because the time jumps from the time of the last committed snapshot to the time at which
the correlator was restarted.

It is possible for persistent monitors to communicate with non-persistent monitors and to set
up state, such as subscriptions to a stream of data, in a non-persistent monitor. If you need to
recover this state, youmustwrite code to do it in the onConcludeRecovery() action of a persistent
monitor or an event within a persistent monitor. In a persistent monitor, having an event that
manages an activity in a non-persistent monitor is a recommended practice.

Upgrading monitors in a persistence-enabled
correlator
While injection order is fixed and you cannot change it, youmight want to upgrade amonitor and
this would appear to require a change in the injection order. That is, upon recovery, you want the
correlator to restore the upgraded monitor and not the older version of the monitor.

Remember that it is an error if you try to inject a monitor while instances of that monitor are
already running in the correlator. The correlator never injects a duplicate monitor definition.

In a correlatorwithout persistence enabled, you can terminate all monitor instances and then inject
the updatedmonitor definition. Since all old versions of themonitor had terminated, the correlator
would correctly inject the updated monitor even though it had the same name. Also, since
persistence is not enabled, there is no recovery process and so recovery of the older version of the
monitor is not an issue.

In a persistence-enabled correlator, terminating all instances of a monitor you want to upgrade is
unlikely to be an option. For more information, see “Versioning and upgrading monitors” on
page 338.

When your upgrade procedure terminates all instances of the old monitor the recovery process
does not restore that monitor since all instances were deleted.

You might find that it makes more sense for your upgrade procedure to leave the instances of the
oldmonitor runningwhile changing the interface forwhatever creates new instances of themonitor
to create instances of the upgradedmonitor instead of instances of the old monitor. The correlator
would then be running some old versions of the monitor and some new versions of the monitor.
Upon recovery, the correlator would recover both versions until all instances of the old monitor
had terminated. This approach might be appropriate when the logic has changed so much that it
is not practical to upgrademonitor instances, or whenmaintaining behavior for existing instances
is desired.

Developing Apama Applications 10.11.2 319

8 Using Correlator Persistence

Sample code for persistence applications
The topics below provide sample code for persistence applications.

See also “Versioning andupgradingmonitors” onpage 338whichdescribes a sample for transferring
monitor state using the MemoryStore.

Sample code for discarding stale state during recovery
The following code provides an example of discarding stale data during recovery. This application
discards all recovered Data events because their data has become stale. However, the application
always processes and does not discard ControlEvent events.
persistent monitor eg1 {

listener l;
listener lt;
action onload() {

initializeState();
initiateListeners();
on all ControlEvent() as c { handleControl(c); }

}
action initiateListeners() {

l:=on all Data() as d { process(d); } // Process is moderately expensive
lt:=on all wait(0.1) { send Average(state) to "output"; }

}
action onBeginRecovery() {

l.quit(); // Discard all recovered Data events.
lt.quit(); // Stop sending intermittent updates.

// Do not flood receivers.
// Note that the ControlEvent listener is still present.
// The code throttles only Data events. If the
// ControlEvent listener is not present, this monitor
// would have no listeners and would terminate
// after this action.

}
action onConcludeRecovery() {

initiateListeners(); // Go back to normal.
}

}

Sample code for recovery behavior based on downtime duration
The following sample is the same as the discard-stale-data samplewith some changes that provide
a downtime policy. Downtime is the duration between the last committed snapshot and the time
of day upon recovery.

This code sample ignores downtimes that are less than two hours. However, if recovery starts just
under the two-hour limit the processing of old data might appear to be beyond the two hour
threshold. The downtime policy must take this into account.
persistent monitor eg1 {

import "TimeFormatPlugin" as timeFormatPlugin;
// ... onload() and so on

320 Developing Apama Applications 10.11.2

8 Using Correlator Persistence

listener l;
listener lt;
action onload() {

initiateListeners();
// on all ControlEvent() as c { handleControl(c); }

}
action initiateListeners() {

// l:=on all Data() as d { process(d); } // Process is moderately expensive
//lt:=on all wait(0.1) { send Average(state) to "output"; }

}
boolean longDowntime;
action onBeginRecovery() {

// currentTime is the time of the last snapshot, which is
// approximately when the correlator went down.
// timeFormatPlugin.getTime() is the actual time of recovery.
if (timeFormatPlugin.getTime() - currentTime > (60.0 * 60.0 * 2.0))

{
// If we were down for less than 2 hours, pretend nothing
// happened. For longer gaps, skip stale data as it will be
// too expensive to process it.
longDowntime:=true;
log "Correlator was down for a long time - will discard stale

data.";
l.quit(); // Discard all recovered Data events.
lt.quit(); // Stop sending intermittent updates.

// Do not flood receivers.
}

}
action onConcludeRecovery() {

if longDowntime {
longDowntime:=false;
initiateListeners(); // Go back to normal.

}
}

}

Sample code that recovers subscription to non-persistent
monitor
This sample code defines a persistent monitor that subscribes to a non-persistent service monitor.
Note that the service monitor can handle the case where the subscription is received before the
adapter is connected.
monitor service_monitor {

boolean connected;
sequence <Subscribe> pendingSubscribes;
action onload() {

on all Subscribe() as s {
if not connected {

pendingSubscribes.append(s);
} else {

if(incrRefCount(s.subkey)) {
send Adapter_Subscribe(s.subkey) to "output";

}
}

}
on all wait(1.0) {

Developing Apama Applications 10.11.2 321

8 Using Correlator Persistence

send IsAdapterUp() to "output";
}
on all AdapterUp() {

connected:=true;
Subscribe s;
for s in pendingSubscribes {

route s;
}
pendingSubscribes.clear();

}
}

action incrRefCount(string subkey) returns boolean {
return false; }

}

persistent monitor eg2 {
listener l;
Instance i;
context svcCtx;
action spawnedInstance(context c) {

svcCtx:=c; // Contains anything required to recover subscription.
send Subscribe(i.subkey) to svcCtx;
l:=on all Data() as d { process(d); }

}
action onConcludeRecovery() {

// Non-persistent service monitor is now reset to its onload state.
// Re-subscribe.

send Subscribe(i.subkey) to svcCtx;
}

}

Requesting snapshots from EPL
A persistent or non-persistent monitor can request a snapshot to occur as soon as possible using
the Management interface. For details, see “Using the Management interface” on page 416.

Developing persistence applications
While you are writing the EPL code for your persistence application, use Software AG Designer
as you usually do, and do not enable persistence. When your application is near completion and
has been successfully tested, start testing execution of the onBeginRecovery() and
onConcludeRecovery() actions you defined in your application. Do this as follows:

1. Select Run, Run configurations, Correlator component.

2. Add -P to the command line of the correlator.

3. Start the correlator.

4. In the Run configuration, Correlator component, Initialization tab, disable all check boxes
so that nothing is re-injected.

5. Stop and restart the correlator. It will have persisted the injected monitors.

322 Developing Apama Applications 10.11.2

8 Using Correlator Persistence

6. Test the behavior of onBeginRecovery() and onConcludeRecovery() actions.

7. If everything isworking correctly, you can stop here. Otherwise,modify your code and continue
with the following steps.

8. Delete the persistence.db file.

9. In the Run configuration, Correlator component, Initialization tab, re-enable all check boxes
so that your code is injected.

10. Start again at step 3 and continue until your code is working as desired.

Ensure that you delete the persistence.db file and re-inject fresh monitors only when loss of all
state is acceptable, for example, during testing.

Backing up the persistence database while the
correlator is running
Backing up the correlator persistence database while the correlator is running is not as simple as
copying the file. This is because copying files happens by reading chunks of the file at a time and
copying them elsewhere. In between reading chunks of the file, it is possible that the database is
modified. Because of this, it is required to make an atomic snapshot of the database file, reading
the entire state in one go. This can be done using file-system snapshots, a capability provided by
many storage systems (for example, VMWare or NetApp) or operating systems (for example,
Shadow Copy on Windows, or LVM with XFS and Ext4 file systems on Linux).

Proceed as follows to create a backup of the persistence database:

1. Create a snapshot of the volume containing the persistence database file.

2. Copy the persistence database from the snapshot.

3. Also copy all other files with similar names in the same folder. Using a wildcard filter such as
“persistence.db*” will copy the following:

persistence.db

persistence.db-journal

persistence.db-wal

persistence.db-shm

4. Delete the snapshotwhen you have copied all required files. The snapshot is no longer needed.

Examples of how to create a snapshot and back up the persistence database on Windows and
Linux are given below.

Developing Apama Applications 10.11.2 323

8 Using Correlator Persistence

Backing up the persistence database using Shadow Copy on Windows

OnWindows server platforms, you can create a persistent snapshot of the volume containing the
persistence database, copy the database and related files from the snapshot, and then delete the
snapshot.

It is also possible to use a temporary snapshot to copy the files in a single command. This works
on all supported Windows operating systems. For example, you can take a snapshot using the
VShadow tool. With this tool, snapshots are temporary by default. To invoke the tool, use an
elevated command prompt (that is, run theWindows command prompt as an administrator) and
enter the following:
vshadow -nw -script=SETVAR1.cmd -exec=copyPersistence.bat D:

where:

-nwmakes the backup faster by skipping applications that react to a snapshot being taken,
which the database does not.

-script generates a script called SETVAR1.cmdwhich provides variables for accessing the
snapshot.

-exec runs the script copyPersistence.bat (see below) before the tool exits (that is, while the
snapshot still exists).

The final argument is the drive that contains the persistence database.

The copyPersistence.bat script handles the actual copying. It has the following content:
call SETVAR1.cmd
for %%i in (%SHADOW_DEVICE_1%\path\to\persistenceDatabase\persistence.db*)
do copy %%i D:\backup\location

Backing up the persistence database using LVM on Linux

Proceed as follows:

1. Log in as root.

2. Create a snapshot of the volume containing the persistence database:
lvcreate -L1G -s -n snapshot /dev/vgname/persistence_volume

In this case, the name of the snapshot is “snapshot”.

Note:
Some file systems require you to pause writes while creating the snapshot. On XFS, for
example, youhave to run xfs_freeze -f /myxfs before running lvcreate and then xfs_freeze
-u /myxfs after it completes.

3. To copy the database, first mount the snapshot:
mount /dev/vgname/snapshot /mnt

324 Developing Apama Applications 10.11.2

8 Using Correlator Persistence

4. Copy the relevant files from the snapshot:
cp /mnt/path/to/persistenceDatabase/persistence.db* /backup/

5. Unmount the snapshot:
umount /mnt

6. Remove the snapshot:
lvremove snapshot

Using EPL plug-ins when persistence is enabled
A persistent monitor can import an EPL plug-in only when the following conditions are met:

None of the plug-in's functions/actions, including unused functions/actions, refer to a chunk
type.

The plug-in is capable of persisting its chunks. In this release, only the Time Format plug-in
and the MemoryStore plug-in are capable of persisting chunks. User-defined EPL plug-ins
and other Apama-provided plug-ins cannot persist chunks.

See also “Restrictions on correlator persistence” on page 328.

Using the MemoryStore when persistence is enabled
When persistence is enabled, a persistent monitor can use the MemoryStore only with a
correlator-persistent store. A correlator-persistent store is a store that was created by execution of
the storage.prepareCorrelatorPersistent(store name) action. A persistent monitor cannot use
a store that was created by executing any other storage.prepare() action. The only exception to
this is if the persistent monitor is in a correlator for which persistence is not enabled. In this
situation, the correlator treats persistentmonitors in the sameway it treats non-persistentmonitors.

In a persistence-enabled correlator, both persistent and non-persistent monitors can use
correlator-persistent stores. If you try to prepare an in-memory, on-disk or distributed store from
a persistent monitor in a persistence enabled correlator, the correlator terminates the monitor that
tries to do this. These are runtime errors. The compiler cannot catch these errors. The following
table shows when you can use each kind of store.

Non-persistent
correlator and
non-persistent
monitor

Non-persistent
correlator and
persistentmonitor

Persistent
correlator and
non-persistent
monitor

Persistent
correlator and
persistentmonitor

Store type

YesYesYesIn-memory

YesYesYesOn-disk

Yes*Yes*Yes*YesCorrelator-persistent

Developing Apama Applications 10.11.2 325

8 Using Correlator Persistence

Non-persistent
correlator and
non-persistent
monitor

Non-persistent
correlator and
persistentmonitor

Persistent
correlator and
non-persistent
monitor

Persistent
correlator and
persistentmonitor

Store type

YesYesYesDistributed

* Correlator-persistent store behaves as an in-memory store.

Snapshots include the contents of all correlator-persistent stores that are open. A snapshot can
occur at any time, and it is not possible to commit only certain states of correlator-persistent stores
or the tables in them. However, when using correlator-persistent stores from persistent monitors,
failure and recovery of a correlator should appear as though nothing has happened. That is, all
monitor state and table state should be as it was when the most recent snapshot was taken.

Just as you cannot execute Store.persist() for in-memory stores, you cannot execute the
Store.persist() action on correlator-persistent stores. You can, however, useApama'sManagement
interface to request a snapshot of the entire correlator state and wait for that to complete. See
“Using the Management interface” on page 416.

In persistent monitors, Store, Table, Row and Iterator events are persistent and their state can be
recovered to the latest snapshot. Persistent monitors should not see any inconsistency between
the contents of the table and any state in the monitor, including Store, Table, Row, and Iterator
events. Correlator-persistent stores behave the same as an in-memory stores, except that the state
of correlator-persistent stores is preserved across correlator restarts.

When the correlator takes a snapshot, it includes Row events held by persistent monitors. Such Row
events are, of course, versions of rows in a table that is in a correlator-persistent store. A persistence
snapshot does not include Row events held by non-persistentmonitors, even if they represent rows
in tables that are in correlator-persistent stores.

Note:
The recovery datastore in which the correlator saves snapshots is different from the stores used
with the MemoryStore. The recovery datastore contains the state of all persistent monitors,
which might include Row events, Iterator events, and other MemoryStore-related events, and
also the state of any correlator-persistent stores createdwith theMemoryStore. Thus, the recovery
datastore contains any correlator-persistent stores. If non-persistent monitors have opened
in-memory and/or on-disk stores, those stores operate independently of the recovery datastore.
For example, a non-persistent monitor can request persistence for an on-disk store and this
on-disk store would not be persisted in the recovery datastore.

In a DataView, you can expose only in-memory and on-disk stores; you cannot expose
correlator-persistent stores.

See also “Using the MemoryStore” on page 375.

326 Developing Apama Applications 10.11.2

8 Using Correlator Persistence

Comparison of correlator persistence with other
persistence mechanisms
Correlator persistence is not the only way to persist Apama application data. The table below
compares the various features you can use to persist Apama data. As you can see, correlator
persistence provides the most comprehensive, automatic persistence.

Apama Database
Connector Adapter
(ADBC)

MemoryStoreCorrelator
persistence

Persistence characteristic

Only state that you
explicitly store. Partial

Only state that you
explicitly store.

All state in
persistent EPL
monitors

Completeness of what is
persisted

listener evaluations are
impossible to store.

Partial listener
evaluations are
impossible to store.

ManualManualAutomaticRecovery mechanism

YesYesYesEPL monitors can be notified
about recovery

YesYesYes *Supported across Apama
versions

YesYesYesIncremental snapshots

Shared servers are
supported. You can use

EmbeddedEmbeddedStorage type

any database server or
driver.

YesYesYesAtomic snapshots

YesYesYesPerformance benefit from
pipelining disk writes with
processing

YesYesYesSupports multiple contexts

* Please note those upgrading to 5.3 onwards with applications using persistence should read the
information about backwards incompatibility at Release Notes, "What's New In Apama 5.3",
"Backwards Incompatibility with persisted projects recovered to 5.3 from older versions".

Developing Apama Applications 10.11.2 327

8 Using Correlator Persistence

Restrictions on correlator persistence

JMON monitors

JMon monitors cannot be persistent.

EPL plug-ins written in C++ and Java

A persistent monitor can use the Apama Time Format and MemoryStore EPL plug-ins and the
chunk types contained by the events defined by those plug-ins. A persistent monitor cannot use
any other chunk types. This means that a persistent monitor cannot use an event or plug-in that
references a chunk type even if the application does not use those chunks.

Backwards compatibility

Please note those upgrading to 5.3 onwards with applications using persistence should read the
information about backwards incompatibility at Release Notes, "What's New In Apama 5.3",
"Backwards incompatibility with persisted projects recovered to 5.3 from older versions".

328 Developing Apama Applications 10.11.2

8 Using Correlator Persistence

9 Common EPL Patterns in Monitors

■ Contrasting using a dictionary with spawning .. 330

■ Factory pattern ... 331

■ Using quit() to terminate event listeners ... 332

■ Combining the dictionary and factory patterns ... 333

■ Testing uniqueness ... 334

■ Reference counting .. 334

■ Inline request-response pattern ... 336

■ Writing echo monitors for debugging .. 337

■ Versioning and upgrading monitors .. 338

Developing Apama Applications 10.11.2 329

When developing EPL monitor applications it can be helpful to be familiar with common EPL
patterns.

Contrasting using a dictionary with spawning
The sample code in this topic contrasts the use of a dictionarywith spawning.Usually, the dictionary
approach is preferred. This is because the spawning approach uses an unmatched event expression,
which is vulnerable to maintenance issues if someone else loads an event listener for a pattern
that you expect to have no other matches.

Translation using a dictionary
The events to be processed:
event Input { string value; }
event Output { string value; }
event Translation {

string raw;
string converted;

}

The monitor:
monitor Translator {

dictionary < string, string > translations;

action onload() {
on all Translation() as t addTranslation(t);
on all Input() as i translate(i);

}
action addTranslation(Translation t) {

translations[t.raw] := t.converted ;
}
action translate(Input i) {

if translations.hasKey(i.value) {
send Output(translations[i.value]) to "output";

}
else { fail(i); }

}
action fail(Input i) {

print "Cannot translate: " + i.value;
}

}

Translation using spawning
Same events as translation using dictionary.

The monitor:
monitor Translator {

action onload() {
on all Translation() as t addTranslation(t);
on all unmatched Input() as i fail(i);

330 Developing Apama Applications 10.11.2

9 Common EPL Patterns in Monitors

}
action addTranslation(Translation t) {

spawn translation(t);
}
action translation(Translation t) {

on all Input(t.raw) translate(t.converted);
}
action translate(string converted) {

send Output(converted) to "output";
}
action fail(Input i) {

print "Cannot translate: " + i.value;
}

}

Factory pattern
The factory pattern creates a new monitor instance to handle each new item/request. Its essential
features include:

The onload() action sets up an event listener for creation events,

Each creation event causes a monitor instance to be spawned.

There are two common forms of the factory pattern:

Canonical form

The monitor instance spawns to an action that initializes the state of the newmonitor instance
and creates event listeners specific to that monitor instance. The spawned monitor instances
use local variables for coassignment and passes them into the action.

It is likely that some of the data from the creation event is copied into global variables.

Alternate form

The initial monitor instance uses coassignment to global variables to set some state before
spawning.

This is a "lazy" form in that it stores the complete creation event inside themonitor. You should
not use this form if you are spawning large number of monitor instances and you have a large
creation event, where only part of the creation event data needs to be retained.

As an exercise, consider rewriting the example in “Translation using spawning” on page 330, to
use the alternate factory form.

Canonical factory pattern
The event:
event NewOrder {...}

The monitor:

Developing Apama Applications 10.11.2 331

9 Common EPL Patterns in Monitors

monitor OrderProcessor {
...
action onload() {

on all NewOrder() as order spawn processNewOrder(order);
}
action processNewOrder(NewOrder order) {
...
}

}

Alternate factory pattern
The event:
event NewOrder {...}

The monitor:
monitor OrderProcessor {

action onload() {
on all NewOrder() as order spawn processOrder();

}
action processOrder() {
...
}

}

Using quit() to terminate event listeners
The example below demonstrates the use of quit() to terminate an event listener. This example
is somewhat contrived in order to demonstrate a situation where it might be desirable to use
quit(). Typically, other methods are often more appropriate, for example, you can use die to kill
a monitor instance and you can specify and not to terminate an event listener.

The example shows a monitor that trades received orders by breaking them into smaller orders,
which it might place concurrently (perhaps on several exchanges). The monitor listens for fills on
these orders, and sums up the fills. (A realmonitormight also send status onwhat the filled volume
is for each child order together with the total volume filled for the order. The logic for this is not
shown here.) When each order is completely filled the monitor terminates the Trade event listener
for that order.

The events:
event OrderIn {integer id; ... }
event OrderOut {integer id; integer volume; ... }
event Trade {integer orderOutId; integer volume; ... }

The monitor:
monitor TradeOrderAsSeveralSmallerOrders {

event PlacedOrderRecord {
listener listener;
integer volumeToTrade;
integer volumeTraded;

332 Developing Apama Applications 10.11.2

9 Common EPL Patterns in Monitors

}
dictionary < integer, PlacedOrderRecord > records;
action onload() {

on all OrderIn() as theOrder spawn tradeOrder();
}
action tradeOrder() {

// some logic determining when and what volume to trade
...

placeOrder(volume); //called multiple times
...
}
action placeOrder(integer volume) {

PlacedOrderRecord r := new PlacedOrderRecord;
integer id := integer.incrementCounter("orderId");
r.listener := on all Trade(orderOutId=id) as t

processTrade(t);
records[id] := r;
r.volumeToTrade := volume;
route OrderOut(id,volume,...);

}
action processTrade(Trade t) {

PlacedOrderRecord r := records[t.orderOutId];
r.volumeTraded := r.volumeTraded + t.volume;
if (r.volumeToTrade - r.volumeTraded) <= 0 {

r.listener.quit();
...

}
...

}
}

As stated earlier, for real-world solutions there is generally a better option that using quit(). For
example, the exchange(s) probably also send OrderComplete events. In this case you can change
the on statement as follows:
on all Trade(orderOutId=id) as t and not OrderComplete(orderOutId=id)

processTrade(t);

Of course, you must be certain that the OrderComplete event can be received only after all trades
for that order have been received.

Combining the dictionary and factory patterns
Thedictionary and factory patterns are often combined. This pattern achieves separation of concerns
by using twomonitors. The firstmonitor is responsible formanaging global concerns, for example,
it ensures that each order has a unique key. The second monitor is responsible for local concerns,
for example, it manages all data associated with processing that order.

The example does the following:

1. The OrderFiltermonitor accepts NewOrder events and checks for uniqueness of the order key.

2. For all orders with unique keys, the OrderFiltermonitor routes a ValidOrder event.

Developing Apama Applications 10.11.2 333

9 Common EPL Patterns in Monitors

Testing uniqueness
The events:
event OrderKey{...}
event NewOrder {

OrderKey key; //You can use anything for key as long as it is unique
...

}
event ValidNewOrder {

NewOrder order;
}

The monitors:
monitor OrderFilter {

dictionary < OrderKey, NewOrder > orders;
action onload() {

on all NewOrder() as order validateOrder(order);
}
action validateOrder(NewOrder order){

if orders.hasKey(order.key) {
print "Duplicate order!";
print "Original: " + orders[order.key].toString();
print "Incoming: " + order.toString();

}
else {

orders.add(order.key,order);
route ValidNewOrder(order);

}
}

}

monitor OrderProcessor {
...

action onload() {
on all ValidNewOrder() as valid spawn processOrder(valid.order);

}
action processOrder(NewOrder order) {
...
}

}

Reference counting
The following pattern is another example that you can use to keep a count of how many clients
are using a particular service object, which in turn can be used to determine the lifetime of these
service objects. The example subscriptionmanagementmechanism is fairly sophisticated, possibly
too sophisticated, but it provides the big advantage of separating the concerns by using two
monitors. If you decide to change the subscription mechanism, you can do so simply by changing
the ServiceManagermonitor. There is no impact at all on the ServiceItemmonitor.

The events:
package com.apamax.service;

334 Developing Apama Applications 10.11.2

9 Common EPL Patterns in Monitors

event Subscribe {
string toWhat;
string originator;

}
event Unsubscribe {

string fromWhat;
string originator;

}
event CreateServiceItem {

string what;
}
event DestroyServiceItem {

string what;
}

The monitors:
monitor ServiceManager {

dictionary <string, dictionary<string, integer>> items;

action onload() {
on all Subscribe() as s subscribe(s);
on all Unsubscribe() as u unsubscribe(u);

}
action subscribe(Subscribe s){

dictionary < string, integer > subscriptions:= {};
if items.hasKey(s.toWhat) {

subscriptions :=
items[s.toWhat];

if subscriptions.hasKey(s.originator) {
subscriptions[s.originator] :=

subscriptions[s.originator] + 1;
}
else {

subscriptions[s.originator] := 1;
}

}
else {

items[s.toWhat] := subscriptions;
route CreateServiceItem(s.toWhat);

}
}

action unsubscribe(Unsubscribe u) {
if items.hasKey(u.fromWhat) {

dictionary < string, integer > subscriptions :=
items[u.fromWhat];

if subscriptions.hasKey(u.originator) {
if subscriptions[u.originator] <= 1 {

subscriptions.remove(u.originator);
if subscriptions.size() = 0 {

items.remove(u.fromWhat);
route DestroyServiceItem(u.fromWhat);

}
}
else {

subscriptions[u.originator] :=
subscriptions[u.originator] - 1;

}
}

Developing Apama Applications 10.11.2 335

9 Common EPL Patterns in Monitors

else {
print "Unsubscribe failed: no originator: " +

u.toString();
}

}
else {

print "Unsubscribe failed: no item: " + u.toString();
}

}
}

monitor ServiceItem {
//...

action onload() {
on all CreateServiceItem() as c spawn createServiceItem(c);

}

action createServiceItem(CreateServiceItem c) {
//...

on all DestroyServiceItem() as d destroyServiceItem(d);
}

action destroyServiceItem(DestroyServiceItem d) {
//...die;
}

}

Inline request-response pattern
You can use the route statement to write EPL that exhibits inline (synchronous) request-response
behavior. The following example shows that when you want to perform an ordered pattern of
operations that contain (as one operation) a request to anothermonitor, the subsequent operations
must wait until the requesting monitor receives the response.

The ordering of the route and on statements is not relevant. The correlator sets up the event listener
before processing the routed event.

A common mistake is to place code after the on statement code block and expect that code to
execute after the code in the on statement code block.

Routing events for request-response behavior
The events:
event Request { integer requestId; ... }
event Response { integer requestId; ... }

The monitors:
monitor Client {

action doWork() {
//do some processing
...
integer id := integer.getUnique();

336 Developing Apama Applications 10.11.2

9 Common EPL Patterns in Monitors

route Request(id, ...);
on Response(requestId=id) as r {
// continue processing
...
// Beware! Any code here will execute immediately
// (before processing the response)

}
}

monitor Server {
action processRequests() {

on all Request() as r {
// evaluate response
route Response(r.requestId);

}
}

}

Canonical form for synchronous requests
The next example show the canonical form for when you want to code a pattern that specifies two
or more synchronous requests.

The events:
event RequestA { integer requestId; ... }
event ResponseA { integer requestId; ... }
event RequestB { integer requestId; ... }
event ResponseB { integer requestId; ... }

The monitor:
monitor Client {

action doWork() {
//do some processing
integer requestId := integer.getUnique();
route RequestA(requestId,...);
on ResponseA(id=requestId) as ra doWork2(ra);

}
action doWork2(ResponseA ra) {

//do some more processing
integer requestId := integer.getUnique();
route RequestB(requestId,...);
on ResponseB(id=requestId) as rb doWork3(rb);

}
action doWork3(ResponseB rb) {

//do yet more processing
}

}

Writing echo monitors for debugging
A commonpractice is towrite an echomonitor for debugging purposes. Typically, an echomonitor
listens for the same events as your production monitor and tracks various behavior.

Developing Apama Applications 10.11.2 337

9 Common EPL Patterns in Monitors

Writing an echo monitor is typically straightforward, but keep the following caveat in mind. If
your production monitor uses the unmatched keyword for a certain event, and your echo monitor
listens for the same event, and bothmonitors are in the same context, your unmatched event listener
will never trigger. This is because the event listener in the echo monitor matches the event and
this prevents the unmatched event listener from ever triggering. The scope of an unmatched event
listener is the context that it is in.

To avoid an unmatched event listener that never triggers, specify the completed keyword in the
event listener in the echo monitor. For example, suppose you have the following code in your
production monitor:
on all unmatched SubscribeDepth() as subDepth {

doSomething();
}

If you want to track SubscribeDepth events in your echo monitor, write the event expression in
the echo monitor as follows:
on all completed SubscribeDepth() as subDepth {

doSomethingElse();
}

The completed event listener in the echo monitor triggers after the correlator finishes processing
the unmatched event listener in the production monitor.

Versioning and upgrading monitors
If an application requires functionality to upgrade its monitor instances while still running, there
are architectural patterns that must be used during application design. A monitor must contain
code that enables its state to be transferred to a new version and for it to terminate upon request.
If a deployed monitor does not contain such code, it is not possible to upgrade while transferring
its state.

The sample application in the samples/epl/hot-redeploy/StoreState directory of the Apama
installation shows how to transfer monitor state using the MemoryStore (see also “Using the
MemoryStore” on page 375). This sample takes the following steps to upgrade monitor instances:

1. Injects version 1 of the Counter application.

2. Processes version 1 until an upgrade is required.

3. Stops the input events and flushes all queues to ensure that all current events have been
processed.

4. Injects version 2 of the Counter application which sends an Upgrade event. This informs the
version 1 monitor that an upgrade is happening and it should save its state and its listeners
should be destroyed.

5. Once version 1 has finished processing the Upgrade event, the version 2 monitor iterates the
MemoryStore table and loads the state of each monitor. The version 2 monitors take over the
processing of the input events from version 1.

6. Starts the input events.

338 Developing Apama Applications 10.11.2

9 Common EPL Patterns in Monitors

7. Processes version 2.

The monitor state that is stored is limited to a small number of required variables contained in a
State event that can easily be stored in theMemoryStore. Complex types (such as chunks, listeners
or action references) cannot be stored in theMemoryStore and should not be included in amonitor's
state. The application monitor supplies a callback to handle the old state, which is typically done
by converting the old State object to a new State object. This can be done automatically for fields
of the State object that are the same type and name. Added fields or fields whose type is changed,
however, need to be handled explicitly by upgrade code. The applicationmonitor can then spawn
to handle the upgraded instances. For more information, see the README.txt file and the source
code files of the sample application.

This sample is deliberately simple to only show the concept of storing and retrieving a monitor
instance state. An application may require more functionality. For example, you can enhance the
sample as follows:

Use the distributed MemoryStore to transfer monitor instances between correlators (with the
same input).

Spawn to other contexts. This sample only spawns instances to the main context. It could
spawn to other contexts, but you need to take care if instances need to be restored to the same
context. You would need some form of context store and lookup.

Add a dedicated channel for the Upgrade events that all monitors in any context could subscribe
to.

Modify the sample to work with correlator persistence by marking the monitors as persistent
and using prepareCorrelatorPersistent().

Only kill the monitor factory on Upgrade events and allow all partially evaluated event
expressions to run with the old version, but all new instances will use the new version.

Note:
This sample only transfers global monitor instance state. It does not transfer event expressions;
these will be lost. It is possible to allow partially evaluated event expressions to complete (by
not explicitly killing or deleting them) but have all new event expressions created by the new
version.

Developing Apama Applications 10.11.2 339

9 Common EPL Patterns in Monitors

340 Developing Apama Applications 10.11.2

9 Common EPL Patterns in Monitors

10 Using EPL Plug-ins

■ Overhead of using plug-ins .. 342

■ When to use plug-ins .. 342

■ When not to use plug-ins .. 343

■ Using the TimeFormat Event Library .. 343

■ Using the MemoryStore ... 375

■ Using the distributed MemoryStore .. 390

■ Using the Management interface ... 416

■ Using the JSON plug-in .. 420

■ Using MATLAB® products in an application ... 421

■ Using the R plug-in ... 429

■ Interfacing with user-defined EPL plug-ins ... 431

■ About the chunk type .. 431

Developing Apama Applications 10.11.2 341

In EPLprograms (monitors and queries), you can use standard EPLplug-ins providedwithApama
and you can also use EPL plug-ins that you define yourself. An EPL plug-in consists of an
appropriately formatted library of C++ functions, which can be called from within EPL code. In
the case of a plug-in written in Java, the Java classes that are called from an application's EPL code
are contained in a jar file. The correlator does not need to be modified to enable or to integrate
with a plug-in, as the plug-in loading process is transparent and occurs dynamicallywhen required.

To write custom EPL plug-ins, see .

Whenusing a plug-in, you can call the functions it contains directly fromEPL, passing EPLvariables
and literals as parameters, and getting return values that can be manipulated.

Overhead of using plug-ins
The overhead when using EPL plug-ins is very small.

However, you do need to ensure that you do not block the correlator for a long period of time.
For example, you do not want to use a plug-in for doing extensive, synchronous, time-consuming
calculations.

If you need to perform a time-consuming operation, use asynchronous processing in the plug-in
to perform the calculation on a background thread, and then deliver the result via an event to the
monitor instance which requested it. For example, your plug-in method might return an ID for
the monitor to listen to an event with that ID. When the calculation is complete, the plug-in sends
an event with that ID to the context from which it was originally called:
integer id := plugin.compute(inputs);
on ComputeResult(id=id) as cr {

// process cr.result
}

When to use plug-ins
Custom plug-ins can be written in C++, Java or Python. A custom plug-in is a suitable solution in
the following situations:

You have an in-house or third-party library of (possibly complex) functions or classes that you
want to re-use.

The operations you need to perform aremore easily/efficiently performed in another language
than using EPL. For example, you need to use data structures that are not easily represented
in EPL.

Note:
If your concern is purely performance, then the compiled EPL runtime (available on Linux, see
also the --runtime option in "Starting the correlator" in Deploying and Managing Apama
Applications)may be sufficient and in some cases can produce results better than other languages,
including C++ and Java.

342 Developing Apama Applications 10.11.2

10 Using EPL Plug-ins

When not to use plug-ins
In general, when you can efficiently write the desired operation in EPL, an all-EPL solution is
preferable to one that involves custom-developed plug-ins. Apama customers who experience
problemswith correlator stabilitywhenusing custom-developedplug-inswill be asked by Software
AGGlobal Support to remove the plug-in and reproduce the problemprior to being offered further
technical help. SoftwareAGGlobal Support lifts this restriction only if the plug-ins have certification
from Apama product management.

Using the TimeFormat Event Library
The TimeFormat event library uses the Time Format plug-in.

The TimeFormat event provides routines to obtain the current time and convert to or from string
representations of time.

Internally, the correlator expresses time as seconds since the Unix epoch (1 Jan 1970, midnight
UTC) - this is the form of currentTime and is convenient for performing arithmetic, such as
differences between times. For more information on this variable, see “currentTime” on page 704.

To convert from string form to float form, use a parseTimemethod. To convert from float form to
string form, use a formatmethod. Both take a format String, which is a string which describes the
string form of the time. For more information, see “Format specification for the TimeFormat
functions” on page 346.

The parseTimemethod is available on the TimeFormat event directly. Or you can pre-compile a
pattern and then performparsing using the compiled pattern. A CompiledPattern object is obtained
from the TimeFormat event using one of the compilePatternmethods (depending on which time
zone the pattern should use by default). The CompiledPattern object can be stored in a monitor
variable, as an instance of an event or in a local variable and used by listeners. Re-using a
CompiledPattern is more efficient than calling one of the TimeFormat.parseTimemethods as the
format String only needs to be read and compiled once. Calling parse on the TimeFormat event is
equivalent to passing the same format String to generate a CompiledPattern and calling parse on
that event. It is also possible to create multiple CompiledPattern events if your application needs
to use several different formats for time.

For example, the following will behave the same:
TimeFormat.parseTime(pattern, time);
TimeFormat.compilePattern(pattern).parseTime(time);

There are also functions to obtain the current system time. It depends on whether your purpose
is to measure the time intervals between two events on the same machine (getMicroTime()), or to
identify when an event occurred in human terms or across machines (getSystemTime() or
currentTime).

getSystemTime() provides an absolute time. Its purpose is to give an indication of the wall
clock time rather thanmeasuring time intervals. Youwould see a jump in the values if someone
changed the time (for example, manually in the operating system or to synchronize with an
NTP server). These jumps would be annoying if you were trying to measure latency of some

Developing Apama Applications 10.11.2 343

10 Using EPL Plug-ins

operation. Whereas, if you use getMicroTime(), you would not see any effect from such a
change to the operating system time.

getMicroTime() provides a high precision time, which is suitable for high precision relative
times. The absolute value of getMicroTime() depends on the host operating system. Its main
purpose is for measuring small durations of time. Unless you need such high precision, it is
probably better to use currentTime or getSystemTime() instead.

The following table gives a brief overview of the different time functions:

currentTimegetSystemTime()getMicroTime()

Unix epoch
(midnight 1

Unix epoch
(midnight 1

Undefined /
determined by

Epoch

January 1970
UTC)

January 1970
UTC)

the operating
system

NoNoNoAffected by the host operating system's
automatic adjustment for daylight savings

NoNoNoAffected by a change to the host operating
system's time zone

YesYesNoAffected by a manual change to the host
operating system's time

YesYesNoAffected by the host operating system's
automatic time synchronization

Yes, except for
leap seconds

Yes, except for
leap seconds

NoRepresents a unique point in time

Dependent on
the correlator
clock rate *

MillisecondsMicrosecondsPrecision

YesNoNoRemains constant while processing a single
event

YesYesNoUse for date/time formatting

Note:
All of the above are floating point values representing seconds since their epoch.

* See the documentation for the --frequency correlator command-line option (see "Starting the
correlator in Deploying and Managing Apama Applications) and the timerFrequency YAML
configuration option (see "YAML configuration file for the correlator" inDeploying andManaging
Apama Applications).

Patterns with textual elements operate by default in English, but will instead both produce output
and expect input in another language if that has been set in the environment. For example, under

344 Developing Apama Applications 10.11.2

10 Using EPL Plug-ins

Linux, if the correlator is running with the LC_ALL environment variable set to "fr_FR", the format
"EEEE dd MMMM yyyy G" produces and expects "jeudi 01 janvier 1970 ap. J.-C." for time 0.0.

When you use the TimeFormat event library you can use the TZ environment variable to select a
particular locale to be used by the event library. Specify the value in either of the following formats:
Continent/City
Ocean/Archipelago

For example: TZ=Europe/London. The alternative shortened format will not work correctly. For
example, TZ=GBwill not be recognized. If you specify something like this, Coordinated Universal
Time (UTC) is used instead.

Note:
For a list of time zones, see “Supported time zones” on page 353.

TimeFormat format functions
The format functions convert the time parameter to the local time and return that time in the format
you specify.

For usage information, see the API Reference for EPL (ApamaDoc).

TimeFormat parse functions
The parse functions parse the value contained by the timeDate parameter according to the format
passed in the format parameter or wrapped by the CompiledPattern.

All functions return the result as a float of seconds since the epoch.

For usage information, see the API Reference for EPL (ApamaDoc).

Notes

For all parse functions:

If the timeDate parameter specifies only a time, the date is assumed to be 1 January 1970 in the
appropriate time zone. If the timeDate parameter specifies only a date, the time is assumed to
be the midnight that starts that day in the appropriate time zone. Adding them together as
seconds gives the right result.

If the timeDate string specifies a time zone, and there is a matching z, Z, v, or V in the format
string, the time zone specified in the timeDate string takes precedence over any other ways of
specifying the time zone. For example, when you call the parseUTC() or
parseTimeWithTimeZone() function, and you specify a time zone or offset in the timeDate string,
the time zone or offset specification in the timeDate string overrides the time zone you specify
as a parameter to the parseTimeWithTimeZone() function and the normal interpretation of times
and dates as UTC by the parseUTC() function.

Parsing behavior is undefined if the format string includes duplicate elements such as "MM
yyyy MMMM", hasmissing elements such as "MM", or it includes potentially contradictory elements

Developing Apama Applications 10.11.2 345

10 Using EPL Plug-ins

and is given contradictory input, for example, "Tuesday 3 January 1970" (it was actually a
Saturday).

Dates before 1970 are represented by negative numbers.

Example

The following example returns 837007736:
TimeFormat.parseTime("yyyy.MM.dd G 'at' HH:mm:ss", "1996.07.10 AD at 15:08:56")

See also “Midnight and noon” on page 352.

The following examples both parse the timeDate string as having a time zone of UTC+0900:
TimeFormat.parseTimeWithTimeZone("DD.MM.YY Z", "01.01.70 +0900", "UTC");
TimeFormat.parseUTC("DD.MM.YY Z", "01.01.70 +0900");

In the first example, the +0900 specification in the timeDate string overrides the UTC specification
for the time zone name parameter. In the second example, the +0900 specification in the timeDate
string overrides the UTC specified by calling the parseUTC() function.

Format specification for the TimeFormat functions
The format andparse functionsmakeuse of the SimpleDateFormat class provided in the International
Components for Unicode libraries. SimpleDateFormat is a class for formatting and parsing dates
in a language-independent manner.

Pattern letters in format strings

The TimeFormat functions use the SimpleDateFormat class to transform between a string that
contains a time and/or date and a normalized representation of that time and/or date. In this case,
the normalized representation is the number of seconds since the epoch.

For the operation to succeed, it is important to define the format string so that it exactly represents
the format of the time and/or date you provide as a string in the timeDate parameter to a parse
function, or expect to be returned from a format function. You specify the format as a time pattern.
In this pattern, all ASCII letters are reserved as pattern letters.

The number of pattern letters determines the format as follows:

For pattern letters that represent text

If you specify four ormore letters, the SimpleDataFormat class transforms the full form. For
example, EEEE formats/parses Monday.

If you specify fewer than four letters, the SimpleDataFormat class transforms the short or
abbreviated form if it exists. For example, E, EE, and EEE each formats/parses Mon.

For pattern letters that represent numbers

Specify the minimum number of digits.

346 Developing Apama Applications 10.11.2

10 Using EPL Plug-ins

If necessary, SimpleDateFormat prepends zeros to shorter numbers to equal the number of
digits you specify. For example, m formats/parses 6, mm formats/parses 06.

Year is handled specially. If the count of y is 2, the year is truncated to 2 digits. For example,
yyyy formats/parses 1997, while yy formats/parses 97.

Unlike other fields, fractional seconds are padded on the right with zeros.

For pattern letters that can represent text or numbers

If you specify three ormore letters, the SimpleDataFormat class transforms text. For example,
MMM formats/parses Jan, while MMMM formats/parses January.

If you specify one or two letters, the SimpleDataFormat class transforms a number. For
example, M formats/parses 1, and MM formats/parses for 01.

The following table provides the meaning of each letter you can specify in a pattern. After the
table, there are a number of combined examples.

Descriptions of pattern letters in format strings:

Sample ResultExamplePresentationMeaningSymbol

ADGTextEra designatorG

BCG

96yyNumberYeary (lowercase)

1996yyyy

See example for
“Week in year”.

NumberYear for indicating
which week of the year.
Use with the w symbol.

Y (uppercase)

See “Week in year”
later in this table.

5769uuuuNumberExtended yearu

9MText or
Number

Month in yearM

09MM

SepMMM

SeptemberMMMM

7dNumberDay in monthd

07dd

25dd

05hhNumberHour in AM or PM
(1-12)

h

Developing Apama Applications 10.11.2 347

10 Using EPL Plug-ins

Sample ResultExamplePresentationMeaningSymbol

0HNumberHour in day (0-23)H

05HHSee also “Midnight and
noon” on page 352.

14HH

3mNumberMinute in hourm

03mmSee also “Midnight and
noon” on page 352.

55mm

5sNumberSecond in minutes

05ss

59ss

2SNumberFractional secondS

20SS

200SSS

FriETextDay of weekE

FriEE

FriEEE

FridayEEEE

4eNumberDay of week (1-7)e

This is locale
dependent. Typically,
Monday is 1.

7DNumberDay in yearD

07DD

007DDD

123DDD

See example for
“Week in month”.

NumberDay of particular week
inmonth (1-7). Usewith
W (uppercase) for week

F

in month. See “Week in
month” later in this
table.

348 Developing Apama Applications 10.11.2

10 Using EPL Plug-ins

Sample ResultExamplePresentationMeaningSymbol

Suppose you are
transforming

The first example
below uses uppercase

NumberWeek in year. Use with
uppercase Y.

w (lowercase)

December 31st, 2008,Y. The second example
The first week of a
month/year is defined

which is a
Wednesday (results
for the US locale).

shows the difference
when you use
lowercase y.as the earliest seven day

period beginning on the
"Week 1 2009""'Week' w YYYY"specified "first day of

the week" and
"Week 1 2008""'Week' w yyyy"containing at least the

specified "minimal
number of days in the
first week" of that
month/year.

Note that the first day
of the week and the
minimum days in the
first week (1 to 7) are
dependent upon the
calendar in use (which
depends upon the
locale resource data).

For example, January 1,
1998 was a Thursday.

If the first day of the
week is a Monday and
the minimum days in a
week is 4 (these are the
values reflecting ISO
8601 andmany national
standards), thenweek 1
of 1998 starts on
December 29, 1997, and
ends on January 4, 1998.
However, if the first
day of the week is a
Sunday and the
minimum number of
days in aweek is 4, then
week 1 of 1998 starts on
January 4, 1998, and
ends on January 10,
1998. The first three

Developing Apama Applications 10.11.2 349

10 Using EPL Plug-ins

Sample ResultExamplePresentationMeaningSymbol

days of 1998 are then
part of week 53 of 1997.

"Day 2 of Week 3""'Day' F 'of Week'
W"

NumberWeek in month.

The values are
calculated similar to
"Week in year" (w).

W (uppercase)

Weeks numbered with
aminus sign (such as -2
or -1) and 0 precede the
first week. Weeks
numbered 2, 3 and so
on follow the firstweek.

AMaTextAM/PM markera

PMa

1kNumberHour in day (1-24)k

01kk

24kk

0KNumberHour in AM/PM (0-11)K

07KK

11KK

GMT+05:30z, zz, zzzTextTime zonez (lowercase)

Pacific Standard
Time

zzzz

-0800ZNumberTime zone (RFC 822)Z (uppercase)

PT (assuming US
locale)

v

vvvv

TextGeneric time zonev (lowercase)

Pacific Time

gblonVTextShort time zone IDV (uppercase)

Europe/LondonVVTextLong time zone IDVV

LondonVVVTextTime zone exemplar
city

VVV

United Kingdom TimeVVVVTextTime zone location textVVVV

350 Developing Apama Applications 10.11.2

10 Using EPL Plug-ins

Sample ResultExamplePresentationMeaningSymbol

GMT-8OTextLocalized GMT time
zone

O (uppercase)

GMT-8:00OOOO

-08, +0530, ZXTextISO8601 time zonewith
Z

X (uppercase)

-0800, ZXX

-08:00, ZXXX

-0800, -075258, ZXXXX

-08:00, -07:52:58,
Z

XXXXX

-08, +0530xTextISO8601 time zone
without Z

x (lowercase)

-0800xx

-08:00xxx

-0800, -075258xxxx

-08:00, -07:52:58xxxxx

2451334gNumberJulian dayg

69540000ANumberMilliseconds in dayA

"Week 1 2009""'Week' w YYYY"DelimiterEscape for text'

"11 o'clock""KK 'o''clock'"LiteralSingle quote''

Any character in the format pattern that is not in the range of ['a'..'z'] or ['A'..'Z'] is treated as quoted
text. For example, the following characters can be in a timeDate string without being enclosed in
quotation marks:

:

.

,

#

@

A pattern that contains an invalid pattern letter results in a -1 return value.

The following table gives examples that assume the US locale:

Developing Apama Applications 10.11.2 351

10 Using EPL Plug-ins

Suitable timeDate stringFormat pattern

1996.07.10 AD at 15:08:56 GMT+08:30yyyy.MM.dd G 'at' HH:mm:ss z

Wed, July 10, '96EEE, MMM d, ''yy

12:08 PMh:mm a

12 o'clock PM, Pacific Daylight Timehh 'o''clock' a, zzzz

0:00 PM, GMT+07:30K:mm a, z

1996.July.10 AD 12:08 PMyyyyy.MMMMM.dd GGG hh:mm aaa

When parsing a date string using the abbreviated year pattern (y or yy), SimpleDateFormat (and
hence all parse functions) must interpret the abbreviated year relative to some century. It does
this by adjusting dates to bewithin 79 years before and 19 years after the time the SimpleDateFormat
instance is created. For example, using a pattern of MM/dd/yy and a SimpleDateFormat instance
created on Jan 1, 1997, the string 01/11/12would be interpreted as Jan 11, 2012 while the string
05/04/64would be interpreted as May 4, 1964. During parsing, only strings consisting of exactly
two digits, as defined by Unicode::isDigit(), will be parsed into the default century. Any other
numeric string, such as a one digit string, a three or more digit string, or a two digit string that is
not all digits (for example, -1), is interpreted literally. So 01/02/3 or 01/02/003 are parsed, using
the same pattern, as Jan 2, 3 A.D. Likewise, 01/02/-3 is parsed as Jan 2, 4 B.C. Behavior is undefined
if you specify a two-digit date that might be either twenty years in the future or eighty years in
the past.

If the year pattern has more than two y characters, the year is interpreted literally, regardless of
the number of digits. So using the pattern MM/dd/yyyy, 01/11/12 parses to Jan 11, 12 A.D.

When numeric fields abut one another directly, with no intervening delimiter characters, they
constitute a run of abutting numeric fields. Such runs are parsed specially. For example, the format
HHmmss parses the input text 123456 to 12:34:56, parses the input text 12345 to 1:23:45, and fails to
parse 1234. In other words, the leftmost field of the run is flexible, while the others keep a fixed
width. If the parse fails anywhere in the run, then the leftmost field is shortened by one character,
and the entire run is parsed again. This is repeated until either the parse succeeds or the leftmost
field is one character in length. If the parse still fails at that point, the parse of the run fails.

For time zones that have no names, SimpleDateFormat uses strings GMT+hours:minutes or
GMT-hours:minutes.

The calendar defines what is the first day of the week, the first week of the year, whether hours
are zero based or not (0 vs. 12 or 24), and the time zone. There is one common number format to
handle all the numbers; the digit count is handled programmatically according to the pattern.

Midnight and noon

The format "HH:mm" parses "24:00" as midnight that ends the day. Given the formal "hh:mm a",
both "00:00 am" and "12:00 am" parse as the midnight that begins the day. Note that "00:00 pm"
and "12:00 pm" are both midday.

352 Developing Apama Applications 10.11.2

10 Using EPL Plug-ins

Supported time zones
The TimeFormat event library supports the following time zones:

ACT

AET

AGT

ART

AST

Africa/Abidjan

Africa/Accra

Africa/Addis_Ababa

Africa/Algiers

Africa/Asmara

Africa/Asmera

Africa/Bamako

Africa/Bangui

Africa/Banjul

Africa/Bissau

Africa/Blantyre

Africa/Brazzaville

Africa/Bujumbura

Africa/Cairo

Africa/Casablanca

Africa/Ceuta

Africa/Conakry

Africa/Dakar

Africa/Dar_es_Salaam

Africa/Djibouti

Africa/Douala

Africa/El_Aaiun

Developing Apama Applications 10.11.2 353

10 Using EPL Plug-ins

Africa/Freetown

Africa/Gaborone

Africa/Harare

Africa/Johannesburg

Africa/Juba

Africa/Kampala

Africa/Khartoum

Africa/Kigali

Africa/Kinshasa

Africa/Lagos

Africa/Libreville

Africa/Lome

Africa/Luanda

Africa/Lubumbashi

Africa/Lusaka

Africa/Malabo

Africa/Maputo

Africa/Maseru

Africa/Mbabane

Africa/Mogadishu

Africa/Monrovia

Africa/Nairobi

Africa/Ndjamena

Africa/Niamey

Africa/Nouakchott

Africa/Ouagadougou

Africa/Porto-Novo

Africa/Sao_Tome

Africa/Timbuktu

354 Developing Apama Applications 10.11.2

10 Using EPL Plug-ins

Africa/Tripoli

Africa/Tunis

Africa/Windhoek

America/Adak

America/Anchorage

America/Anguilla

America/Antigua

America/Araguaina

America/Argentina/Buenos_Aires

America/Argentina/Catamarca

America/Argentina/ComodRivadavia

America/Argentina/Cordoba

America/Argentina/Jujuy

America/Argentina/La_Rioja

America/Argentina/Mendoza

America/Argentina/Rio_Gallegos

America/Argentina/Salta

America/Argentina/San_Juan

America/Argentina/San_Luis

America/Argentina/Tucuman

America/Argentina/Ushuaia

America/Aruba

America/Asuncion

America/Atikokan

America/Atka

America/Bahia

America/Bahia_Banderas

America/Barbados

America/Belem

Developing Apama Applications 10.11.2 355

10 Using EPL Plug-ins

America/Belize

America/Blanc-Sablon

America/Boa_Vista

America/Bogota

America/Boise

America/Buenos_Aires

America/Cambridge_Bay

America/Campo_Grande

America/Cancun

America/Caracas

America/Catamarca

America/Cayenne

America/Cayman

America/Chicago

America/Chihuahua

America/Coral_Harbour

America/Cordoba

America/Costa_Rica

America/Creston

America/Cuiaba

America/Curacao

America/Danmarkshavn

America/Dawson

America/Dawson_Creek

America/Denver

America/Detroit

America/Dominica

America/Edmonton

America/Eirunepe

356 Developing Apama Applications 10.11.2

10 Using EPL Plug-ins

America/El_Salvador

America/Ensenada

America/Fort_Nelson

America/Fort_Wayne

America/Fortaleza

America/Glace_Bay

America/Godthab

America/Goose_Bay

America/Grand_Turk

America/Grenada

America/Guadeloupe

America/Guatemala

America/Guayaquil

America/Guyana

America/Halifax

America/Havana

America/Hermosillo

America/Indiana/Indianapolis

America/Indiana/Knox

America/Indiana/Marengo

America/Indiana/Petersburg

America/Indiana/Tell_City

America/Indiana/Vevay

America/Indiana/Vincennes

America/Indiana/Winamac

America/Indianapolis

America/Inuvik

America/Iqaluit

America/Jamaica

Developing Apama Applications 10.11.2 357

10 Using EPL Plug-ins

America/Jujuy

America/Juneau

America/Kentucky/Louisville

America/Kentucky/Monticello

America/Knox_IN

America/Kralendijk

America/La_Paz

America/Lima

America/Los_Angeles

America/Louisville

America/Lower_Princes

America/Maceio

America/Managua

America/Manaus

America/Marigot

America/Martinique

America/Matamoros

America/Mazatlan

America/Mendoza

America/Menominee

America/Merida

America/Metlakatla

America/Mexico_City

America/Miquelon

America/Moncton

America/Monterrey

America/Montevideo

America/Montreal

America/Montserrat

358 Developing Apama Applications 10.11.2

10 Using EPL Plug-ins

America/Nassau

America/New_York

America/Nipigon

America/Nome

America/Noronha

America/North_Dakota/Beulah

America/North_Dakota/Center

America/North_Dakota/New_Salem

America/Nuuk

America/Ojinaga

America/Panama

America/Pangnirtung

America/Paramaribo

America/Phoenix

America/Port-au-Prince

America/Port_of_Spain

America/Porto_Acre

America/Porto_Velho

America/Puerto_Rico

America/Punta_Arenas

America/Rainy_River

America/Rankin_Inlet

America/Recife

America/Regina

America/Resolute

America/Rio_Branco

America/Rosario

America/Santa_Isabel

America/Santarem

Developing Apama Applications 10.11.2 359

10 Using EPL Plug-ins

America/Santiago

America/Santo_Domingo

America/Sao_Paulo

America/Scoresbysund

America/Shiprock

America/Sitka

America/St_Barthelemy

America/St_Johns

America/St_Kitts

America/St_Lucia

America/St_Thomas

America/St_Vincent

America/Swift_Current

America/Tegucigalpa

America/Thule

America/Thunder_Bay

America/Tijuana

America/Toronto

America/Tortola

America/Vancouver

America/Virgin

America/Whitehorse

America/Winnipeg

America/Yakutat

America/Yellowknife

Antarctica/Casey

Antarctica/Davis

Antarctica/DumontDUrville

Antarctica/Macquarie

360 Developing Apama Applications 10.11.2

10 Using EPL Plug-ins

Antarctica/Mawson

Antarctica/McMurdo

Antarctica/Palmer

Antarctica/Rothera

Antarctica/South_Pole

Antarctica/Syowa

Antarctica/Troll

Antarctica/Vostok

Arctic/Longyearbyen

Asia/Aden

Asia/Almaty

Asia/Amman

Asia/Anadyr

Asia/Aqtau

Asia/Aqtobe

Asia/Ashgabat

Asia/Ashkhabad

Asia/Atyrau

Asia/Baghdad

Asia/Bahrain

Asia/Baku

Asia/Bangkok

Asia/Barnaul

Asia/Beirut

Asia/Bishkek

Asia/Brunei

Asia/Calcutta

Asia/Chita

Asia/Choibalsan

Developing Apama Applications 10.11.2 361

10 Using EPL Plug-ins

Asia/Chongqing

Asia/Chungking

Asia/Colombo

Asia/Dacca

Asia/Damascus

Asia/Dhaka

Asia/Dili

Asia/Dubai

Asia/Dushanbe

Asia/Famagusta

Asia/Gaza

Asia/Harbin

Asia/Hebron

Asia/Ho_Chi_Minh

Asia/Hong_Kong

Asia/Hovd

Asia/Irkutsk

Asia/Istanbul

Asia/Jakarta

Asia/Jayapura

Asia/Jerusalem

Asia/Kabul

Asia/Kamchatka

Asia/Karachi

Asia/Kashgar

Asia/Kathmandu

Asia/Katmandu

Asia/Khandyga

Asia/Kolkata

362 Developing Apama Applications 10.11.2

10 Using EPL Plug-ins

Asia/Krasnoyarsk

Asia/Kuala_Lumpur

Asia/Kuching

Asia/Kuwait

Asia/Macao

Asia/Macau

Asia/Magadan

Asia/Makassar

Asia/Manila

Asia/Muscat

Asia/Nicosia

Asia/Novokuznetsk

Asia/Novosibirsk

Asia/Omsk

Asia/Oral

Asia/Phnom_Penh

Asia/Pontianak

Asia/Pyongyang

Asia/Qatar

Asia/Qostanay

Asia/Qyzylorda

Asia/Rangoon

Asia/Riyadh

Asia/Saigon

Asia/Sakhalin

Asia/Samarkand

Asia/Seoul

Asia/Shanghai

Asia/Singapore

Developing Apama Applications 10.11.2 363

10 Using EPL Plug-ins

Asia/Srednekolymsk

Asia/Taipei

Asia/Tashkent

Asia/Tbilisi

Asia/Tehran

Asia/Tel_Aviv

Asia/Thimbu

Asia/Thimphu

Asia/Tokyo

Asia/Tomsk

Asia/Ujung_Pandang

Asia/Ulaanbaatar

Asia/Ulan_Bator

Asia/Urumqi

Asia/Ust-Nera

Asia/Vientiane

Asia/Vladivostok

Asia/Yakutsk

Asia/Yangon

Asia/Yekaterinburg

Asia/Yerevan

Atlantic/Azores

Atlantic/Bermuda

Atlantic/Canary

Atlantic/Cape_Verde

Atlantic/Faeroe

Atlantic/Faroe

Atlantic/Jan_Mayen

Atlantic/Madeira

364 Developing Apama Applications 10.11.2

10 Using EPL Plug-ins

Atlantic/Reykjavik

Atlantic/South_Georgia

Atlantic/St_Helena

Atlantic/Stanley

Australia/ACT

Australia/Adelaide

Australia/Brisbane

Australia/Broken_Hill

Australia/Canberra

Australia/Currie

Australia/Darwin

Australia/Eucla

Australia/Hobart

Australia/LHI

Australia/Lindeman

Australia/Lord_Howe

Australia/Melbourne

Australia/NSW

Australia/North

Australia/Perth

Australia/Queensland

Australia/South

Australia/Sydney

Australia/Tasmania

Australia/Victoria

Australia/West

Australia/Yancowinna

BET

BST

Developing Apama Applications 10.11.2 365

10 Using EPL Plug-ins

Brazil/Acre

Brazil/DeNoronha

Brazil/East

Brazil/West

CAT

CET

CNT

CST

CST6CDT

CTT

Canada/Atlantic

Canada/Central

Canada/East-Saskatchewan

Canada/Eastern

Canada/Mountain

Canada/Newfoundland

Canada/Pacific

Canada/Saskatchewan

Canada/Yukon

Chile/Continental

Chile/EasterIsland

Cuba

EAT

ECT

EET

EST

EST5EDT

Egypt

Eire

366 Developing Apama Applications 10.11.2

10 Using EPL Plug-ins

Etc/GMT

Etc/GMT+0

Etc/GMT+1

Etc/GMT+10

Etc/GMT+11

Etc/GMT+12

Etc/GMT+2

Etc/GMT+3

Etc/GMT+4

Etc/GMT+5

Etc/GMT+6

Etc/GMT+7

Etc/GMT+8

Etc/GMT+9

Etc/GMT-0

Etc/GMT-1

Etc/GMT-10

Etc/GMT-11

Etc/GMT-12

Etc/GMT-13

Etc/GMT-14

Etc/GMT-2

Etc/GMT-3

Etc/GMT-4

Etc/GMT-5

Etc/GMT-6

Etc/GMT-7

Etc/GMT-8

Etc/GMT-9

Developing Apama Applications 10.11.2 367

10 Using EPL Plug-ins

Etc/GMT0

Etc/Greenwich

Etc/UCT

Etc/UTC

Etc/Universal

Etc/Zulu

Europe/Amsterdam

Europe/Andorra

Europe/Astrakhan

Europe/Athens

Europe/Belfast

Europe/Belgrade

Europe/Berlin

Europe/Bratislava

Europe/Brussels

Europe/Bucharest

Europe/Budapest

Europe/Busingen

Europe/Chisinau

Europe/Copenhagen

Europe/Dublin

Europe/Gibraltar

Europe/Guernsey

Europe/Helsinki

Europe/Isle_of_Man

Europe/Istanbul

Europe/Jersey

Europe/Kaliningrad

Europe/Kiev

368 Developing Apama Applications 10.11.2

10 Using EPL Plug-ins

Europe/Kirov

Europe/Lisbon

Europe/Ljubljana

Europe/London

Europe/Luxembourg

Europe/Madrid

Europe/Malta

Europe/Mariehamn

Europe/Minsk

Europe/Monaco

Europe/Moscow

Europe/Nicosia

Europe/Oslo

Europe/Paris

Europe/Podgorica

Europe/Prague

Europe/Riga

Europe/Rome

Europe/Samara

Europe/San_Marino

Europe/Sarajevo

Europe/Saratov

Europe/Simferopol

Europe/Skopje

Europe/Sofia

Europe/Stockholm

Europe/Tallinn

Europe/Tirane

Europe/Tiraspol

Developing Apama Applications 10.11.2 369

10 Using EPL Plug-ins

Europe/Ulyanovsk

Europe/Uzhgorod

Europe/Vaduz

Europe/Vatican

Europe/Vienna

Europe/Vilnius

Europe/Volgograd

Europe/Warsaw

Europe/Zagreb

Europe/Zaporozhye

Europe/Zurich

Factory

GB

GB-Eire

GMT

GMT+0

GMT-0

GMT0

Greenwich

HST

Hongkong

IET

IST

Iceland

Indian/Antananarivo

Indian/Chagos

Indian/Christmas

Indian/Cocos

Indian/Comoro

370 Developing Apama Applications 10.11.2

10 Using EPL Plug-ins

Indian/Kerguelen

Indian/Mahe

Indian/Maldives

Indian/Mauritius

Indian/Mayotte

Indian/Reunion

Iran

Israel

JST

Jamaica

Japan

Kwajalein

Libya

MET

MIT

MST

MST7MDT

Mexico/BajaNorte

Mexico/BajaSur

Mexico/General

NET

NST

NZ

NZ-CHAT

Navajo

PLT

PNT

PRC

PRT

Developing Apama Applications 10.11.2 371

10 Using EPL Plug-ins

PST

PST8PDT

Pacific/Apia

Pacific/Auckland

Pacific/Bougainville

Pacific/Chatham

Pacific/Chuuk

Pacific/Easter

Pacific/Efate

Pacific/Enderbury

Pacific/Fakaofo

Pacific/Fiji

Pacific/Funafuti

Pacific/Galapagos

Pacific/Gambier

Pacific/Guadalcanal

Pacific/Guam

Pacific/Honolulu

Pacific/Johnston

Pacific/Kiritimati

Pacific/Kosrae

Pacific/Kwajalein

Pacific/Majuro

Pacific/Marquesas

Pacific/Midway

Pacific/Nauru

Pacific/Niue

Pacific/Norfolk

Pacific/Noumea

372 Developing Apama Applications 10.11.2

10 Using EPL Plug-ins

Pacific/Pago_Pago

Pacific/Palau

Pacific/Pitcairn

Pacific/Pohnpei

Pacific/Ponape

Pacific/Port_Moresby

Pacific/Rarotonga

Pacific/Saipan

Pacific/Samoa

Pacific/Tahiti

Pacific/Tarawa

Pacific/Tongatapu

Pacific/Truk

Pacific/Wake

Pacific/Wallis

Pacific/Yap

Poland

Portugal

ROC

ROK

SST

Singapore

SystemV/AST4

SystemV/AST4ADT

SystemV/CST6

SystemV/CST6CDT

SystemV/EST5

SystemV/EST5EDT

SystemV/HST10

Developing Apama Applications 10.11.2 373

10 Using EPL Plug-ins

SystemV/MST7

SystemV/MST7MDT

SystemV/PST8

SystemV/PST8PDT

SystemV/YST9

SystemV/YST9YDT

Turkey

UCT

US/Alaska

US/Aleutian

US/Arizona

US/Central

US/East-Indiana

US/Eastern

US/Hawaii

US/Indiana-Starke

US/Michigan

US/Mountain

US/Pacific

US/Pacific-New

US/Samoa

UTC

Universal

VST

W-SU

WET

Zulu

374 Developing Apama Applications 10.11.2

10 Using EPL Plug-ins

Using the MemoryStore
The MemoryStore provides an in-memory, table-based, data storage abstraction within the
correlator. All EPL code running in the correlator in any context can access the data stored by the
MemoryStore. In other words, all EPL monitors running in the correlator have access to the same
data.

TheApamaMemoryStore can also be used in a distributed fashion to provide access to data stored
in aMemoryStore to applications running in a cluster ofmultiple correlators. Formore information
on the distributed MemoryStore, see “Using the distributed MemoryStore” on page 390.

The MemoryStore can also store data on disk to make it persistent, and copy persistent data back
into memory. However, the MemoryStore is primarily intended to provide all monitors in the
correlator with in-memory access to the same data.

Use the MemoryStore to share data among monitors in the correlator or to persist data on disk. If
the situations listed below apply to you, the standardApamaADBC (ApamaDatabaseConnector)
adapter is likely to be a better option for you than the MemoryStore.

You want to interoperate directly with data users other than Apama.

You need access to more data than can fit in memory.

You need to key on more than one field.

You want to join tables.

See also “Using the MemoryStore when persistence is enabled” on page 325.

See "The Database Connector IAF Adapter (ADBC)" in Connecting Apama Applications to External
Components.

For details about the event types that provide the MemoryStore interface, see the API Reference for
EPL (ApamaDoc).

Introduction to using the MemoryStore
Data that the MemoryStore stores must be one of the following types: boolean, decimal, float,
integer or string.

To use the MemoryStore, you need to add the MemoryStore bundle to your Apama project (see
“Adding the MemoryStore bundle to your project” on page 376). This lets you create instances of
MemoryStore events and then call actions on those events. Available actions include the following:

Creating stores that contain tables

Defining the schema for the rows in a table

Creating tables and associating a schema with each table

Storing, retrieving, updating, and committing rows of data

Developing Apama Applications 10.11.2 375

10 Using EPL Plug-ins

Copying tables to disk to make the data persistent

Making stored data available in DataViews for use by dashboards

You can use theMemoryStore in parallel applications. You can use theMemoryStore in a persistent
monitor in a persistence-enabled correlator. See “Using the MemoryStore when persistence is
enabled” on page 325.

For information on using the MemoryStore in a distributed fashion, see “Using the distributed
MemoryStore” on page 390.

Overview of MemoryStore events
The MemoryStore defines the following events in the com.apama.memorystore package. Most of
these events contain action fields that serve as the MemoryStore interface.

Storage— The event type that provides the interface for creating stores.

Store—A Store event represents a container for a uniquely named collection of tables.

Table—A Table event represents a table in a store. A table is a collection of rows. Each table
has a unique name within the store. A table resides in memory and you can store it on disk if
you want to.

Schema—A Schema event specifies a set of fields and the type of each field. Each Schema event
represents the schema for one or more tables. Each table is associated with one schema. All
rows in that table match the table's schema.

Row—A Row event represents a row in a table. A row is an ordered and typed set of named
fields that match the schema associated with the table that the row belongs to. Each row is
associated with a string that acts as its key within the table. You can change the values of the
fields in a row.

Iterator— Provides the ability to manipulate each row of a table in turn.

Finished—TheMemoryStore enqueues a Finished eventwhen processing of an asynchronous
action is complete.

RowChanged— The RowChanged event is used only in a distributed store. In a distributed store,
the RowChanged event is sent to all applications that have subscribed to a specific tablewhenever
changes to data in a row in that table have been successfully committed. This behavior is
optional and is supported by some, but not all, third-party distributed cache providers.

For details about these events, see the information for MemoryStore in the API Reference for EPL
(ApamaDoc).

Adding the MemoryStore bundle to your project
To use the MemoryStore, you need only add the MemoryStore bundle to your project. The
description below explains how to add the bundle using Software AG Designer, but you can also
add it using the apama_project command-line tool as described in "Creating and managing an
Apama project from the command line" in Deploying and Managing Apama Applications.

376 Developing Apama Applications 10.11.2

10 Using EPL Plug-ins

Note:
To use the distributed MemoryStore, you add the Distributed MemoryStore adapter instead.
The procedure for this is different and is described in “Adding distributedMemoryStore support
to a project” on page 394.

Adding the MemoryStore bundle to your project makes the MemoryStore.mon file available to the
monitors in your project. When you run your project, Software AGDesigner automatically injects
MemoryStore.mon. If you want to examine this file, it is in the monitors/data_storage directory of
your Apama installation directory. MemoryStore.mon is the interface between the monitors in your
application and the MemoryStore plug-in. Your application creates events of the types defined in
that file and calls actions on those events to use the MemoryStore's facilities. There is never any
need to import or call the plug-in directly.

Note:
If you use the engine_inject tool to manually inject your EPL, instead of using Software AG
Designer, and you want to expose MemoryStore tables to dashboards, you need to inject the
MemoryStoreScenarioImpl.mon file, which is in the same directory as the MemoryStore.mon file.

To add the MemoryStore bundle

1. In Software AG Designer, open the project in the Apama Developer perspective.

2. In the Project Explorer, right-click the EPL Bundles node and select Add Bundle.

3. In the Add Bundle dialog, select the The MemoryStore bundle and click OK.

Steps for using the MemoryStore

To use theMemoryStore, youmust first add the The MemoryStore bundle to your project, unless
you are using the distributedMemoryStore. (If you are using the distributedMemoryStore, instead
of adding the The MemoryStore bundle, you need to add theDistributed MemoryStore adapter.
For more information on this, see “Adding distributed MemoryStore support to a project” on
page 394.)

After you have added the MemoryStore bundle, you write EPL that does the following:

1. Prepare and then open a store that will contain one or more tables.

2. Define the data schema for the rows that will belong to the table.

3. Prepare and then open a table in a store.

4. For applications that will access data in a distributed store, if the underlying third-party
distributed cache provider supports notifications, optionally subscribe to the table in order to
receive notifications when data has changed. For further information, see “Notifications” on
page 397.

5. Get a new or existing row from the table.

6. Modify the row.

Developing Apama Applications 10.11.2 377

10 Using EPL Plug-ins

7. Commit the modified row to the table.

8. Repeat the three previous steps as often as needed.

9. Optionally, use an iterator to step through all rows in the table.

10. Optionally, store the in-memory table on disk.

Preparing and opening stores

The Storage event is used to prepare and open a store to which you can add tables. Storage events
define actions that do the following:

Request preparation of a store.

Open a store that has been prepared.

Storage events contain no data. All Storage events are alike and exist only to provide the interface
for preparing and opening stores. All actions on the Storage event are static; there is no need to
create an instance of a Storage event.

If you do not require on-disk persistence, you can prepare a store in memory. If you do require
on-disk persistence, you can specify the file that contains (or that you want to contain) the store.
Depending on the action you call to open the store, the MemoryStore does one of the following:

Opens the store for read-write access.

Opens the store for read-only access.

Opens the store for read-write access. Create the store if it does not already exist.

Preparation of stores is asynchronous. Actions that prepare stores return an ID immediately.When
the MemoryStore completes preparation it enqueues a Finished event that contains this ID. You
should define an event listener for this Finished event. The Finished event indicates whether or
not preparation was successful.

You can open a store only after receiving a Finished event that indicates successful preparation.

For example, the following code fragment declares a Storage type variable and a Store type
variable. It then calls the prepareOrCreate() action on the Storage type variable and saves the
returned ID in the Store type variable. The name of the new store is storename and the store will
be made persistent by saving it in the example.dat file. Finally, this code fragment declares a
Finished event variable and an event listener for a Finished event whose ID matches the ID
returned by the preparation request.
using com.apama.memorystore.Storage;
using com.apama.memorystore.Store;
using com.apama.memorystore.Finished;

monitor Test {
Store store;

action onload() {
integer id := Storage.prepareOrCreate("storename", "/tmp/example.dat");
on Finished(id,*,*)as f

378 Developing Apama Applications 10.11.2

10 Using EPL Plug-ins

onStorePrepared(f);
...

}
}

After a store has been successfully prepared, you can open it:
action onStorePrepared(Finished f) {

if not f.success { log "Whoops"; die; }
store := Storage.open("storename");

All subsequent examples assume that the appropriate using statements have been added.

Any monitor instance can open a store after that store has been successfully prepared. However,
monitor A has no information about whether or not monitor B has prepared a particular store.

Therefore, each monitor should prepare any store it needs, and then prepare any tables it needs
within that store. There is no way to pass Store or Table events from one monitor to another.
Multiple monitors can prepare and open the same store or table at the same time.

There are several different actions available for preparing a store:

Storage.prepareInMemory(string name) returns integer prepares an in-memory store with
the name you specify. All tables are emptywhen prepared for the first time. Persistence requests
are ignored and immediately return a successful Finished event.

Storage.prepare(string name, string filename) returns integer does the same thing as
Storage.prepareInMemory and it also associates that store with the database file you specify.
If there is data in the database file the MemoryStore loads the store with the data from the file
when you prepare a table. Persistence requests write changes back to the file. The specified
file must exist.

Storage.prepareOrCreate(string name, string filename) returns integer does the same
thing as Storage.prepare() except that it creates the file if it does not already exist.

Storage.prepareReadOnly(string name, string filename) returns integer does the same
thing as Storage.prepare and it also opens for read-only access the database file you specify.
The MemoryStore will load the store with data from the file when you prepare the table.
Persistence requests are refused and return a failure Finished event

Storage.prepareCorrelatorPersistent(string name) returns integer prepares a store that
the correlator automatically persists. Each time the correlator takes a snapshot, the snapshot
includes any correlator-persistent stores along with the contents of those stores.

Storage.prepareDistributed(string name) returns integer prepares a distributed storewhich
will be available to applications running in a cluster of correlators. The name argument is a
unique identifier that specifies the name of a configured distributed store. For information on
adding a distributed store to a project, see “Adding a distributed store to a project” on page 394.

Suppose amonitor instance calls one of the Storage.prepare() actions and the action is successful.
Now suppose another monitor instance calls the same Storage.prepare() variant with the same
table name and, if applicable, the same filename, as the previously successful call. The second call
does nothing and indicates success immediately. However, if a monitor instance makes a
Storage.prepare() call and specifies the same table name aswas specified in a previously successful

Developing Apama Applications 10.11.2 379

10 Using EPL Plug-ins

prepare() call, that call fails immediately if at least one of the following is different from the
successful call:

The variant of the prepare() action called

The specified file name or store name (if applicable)

For example, suppose a monitor made the following successful call:
Storage.prepare("foo", "/tmp/foo.dat")

After this call, the only prepare call that can successfully prepare the same table is
Storage.prepare("foo", "/tmp/foo.dat")

The following calls would all fail:
Storage.prepareInMemory("foo")
Storage.prepareOrCreate("foo", "/tmp/foo.dat")
Storage.prepareReadOnly("foo", "/tmp/foo.dat")
Storage.prepare("foo", "/tmp/bar.dat")

If a monitor makes a call to prepare() that matches a prepare action that is in progress, the result
is the same as the result of the prepare that is in progress.

Description of row structures

Schemas

A schema consists of an ordered list of the names and types of fields that define the structure of
a row. For example, the following schema consists of one fieldwhose name is times_run andwhose
type is integer:
Schema schema := new Schema;
schema.fields := ["times_run"];
schema.types := ["integer"];

A valid schema can be created from an event type using schemaFromAny(event). Types that are not
supported in the event are converted to string types.

The Schema event has additional members that indicate how to publish the table. See “Exposing
in-memory or persistent data as DataViews” on page 388.

The schema does not include the row's key. The key is always a string and it does not have a name.
Each row in a table is associated with a key that is unique within the table. The key provides a
handle for obtaining a particular row. The row does not contain the key.

Two schemas match when they list the same set of field names and types in the same order and
choose the same options for exposing DataViews.

Some distributed MemoryStore drivers (such as TCStore) support getting and setting extra fields
that are present in only some individual rows, and are not named in the schema. For stores
supporting this feature, it is even possible to specify an empty list of schema fields and access all
fields as extra fields if desired. When getting extra fields, it is important to be aware that getting

380 Developing Apama Applications 10.11.2

10 Using EPL Plug-ins

a field that does not exist will result in an exception, so it is usually necessary to add exception
handling code, or to check which keys are present in the row (using Row.getKeys()) before
attempting to access them. It is also possible to use the Row.getAll or Row.toDictionary actions to
get all fields including those named in the schema and any extra fields that are present. Note that
RowChanged notifications are not supported for extra fields.

Tables

Table events define actions that do the following:

Retrieve a row by key. The returned object is a Row event.

Remove a row by key

Remove all rows

Obtain a sequence of keys for all rows in the table

Obtain an iterator to iterate over the rows in the table

Determine if any row in the table has a particular key

Store on disk the changes to the in-memory table

Subscribe (and unsubscribe) to a table to be notified when a row has changed. (Note, this is
only supported for tables in a distributed store, and only if the underlying provider supports
this feature.)

Modify a row by key

Modify all rows

Obtain the position in a schema of a specified field.

Obtain the name of the table

Obtain the name of the store that contains the table

For details about these Table event actions, see the information forMemoryStore in theAPI Reference
for EPL (ApamaDoc).

Retrieval of a row from a table by key always succeeds (although retrieving a row from a table in
a distributed store can throw an exception). If the row already exists, the MemoryStore returns a
Row event that provides a local copy of the row. The content of this Row event does not change if
another user modifies the in-memory version of the row in the table. If the row does not already
exist, theMemoryStore populates a Row eventwith default values and returns that with field values
as follows:

boolean types are false

decimal types are 0.0d

float types are 0.0

integer types are 0

Developing Apama Applications 10.11.2 381

10 Using EPL Plug-ins

string types are empty ("")

Rows

Row events define actions that do the following:

Getters and setters. These actions modify only the local copy (your Row event) and not the
in-memory version of the row. The in-memory version of the row is available to all monitors.
If another user of the table retrieves the same row, that user receives a Row event that contains
a copy of the in-memory version of the row; that user does not receive a copy of yourmodified,
local version of the row:

Get and set boolean, decimal, float, integer, and string fields by name.

Generic get and set field by name actionswhich use the any type. These throw an exception
if the underlying types do not match the expected field type.

Get and set all fields. These expect a prototype event whose fields and types match that of
the table schema. An exception is thrown if the schemas do not match.

Commit a modified Row event. That is, you modify your local Row event, and commit the
changes, which updates the shared row in the table. This makes the update available to all
monitors.

Get the value of a row's key.

Determine whether a row was present in the table when the local copy was provided.

Obtain the name of the table the row is in.

Obtain the name of the store the row's table is in.

The Row.commit() action modifies only the in-memory copy of the row so it is a synchronous and
non-blocking operation.Note, in a distributed store, Row.commit()writes the value to the distributed
store, which may be a fast, local operation or it may involve writing data to one or more remote
nodes. If any other user of the table modifies the in-memory row between the time you obtain a
Row event that represents that row and the time you try to commit your changes to your Row event,
the Row.commit() action fails and the monitor instance that called Row.commit() dies. Therefore, if
you are sharing the table with other users or using a distributed store, you should call
Row.tryCommit() instead of Row.commit(). If it fails you must retry the commit operation by
retrieving the row again (that is, obtaining a new Row event that contains the latest content of the
in-memory row), reapplying the changes, and then calling the Row.tryCommit() action. This ensures
that you always make changes that are consistent and atomic within the shared version of the
row.

However, it is not possible to make atomicity guarantees across rows or tables.

Preparing and opening tables

After you have an open store, you can add one or more tables to that store. You call actions on
Store events to create tables. Store events define actions that do the following:

382 Developing Apama Applications 10.11.2

10 Using EPL Plug-ins

Prepare a table. You specify a table name and a schema or supply an event or type name to
use as the name and schema. This call is asynchronous. TheMemoryStore enqueues a Finished
event that indicates success or failure. If the table does not exist, the MemoryStore creates an
empty table.

Open a table that has been prepared

Store on disk the in-memory changes to tables.

If the store that contains the table is persistent and the table exists on disk then the on-disk schema
mustmatch the schema that you specifywhen you call the action to prepare the table. The schemas
must also match if the table is a distributed table that already exists in a distributed store. If the
schemas do not match, the Finished event that the MemoryStore enqueues includes an error
message.

Note:
A persistent table can be an on-disk table or a table in a correlator-persistent store.

If a monitor instance calls Store.prepare()with the same table name and schema as those of a
previously successful Store.prepare() call, the call does nothing and indicates success immediately.
If amonitor instance calls Store.prepare() and specifies the same table name but the schema does
not exactly match, that call fails immediately. If a monitor makes a call to Store.prepare() that
matches a preparation that is in progress, the result is the same as the result of the preparation
that is in progress.

If the table you want to prepare is persistent and it has not yet been loaded into memory then the
MemoryStore loads the table's on-disk data intomemory in its entirety. TheMemoryStore enqueues
the Finished event when loading the table is complete.

To use a table that is in memory, you must retrieve a handle to it from the store that contains it.
Obtaining a handle to a prepared (loaded) table is a synchronous action that completes immediately
and does not block. The calling monitor instance dies if you try to obtain a handle to a table that
is not prepared or that is in the process of being prepared.

For example:
integer id := store.prepare("tablename", schema);
on Finished(id,*,*) as f onTablePrepared(f);

action onTablePrepared(Finished f) {
if not f.success { log "Whoops"; die; }
Table tbl := store.open("tablename");

Note:
The term “table” is a reserved keyword. Consequently, you should not use “table” as a variable
name.

Preparation of a table can fail for a number of reasons including, but not limited to, the following:

You call prepare() on an existing table and the schema of that table and the schema specified
in the prepare() call do not match.

Developing Apama Applications 10.11.2 383

10 Using EPL Plug-ins

You call prepare() on an existing in-memory table and the exposePersistentView setting is
true for the schema you specify in the prepare() call.

You call prepare() on a table that does not exist and the store has been opened read-only.

You call prepare() on a table that does not exist in a persistent store and the attempt to create
a new table in the persistent store fails, perhaps because the disk is full.

The on-disk version of the table is corrupt in some way.

You set exposePersistentView on a table in a correlator-persistent store.

You set exposeMemoryView or exposePersistentView to true for a distributed store.

The third-party distributed store implementation throws an exception for some reason such
as unrecoverable network failure.

Using transactions to manipulate rows

In a monitor, any changes you make to Row events are local until you commit those changes. In
other words, any changes you make actually modify the Row events that represent the actual rows
in the table. After you commit the changes you have made to your Row events, the updated rows
are available to all monitors in the correlator and to all other members of the distributed cluster
if you are using a distributed store.

Note:
When you modify a Row event and you want to update the actual row with your changes, you
must commit your changes. It does notmatterwhether or not the table is in a correlator-persistent
store.

The Row event defines the following actions for committing changes:

Row.commit()— Tries to commit changes to Row events to the table. If nothing else modified
the row in the table since you obtained the Row event that represents that row, theMemoryStore
commits the changes and returns. The update is available to all monitors. If the row in the
table has been modified, an exception is thrown, leaving the table unchanged.

Row.tryCommit()— Behaves like commit() except that it does not throw an exception upon
failure. If the row in the table has been modified, this action returns false and leaves the table
unchanged. If this action is successful, it returns true.

Row.tryCommitOrUpdate()— Behaves like tryCommit() except that when it returns false, it
also updates your local Row event to reflect the current state of the actual row in the table. In
other words, if the row in the table has been modified, this action does the following:

Leaves the actual row in the table unchanged.

Updates the local Row event that represents this row to reflect the current state of the table.
Any local, uncommitted modifications are lost.

Returns false.

384 Developing Apama Applications 10.11.2

10 Using EPL Plug-ins

Row.forceCommit()—Commits the local Row event to the table even if the row in the table has
been modified after you obtained the Row event.

Determining which commit action to call

If you are certain that you are the only user of a table and if it is okay for your monitor instance
to be killed if you are wrong, you can use commit().

If you want to use a simple loop like the one below, or if you intend to give up if your attempt to
commit fails, then use tryCommit().
boolean done := false;
while not done {

Row row := tbl.get("foo");
row.setInteger("a",123);
done := row.tryCommit();

}

However, the loop above calls tbl.get() every time around. If you think there might be a high
collision rate, it is worth optimizing to the following, more efficient design:
Row row := tbl.get("foo");
boolean done := false;
while not done {

row.setInteger("a",123);
done := row.tryCommit();
if not done { row.update(); }

}

The tryCommitOrUpdate() action makes the example above a little simpler and considerably more
efficient:
Row row := tbl.get("foo");
boolean done := false;
while not done {

row.setInteger("a",123);
done := row.tryCommitOrUpdate();

}

Alternatively, there is a packaged form of that loop that you might find more convenient:
action doSomeStuff(Row row) {

row.setInteger("a",123);
}
tbl.mutate("foo", doSomeStuff);

The above example is equivalent to the previous one, both in behavior and performance. Which
to use is a matter of context, style and personal preference.

If you want to simply overwrite the whole Row rather than updating the row based on the current
value, then using forceCommit()would be more appropriate. It commits the local Row content to
the table even if it was modified after you obtained the Row event:
Row row := tbl.get("foo");
row.setInteger("a", 123);
row.forceCommit()

Developing Apama Applications 10.11.2 385

10 Using EPL Plug-ins

Creating and removing rows

To create a row in a table, call the get() or add() action on the table to which you want to add the
row. The action declaration for the get() action is as follows:
action get(string key) returns Row

The Table.get() action returns a Row event that represents the row in the table that has the specified
key. If there is no row with the specified key, this action returns a Row event that represents a row
that contains default values. A call to the Row.inTable() action returns false. For example:
boolean done := false;
integer n := -1;
while not done {

Row row := tbl.get("example-row");
n := row.getInteger("times_run");
row.setInteger("times_run", n+1);
done := row.tryCommit();

}
send Result(

"This example has been run " +n.toString() +" time(s) before")
to "output";

The add() action does the same as the get() action, except that it does not check if the row that is
to be added already exists in the table until commit() is called and it therefore never throws an
exception. If you are sure that the row does not yet exist, you can use add() as this is faster than
get().

To remove a row from a table, call the Table.remove() action on the table that contains the row.
The action declaration is as follows:
action remove(string key)

The Table.remove() action removes the rowwith the specified key from the table. If the row does
not exist, this action does nothing.

It is also possible to remove a row transactionally, by calling Table.get() and then Row.remove()
and Row.commit(). This strategy lets you check the row's state before removal. The Row.commit()
action fails if the shared, in-memory row has been updated since the Table.get() action.

In some circumstances, using Row.remove() is essential to guarantee correctness. For example,
when decrementing a usage counter in the row and removing the row when the count reaches
zero. Otherwise, another correlator contextmight re-increment the count between it reaching zero
and the row being removed.

Iterating over the rows in a table

Iterators have operations to step through the table and determine when the end has been reached.
Provided an iterator is not at the table's end, the key it is at can be obtained.

Iterator events define actions that do the following:

Step through the rows in a table.

386 Developing Apama Applications 10.11.2

10 Using EPL Plug-ins

Determine when the last row has been reached.

Obtain the key of the row that the iterator is at. The iterator must not be at the end of the table
for this action to be successful.

Obtain a Row event to represent the row that the iterator is at.

The following sample code reads table content:
Iterator i := tbl.begin();
while not i.done() {

Row row := i.getRow();
if row.inTable() {

// Put code here to read the row in the way you want.
}
i.step();

}

The following sample code modifies table content:
Iterator i := tbl.begin();
while not i.done() {

Row row := i.getRow();
boolean done := false;
while row.inTable() and not done {

// Put code here to modify the row in the way you want.
done := row.tryCommitOrUpdate();

}
i.step();

}

Iterating through a table is always safe, regardless of what other threads are doing. However, if
another context adds or removes a row while you are iterating in your context, it is undefined
whether your iterator will see that row.

Furthermore, it is possible for another context to remove a row while your iterator is pointing at
it. If this happens, a subsequent Iterator.getRow() returns a Row event that represents a row for
which Row.inTable() is false.

If an EPL action loops, the correlator cannot perform garbage collection within that loop. (See
“Optimizing EPL programs” on page 442.) Performing intricate manipulations on many rows of
a large table could therefore create so many transitory objects that the correlator runs out of
memory. If this becomes a problem, you can divide very large tasks into smaller pieces, each of
which is performed in response to a routed event. This gives the correlator an opportunity to
collect garbage between delivering successive events.

Requesting persistence

After changing aMemoryStore table, you can call the Table.persist() action to store the changes
on disk. Note that you can call persist() only on tables in an on-disk store; you cannot call
persist() on tables in correlator-persistent, in-memory, or distributed stores. The correlator
automatically persists correlator-persistent stores and their contents at the same time as the rest
of the correlator runtime state. Updating a table on disk is an asynchronous action. The
MemoryStore enqueues a Finished event to indicate success or failure of this action. The persistent

Developing Apama Applications 10.11.2 387

10 Using EPL Plug-ins

form of the database that contains the tables is transactional. Consequently, if there is a hardware
failure either all of the grouped changes are made or none of them are made.

Following is an example of storing a table on disk:
integer id := tbl.persist();
on Finished(id,*,*) as f onPersisted(f);

action onPersisted(Finished f) {
if not f.success { log "Whoops"; die; }
emit "All OK";

When you update a table, the MemoryStore copies only the changes to the on-disk table.

To improve performance, theMemoryStoremight group persistence requests frommultiple users
of a particular store. This means that calling persist()many times in rapid succession is efficient,
but this does not affect correctness. If the MemoryStore indicates success, you can be certain that
the state at the time of the persist() call (or at the time of some later persist() call) is on disk.

You can call the Store.backup() action to backup the on-disk form of a store while it is open for
use by the correlator. This is an asynchronous action that immediately returns an ID. The
MemoryStore enqueues a Finished event that contains this ID to indicate success or failure of this
action. Be sure to define an event listener for this event.

Exposing in-memory or persistent data as DataViews
You can expose committed in-memory data or committed persistent data as DataViews for use
by Scenario Service clients such as dashboards (see "Scenario Service API" in Connecting Apama
Applications to External Components). Note, however that is not supported for distributed stores.
The Schema event defines the following fields for this purpose:

exposeMemoryView—When this field is true, theMemoryStoremakes the rows in the in-memory
table associated with this schema available to Apama's Scenario Service. That is, the
MemoryStore creates DataViews that contain this data.

exposePersistentView—When this field is true, the MemoryStore makes the rows in the
on-disk table associated with this schema available to Apama's Scenario Service. That is, the
MemoryStore creates DataViews that contain this data. You cannot expose a persistent view
of a table in a correlator-persistent store.

memoryViewDisplayName— Specifies the display name for the exposed DataView created from
the in-memory table.

memoryViewDescription— Specifies the description for the exposed DataView created from
the in-memory table.

persistentViewDisplayName— Specifies the display name for the exposed DataView created
from the on-disk table.

persistentViewDescription— Specifies the description for the exposed DataView created
from the on-disk table.

388 Developing Apama Applications 10.11.2

10 Using EPL Plug-ins

The MemoryStore exposes in-memory changes after successfully committing them to the table.
The MemoryStore exposes on-disk changes after the transaction that contains the changes is
committed.

The exposeMemoryView and exposePersistentView fields have an impact on the time it takes to
prepare a table for the first time.When a table is prepared the rows that are loaded from disk need
to be reflected to the Scenario Service.

If you prepare the same table multiple times the display names and descriptions must match or
the MemoryStore rejects the contradicting request.

When a display name or description field is blank (an empty string), the MemoryStore chooses
the display name or the description for the exposedDataView. You can specify a non-empty string
for one or more fields to override the default. Leave the display name and description fields blank
when you are not exposing the corresponding DataView.

The fields of the exposed views are the same as those of the table, in the same order as they are
defined in the table schema. The key is not part of the exposed views. Each row in the table forms
a single exposed view.

See “MakingApplicationDataAvailable to Clients” on page 433. See also Building andUsing Apama
Dashboards.

Monitoring status for the MemoryStore
TheMemoryStore provides status values via the user status mechanism. It provides the following
metrics:

memStoreCommitTimeEwmaLongMillis—A longer-term exponentially-weightedmoving average
(EWMA) of the time in milliseconds taken to commit to the MemoryStore (in-memory store
and on-disk persistence).

memStoreCommitTimeEwmaShortMillis—A quickly-evolving exponentially-weighted moving
average (EWMA) of the time inmilliseconds taken to commit to theMemoryStore (in-memory
store and on-disk persistence).

memStoreCommitTimeMaxInLastHour—Themaximum commit latency in milliseconds since the
start of the last 1 hourmeasurement period for theMemoryStore (in-memory store and on-disk
persistence).

distMemStoreCommitTimeEwmaLongMillis—A longer-term exponentially-weighted moving
average (EWMA) of the time inmilliseconds taken to commit to the distributedMemoryStore.

distMemStoreCommitTimeEwmaShortMillis—A quickly-evolving exponentially-weighted
moving average (EWMA) of the time in milliseconds taken to commit to the distributed
MemoryStore.

distMemStoreCommitTimeMaxInLastHour—Themaximum commit latency inmilliseconds since
the start of the last 1 hour measurement period for the distributed MemoryStore.

The above MaxInLastHour values (for both the MemoryStore and the distributed MemoryStore)
are updated if either of the following conditions is true:

Developing Apama Applications 10.11.2 389

10 Using EPL Plug-ins

The latency of current commit transaction is greater than the existing maximum.

The existing maximum value was set more than 1 hour ago.

Formore information aboutmonitor status information published by the correlator, see "Managing
and Monitoring over REST" and "Watching correlator runtime status", both in Deploying and
Managing Apama Applications.

When using Software AG Command Central to manage your correlator, see also "Monitoring the
KPIs for EPL applications and connectivity plug-ins" inDeploying andManagingApamaApplications.

Restrictions affecting MemoryStore disk files
At any one time, only one correlator should be accessing a particular MemoryStore disk file.

To minimize the risk of data corruption in the event of a system failure, keep MemoryStore files
on your local disk and not on a remote file server.

Do not create hard or symbolic links to MemoryStore files. Linking to the directory that contains
a MemoryStore file is not a problem.

Using the distributed MemoryStore
With a distributedMemoryStore, you can access data shared among Apama applications running
in separate correlators. Distributed stores make use of distributed caching software from a variety
of third-party vendors.

The topics below describe typical use cases for the distributed MemoryStore, how to add and
configure distributed stores, and how to write drivers for integrating with third-party caching
software.

Overview of the distributed MemoryStore
The MemoryStore supports several types of stores as described in “Using the MemoryStore” on
page 375. In addition to those stores that are local to a single Apama process, Apama also supports
a distributed store in which data can be accessed by applications running in multiple correlators.
You prepare a distributed store with a prepareDistributed call on the Storage interface. When
this sends a Finished event with success set to true, the Store can be opened, and Table objects
created.

A distributed store makes use of Terracotta's TCStore or BigMemory Max, or a third-party
distributed cache or datagrid technology that stores the data (table contents) in memory across a
number of processes (nodes), typically across a number of machines. The collection of nodes is
termed a cluster.

Advantages

Arranging a number of nodes into a cluster provides the following advantages:

390 Developing Apama Applications 10.11.2

10 Using EPL Plug-ins

It is possible to store more data than would fit on one node.

As the data is inmemory, a distributed store is typically faster than persisting the store contents
to disk.

Every piece of data is typically stored on more than one node, so the failure of any one node
should not cause the loss of any committed data.

If a node fails, other nodes can access any of the data without waiting to “recover” or reload
the entire datastore. Note, however, that itmay take time to detect that the failed node is down.

The number of correlators can be changed at runtime, allowing the processing capacity of the
system to be increased.

Different providers can be used, allowing a singleApama application to integratewith different
distributed caches. However, each provider must have a driver. Apama provides a Service
Programming Interface (SPI) with which you can write a custom driver (see “Creating a
distributed MemoryStore driver” on page 414 for more information).

Data is accessible to multiple correlators. If they distribute workload appropriately, more
processing capacity can use the same shared store of data. A distributed store is a building
block for such a system, not a complete solution in itself.

Applications can be notified of changes to data in the store (see “Notifications” on page 397 for
more information).

Disadvantages

A distributed store has the following disadvantages compared with the other types of store:

A network requestmay be required to get or commit any Row. This is slower than the in-process
local-memory get and commit requests made against local stores.

The network requestmay fail because eithermore than one node has failed or there is a network
failure such that the correlator cannot contact other nodes in the cluster.

Multiple access to a single row will cause contention and will not scale (and will be slower
than an in-memory store).

It is not permitted to expose DataViews with a distributed store. A distributed store may
contain a very large number of entries, which would not be practical to expose as DataViews
(as it requires storing a copy of the entire table in the dashboards/Scenario Service client).

Use cases

Based on the advantages and disadvantages of distributed stores, the typical use cases for using
them are:

More data needs to be stored than will fit on any single node.

Elastic (changing) processing capacity is required.

Developing Apama Applications 10.11.2 391

10 Using EPL Plug-ins

A highly available system needs continuous access to data, even if some nodes fail, and with
minimal recovery time.

High throughput is required across a large number of different rows,with only a small amount
of contention for a single row.

The typical use cases where a distributed store is not suitable are:

Very low latency (sub-millisecond) access to data.

Very high throughput (more than 10,000 requests per second) to a single row. The distributed
store only scales out well if different rows are being accessed.

Supported providers

Apama includes drivers for connecting to Terracotta's TCStore andBigMemoryMax,which provide
unlimited in-memory data management across distributed servers. See “TCStore (Terracotta)
driver details” on page 403 and “BigMemoryMax driver details” on page 407 formore information.

Apama also provides an interface to integrate with third-party distributed caching software that
provides compare-and-swap operations for adding, updating, and removing data (for example,
software that provides methods similar to the putIfAbsent, replace, and remove operations on
java.util.concurrent.ConcurrentMap).

For other distributed cache providers, you need towrite a driver using theApama Service Provider
Interface (SPI) to serve as a bridge between the MemoryStore and the caching software. For
information on creating a driver, see “Creating a distributed MemoryStore driver” on page 414.

Configuration

In order to use a distributed MemoryStore, a set of configuration files must be created in your
project and provided to the correlator. These configuration files typically come in pairs: a storeName-
spring.xml file and a storeName-spring.properties file. Multiple pairs of files can be created and
canmake use ofmore than one distributed cache provider. See “Configuring a distributed store” on
page 394.

Distributed store transactional and data safety guarantees
The commit() action on a Row object from a distributed store by default behaves similarly to an
in-memory store's Row object, in that the commit succeeds only if there have been no commits to
the Row object since the most recent get() or update() of the Row object.

However, providers can be configured differently. For example, if using TCStore or BigMemory
Max, and the .properties specifies useCompareAndSwap as false, then the commit will always
succeed, even if another monitor committed a different value for that entry.

Unlike in-memory stores, for Row objects from a distributed store, a Table.get() or Row.update()
may return an older value, that is, a previously committed value, even if a more recent commit
has completed. This is because a distributed store may perform caching of data. After some
undefined time, the get() should be eventually consistent; a later get() or update() of the Row
object should retrieve the latest value. Typically, a commit of a Row object where the get() has not

392 Developing Apama Applications 10.11.2

10 Using EPL Plug-ins

retrieved the latest value will flush any local cache of the value, thus the first commit will fail, but
a subsequent update and commit will succeed.

Again, providers can be configured differently. For the BigMemory Max driver, setting the
terracottaConfiguration.consistency property to STRONGwill ensure that after a commit(), a get()
on any node will retrieve the latest version. This STRONG consistency mode is more expensive than
EVENTUAL consistency.

An example: Monitor1 gets and modifies a row and sends an EPL event to Monitor2which in
response to the event gets and updates the row. In the table below, the event has “overtaken” the
change to the row; the effects of changing the row and sending the event are observed in the
reverse order (the event is seen before the change to the row).

Monitor2 (on node 2)Monitor1 (on node 1)Time

Table.get("row1") = "abc"1

Table.get("row1") = "abc" (cached locally)Change row to be "abcdef"1.2

Row.commit("row1" as "abcdef")
succeeds

1.3

Send event to node 21.301

Receive event from node 11.302

Table.get("row1") = "abc" from local cache)1.303

Update row to be "abcghi"1.4

Row.commit("row1 as "abcghi") fails (not last
value)

1.5

Row.update() = "abcdef"1.6

Update row to be "abcdefghi"1.7

Row.commit("row1" as "abcdefghi") succeeds1.8

At 1.303, an in-memory cache (when two contexts are communicating in the same process) would
be guaranteed to retrieve the latest value, "abcdef", but a distributed store may cache values
locally. The commit is guaranteed to fail when a stale value is read, as it does not rely on cached
values for checking whether the row is up to date or not.

Different providers may have other differences in behavior. In particular, they may differ in
whether or not they use referential checking, that is, if one client reads a row, and meanwhile the
row is modified but then modified back to the first value, the client with the old Row object may
ormay not succeed in performing a commit(). Someproviders require the row to not have changed
since the row was read (even if then changed back to the value at the point it was read), while
others will only compare the contents of the row.

Also avoid relying on comparisons based on the float values NaN and -0.0. Some providers may
treat NaN as not equal to any value, including a NaN, which will result in the commit()method

Developing Apama Applications 10.11.2 393

10 Using EPL Plug-ins

never being able to complete. Providersmay differ inwhether 0.0 and -0.0 are treated as the same
value or not. Consider this to be undefined behavior.

Configuring a distributed store

Adding distributed MemoryStore support to a project

If you want to configure a distributed store, you first have to add Apama's Distributed
MemoryStore adapter bundle to an Apama project.

The description below explains how to add the bundle using Software AG Designer, but you can
also add it using the apama_project command-line tool as described in "Creating and managing
an Apama project from the command line" in Deploying and Managing Apama Applications.

To add the Distributed MemoryStore adapter bundle to a project

1. In the Project Explorer, right-click the Connectivity and Adapters node and select Add
Connectivity and Adapters.

2. SelectDistributed MemoryStore (Supports using a distributed cache from MemoryStore)
from the list of available adapters.

3. Click OK.

The adapter bundle is added to the project'sConnectivity and Adapters node and the adapter
instance is opened in the DistributedMemoryStore editor. The editor is initially blank and the
Distributed Stores panel contains no distributed stores.

Adding a distributed store to a project

After the Distributed MemoryStore adapter bundle has been added, you can add a distributed
store to the project.

To add a distributed store to a project

1. In the Distributed MemoryStore editor's Distributed Stores panel, click the (Add Store)
button. The Distributed MemoryStore Configuration Wizard appears.

2. In the Distributed MemoryStore Configuration Wizard, specify the following:

a. From the Store provider drop-down list, select the third-party cache provider.

If you are using a driver supplied by Apama, select TCStore (Terracotta) or BigMemory
Max from the drop-down list. Otherwise select Others from the drop-down list.

For queries, select Apama Queries (using TCStore) from the drop-down list.

394 Developing Apama Applications 10.11.2

10 Using EPL Plug-ins

b. In the Store name field, specify the name of the store as it will be known in the
configuration files and EPL code. The name must be unique and cannot contain spaces.

When you have selected Apama Queries (using TCStore), the store name
ApamaQueriesStore is automatically provided; this name cannot be changed in thewizard.

Note:
Support for using BigMemoryMax for queries is deprecated andwill be removed in a future
release. It is recommended that you now use Terracotta's TCStore for queries by selecting
Apama Queries (using TCStore) as the store provider. However, if you still want to use
BigMemory Max for queries, select BigMemory Max as the store provider and specify
“ApamaQueriesStore” as the store name.

3. Click Finish.

The name of the store is added to theDistributed Stores panel in the editor, and the resources
for the store are added to the project. The default configuration settings for the store are
displayed in the editor.

Configuring a distributed store

After a distributed store has been added to the project, you can configure it.

You can configure frequently-used settings for a distributed store in the DistributedMemoryStore
editor. These settings are those in the .properties file. For other settings, you need to edit the .xml
file directly.

To configure a distributed store

1. Specify any provider-specific configuration options in either the Standard properties section
of the editor or, for TCStore, in the TCStore sections of the editor.

2. In the Classpath section, specify the names of the required provider-specific .jar files. This
is only required if Other was used as the store type (that is, if you are not using TCStore or
BigMemory Max).

a. Click the (Add Classpath) button. A new line is added to the location list.

b. In the new line, specify the name of the .jar file. When you specify the path to a .jar file,
you should use substitution values rather than a full path name (for example, use
${installDir.mystore}/lib/my.jar).

3. In the Custom property substitution variables section, specify the name and values of
additional substitution variables (${varname}), if any, used by the distributed cache. The
.properties file contains substitution variables that are used by the .xml configuration file.

Developing Apama Applications 10.11.2 395

10 Using EPL Plug-ins

You can define your own property substitution variables here, which will be written to the
.properties file when you save. You can then edit the .xml file (see below) to use your own
property substitution variables wherever you wish.

a. Click the (Add Variable) button. A new line is added to the list of substitution variables.

b. In the new line, specify the name and value of the substitution variable you want to add.

4. (If needed.) In theConfiguration files section, you can access the Spring .xml and .properties
files. Click on the file name links to open them in the appropriate editor.

For more information on specifying property values, see “Configuration files for distributed
stores” on page 398.

Launching a project that uses a distributed store

When you add the Distributed MemoryStore adapter bundle to an Apama project, the launch
configuration is automatically updated to set the --distMemStoreConfig startup option.

In Software AG Designer, the maximum Java heap size and off-heap storage can be set in the
Correlator Configuration dialog of the Run Configurations dialog. See "Adding a correlator" in
Using Apama with Software AG Designer for more information on that dialog.

Interacting with a distributed store
Once prepared, a distributed store behavesmuch like otherMemoryStore Store objects as described
in “Using the MemoryStore” on page 375. However, be aware of the following differences:

The schema for tables in a distributed store is not allowed to expose DataViews.

A distributed store (as opposed to other, non-distributed stores) supports notifications. For
more information, see “Notifications” on page 397.

Exceptions. In an in-memory store, only the Row.commit() action can throwexceptions.However,
in a distributed store, most actions can throw exceptions. An exceptions represents runtime
error that can be caught with a try ... catch statement. This allows developers to choose
what corrective action to take (such as logging, sending alerts, taking corrective steps, retrying
later, or other actions). If no try ... catch block is used with these actions and an exception
is thrown, the monitor instance will be terminated, the ondie() action will be called if one
exists, and the monitor instance will lose all state and listeners. Exceptions can be thrown
because of errors raised by third-party distributed cache providers. To discover what errors
could be thrown because of third-party integration, you should refer to the documentation for
the third-party provider in use. For more information on exceptions, see “Exception
handling” on page 278. The following are some of the actions that can throw exceptions:

Table.get()

Table.begin()

Iterator.step()

396 Developing Apama Applications 10.11.2

10 Using EPL Plug-ins

Row.commit()

Row.update()

Performance differences. See “Overview of the distributedMemoryStore” on page 390 for the
advantages and disadvantages of using a distributed store as compared to an in-memory store.

Notifications

Distributed store Table objectsmay support the subscribeRowChanged() and unsubscribe() actions.
If subscribed to a table, RowChanged events will be sent to that context. Subscriptions are reference
counted per context, so multiple subscriptions to the same table in the same context will only
result in one RowChanged event being sent for every change. Monitors should unsubscribe when
they terminate (for example, in the ondie() action) to avoid leaking subscriptions.

The store factory bean property rowChangedOldValueRequired (see also “Standard configuration
properties for distributed stores” on page 400) indicates whether subscribers receive previous
values in RowChanged notification events for updated rows. When this property is set to true and
the RowChanged.changeType field is set to UPDATE the RowChanged.oldFieldValues field is populated.

Notifications can impact performance, so are not recommended for tables inwhich a large number
of changes are occurring. While TCStore and BigMemory Max support notifications, they do not
support population of the old value in RowChanged.changeType = UPDATE events.

Within a cluster of correlators, if a table has subscriptions to RowChanged notifications, then all
correlators must subscribe RowChanged notifications for that table, even if some correlators do not
consume the events. This ensures all nodes receive all events correctly.

Support for notifications is optional, but if the driver does not support notifications, calls to
Table.subscribeRowChanged() and Table.unsubscribe()will throw OperationNotSupportedException
errors.

There is no support for RowChanged notifications for any extra fields (if supported). Only fields
named in the schema are included in a RowChanged notification.

Some drivers do not provide RowChanged notifications for the rows removed by a Table.clear()
operation. This behavior is driver-specific, therefore consult the driver documentation for more
details.

Some drivers, such as TCStore, support sending a MissedRowChanges notification event in situations
where an unknown number of RowChanged events may have been dropped, for example, due to a
failure or high load.

Neither the TCStore driver nor the BigMemory Max driver set the old values with a RowChanged
event. The old values sequence will always be empty for both of these drivers.

The BigMemory Max driver sets new values in the RowChanged event, but the TCStore driver does
not. Therefore, if you need the new values in TCStore, you need to explicitly get them (using
Table.get or similar).

See also the description of com.apama.memorystore.RowChanged in the API Reference for EPL
(ApamaDoc).

Developing Apama Applications 10.11.2 397

10 Using EPL Plug-ins

Configuration files for distributed stores
The configuration for a distributed store consists of a set of .xml and .properties files. Each
distributed store in a project has the following files:

storeName-spring.xml

storeName-spring.properties

A distributed store is configured using a bean element in the Spring XML configuration file. The
bean element has the following attributes:

id – The unique name for this distributed store, which must match the name used in calls to
Storage.prepareDistributed() and Storage.open() in EPL.

class – The name of the StoreFactory implementation used by this distributed store.

When the correlator is started with the --distMemStoreConfig dir option (see also "Starting the
correlator" in Deploying and Managing Apama Applications), it loads all XML files matching
*-spring.xml in the specified configuration directory, and also all *-spring.properties files in
the same directory. (Note, the correlator does not start unless the specified directory contains at
least one configuration file.)

Note:
When the correlator is started, any properties that are specified with the --config file or
-Dkey=value option take precedence and override the properties defined in a storeName-
spring.properties file. An INFOmessage is then logged for all Spring properties that are being
ignored.

When using Software AG Designer, these files are generated automatically. New storeName-
spring.xml and storeName-spring.properties files are created when a store is added to a project.
Themost commonly used settings can be changed at any time using the DistributedMemoryStore
editor (which rewrites the .properties file whenever the configuration is changed). In addition,
the storeName-spring.xml files can be edited manually in Software AG Designer to customize
more advanced configuration aspects. To edit the XML file, open the Distributed MemoryStore
editor and in theConfiguration files section, click the name of the file to open it in the appropriate
editor. Once the editor for an XML file has been opened, you can switch between different views
using the Design and Source tabs at the bottom of the editor window.

Some property values usually need to be changed when a development and testing configuration
is deployed to a different environment such as one for production use. For more information on
modifying property values when moving from a test environment to a production environment,
see “Changing bean property values when deploying projects” on page 414.

Making use of substitution variables is the best way to maintain different bean property values
in different environments, as you can use the same XML file, with a different .properties file for
each environment. For more details on using substitution variables to specify configuration
properties, see “Substitution variables” on page 400.

398 Developing Apama Applications 10.11.2

10 Using EPL Plug-ins

XML configuration file format

The configuration files for a distributed store use the Spring XML file format, which provides an
open-source framework for flexibly wiring together the different parts of an application, each of
which is represented by a bean. Each bean is configured with an associated set of properties, and
has a unique identifier which can be specified using the id attribute.

It is not necessary to have a detailed knowledge of Spring to configure a distributed store, but you
may wish to explore the Spring 3.0.5 documentation to obtain a deeper understanding of what is
going on and to leverage some of the more advanced functionality that Spring provides.

The Apama distributed MemoryStore configuration loads any bean that extends the Apama
AbstractStoreFactory class.

Setting bean property values

Most bean properties have primitive values (such as string, number, boolean) which are set like
this:
<property name="propName" value="my value"/>

However, it is also possible to have properties that reference other beans, such as a configuration
bean defined by the third-party distributed cache provider. These property values can be set by
specifying the id of a top-level bean as in the following example (where it is assumed that myConfig
is the id of a bean defined somewhere in the file):
<property name="someConfigProperty" ref="myConfig"/>

Any top-level bean may be referenced in this way, that is, any bean that is a child of the <beans>
element and not nested inside another bean. Referencing a bean that is defined in a different
configuration file is supported.

Instead of referencing a shared bean, it is also possible to configure a bean property by creating
an inner configuration bean nested inside the property value like this:
<property name="terracottaConfiguration">
<bean class="net.sf.ehcache.config.TerracottaConfiguration">

<property name="consistency" value="STRONG"/>
</bean>

</property>

Note, advanced users may want to exploit Spring's property inheritance by using the parent
attribute on an inner bean to inheritmost properties froma standard top-level beanwhile overriding
some specific subset of properties or by type-based auto-wiring.

You can use the Spring syntax for compound property names to set the value of a property held
by another property. For example, to set a property stringProp on a bean held by the property
beanProp, use the following:
<property name="beanProp.stringProp" value="myValue"/>

Or, to set the value of the key myKey in a property that holds a Map called mapProp, use the following:

Developing Apama Applications 10.11.2 399

10 Using EPL Plug-ins

http://static.springsource.org/spring/docs/3.0.5.RELEASE/spring-framework-reference/htmlsingle/spring-framework-reference.html

<property name="mapProp[myKey]" value="myValue"/>

Substitution variables

Substitution variables in the form ${varname} can be used to specify bean property values. Instead
of specifying bean property values directly in an XML configuration file, you use ${varname}
substitution variables in the XML file and specify the values of those variables in a .properties
file inside the configuration directory. Thismakes it possible to edit the variable values in Software
AG Designer and to use different values during deployment to a production environment using
the Apama Ant macros.

Although .properties and storeName-spring.xmlfiles often have similar names, there is no explicit
link between them, so any properties file can define properties for use by any storeName-spring.xml
file. Although in some cases it may be useful to share a single substitution variable acrossmultiple
XML files, this is not normally the desired behavior, and therefore the recommendation is that all
properties follow the naming convention ${varname.storeName}.

In addition to the standard substitution variables shared by most drivers, you can add your own
substitution variables for important or frequently changed properties specific to the driver specific
to the cache integrated with your application. This is especially important when changing from a
development environment to a production environment.

It is also possible to provide property values at runtime as Java systemproperties, such as specifying
-J-Dvarname=value on the correlator command line.

The special variables ${APAMA_HOME} and ${APAMA_WORK} are always available.

Substitution variables are evaluated recursively. So a substitution variable can refer to another
substitution variable, for example, classpath=${installDir}/foo.jar.

Standard configuration properties for distributed stores
The following standard properties are supported by Apama distributed cache drivers. These
properties should be supported by customer-developed implementations as well.

DescriptionProperty Name

This is a required property. It is a provider-specific string
that is used to group together distributed store nodes that

clusterName

communicatewith each other and share data. Store objects
with the same clusterName value should operate as a single
cluster, sharing data between them, whereas stores with
different clusterName values should operate independently
if possible.

For providers such as Terracotta/TCStore that use other
configuration properties to indicate which components to
connect to, the clusterName is just a display name used in
log messages with no impact on behavior.

400 Developing Apama Applications 10.11.2

10 Using EPL Plug-ins

DescriptionProperty Name

For BigMemory Max, the clusterName is a
comma-separated list of host:port pairs that identify the
servers in the Terracotta Server Array.

Care should be taken to ensure that different clusters, and
thus clusterName values, are used for development/testing
and production environments, as serious errors would be
introduced if the production and testing nodes were able
to communicatewith each other. For the Terracotta/TCStore
driver, this is not a concern as it is only a display name.
The BigMemory Max driver makes it easy to avoid this
pitfall since it requires a list of host:port. However, if you
are using another driver, then for this reason, as well as
whatever firewallsmay exist between development/testing
and production, the recommendation is to explicitly add
a suffix such as _testing or _production to the clusterName
to indicate clearly to which environment it belongs.

This is an optional property. The default is
provider-specific, but is typically the same as the correlator
log level.

logLevel

The logLevel property is an Apama log level string
(compatible with com.apama.util.Logger) such as ERROR,
WARN, INFO, DEBUGwhich is used to set the log level for the
provider if possible (some providers write to the main
correlator log file, through log4j or the Apama Logger, but
others may write to a separate file).

If not specified, the default log level is determined by the
author of the driver, based on the criteria of avoiding the
correlator log or stdout being filled with third-party
distributed store messages while logging a small number
of the most important messages.

This is an optional property. The default is 1.backupCopies

The backupCopies property specifies the number of
additional redundant nodes that should hold a backup
copy of each key/value data element. The minimum value
for this property is 0 (indicating no redundancy, that is, all
data is held by a single node).

Note that some providers may allow customizing the
backup count on a per-table basis, in which case this
property specifies an overridable default value for tables
that do not specify it explicitly.

Developing Apama Applications 10.11.2 401

10 Using EPL Plug-ins

DescriptionProperty Name

For BigMemoryMax, this setting has no effect. The number
of backup copies is determined by the Terracotta Server
Array configuration, which is separate from the Apama
configuration.

This property is not used by the TCStore driver.

This is an optional property.initialMinClusterSize

The initialMinClusterSize property specifies the
minimum number of nodes a cluster must have before the
Finished event is sent in response to a call to
prepareDistributed. This provides a way to make sure
that a cluster is fully ready for correlator nodes to request
and process data.

The default is 1, which specifies that a Finished event is
sentwithoutwaiting for additional nodeswhen preparing
the distributed store.

This property is not used by the TCStore driver.

This property indicates whether the old value is required
when there is a notification that a row has changed. The
default is true.

rowChangedOldValueRequired

If set to false, the value of oldFieldValues is empty for
RowChanged.changeType.UPDATE events.

If set to true, the previous value is available. This cannot
be set to true for TCStore or BigMemory Max.

This is an optional property.enforceApamaSchema

The enforceApamaSchema property sets whether Apama
creates a special table to record the schema of each table
and use it to prevent opening a table with a different
Apama schema to the previously used schema.

The default for most drivers (except TCStore) is to enable
this checking to provide early warning of unexpected
version mismatch issues. If a mismatch is detected, you
shouldmanually delete all tables used byApama from the
distributed store, typically using the delete command from
the file system or tools provided by the distributed store.
Note that this check provides no protection against
non-Apama clients adding data that does not match the
expected schema.

If the standard properties were set, the bean configuration would look like:

402 Developing Apama Applications 10.11.2

10 Using EPL Plug-ins

<bean id="MyStore" class="com.foobar.MyStoreFactory">
<property name="clusterName" value="host1:port1, host2:port2"/>
<property name="logLevel" value="WARN"/>
<property name="backupCopies" value="1"/>
<property name="initialMinClusterSize" value="2"/>
<property name="rowChangedOldValueRequired" value="true"/>
<property name="enforceApamaSchema" value="true"/>

</bean>

TCStore (Terracotta) driver details
Apama provides a MemoryStore driver for Terracotta. This driver uses the TCStore API to allow
Apama to read and write records in TCStore datasets, which may also be read and written by
other Apama correlators and non-Apama components such as other Software AG products or
custom clients written against the TCStore API.

The TCStore client libraries are installed automatically with the Apama server. So there is no need
to explicitly select them at installation time, or to specify their location in the driver configuration.

Note:
Apama's TCStore driver only supports clustered mode. Currently, there is no support for
embedded TCStore, for performing searches from Apama, or for the Ehcache API.

BigMemory Max is the recommended driver for caching use cases (see also “BigMemory Max
driver details” on page 407). For Apama queries and applications that do not involve caching
(such as store and "system of record" use cases), TCStore is the recommended MemoryStore
driver.

Using TCStore from the Apama MemoryStore

The following tablemapsApamaMemoryStore terminology to TCStore classes; thismay be useful
when referring to the Terracotta documentation:

TCStore ClassApama MemoryStore Event API Name

DatasetManagerStore

DatasetTable

RecordRow

CellField value of a Row

Apama schemas and TCStore

Apama applications using the MemoryStore always specify a schema indicating the names and
types of the fields (cell definitions) when preparing a table for use.

TCStore does not have a concept of schemas, as records in a given table are not required to have
the same cell definitions. Row fields (cells) named in the schema during table preparation can
always be accessed from Apama. It is not necessary for every field named in the schema to exist

Developing Apama Applications 10.11.2 403

10 Using EPL Plug-ins

http://documentation.softwareag.com/terracotta/index.htm

in a given row (record). Apama simply returns a default value (for example, an empty value, 0 or
false) when reading any field listed in the schema that is not present in a given row. It is also
possible to access extra fields that are present in an individual row (record) but not listed in the
schema, using any of the getXXX actions or toDictionary(). If a getXXX action is called with a key
that is not present in the schema and is also not present as an extra field on the row, it will throw
an exception. You can call getKeys() to see a list of all the fields (schema and non-schema) accessible.

Apama can therefore make use of non-homogenous data written to TCStore by other clients. If
there is no strictly defined schema for a dataset, it is possible to not specify any fields in the schema,
subject to the above restrictions. It is also possible for different Apama applications or different
versions of the same application to interact with a single TCStore table using different schemas.
When developing Apama applications, you should remember that all rows in a table do not
necessarily contain the same fields, and ensure that all clients are using the same types for each
field.

Apama can also dynamically add and remove additional non-schema fields. Any setmethod on
a Row for a new field will create a new field on the row. Non-schema fields can be removed either
with the removeNonSchemamethod or by setting the field to an empty any object.

Note:
All clients using a Dataset should agree on using the same types for a given cell name. The
behavior when multiple clients read and write a row field (cell) with the same field name but
different types is undefined, and may change in future releases of Apama.

Apama can only access cells of the Java types Long (maps to integer in EPL), Double (maps to float
in EPL), String (for string or decimal), and Boolean. The decimal type is not supported by TCStore,
so the driver converts to or from a string automatically for decimal fields defined in the schema.
For non-schema fields, the EPL application needs to convert between string and decimalmanually.

Configuring the TCStore driver

You can create configuration files for the TCStore driver using Software AG Designer. The only
required property is the list of Terracotta servers to connect to.

The following table lists the properties that can be configured in the storeName-spring.xml file for
the TCStore driver. The most commonly used properties also have ${varname.storeName}
substitution variables in the storeName-spring.properties file tomake it easy to change the values
by editing the properties file manually or using the Distributed MemoryStore editor in Software
AG Designer.

DescriptionProperty Name

Type: stringservers

Acomma-separated list of host1:tsa-port1,host2:tsa-port2,...
values for each server from one of the stripes in the cluster, that
is, all the servers defined in the Terracotta server configuration.
Servers from other stripes are found automatically. A
terracotta:// URI prefix can optionally be added to the first
host:port, but is not required. At least one server must be

404 Developing Apama Applications 10.11.2

10 Using EPL Plug-ins

DescriptionProperty Name

specified. If high availability is required, multiple servers should
be specified. See the Terracotta documentation for detailed
information about cluster architecture.

Type: booleanuseCompareAndSwap

Specifies whether to provide safe atomic updating of rows by
multiple clients. This means that a commit only succeeds if the
value last seen by the client before it made the change matches
the current value at the time of the commit. The default is true,
which is the recommended setting for most use cases. Compare
and swap can be disabled if each TCStore client (and thread) is
known to have exclusive access to a given row, or if “best effort”
rather than fully reliable behavior is required, which is likely to
result in improvedperformance. If compare and swap is disabled,
MemoryStore commit() operations do not fail as a result of writes
made by other clients.

Important:
For correct behavior of Apama queries, you must leave the
useCompareAndSwap property in its default (true) setting.

Type: stringclasspath

Specifies the path of the driver. This property should not be
changed from its default value.

Type: integerconnectionTimeoutSecs

Specifies the timeout usedwhen establishing the initial connection
to the Terracotta server while preparing the store. The default is
0, which uses the standard timeout supplied by TCStore. See the
Terracotta documentation on withConnectionTimeout for further
details.

Type: stringlogLevel

Specifies the verbosity of logmessages from the Terracotta client.
It does not affect the verbosity of the Apama TCStore driver. The
default value for this is to remain unset, which uses the same log
level for Terracotta as the correlator's main log level.

Type: stringclusterName

Not recommended for use. Specifies a display name that is logged
at startup. This setting has no impact on behavior, and does not
have to match the name of the connected Terracotta cluster. The
default is hardcoded: Terracotta.

Type: stringenforceApamaSchema

Developing Apama Applications 10.11.2 405

10 Using EPL Plug-ins

DescriptionProperty Name

Not recommended for use. Specifies whether Apama should
attempt to detect use of conflicting schemas by multiple Apama
clients using the same Terracotta cluster. The default is false, as
for typical TCStore use cases this checking is not useful.

Type: stringsecurityRootDirectory

Specifies the path to the security root directory, if using TLS. For
more information, see the Terracotta documentation.

The following properties are configured in the same files, but are used only when Apama creates
a new dataset (table) as a result of trying to open a dataset that does not yet exist. These settings
have no effect if the dataset was already created, whether by Apama or another TCStore client.

These settings apply to all datasets created by a given Apama store. If it is necessary to create
datasets with different settings on the same Terracotta cluster, you have to configure separate
Apama stores for each group of datasets needing the same configuration, or use another tool or
client to create the datasets. To change the dataset settings after creation, you have to delete any
data directories and restart the cluster. See the Terracotta documentation for more information.

The dataset creation configuration properties are:

DescriptionProperty Name

Type: stringoffheapResourceName

Specifies the name of a resource defined in the Terracotta
server configuration to be used for off-heap storage of the
dataset contents. This is a required setting when creating
datasets from Apama.

Type: booleanenableDatasetPersistence

Specifies whether dataset contents are persisted on disk.
The default is false, indicating that dataset contents should
be held only in memory.

Type: stringpersistenceDataRootName

Specifies the logical name of a data directory defined in
the Terracotta server configuration. Note that this is a
logical name; it is not a directory path. This property only
has an effect if enableDatasetPersistence is true.

The following standard configuration properties are not used by this driver and are either ignored
or rejected if set:

backupCopies

initialMinClusterSize

406 Developing Apama Applications 10.11.2

10 Using EPL Plug-ins

clusterName

rowChangedOldValueRequired (cannot be set to true for this driver).

Note:
TCStore currently sends notifications for rows removed by a Table.clear() operation, but
this may change in a future release.

Note:
The standard enforceApamaSchema property is set to false by default for TCStore, which is the
recommended setting in almost all cases.

BigMemory Max driver details

Note:
Support for using BigMemory Max for queries is deprecated and will be removed in a future
release. It is recommended that you now use Terracotta's TCStore for queries. For queries and
applications that do not involve caching, the TCStore driver is now the recommended driver
for the distributed MemoryStore.

Apama continues to support the BigMemory Max driver. This is still the recommended driver
for caching use cases, but no longer for queries.

Using BigMemory Max from the Apama MemoryStore

For reference, the following table maps Apama MemoryStore terminology to BigMemory Max
classes; this may be useful when referring to the BigMemory Max documentation:

BigMemory Max ClassMemoryStore Event Object

CacheManagerStore

CacheTable

ElementRow

By default, a distributed MemoryStore Store uses the BigMemory Max default cache manager.
To specify the use of a different cache manager, specify the name property on the configuration
bean. For example:
<property name="configuration.name" value="myCacheManager"/>

In a cluster, if one correlator calls subscribeRowChanged() for a given MemoryStore table, then all
correlators in that cluster thatmodify the entries in that tablemust also call subscribeRowChanged()
on that table even if they do not consume the events.

Iterating over a table may require pulling the entire table into memory. It may fail if the table is
being modified.

Developing Apama Applications 10.11.2 407

10 Using EPL Plug-ins

If accessing a BigMemory Max table from Apama and non-Apama applications, clients will need
the correct cache configuration (available from the TerracottaManagement Console) and have the
appropriate Apama classes available on their classpath (available in the distmemstore and ap-
distmemstore-bigmemory.jar files) in order to access the cache.

Configuring the BigMemory Max driver

You can create configurationfiles for BigMemoryMaxwhenusingApama in SoftwareAGDesigner.
The providerDir property should be set to the location of the BigMemory Max installation whose
client libraries will be used, which is typically in the same location as Apama.

The driver for BigMemory Max is configured as follows:

You can set BigMemoryMax driver properties (described in the table below) in the storeName-
spring.xml configuration file. Alternatively, you can specify many of these properties in an
ehcache.xml configuration file and then specify the path for that file in the storeName-spring.xml
configuration file using the ehcacheConfigFile property. If this is done, many of the properties
in the storeName-spring.xml configuration file will be ignored; the settings derived from the
ehcache.xml file will be used instead.

Use the storeName-spring.properties file to set configuration properties for the BigMemory
Max driver.

Using off-heap storage requires setting -XX:MaxDirectMemorySize=. Specify this in the command
line for starting the correlator as -J-XX:MaxDirectMemorySize=. The BigMemory Max
documentation provides recommendations for specifying the value of this property. When
you add a correlator to a correlator launch configuration in Software AG Designer, you can
select theMaximum Java off-heap storage in MB option. See "Correlator arguments" inUsing
Apama with Software AG Designer.

When using the BigMemory Max driver, all correlators accessing the same data in a BigMemory
Max cluster must have the same configuration.

Driver bean properties with equivalents in ehcache.xml

The following properties can be set either in the driver properties, or using a ehcache.xml
configuration file. See the BigMemoryMax documentation formore details. Formore information
on the Ehcache types mentioned below, see the Ehcache Javadoc and search for the required type
such as CacheConfiguration.

DescriptionProperty Name

Type: CacheConfigurationcacheConfiguration

Ehcache CacheConfiguration bean, shared by all
caches (Tables). Typically used as a compound bean
name, for example,
cacheConfiguration.overflowToOffHeap.

Type: booleancacheConfiguration.eternal

408 Developing Apama Applications 10.11.2

10 Using EPL Plug-ins

http://documentation.softwareag.com/terracotta/index.htm

DescriptionProperty Name

Disables expiration (removing old, unused values)
of entries if true. Set to true in the default storeName-
spring.xml configuration file.

Type: intcacheConfiguration.
maxEntriesLocalHeap

The number of entries for each table.

This is the maxEntriesLocalHeap entry in the
.properties file.

Type: booleancacheConfiguration.
overflowToOffHeap

Whether to use off-heap storage. For scenarioswhere
data is fast changing and beingwritten frommultiple
correlators, the cache may perform better if this is
disabled.

This is the cacheConfiguration.overflowToOffHeap
entry in the .properties file.

Type: StringcacheDecoratorFactory

Name of a class to use as a cacheDecoratorFactory.
The named class must be on the classpath and must
implement Ehcache's CacheDecoratorFactory
interface.

Type: PropertiescacheDecoratorFactoryProperties

Properties to pass to a cacheDecoratorFactory.
Allows use of the same class for many caches.

Type: StringclusterName

Comma-separated list of host:port identifiers for
the servers, or a tc-config.xml file name. Best
practice is to list all Terracotta Server Array (TSA)
nodes.

Type: Configurationconfiguration

Ehcache Configuration bean. Typically used as a
compound bean name, for example,
configuration.monitoring.

Type: Stringconfiguration.name

By default, the BigMemory Max default cache
manager is used. Use this property to specify the use
of a different cache manager.

Developing Apama Applications 10.11.2 409

10 Using EPL Plug-ins

DescriptionProperty Name

Type: longmaxMBLocalOffHeap

Number of MB of local off-heap data. Total across
all tables, per correlator process.

Type: Stringpinning

Either an attribute value of "inCache" (default) or
"localMemory" or a <null/> XML element (that is,
<property name="pinning"><null/></property>.)
Pinning prevents eviction if the cache size exceeds
the configuredmaximum size. Recommended if the
cache is being used as a system of record.

Type: TerracottaConfigurationterracottaConfiguration

Ehcache TerracottaConfiguration bean. Typically
used as a compound bean name, for example,
terracottaConfiguration.consistency.

Type: booleanterracottaConfiguration.
clustered

Whether to use a TSA. Set to true in the default
storeName-spring.xml configuration file.

Type: StringterracottaConfiguration.
consistency

Either 'STRONG' or 'EVENTUAL'. STRONG gives
MemoryStore-like guarantees, while EVENTUAL is
faster but may have stale values read.

This is the terracottaConfiguration.consistency
entry in the .properties file.

Type: booleanterracottaConfiguration.
localCacheEnabled

Whether to cache entries in the correlator process.
Set to true in the default storeName-spring.xml
configuration file.

Type: booleanterracottaConfiguration.
synchronousWrites

If true, then data is guaranteed to be out of process
by the time a Row.commit() action completes.
Disabling this can increase speed.

This is the
terracottaConfiguration.synchronousWrites entry
in the .properties file.

410 Developing Apama Applications 10.11.2

10 Using EPL Plug-ins

Driver bean properties with no equivalents in ehcache.xml

You can set the following BigMemory Max driver properties in the storeName-spring.xml
configuration file, but not in the ehcache.xml configuration file as they modify how the driver
accesses the BigMemory Max cache.

DescriptionProperty Name

Type: intbackupCopies

Ignored. Not supported. The number of backups is
governed by the TSA topology defined in the
BigMemoryMax documentation and used to configure
the TSA nodes.

Type: RowKeyValueConverter beanconverterConfig.default

Specifies the default converter to be used for all tables
which do not explicitly specify a converter. A converter
is a bean of type RowKeyValueConverter. It is used to
convert non-Apama format Ehcache key/value pairs to
Apama format key/value pairs. If not specified, then
Apama's default converter is used which assumes that
the key/value pairs in Ehcache are in Apama format.
For example:

<property name="converterConfig.default"
ref="MyDefaultConverter"/>

See the API Reference for Java (Javadoc) and the samples
in the samples\distmemstore\bigmemory\converters
directory of your Apama installation for more
information about RowKeyValueConverterwhich can be
found in the com.apama.correlator.memstore package.

Type: Map(String, RowKeyValueConverter)converterConfig.byTable

Per-table converter configuration. If a converter is not
specified for a table, the default converter specified by
the converterConfig.default property is used. For
example:
<property name="converterConfig.byTable">

<map>
<entry key="SensorTable">

<bean class="SensorDataConverter" />
</entry>

</map>
</property>

Type: StringehcacheConfigFile

Developing Apama Applications 10.11.2 411

10 Using EPL Plug-ins

http://documentation.softwareag.com/terracotta/index.htm

DescriptionProperty Name

Path to an ehcache.xml configuration file.

Note:
If this is specified, any other properties listed in this
table will be ignored.

Type: booleanexposeSearchAttributes

Enable exposing search attributes. If true, then the
MemoryStore schema columns are exposed as
BigMemory Max search attributes and are indexed, so
that other clients of BigMemory Max can perform
searches on the data set. If exposeSearchAttributesSet
is non-empty, then only the named columns are exposed
as BigMemory Max search attributes. See notes below
about non-Apama applications accessing the data in a
BigMemory Max cluster.

Type: Set(String)exposeSearchAttributesSet

Limits the set of columns in each table that should be
exposed as search attributes. Entries are in the form
tableName.columnName. If empty, all schema columns
are exposed as search attributes. There is an incremental
cost per column that is exposed, so for performance,
only expose the columns which need to be used in
searches.

For example, to expose only the Surname and FirstName
columns of myTable:
<property name="exposeSearchAttributes"

value="true"/>
<property name="exposeSearchAttributesSet">

<set>
<value>myTable.Surname</value>
<value>myTable.FirstName</value>

</set>
</property>

Type: intinitialMinClusterSize

The minimum cluster size (number of correlators) that
must be connected for prepare to finish.

Type: StringlogLevel

The log level.

Type: booleanrowChangedOldValueRequired

412 Developing Apama Applications 10.11.2

10 Using EPL Plug-ins

DescriptionProperty Name

Whether to expose old values in rowChanged events.
Must be set to false.

Note:
BigMemory Max currently sends notifications for
rows removed by a Table.clear() operation, but this
may change in a future release.

Type: booleanuseCompareAndSwap

Whether to use compare and swap (CaS) operations or
just put/remove. Some versions of BigMemory Max
support only CaS in Strong consistency.

Important:
For correct behavior of Apama queries, you must
leave the useCompareAndSwap property in its default
(true) setting.

Type: Map(String, Boolean)useCompareAndSwapMap

Per-table (cache) configuration for whether to use CaS
or put/remove.

Migrating from BigMemory Max to TCStore
If you have an existing Apama application that uses BigMemory Max and you wish to move it to
use TCStore instead, simply open the Distributed MemoryStore editor in Software AG Designer,
remove the BigMemoryMax store and add a newTCStore using the same store name. See “Adding
a distributed store to a project” on page 394 for more details.

Configure the new TCStore instance as described in “TCStore (Terracotta) driver details” on
page 403. There is typically no need tomigrate any driver configuration settings from BigMemory
Max to TCStore, since the options for each driver are quite different, and because TCStore requires
a lot less configuration on the client side than BigMemoryMax. In most cases, the default TCStore
driver settings should be left unchanged. If you had configured search attributes or were using
custom converters in BigMemory Max, there is no need to do anything similar when moving to
TCStore, as rowvalues in TCStore are stored in a standard format and are automatically searchable.
The initialMinClusterSize and useCompareAndSwapMap (per-table) settings are supported by
BigMemory Max but cannot be set for TCStore. The TCStore driver does not support client-side
caching, so there is no need tomigrate any cache-related settings fromBigMemoryMax, or to pass
an off-heap storage option (-XX:MaxDirectMemorySize) to the correlator.

In most cases, there will be no need to make changes to your EPL application. If you wish, you
canmake use of features available in the TCStore driver but not BigMemoryMax, such as accessing
row fields that are not in the schema. If using “row changed” notifications, the TCStore driver will
sometimes send a MissedRowChanges event if it has detected that some of the RowChanged events
mayhave beendropped; BigMemoryMaxdoes not support sending MissedRowChangesnotifications.

Developing Apama Applications 10.11.2 413

10 Using EPL Plug-ins

The BigMemory Max driver sets new values in the RowChanged event, but the TCStore driver does
not. Therefore, if you aremigrating an application fromBigMemoryMax and you need the current
or new values, you need to explicitly get them (using Table.get or similar).

See also the description of com.apama.memorystore.RowChanged in the API Reference for EPL
(ApamaDoc).

Note:
There is no way to automatically transfer data from BigMemory Max to a Terracotta server for
use by TCStore.

Changing bean property values when deploying projects
Some bean property values will usually need to be changed when a development/testing
configuration is deployed to a different environment such as production,which is typically achieved
by ensuring that all such bean property values are specified using ${varname} substitution variables
specified in .properties files for test versus production environments. For example, for some
distributed memory stores the clusterName should be changed so that the nodes cannot talk to
each other (although Apama also recommends production nodes to be located on a different
network to reduce the chance of accidental errors). Formore details on using substitution variables
to specify configuration properties, see “Substitution variables” on page 400.

Tip:
Due to the flexibility and simplicity of .properties files, there are many ways this requirement
can be addressed. For customers using Apama's Ant macros for deployment, one option is to
maintain a separate set of .properties files for each environment, and customize your project's
Ant script to copy the correct version of the files into the directory defined by the
--distMemStoreConfig option just before starting the correlator. Another option is to use Ant's
<propertyfile> task (see the Apache Ant documentation for more information on how to do
this) to modify the .properties files in-place, overriding or adding to existing property values
as required for the new deployment.

Creating a distributed MemoryStore driver
TheApama installation includes a driver for integrating the distributedMemoryStorewith TCStore
or the BigMemory Max distributed caching software. If you use other third-party distributed
caching software, you need to write a driver that provides the bridge between Apama's
MemoryStore and the third-party software in use. Apama provides a Service Provider Interface
(SPI) for you to use when writing drivers.

This topic presents an introduction to the SPI and a description of its essential elements. Complete
Javadoc information for the SPI is available in the API Reference for Java (Javadoc); see the
com.apama.correlator.memstore package.

Overview

A driver for a distributed cache needs to extend the following abstract classes:

AbstractStoreFactory

414 Developing Apama Applications 10.11.2

10 Using EPL Plug-ins

AbstractStore

AbstractTable

Implementation details:

AbstractStoreFactory – This is the abstract class that holds the configuration used to instantiate
a distributed Store. The starting point for creating an Apama distributed cache driver is to
create a concrete subclass of AbstractStoreFactory. The subclass should have the following:

A public no-args constructor.

JavaBeans-style setter and gettermethods for all provider-specific configuration properties.

An implementation of createStore() that makes use of these product-specific properties,
in addition to the generic properties defined on this factory, which are getClusterName(),
getLogLevel(), and getBackupCopies().

afterPropertiesSet() (optional, but useful).

Implementers are encouraged to do as much validation as possible of the configuration in the
afterPropertiesSet()method. Thismethod is called by Spring during correlator startup, after
setters have been invoked for all properties in the configuration file. The createStore() action
will never be called before this has happened.

The StoreFactory class that is implementedmust then be named in the storeName-spring.xml
configuration file for the distributed store.

AbstractStore – This is the abstract class that provides access to tables whose data is held in
a distributed store. Implementers should create a subclass of AbstractStore.

A driver's implementation of the AbstractStore needs to implement or override the following
methods:

createTable()

init()

close()

getTotalClusterMembers()

AbstractTable – This is the abstract class that holds Row objects whose data is held in a
distributed store.

If the distributed store provides a java.util.concurrent.ConcurrentMap, Apama recommends
that implementers of Apama distributed stores create a subclass of the ConcurrentMapAdapter
abstract class for ease of development andmaintenance. If the distributed store does not provide
a ConcurrentMap, implementers should create a subclass of Apama's AbstractTable class.

If you are implementing from AbstractTable, you need to implement or override the following
methods:

get()

Developing Apama Applications 10.11.2 415

10 Using EPL Plug-ins

clear()

remove()

replace()

putIfAbsent()

containsKey()

size()

Drivers may also optionally provide support for EPL subscribing to “row changed” data
notifications. To allow EPL application to subscribe to these notifications, subclasses of
AbstractTable (or ConcurrentMapAdapter) must provide an instance of
RowChangedSubscriptionManager that provides implementations of addRowChangedListener and
removeRowChangedListener, and calls fireRowChangedwhen changes are detected. Also, if a
subclass implements notifications, it should override the getRowChangedSubscriptionManager
method and have it return the instance of RowChangedSubscriptionManager for this table. Calls
to subscribeRowChanged and unsubscribe are passed to this instance. The default implementation
of getRowChangedSubscriptionManager returns null, indicating that “row changed” notifications
are not supported; in this case, calls to subscribeRowChanged and unsubscribewill throw
OperationNotSupportedException.

Drivers may also optionally provide support for accessing extra fields that are present in an
individual rowbut not in the table's schema. To do this, the table should implement themarker
interface TableSupportsExtraFields and use the RowValue.getExtraFields()method to get
and set a row's extra fields when converting between RowValue objects and the data type used
by the distributed store to represent row values.

RowValue – The RowValue class is not inherited from or implemented, but a driver must be able
to store and retrieve objects of the Apama RowValue class. Typically, a cache can store any
suitable Java class, but some mapping may be required as well. For more information about
this class, see theAPI Reference for Java (Javadoc) for com.apama.correlator.memstore.RowValue.

Sample driver

To help get started writing a driver, the BigMemory Max driver is provided in source form as a
sample. It implements the SPI described above and invokes the Ehcache API in order to use
BigMemoryMax. The sample is provided in the samples/distmemstore_driver/bigmemorydirectory
of theApama installation. To avoid confusionwith the pre-compiled driver supplied in the product,
the sample BigMemory Max driver uses the package name
com.apamax.memstore.provider.bigmemory. A README.txt file describes how to build the sample.

Using the Management interface
The Management interface defines actions that let you do the following:

Obtain information about the correlator

Connect the correlator to another component

416 Developing Apama Applications 10.11.2

10 Using EPL Plug-ins

Control logging

Request a persistence snapshot

Manage user-defined status values

Actions in the Management interface are defined on several event types, which are documented
in the API Reference for EPL (ApamaDoc).

To use the Management interface, add the Correlator Management EPL bundle to your Apama
project (see "Adding EPL bundles to projects" inUsingApamawith Software AGDesigner or "Creating
and managing an Apama project from the command line" in Deploying and Managing Apama
Applications). Alternatively, you can directly use the EPL interfaces provided in APAMA_HOME\
monitors\Management.mon.

Obtaining information about the correlator

The Management interface provides actions for obtaining information about the correlator that
the Management interface is being used in. These actions are defined in the
com.apama.correlator.Component event.

There are also options of the engine_management tool that you can specify (see also "Shutting down
and managing components" in Deploying and Managing Apama Applications):

to retrieve the same information from outside the correlator,

or to retrieve the same information for IAF processes.

The correlator also logs all of these values to its log file at startup.

Connecting the correlator to another component

The com.apama.correlator.Component event provides actions that allows EPL to create connections
to another component, in the same way as the engine_connect tool (see "Configuring pipelining
with engine_connect" in Deploying and Managing Apama Applications).

Controlling logging

You can configure logging using the Management interface. The com.apama.correlator.Logging
event provides actions such as setApplicationLogFile, setLogFile and setApplicationLogLevel.
These actions are the equivalent of using the engine_management options to configure logging (see
also "Shutting down and managing components" in Deploying and Managing Apama Applications).

The rotateLogs() action, which is also defined in the com.apama.correlator.Logging event, is
used for closing the log files in use, opening new log files, and then sending messages to the new
log files. This action applies to:

the main correlator log file,

the correlator input log file if you are using one, and

any EPL log files you are using.

Developing Apama Applications 10.11.2 417

10 Using EPL Plug-ins

For details about log file rotation, see "Rotating correlator log files" and "Rotating all correlator
log files" in Deploying and Managing Apama Applications.

You canwrite an EPLmonitor that triggers log rotation on a schedule. For example, the code below
rotates logs every 24 hours at midnight:
using com.apama.correlator.Logging;

monitor Rotator {

action onload() {
on all at (0, 0, *, *, *) {

Logging.rotateLogs();
}

}
}

Requesting a snapshot

In a persistence-enabled correlator, you can use the Management interface to request a snapshot
to occur as soon as possible, and be notified of when that snapshot has been committed to disk.
The Management interface lets persistent and non-persistent monitors create instances of
Persistence events and then call the persist() action on those events.

When the correlator processes the persist() call it takes and commits a snapshot and executes
the specified callback action at some point after the snapshot is committed. There are no guarantees
about the elapsed time between the persist() call, the snapshot and the callback, especially when
large amounts of correlator state are changing. Your code resumes executing immediately after
the call to the persist() action. See “Using Correlator Persistence” on page 309.

The Management interface defines the Persistence event:
package com.apama.correlator;
event Persistence {

static action persist(action<> callback) {
...
}

}

Consider the following sample code:
using com.apama.correlator.Persistence;
event Number {

integer i;
}

persistent monitor MyApplication {
integer counter := 0;
sequence<integer> myNumbers;
action onload() {

on all Number(*) as n {
myNumbers.append(n.i);
counter := counter + 1;
if(counter % 10 = 0) {

doCommit();
}

418 Developing Apama Applications 10.11.2

10 Using EPL Plug-ins

}
}

action doCommit() {
Persistence.persist(logCommit);

}

action logCommit() {
log "Commit succeeded";

}
}

Because MyApplication is a persistent monitor the correlator copies its state to disk as that state
changes. This monitor listens for Number events and stores their content in the myNumbers sequence.
After every tenth Number event, the code executes the doCommit() action,which uses the Persistence
event in the Management interface to request that the correlator commits persistent state to disk.
When that commit has succeeded, the Management interface calls the action variable that was
passed to the persist() action. This action writes "Commit succeeded" to the correlator log.

The Management interface guarantees that at the moment the callback action (logCommit() in this
example) is executed, the state of all persistent monitors at a particular point in time will have
been committed. The particular point in time is guaranteed only to be between the point at which
persist()was called and the point atwhich the callback actionwas executed. For example, suppose
the following event stream is being sent into the correlator:
Number(1)
Number(2)
Number(3)
...
Number(10)
Number(11)
Number(12)

At the point that Number(10) is received, the myNumbers sequence contains the ten items 1, 2, 3, 4,
5, 6, 7, 8, 9, 10 and so the application initiates a snapshot commit. Suppose that the correlator
suddenly terminates after notification of success appears in the log. When the correlator recovers,
MyApplication has a myNumbers sequence that contains at least ten items. However, the sequence
might contain 11 or even 12 items, if more Number events were received after the commit was
requested but before the snapshotwas actually taken. The correlator also persists state periodically,
or as directed by othermonitors that call theManagement interface, so the sequence can be persisted
at other points as well.

Managing user-defined status values

TheManagement interface provides actions for managing (set and return) the user-defined status
values. These actions are defined in the com.apama.correlator.Component event and in the
com.apama.correlator.EngineStatus event.

Status keys will have leading and trailing whitespace stripped. Keys may not be empty.

A user-defined status will only be changed if the new value differs from the current value when
set using setUserStatus.

Developing Apama Applications 10.11.2 419

10 Using EPL Plug-ins

Note that the correlator status statements that appear in the log files will not have the user-defined
status values, and will remain unaffected.

You can monitor the status of each component of your application using Command Central. See
"Monitoring the KPIs for EPL applications and connectivity plug-ins" in Deploying and Managing
Apama Applications for examples of using user-defined status values.

Using the JSON plug-in
You can use the JSON plug-in to convert EPL objects to JSON strings, and vice versa. When
converting from JSON strings, JSON objects are converted to dictionary<any, any> and JSON
lists are converted to sequence<any>.

To use the JSON plug-in, add the JSON Support EPL bundle to your Apama project. For details,
see "Adding EPL bundles to projects" in Using Apama with Software AG Designer or "Creating and
managing anApamaproject from the command line" inDeploying andManagingApamaApplications.

The JSONplug-in is provided as a JSONPlugin event in the com.apama.jsonpackage. The JSONPlugin
event provides the following actions:

To convert a JSON string to an EPL object:

fromJSON(string) returns any

To convert an EPL object (including events, dictionaries and sequences) to a JSON string:

toJSON(any) returns string

For detailed information, see the API Reference for EPL (ApamaDoc).

The following is a simple example:
using com.apama.json.JSONPlugin;

event Address {
integer houseNumber;
sequence<string> address;
optional<string> postcode;

}

monitor PrintJSON {
action onload() {

Address a1 := new Address;
Address a2 := new Address;
a1.houseNumber := 107;
a1.address.append("The Rounds");
a1.address.append("Milton");
a1.postcode := "CB1 2AB";
a2.houseNumber := 196;
a2.address.append("Exeter Road");
a2.address.append("Newmarket");
print JSONPlugin.toJSON(a1);
print JSONPlugin.toJSON(a2);

}
}

420 Developing Apama Applications 10.11.2

10 Using EPL Plug-ins

The above example prints the following:
{"postcode":"CB1 2AB","address":["The Rounds","Milton"],"houseNumber":107}
{"postcode":null,"address":["Exeter Road","Newmarket"],"houseNumber":196}

Equivalent functionality is available with the JSON codec connectivity plug-in. Use the JSON
codec if the JSON is coming in as an entire message of a connectivity chain. Using a codec helps
to separate the application logic from the connection over which the data is being sent, and allows
the use of mapping codecs if needed. See "The JSON codec connectivity plug-in" in Connecting
Apama Applications to External Components for detailed information.

Use the JSON EPL plug-in if only one field of an event is JSON, or if the events are going to or are
coming from a connection that is not using a connectivity chain.

Using MATLAB® products in an application
To use MATLAB analysis and modeling capability in an Apama application or in an application
built using Apama Capital Markets Foundation, you need to add the MATLAB EPL bundle to
your project (see "Adding EPL bundles to projects" in Using Apama with Software AG Designer or
"Creating and managing an Apama project from the command line" in Deploying and Managing
Apama Applications) and ensure that the MATLAB executables and libraries are available to the
correlator. The MATLAB bundle provides access to the MATLAB analysis and modeling toolkit
from Apama EPL code and includes an EPL plug-in.

For information about the supportedMATLAB versions, see the Supported Platforms document for
the current Apama version. This is available from the following web page: http://
documentation.softwareag.com/apama/index.htm.

This MATLAB plug-in lets you connect to and use the MATLAB engine. However, there are some
functions/toolkits for which MATLAB does not support integration with C or Fortran on some
operating platforms. Check the MATLAB documentation before using the MATLAB EPL plug-in.

The recommended way to use the MATLAB plug-in is to use the MatlabManager event, and call
the relevant action and supply a callback. The call goes directly to the MATLAB plug-in, so you
do not need to route a request event. *Response events are routed from the MATLAB plug-in to
the calling context. Each request action automatically sets up a listener for the *Response event
that will call the supplied callback. You can supply the relevant doesNothing*Callback() action
from the MatlabManager event if you are not interested in the results of the callback. If you use the
MatlabManager actions, you do not need to call the #initialize() action.

The legacy way to use the MATLAB plug-in is to route *Request events and set up listeners for
the *Response events. If you are using the MATLAB plug-in in only the main context, injecting
MatlabService.mon sets up all required listeners for the *Request events that call into theMATLAB
plug-in. To use the MATLAB plug-in from another context, instantiate a MatlabManager variable,
spawn to the other context, and call #initialize() on the variable. This sets up the required
listeners in the current (non-main) context, and the *Response events are routed to this context.

Note:
The MATLAB plug-in is asynchronous (except for the OpenSession requests), so the processing
of the input queue, or calling the request actions, does not block.

Developing Apama Applications 10.11.2 421

10 Using EPL Plug-ins

http://documentation.softwareag.com/apama/index.htm
http://documentation.softwareag.com/apama/index.htm

Due to a shutdown timing issue in MATLAB, if you repeatedly open and close MATLAB
sessions, youmay see the error Error message - A primary message table for module 77. This
is due to a race with shutting down the MATLAB COM server. The workaround for this is to
have an unused idle MATLAB instance running that will keep the COM server running.

The MATLAB plug-in is multi-context aware. The *Response events are routed to the calling
context.

To include MATLAB capabilities in your application

1. Ensure that the directory containing the MATLAB plug-in library is included in the library
search path: %APAMA_HOME%\bin should be in the PATH onWindows platforms. Or for deployment
on Linux operating systems, $APAMA_HOME/lib should be in the LD_LIBRARY_PATH.

2. Import the MATLAB plug-in in the application's EPL code.

3. Set the appropriate values for your PATH environment variable:

64-bit Windows: Add MATLAB_HOME/bin and MATLAB_HOME/bin/win64 to %PATH%.

64-bit Linux: Add MATLAB_HOME/bin to $PATH. Also, add MATLAB_HOME/sys/os/glnxa64 and
MATLAB_HOME/bin/glnxa64 to the end of $LD_LIBRARY_PATH (after the Apama library).

Note:
On Linux, as per the MATLAB documentation, /bin/csh is required to be installed for the
MATLAB engine to be started.

On Linux, if you have problems starting Apama and MATLAB, especially with library
incompatibilities such as with libssl, libcryto or libz, ensure the LD_LIBRARY_PATH is ordered to
load the newest version of the library first (whichmay be in theApama orMATLAB installation,
or the version in the operating system). It may help to try running a standalone MATLAB from
an Apama Command Prompt, or to use the ldd utility to diagnose.

MatlabManager actions
The MatlabManager event provides the following actions. For complete reference information, see
the API Reference for EPL (ApamaDoc).

DescriptionAction

Starts a MATLAB process for the purpose of using
MATLAB as a computational engine. Uses the

openSession(
string sessionID,
string messageID,
boolean singleUse,
integer precision,
action<string, string,

boolean, string>
callback)

MATLAB API function engOpen() if singleUse is
false and engOpenSingleUse() if singleUse is true.
Single use is unavailable on Linux. The response to
this action call is an OpenSessionResponse event
routed from the plug-in to the calling context and
the supplied callback is invoked.

422 Developing Apama Applications 10.11.2

10 Using EPL Plug-ins

DescriptionAction

Closes a MATLAB session. Uses the MATLAB API
function engClose(). The response to this action call

closeSession(
string sessionID,
string messageID,
action<string, string,

boolean, string>
callback)

is a CloseSessionResponse event routed from the
plug-in to the calling context and the supplied
callback is invoked.

You must call this action when you are using
MATLAB by means of routed events in a context

initialize()

other than the main context. Spawn to another
context, set up the relevant listeners in the new
context, and then call initialize(). You do not need
to call initialize()when you are calling the
MatlabManager actions.

Puts a float variable into a MATLAB engine
workspace. Uses the MATLAB API function

putFloat(
string sessionID,
striing messageID,
string name,
float value,
action <string, string,

boolean, string>
callback)

engPutVariable(). The response to this action call
is a PutFloatResponse event routed from the plug-in
to the calling context and the supplied callback is
invoked.

Note:
By default, this event creates a local variable in
the MATLAB session. If you need the variable to
have a global scope, call evaluate() before you
call the putFloat() action. In the evaluate() call,
declare the variable as being global (for example,
"global x").

Gets a float variable from the MATLAB engine
workspace. Uses the MATLAB API function

getFloat(
string sessionID,
string messageID,
string name,
action<string, string,

float, boolean, string>
callback)

engGetVariable(). The response to this action call
is a GetFloatResponse event routed from the plug-in
to the calling context and the supplied callback is
invoked.

Puts a float sequence variable in aMATLABengine
workspace. Uses the MATLAB API function

putFloatSequence(
string sessionID,
string messageID,
string name,
sequence<float> values,
action<string, string,

boolean, string>
callback)

engPutVariable(). The response to this action call
is a PutFloatSequenceResponse event routed from
the plug-in to the calling context and the supplied
callback is invoked.

Gets a float sequence variable from the MATLAB
engine workspace. Uses the MATLAB API function

getFloatSequence(
string sessionID,
string messageID,
string name,
action<string, string,

Developing Apama Applications 10.11.2 423

10 Using EPL Plug-ins

DescriptionAction
sequence<float>, boolean,
string>

callback)

engGetVariable(). The response to this action call
is a GetFloatSequenceResponse event routed from
the plug-in to the calling context and the supplied
callback is invoked.

Puts a two-dimensional matrix variable into a
MATLAB engine workspace. Uses the MATLAB

putFloatMatrix(
string sessionID,
string messageID,
string name,
sequence<sequence<float>> values,
action<string, string,

boolean, string>
callback)

API function engEval(). The response to this action
call is a PutFloatMatrixResponse event routed from
the plug-in to the calling context and the supplied
callback is invoked.

Gets a two-dimensional matrix variable from the
MATLAB engine workspace. Uses the MATLAB

getFloatMatrix(
string sessionID,
string messageID,
string name,
action<string, string,

sequence<sequence<float>>,
boolean, string>

callback)

API function engGetVariable(). The response to this
action call is a GetFloatMatrixResponse event routed
from the plug-in to the calling context and the
supplied callback is invoked.

Evaluates an expression for the MATLAB engine
session and returns textual output from evaluating

evaluate (
string sessionID,
string messageID,
string expression,
integer outputSize,
action<string, string,

string, sequence<string>
boolean, string>

callback)

the expression, including possible error messages.
Uses the MATLAB API function engEvalString().
The response to this action call is an
EvaluateResponse event routed from the plug-in to
the calling context and the supplied callback is
invoked.

Makes the window for theMATLAB engine session
either visible or invisible on the Windows desktop.

setVisible(
string sessionID,
string messageID,
boolean value,
action<string, string,

boolean, string>
callback)

Uses the MATLAB API function engSetVisible().
The response to this action call is a
SetVisibleResponse event routed from the plug-in
to the calling context and the supplied callback is
invoked.

Returns the current visibility setting for the
MATLAB engine session. Uses the MATLAB API

getVisible(
string sessionID,
string messageId,
action<string, boolean,

boolean, string>
callback)

function engGetVisible(). The response to this action
call is a GetVisibleResponse event routed from the
plug-in to the calling context and the supplied
callback is invoked.

424 Developing Apama Applications 10.11.2

10 Using EPL Plug-ins

MATLAB examples
To use MATLAB features in your Apama or Apama Capital Markets Foundation application, you
must create a MATLAB session. The following examples show how to create a MATLAB session
and how to use it to set or get floating point scalar values, arrays ormatrices. Each get or set request
has an associated response that indicates whether the request successfully completed.

Creating a MATLAB session

The following example creates a MATLAB session. A boolean value indicates whether MATLAB
should open a new session or re-use an existing session.
monitor MatlabExample2
{

// ***** Creating a MATLAB session:
com.apamax.matlab.MatlabManager matlabManager;

action onload() {
// Spawn to a new context:
spawn run() to context("New Context");

}

action run() {
// Running in a context other than main, open a MATLAB session:
matlabManager.openSession(

"Session1", "openSessionRequest", false, 6, sessionOpened);
}

action sessionOpened(
string sessionID, string messageID, boolean success, string error) {

if (success) {
log "Session Opened";

} else {
log "Session failed to open - " + sessionID + ", "

+ messageID + ", " + success.toString() + ", " + error;
}

}

Working with scalar values

The following example shows how to set a scalar value:
action putFloatExample() {

matlabManager.putFloat(
"Session1", "putFloatRequest", "x", 10.0, putFloatCallback);

}

action putFloatCallback(
string sessionID, string messageID, boolean success, string error) {

if (success) {
log "Put Float Succeeded";

} else {
log "Put Float Failed - " + sessionID + ", " + messageID + ", "

+ success.toString() + ", " + error;
}

Developing Apama Applications 10.11.2 425

10 Using EPL Plug-ins

}

The following example shows how to get a scalar value:
action getFloatExample() {

matlabManager.getFloat(
"Session1", "getFloatRequest", "x", getFloatCallback);

}

action getFloatCallback(string sessionID, string messageID, float value,
boolean success, string error) {

if (success) {
log "Get Float Succeeded - value = " + value.toString();

} else {
log "Get Float Failed - " + sessionID + ", " + messageID + ", "

+ success.toString() + ", " + error;
}

}

Working with arrays

To set an array:
action putFloatSequenceExample() {

sequence<float> y := [0.0, 1.0, 2.71828, 3.14159];
matlabManager.putFloatSequence("Session1", "putFloatSequenceRequest",

"y", y, putFloatSequenceCallback);
}

action putFloatSequenceCallback(
string sessionID, string messageID, boolean success, string error) {

if (success) {
log "Put Float Sequence Succeeded";

} else {
log "Put Float Sequence Failed - " + sessionID + ", "

+ messageID + ", " + success.toString() + ", " + error;
}

}

To get an array:
action getFloatSequenceExample() {

matlabManager.getFloatSequence(
"Session1", "getFloatSequenceRequest", "y", getFloatSequenceCallback);

}

action getFloatSequenceCallback(string sessionID, string messageID,
sequence<float> value, boolean success, string error) {

if (success) {
log "Get Float Sequence Succeeded - value = " + value.toString();

} else {
log "Get Float Sequence Failed - " + sessionID + ", "

+ messageID + ", " + success.toString() + ", " + error;
}

}

426 Developing Apama Applications 10.11.2

10 Using EPL Plug-ins

Working with matrices

To set a matrix:
action putFloatMatrixExample() {

sequence<sequence<float>> matrix := [];
sequence<float> row1 := [-2.1, 3.5];
sequence<float> row2 := [5.0, 1.0, 7.9, 17.0];
sequence<float> row3 := [-20.0, -90.0, 25.0];

matrix.append(row1);
matrix.append(row2);
matrix.append(row3);

matlabManager.putFloatMatrix("Session1", "putFloatMatrixRequest",
"m", matrix, putFloatMatrixCallback);

}

action putFloatMatrixCallback(
string sessionID, string messageID, boolean success, string error) {

if (success) {
log "Put Float Matrix Succeeded";

} else {
log "Put Float Matrix Failed - " + sessionID + ", "

+ messageID + ", " + success.toString() + ", " + error;
}

}

To get a matrix:
action getFloatMatrixExample() {

matlabManager.getFloatMatrix(
"Session1", "getFloatMatrixRequest", "m", getFloatMatrixCallback);

}

action getFloatMatrixCallback(string sessionID, string messageID,
sequence<sequence<float>> value, boolean success, string error) {

if (success) {
log "Get Float Matrix Succeeded - value = " + value.toString();

} else {
log "Get Float Matrix Failed - " + sessionID + ", "

+ messageID + ", " + success.toString() + ", " + error;
}

}

Aswell as settingMATLABvariables, applicationsmay also send requests to theMATLABplug-in
to evaluate any appropriate MATLAB expressions using the evaluate() action.

The following example shows how to use the MATLAB plug-in to add two matrices and get the
result:

action evaluateRequestExample() {
// First matrix:
sequence<sequence<float>> matrix1 := [];
sequence<float> m1row1 := [1.0,2.0,3.0];
sequence<float> m1row2 := [4.0,5.0,6.0];
sequence<float> m1row3 := [7.0,8.0,9.0];
matrix1.append(m1row1);

Developing Apama Applications 10.11.2 427

10 Using EPL Plug-ins

matrix1.append(m1row2);
matrix1.append(m1row3);

// The MATLAB manager also provides 'doesNothing*' callbacks that can
// process the returns silently if the response is not needed.
matlabManager.putFloatMatrix("Session1", "putFloatMatrixRequest1",

"matrix1", matrix1, matlabManager.doesNothingCallback);

// Second matrix:
sequence<sequence<float>> matrix2 := [];
sequence<float> m2row2 := [2.0,5.0,8.0];
sequence<float> m2row3 := [3.0,6.0,9.0];
matrix2.append(m2row1);
matrix2.append(m2row2);
matrix2.append(m2row3);
matlabManager.putFloatMatrix("Session1", "putFloatMatrixRequest1",

"matrix2", matrix2, matlabManager.doesNothingCallback);

// Use MATLAB to add the two matrices.
// The expected size of the string to be returned:
integer STANDARD_OUTPUT_SIZE := 256;

// Although use of the MATLAB plug-in is asynchronous, requests are
// queued. This guarantees that the two putFloatMatrix() actions
// have already been processed.
matlabManager.evaluate("Session1", "evaluateRequest",

"matrix3 = matrix1 + matrix2", STANDARD_OUTPUT_SIZE, evaluateCallback);
}

action evaluateCallback(
string sessionID, string messageID, string output,
sequence<string> outputLines, boolean success, string error) {

if (success) {
matlabManager.getFloatMatrix(

"Session1", "getMatrixRequest", "matrix3", getMatrix3Callback);
} else {

log "Evaluate Failed - " + sessionID + ", "
+ messageID + ", " + success.toString() + ", " + error;

}
}

action getMatrix3Callback(string sessionID, string messageID,
sequence<sequence<float>> value, boolean success, string error) {

if (success) {
log "Get Float Matrix Succeeded - value = " + value.toString();

} else {
log "Get Float Matrix Failed - " + sessionID + ", "

+ messageID + ", " + success.toString() + ", " + error;
}

}
}

428 Developing Apama Applications 10.11.2

10 Using EPL Plug-ins

Using the R plug-in

Introduction to using the R plug-in
R is a free software environment for statistical computing. See https://www.r-project.org/ formore
information on R.

The Apama R plug-in connects to R using the Rserve package. See https://rforge.net/Rserve/
index.html for more information on Rserve.

Prerequisites

Youmust install R, and youmust install the Rserve package into R. After that, you can run Rserve
using an appropriate configuration.

TheApamaR plug-in uses a TCP connection to communicatewith R. A host and port are supplied
when opening the connection. The R server process can run locally on the samemachine asApama,
or on a remote server. Rserve uses 6311 as the default port. You can change this default in the
Rserve configuration and when creating the connection within Apama. See “Steps for using the
R plug-in” on page 430 for further information.

Note:
Rserve has different session functionality, depending on whether the server is running on
Windows or Linux. On Windows, new sessions are not created, if you re-connect to Rserve;
previously set variables will still be valid.

To use the R plug-in, you need to add the R Support bundle to your Apama project (see also
“Adding the R Support bundle to your project” on page 429). This lets you interact with a local or
remote R running Rserve, setting and getting variables and evaluating R script from within EPL.

Adding the R Support bundle to your project

To use the R plug-in, you need only add the R Support EPL bundle to your project. For details,
see "Adding EPL bundles to projects" in Using Apama with Software AG Designer or "Creating and
managing anApamaproject from the command line" inDeploying andManagingApamaApplications.

Adding theR Support bundle to your projectmakes the RPlugin.mon file available to themonitors
in your project. When you run your project, Software AG Designer automatically injects the
RPlugin.mon file. If you want to examine this file, you can find it in the monitors/R directory of
your Apama installation.

The file RPlugin.mon is the interface between the monitors in your application and the R plug-in.
Your application creates an RConnection event using the static open() action in the RFactory event,
and it then calls set() or evaluate() actions on the RConnection event to communicate with R.
There is never any need to import or call the plug-in directly.

Developing Apama Applications 10.11.2 429

10 Using EPL Plug-ins

https://www.r-project.org/
https://rforge.net/Rserve/index.html
https://rforge.net/Rserve/index.html

Steps for using the R plug-in

The events within the R Support bundle are in the com.apama.r package. It is assumed that R has
been installed with Rserve and that it is running on a known host and port (see “Introduction to
using the R plug-in” on page 429 for more information).

After you have added the R Support bundle, you write EPL that does the following:

1. Create an RConnection event using the static open() or openDefault() action in the RFactory
event with the known host and port. On Linux, the connection can bemade using local sockets
if the port is set to -1 and if the host is set to the socket filename.

2. Use the set() action in RConnection to set named variables in R. The set() action uses the any
type, which means that all types can be passed into it.

Supported types are integer, float, string, boolean and sequence, including nested sequences
or sequences of different types using any.

decimal and dictionary types are not supported. All unsupported typeswill cause an exception
to be thrown.

3. Use the evaluate() action to evaluate an R expression and return the result. This action returns
an any type and the user must process the result to the correct type.

Or use the evaluateAstype() action to evaluate an R expression, casting the result to the
requested type. If the type is not correct, an exception will be thrown.

4. Close the connection using close().

See the API Reference for EPL (ApamaDoc) for more information on these actions.

Note:
open() can be called from different contexts. However, a matching host/port to an open
connection will share the same connection.

Within R, everything is an array and R does not differentiate between a single value or an array
which holds a single value. Because of this, the Apama R plug-in converts an array of a single
value into a single value of the correct type. Therefore, if you set a sequence<integer> variable
to [123], it will just be an integer of 123when you retrieve this value.

Calls to the R plug-in are synchronous and block execution in the current context. You can create
an asynchronous service in a dedicated context; a sample is provided to demonstrate this. See
also “R plug-in samples” on page 430.

R plug-in samples
Sample code for using the R plug-in is provided in the samples/epl/RPlugin directory of your
Apama installation. See the README.txt file in that directory for more information.

430 Developing Apama Applications 10.11.2

10 Using EPL Plug-ins

The file RPluginSample.mon demonstrates how to set and get variables of different types from
R, how to create amatrix using an R script and get the dimensions, and how to load an R script
from an external file.

The file AsyncR.mon demonstrates an asynchronous R service running in a dedicated context
where requests and responses are sent via events.

Interfacing with user-defined EPL plug-ins
Although EPL is very powerful and enables complex applications, it is foreseeable that some
applications might require additional specialized operations. For example, an application might
need to carry out advanced arithmetic operations that are not provided in EPL. You can address
this situation by writing custom EPL plug-ins using Apama's C++, Java, or Python plug-in
development kits. For detailed information on developing your custom EPL plug-in, see .

Note:
The correlator's plug-in interface is versioned. If you upgrade the major or minor version of
Apama, you may need to recompile your plug-ins against the new libraries to be compatible
with the newer version of the correlator.

In order to access a function implemented in an EPL plug-in, you must import the plug-in. If the
plug-in is written in Java, you must first inject the jar file containing the plug-in. For any plug-in,
an EPL monitor or event must use the import statement to load it:
import "apama_math" as math;

For a Java plug-in, this will load the plug-in from the injected jar file. For a C++ plug-in, this will
look for theApama plug-in file libapama_math.so (on Linux) or for apama_math.dll (onWindows).
These must be located on the standard library path (by default, in $APAMA_WORK/lib). It will then
map it to the internal alias math.

Note:
Insert the import statement in the monitor that uses the plug-in functions.

If the apama_math plug-in defines a method called cos that takes a single floating point value as an
argument and returns a float value, this would be called from EPL as follows:
float a, b;
// ... some other EPL
a := math.cos(b);

Standard float, integer and boolean types are passed by-value to external functions while string
and sequence types (whichmap to native arrays in the plug-in) are passed by-reference. In addition,
the chunk type can be used to “pass-through” data returned from one function call to another
plug-in function, as shown in “About the chunk type” on page 431.

About the chunk type
The chunk type allows data to be referenced from EPL that has no equivalent EPL type. It is not
possible to perform operations on data of type chunk fromEPLdirectly; the chunk type exists purely

Developing Apama Applications 10.11.2 431

10 Using EPL Plug-ins

to allow data output by one external library function to pass through to another function. Apama
does not modify the internal structure of chunk values in any way. As long as a receiving function
expects the same type as that output by the original function, any complex data structure can be
passed around using this mechanism.

To use chunkswith plug-ins, you must first declare a variable of type chunk. You can then assign
the chunk to the return value of an external function or use the chunk as the value of the out
parameter in the function call.

The following example illustrates this. The functions setRealVal and setImagVal set internal values
of the chunk, while the functions getRealVal and getImagVal retrieve values from the chunk. The
function addComplexNumber adds the second chunk to the first chunk. The source code for
complex_plugin is in the samples\correlator_plugin\cpp directory of your Apama installation
directory.
Monitor ComplexPlugin {

import "complex_plugin" as plugin;

action onload {
// Creates a first complex number chunk
chunk complexNumberFull := plugin.makeComplexNumberFull(4.0, -1.4);
printComplexNumber(complexNumberFull);

// Creates a second complex number chunk
chunk complexNumberEmpty := plugin.makeComplexNumberEmpty();

// Get the real and imaginary values of the number
plugin.setRealVal(complexNumberEmpty, 2.0);
plugin.setImagVal(complexNumberEmpty, 3.0);
printComplexNumber(complexNumberEmpty);

// Add the second complex number to the first complex number
plugin.addComplexNumber(complexNumberFull, complexNumberEmpty);
printComplexNumber(complexNumberFull);

}

action printComplexNumber(chunk complexNumber)
{

float real := plugin.getRealVal(complexNumber);
float imag := plugin.getImagVal(complexNumber);
string sign := "";
if(imag >= 0.0) {

sign := "+";
}
log real.toString() + sign + imag.toString() + "i";

}
}

Although the chunk typewas designed to support unknowndata types, it is also a usefulmechanism
to improve performance. Where data returned by external plug-in functions does not need to be
accessed from EPL, using a chunk can cut down on unnecessary type conversion. For example,
suppose the output of a localtime()method is a 9-element array of type float. While you could
declare this output to be of type sequence<float>, there is no need to do so because the EPL never
accesses the value. Consequently, you can declare the output to be of type chunk and avoid an
unnecessary conversion from native array to EPL sequence and back again.

432 Developing Apama Applications 10.11.2

10 Using EPL Plug-ins

11 Making Application Data Available to Clients

■ Adding the DataView Service bundle to your project ... 435

■ Creating DataView definitions .. 435

■ Deleting DataView definitions ... 436

■ Creating DataView items .. 436

■ Deleting DataView items .. 437

■ Updating DataView items ... 438

■ Looking up field positions ... 439

■ Using multiple correlators ... 439

Developing Apama Applications 10.11.2 433

DataViews are an Apama abstraction that allows an application to present a read-only view onto
some of their data for easy consumption by external clients that use Apama's Scenario Service API
(see "Scenario Service API" in Connecting Apama Applications to External Components), such as
Dashboard Builder dashboards.

External clients using the Scenario Service can be notified when instances are added and deleted,
and when the outputs of a specific instance change. However, they cannot create, delete or edit
instances themselves, as DataViews are read-only views and instance management is under the
control of the application.

This topic is about theDataViewService,which provides an EPLAPI for creating/deleting/updating
DataView definitions, instances and instance outputs such that they can be consumed by Scenario
Service clients. TheDataView Service is not the onlywayApama exposesDataViews to the Scenario
Service. MemoryStore tables, for example, can be configured to expose their rows as DataView
instances (see “Exposing in-memory or persistent data as DataViews” on page 388).

The DataView Service uses two central concepts:

DataView definition

ADataView definition specifies a unique DataView name, a set of field names and field types
(each type is one of string, decimal, float, integer, and boolean), and optionally a set of key
fields.

DataView item

Each DataView item is associated with a DataView definition, and specifies values for the
defined fields.

Note:
The topics below briefly describe the event types that are used for managing the DataView
definitions and items. For detailed information on the fields that are available for these events,
see the com.apama.dataview package in the API Reference for EPL (ApamaDoc).

Note that a DataView definition is not intended to serve as a central data structure for your
application, but rather is intended merely to expose your application's data to remote client
applications.

The programming interface is defined by the DataViewService_Interface.mon file in the monitors
directory of your Apama installation directory. It defines the API for working with DataView
definitions and DataView items.

Using theDataView Service, you can create DataViews in only themain context. You cannot create
them in any contexts you create.

Metadata properties can be specified for a DataView by adding keys with the prefix
DataViewDefinition.EXTRA_PARAMS_METADATA_PREFIX to the extraParams dictionary of
DataViewAddDefinitionwhen adding the new DataView definition.

434 Developing Apama Applications 10.11.2

11 Making Application Data Available to Clients

Adding the DataView Service bundle to your project
To use the DataViewService, you have to add theDataView Service bundle to yourApama project.
Adding this bundle ensures that the following EPL files are loaded before any monitors that use
them. These monitors are in the monitors directory of your Apama installation:

ScenarioService.mon

DataViewService_Interface.mon

DataViewService_Impl_Dict.mon

Note:
The DataViewService is designed primarily to interact with other EPL or JMon applications that
reside in the same correlator. However, it can also be usedwithmultiple correlators. See “Using
multiple correlators” on page 439 for further information.

The description below explains how to add the bundle using Software AG Designer, but you can
also add it using the apama_project command-line tool as described in "Creating and managing
an Apama project from the command line" in Deploying and Managing Apama Applications.

To add the DataView Service bundle to your Apama project

1. In Software AG Designer, go to the Apama Developer perspective.

2. In the Project Explorer, right-click the EPL Bundles node and select Add Bundle.

3. Select the DataView Service bundle and click OK.

Creating DataView definitions
Use the following event types to create DataView definitions.

DataViewAddDefinition

Create and route an event of this type in order to create a DataView definition. The response is
provided by a DataViewDefinition or DataViewException event.

DataViewDefinition

These events are responses to DataViewAddDefinition events. They indicate the successful creation
of a DataView definition. The contents of the fields are exactly those of the DataViewAddDefinition
event to which this is a response, except possibly for extraParams.

Developing Apama Applications 10.11.2 435

11 Making Application Data Available to Clients

DataViewException

These events occur under exceptional circumstances in response to DataViewAddDefinition or
DataViewDeleteDefinition events, or any circumstance under which a DataView cannot be
identified.

Here is an example of creating a DataView definition and handling DataViewException events:
using com.apama.dataview.DataViewAddDefinition;
using com.apama.dataview.DataViewException;
...
DataViewAddDefinition add := new DataViewAddDefinition;
add.dvName := "Weather";
add.dvDisplayName := "Weather";
add.fieldNames := ["location","temperature","humidity","visibility"];
add.fieldTypes := ["string","integer","integer","integer"];
add.keyFields := ["location"];
route add;
on all DataViewException() as dvException {
log "*** Weather monitor error: " +

dvException.toString() at ERROR;
}

Deleting DataView definitions
Use the following event types to delete DataView definitions.

DataViewDeleteDefinition

Create and route events of this type in order to delete a DataView definition. The response is
provided by a DataViewDefinitionDeleted or DataViewException event.

DataViewDefinitionDeleted

These events are responses to DataViewDeleteDefinition events. They indicate the successful
deletion of a DataView definition.

Creating DataView items
Use the following event types to create DataView items.

DataViewAddItem

Create and route an event of this type to create a DataView item. This itemmust not exist already.
A response is provided by a DataViewItem or DataViewException event.

Here is an example that creates and routes a DataViewAddItem event, and handles the DataViewItem
response by logging the addition of the item:
using com.apama.dataview.DataViewAddItem;

436 Developing Apama Applications 10.11.2

11 Making Application Data Available to Clients

using com.apama.dataview.DataViewItem;
...
string location ;
integer temp;
integer humidity;
integer visibility;
...
DataViewAddItem item := new DataViewAddItem;
item.dvName := "Weather";
item.fieldValues :=

[location,temp.toString(),humidity.toString(),
visibility.toString()];

route item;
on DataViewItem (dvName="Weather") as added {

log("Weather monitor - DataViewItem: " +
added.dvItemId.toString());

}

DataViewAddOrUpdateItem

Create and route an event of this type to create a DataView item if it does not already exist, or
update a DataView item if it already exists. A response is provided by a DataViewItem or
DataViewException event.

This will only work when keyFields are used. Any attempts to change the owner of an existing
item will be rejected with a DataViewItemException.

DataViewItem

These events are responses to DataViewAddItem events. They indicate the successful creation of a
DataView item. The contents of the fields are exactly those of the DataViewAddItem event to which
this is a response, except possibly extraParams, and with the addition of the dvItemId field.

DataViewItemException

These events occur under exceptional circumstances in response to DataViewDeleteItem,
DataViewUpdateItem or DataViewUpdateItemDelta events.

Deleting DataView items
Use the following event types to delete DataView items.

DataViewDeleteItem

Create and route an event of this type to delete a DataView item. A response is provided by a
DataViewItemDeleted, DataViewException or DataViewItemException event.

Here is an example that creates and routes a DataViewDeleteItem event and handles the
DataViewItemDeleted response by logging the deletion of the item:
using com.apama.dataview.DataViewDeleteItem;
using com.apama.dataview.DataViewItemDeleted;

Developing Apama Applications 10.11.2 437

11 Making Application Data Available to Clients

string location;
...
DataViewDeleteItem delete := new DataViewDeleteItem;
delete.dvName := "Weather";
delete.dvItemId := -1; // Set the ID to -1 when using keyFields
delete.keyFields := [location];
route delete;
on DataViewItemDeleted (dvName="Weather") as deleted {

log("Weather monitor - DataViewItemDeleted:
"+deleted.dvItemId.toString());

}

DataViewItemDeleted

These events are responses to DataViewDeleteItem events. They indicate the successful deletion
of a DataView item.

DataViewDeleteAllItems

Create and route an event of this type to delete all DataView items associated with a specified
DataView definition. A response is provided by a DataViewAllItemsDeleted, DataViewException
or DataViewItemException event.

DataViewAllItemsDeleted

These events are responses to DataViewDeleteAllItem events. They indicate the successful deletion
of all items associated with a given DataView definition.

Updating DataView items
Use the following event types to update DataView definitions.

Note:
In addition to the event types listed below, you can also use the DataViewAddOrUpdateItem event
to either create newDataView items or to update existing ones. See “CreatingDataView items” on
page 436.

DataViewUpdateItem

Create and route an event of this type to update a data item by specifying a sequence of new filed
values. If the update does not succeed, a response is provided by a DataViewItemException event.

Here is an example of creating and routing a DataViewUpdateItem event:
using com.apama.dataview.DataViewUpdateItem;
...
string location;
integer temp;
integer humidity;
integer visibility;
...

438 Developing Apama Applications 10.11.2

11 Making Application Data Available to Clients

DataViewUpdateItem update := new DataViewUpdateItem;
update.dvName := "Weather";
update.dvItemId := -1; // Set the ID to -1 when using keyFields
update.fieldValues :=

[location,temp.toString(),humidity.toString(),visibility.toString()];
route update;

DataViewUpdateItemDelta

Create and route an event of this type to update a data item by specifying a dictionary of
field-position/field-value pairs. If the update does not succeed, a response is provided by a
DataViewItemException event.

Here is an example of creating and routing a DataViewUpdateItemDelta event:
using com.apama.dataview.DataViewUpdateItemDelta;
...
string location;
integer temp;
integer humidity;
integer visibility;
...
DataViewUpdateItemDelta update := new DataViewUpdateItemDelta;
update.dvName := "Weather";
update.dvItemId := -1; // Set the ID to -1 when using keyFields.
update.fieldValues :=

{0:location,1:temp.toString(),2:humidity.toString(),
3:visibility.toString()};

route update;

Looking up field positions
Use the following event types to look up the numerical position of a given field-name for a given
DataView definition.

DataViewGetFieldLookup

Create and route an event of this type to request a helper dictionary that supports lookup of field
position for a given field name. The response is provided by a DataViewFieldLookup or
DataViewException event.

DataViewFieldLookup

These events are responses to DataViewGetFieldLookup events. They contain a dictionary that
supports lookup of the field position for a given field name.

Using multiple correlators
The DataViewService is designed to primarily interact with other EPL or JMon applications that
reside in the same correlator. Therefore, the DataViewService implementation does not emit any

Developing Apama Applications 10.11.2 439

11 Making Application Data Available to Clients

events. You can inject the following optional additional monitors, which are in the monitors
directory of your Apama installation, to emit the events when that is required:

DataViewService_ServiceEmitter.mon

DataViewService_ApplicationEmitter.mon

This enables Dashboard Builder clients to visualize the state of a number of applications, each of
which is running in a separate correlator, and each of which may fail-over to another correlator.
Since configuring all of the dashboards to know about each of these correlators might be difficult
and fragile, you can designate an additional single correlator as the “view correlator”, which holds
the DataViewService and ScenarioService to which any client dashboard can connect.

With this architecture, the individual applications in the separate correlators need to emit
DataViewService request events to a channel that has been connected to the view correlator. These
applications can either emit the events directly, or with the Application Emitter injected they can
route the events and the extra monitor will emit them to the channel. The DataViewService in the
view correlator routes its responses (as normal), but the Service Emitter monitor will then emit
those events out on the com.apama.dataview channel so that the originating correlators can receive
them.

Note that these two emitters are entirely optional, and are not required for most deployments.
Moreover, you normally do not inject these two monitors into the same correlator. Also, there is
no bundle in Software AG Designer that provides these monitors.

440 Developing Apama Applications 10.11.2

11 Making Application Data Available to Clients

12 Testing and Tuning EPL monitors

■ Optimizing EPL programs .. 442

■ Best practices for writing EPL .. 442

■ Structure of a basic test framework .. 444

■ Using event files ... 444

■ Handling runtime errors .. 445

■ Capturing test output .. 447

■ Avoiding listeners and monitor instances that never terminate 447

■ Handling slow or blocked receivers .. 448

■ Diagnosing infinite loops in the correlator .. 448

■ Tuning contexts ... 449

Developing Apama Applications 10.11.2 441

This section provides information about testing and tuning your EPL monitors.

Optimizing EPL programs
Best practices for optimizing EPL programs include:

Minimize cost of spawning—avoid repeated spawning ofmonitors that contain a large number
of variables.

Allocate events — but not unnecessarily. See “Avoiding unnecessary allocations” on page 443.

Specify wildcard on non-essential event fields. See “Wildcard fields that are not relevant” on
page 443.

Use plug-ins when you cannot write efficient EPL to accomplish your purpose. See “When to
use plug-ins” on page 342.

Minimize the effect of garbage collection

EPL, like languages such as Java or C#, relies on garbage collection. Intermittently, the correlator
analyses the objects that have been allocated, including events, dictionaries and sequences, and
allowsmemory used by objects that are no longer referenced to be re-used. Thus, the actualmemory
usage of the correlator might be temporarily above the size of all live objects. While running EPL,
the correlator might wait until a listener, onload() action or stream network activation completes
before performing garbage collection. Therefore, any garbage generated within a single action,
listener invocation or stream network activation might not be disposed of before the
action/listener/activation has completed. It is thus advisable to limit individual
actions/listeners/activations to performing small pieces of work. This also aids in reducing system
latency.

The cost of garbage collection increases as the number of events a monitor instance creates and
references increases. If latency is a concern, it is recommended to keep this number low, dividing
the working set by spawning new monitor instances if possible and appropriate. Reducing the
number of object creations, including string operations that result in a new string being created,
also helps to reduce the cost of garbage collection. The exact cost of garbage collection could change
in future releases as product improvements are made.

Best practices for writing EPL
EPL is a programming language with some special features. As such, it shares the characteristic
with every other programming language that it is possible to write poor, inefficient code. All the
techniques that apply to other languages to minimize wasted cycles can also be applied to EPL.

Basic programming optimization techniques all apply:

Move code out of tight loops

Avoid unnecessary allocation, for example, strings

Put common tests first in if ... else form

442 Developing Apama Applications 10.11.2

12 Testing and Tuning EPL monitors

There is no substitute for empirical evaluation of the performance of your application. You must
measure performance and compare measurements when modifications are made. Also, ensure
that you are comparing like-with-like. Understanding performance implications is invaluable and
it helps in avoiding unnecessary performance costs.

You should know how fast your application needs to be.

Wildcard fields that are not relevant
Once a design has stabilized and event interfaces are well defined, it is possible to wildcard fields
that do not need to be matched on in event listeners. Designating an event field as a wildcard
prevents the correlator from creating an index for that field. Most importantly, a wildcard field
means that the correlator does not need to traverse that indexwhen receiving an event of that type
to try to find interested event listeners (as therewill not be any). This can give tangible performance
benefits, particularly with large events.

Premature wildcarding is not advised but is not harmful. You can easily remove the wildcard
annotation from event fields with no impact on existing code. The compiler gives an error if any
code attempts to match on a field that is a wildcard.

The correlator can index up to 32 fields for each event type. If you are using an event that hasmore
than 32 fields, you must designate the additional fields as wildcards.

See “Improving performance by ignoring some fields in matching events” on page 159.

Avoiding unnecessary allocations
You should eliminate unnecessary allocations, especially when the size of an event is very large.
For example:
event LargeEventWith1000Fields {} // field definitions omitted

integer i := 0;
while (i < 1000) {

route LargeEvent(0,0,i, ...); // bad
i := i + 1;

}

LargeEvent le := new LargeEvent(); // good
while (i < 1000) {

le.foo := i;
route le;
i := i + 1;

}

Implementing states
When you want to write a process that passes through one or more states it is good practice to
have one action per state. For example:
action inAuction() {

on AuctionClosed outOfAuction();

Developing Apama Applications 10.11.2 443

12 Testing and Tuning EPL monitors

}

action outOfAuction() {
on all Price (stock,*) as p and not InAuction() {

on Price(stock,>p.price*1.01) and not InAuction() {
sellStock();

}
}
on InAuction() inAuction();

}

Structure of a basic test framework
Apama lends itself to automated testing because

You can define test cases in event files that you feed into the correlator.

Apama includes a comprehensive set of command line utilities, all of which are scriptable
using standard scripting languages on different platforms.

The correlator is deterministic when there is only the main context. When there is more than
one context, each context is deterministic but the correlator as a whole is not.

If the advocated event interface pattern is employed for encapsulation, thenmodules can be tested
in isolation (unit testing) as well as in more comprehensive integration-level tests.

A basic test case includes the following:

EPL files (.mon) to deploy (or references to them).

Input event files (.evt) to send to the correlator.

Reference event files (.evt) to compare to actual output.

Script to orchestrate execution of the test-case.

You should assemble all of these files in an Apama project in Software AG Designer and then use
Software AG Designer to launch the test case.

Each test-case can reside in its own project with all relevant files local to it. The basic test process
is to launch the application, send in some events, capture outputs, then compare to expected
output, printing the results of the test to the console or log file at the minimum.

Using event files
The following example shows how to use &TIME (Clock) events to explicitly set the correlator clock.
To do this, the correlator must have been started in external clocking mode (the &TIME events give
errors otherwise). Times are in seconds since the midnight, Jan 1970 epoch.
#seed initial time (seconds since Jan 1970 epoch)
&TIME(1)

Send in configuration of heartbeat interval to
5 SecondsSetHeartbeatInterval(5.0)

444 Developing Apama Applications 10.11.2

12 Testing and Tuning EPL monitors

Advance the clock (5.5 seconds)
&TIME(6.5)

Correlator should have sent heartbeat with id 1 –
acknowledge all is well
HeartbeatResponse(1,true)

Notice that the input event file has a lot of knowledge regarding the way in which the module
will (should) respond. For example, the HeartbeatResponse event expects that the first
HeartbeatRequestwill have the ID of 1. There is necessarily a close coupling between the input
scripts and the implementation of the module being tested. This is another reason why as much
of this information should be extracted into the module's message exchange protocol and made
explicit, and perhaps enforced by one or more interface intermediaries.

A single correlator context is guaranteed to generate the same output in the same order, even
when EPL timers (such as on all wait()) are employed. This is a benefit of correlator determinism,
and makes regression testing, even of temporal logic, possible.

Note:
The correlator's behavior can be nondeterministic when events are sent between multiple
contexts, or when plug-ins are used.

Handling runtime errors
EPL eliminates many runtime errors because of the following:

Strict, static typing, so there are no class cast exceptions.

No implicit type conversion so there are no number format exceptions.

Values can only be “null” (or “empty” as it is called in EPL) if they are explicitly declared as
optional, and can be accessed safelywithout risk of null pointer exceptions. See the description
of the optional type in theAPI Reference for EPL (ApamaDoc) and “The ifpresent statement” on
page 677 for more information.

However, EPL cannot entirely eliminate runtime errors. For example, you receive a runtime error
if you try to divide by zero or specify an array index that is out of bounds. Some runtime errors
are obscure. For example:
mySeq.remove(mySeq.indexOf("foo"));

If foo is not in mySeq, indexOf() returns –1, which causes a runtime error.

See also “Exception handling” on page 278.

What happens
When the correlator detects a runtime error, an exception is raised. If that is not caught by a catch
block, the correlator kills the monitor instance that contains the code that caused the error. This
protects the other monitor instances that are running in the same correlator. Upon an unhandled

Developing Apama Applications 10.11.2 445

12 Testing and Tuning EPL monitors

runtime error, the correlator also terminates any listeners that were set up by themonitor instance
being killed, and the state of the killed monitor is lost.

Using ondie() to diagnose runtime errors
The preferred method for handling runtime errors is using a catch block; see also “Exception
handling” on page 278.

If you are not sure where the catch block is necessary, you can specify some logging in the ondie()
action to help diagnose the problem and to alert other system modules that a problem occurred.
For example:
action ondie() {

log "monitor instance terminating for " + myId;
route InternalError("Foo");

}

In some circumstances, you can move into a suspended or safe state, or initiate damage limitation
activities, for example, such as pulling all active orders from the market. For example, Apama
scenarios use the ondie() action to route an InstanceDied() event to a ScenarioServicemonitor.
This in turn sends the event to connected clients so the termination of the instance can be handled,
perhaps displayed, in a dashboard.

An alternative to using ondie() in this manner is to use a basic ACK, NACK, and timeout message
exchange protocol so that a client is robust against its services being unavailable.

See “About executing ondie() actions” on page 44 for information about how ondie() can optionally
receive exception information if an instance dies due to an uncaught exception.

Using logging to diagnose errors
Logging is an effective means of generating diagnostic information. When writing log entries,
consider the overhead of string allocation, garbage collection, and writing data to disk. Use
conditional tests to reduce this overhead and minimize unnecessary logging.

The EPL log statement is a simple means of generating logging output. The EPL log statement
writes to the correlator log file by default so any messages your program sends to the log file are
mixed in with all other correlator logging messages. However, you can configure the correlator
to send your EPL logging to a separate file. See "Setting EPL log files and log levels dynamically"
in Deploying and Managing Apama Applications. The logging attributes you can specify include a
particular target log file and a particular log level for any number of individual packages, monitors
and events.

When sending messages to the correlator log file, consider the following:

Log messages can be lost if the correlator is logging to stdout.

Using the correlator log is relatively expensive if there are many log statements in the critical
path.

Anything you send to the log might be lost if the correlator log level is OFF.

446 Developing Apama Applications 10.11.2

12 Testing and Tuning EPL monitors

See also “Logging and printing” on page 281.

Standard diagnostic log output
By default, the correlator outputs diagnostic information every five seconds, and sends it to the
correlator log file at INFO log level. You can use this information to diagnose common problems.
See "Descriptions of correlator status log fields" in Deploying and Managing Apama Applications for
further information.

The correlator sends this information to its log file during normal operation. While it is possible
to disable this output (by setting the correlator's log level to WARN), doing so is not advisable. In
the unlikely event that you run into a problem, Apama Technical Support always ask for a copy
of this log file, as the information in it is often useful for diagnosing the nature of a failure.

Capturing test output
All receivers should be started before any events are sent in to the correlator and set towrite events
to file. The file(s) can be easily compared to reference output using standard operating system
tools.

Other tools are also useful in checking the output. The engine_inspect correlator utility is good
for verifying that the right number of monitor instances and listeners is present after (stages of) a
test. Also, you can use this utility to detect listeners and monitor instances that never terminate,
or premature existence of monitor instances.

Use the engine_receive utility to capture event output. You can specify the -f option to pipe
received events to a file. Start multiple receivers on different channels as required

The engine_inspect utility provides useful data for testing including the number of monitor
instances, listeners, receivers, events generated and so on. Split input event files and run the
engine_inspect utility after each file.

Capture the correlator log and compare to reference data. This is useful if your application logs
errors or there are interesting diagnostics.

Avoiding listeners and monitor instances that never
terminate
An Out of Memory condition causes the correlator to exit. This condition can be caused by listeners
and monitor instances that never terminate — also referred to as listener leaks. For example, the
following on statement defines event listeners that never terminate:
on all (Foo(id=1) or all Foo(id=2)) { // second "all" is bogus
...
}

The following example spawns monitor instances that never terminate:
on all Trade() as t spawn handle(); // missing "unmatched" action

Developing Apama Applications 10.11.2 447

12 Testing and Tuning EPL monitors

...
action handle() {

on all Trade(symbol=t.symbol) as t {
...

}
}

The sm (number of monitor instances) and ls (number of listeners) counts in the log file are often
revealing in the case of a memory leak. An increasing trend can be seen in these counts over a
period of time, when there is no valid reason for this given the intended logic of the application.

Handling slow or blocked receivers
You can use correlator diagnostic output to identify slow or blocked receivers.

The oc (number of events on the output queue) can grow to 10,000 maximum. If you see a
steady trend that it is growing, it probably indicates a slow receiver.

The tx (number of events transmitted) should always be increasing. If it is static, or not
increasing as fast as it should, it probably indicates a slow receiver.

Slow receivers include:

Receivers that are not consuming events as quickly as the correlator is generating them.

Blocked receivers that are not accepting new events.

When the correlator's output queue fills, operations that are sending events from the processing
thread (or threads, if there is more than one context) are blocked. If the output queue remains
filled, and the processing thread(s) remain blocked, the input queue(s) start(s) to fill. Events are
never dropped.

If you specify the -x correlator option when you start the correlator, it causes the correlator to
disconnect any receiver that becomes slow. If you discover that your application is producing
events at too high a rate for a particular receiver youmight be able to publish the events to separate
channels so that the receiver needs to handle fewer events. Alternatively, or in addition, youmight
be able to modify your application to throttle the rate at which it sends events to this receiver.

If you cannot speed the receiver up, or install faster hardware, you can partition the correlator's
output event flow into channels so that the receiver needs to handle fewer events. Alternatively,
you can use throttling in the correlator to output events less frequently.

See also "Determining whether to disconnect slow receivers" in Deploying and Managing Apama
Applications.

Diagnosing infinite loops in the correlator
A correlator live lock occurswhen events are recursively routedwithout a terminationmechanism.
The following example shows this in its simplest form:
on all Foo() {

route Foo();

448 Developing Apama Applications 10.11.2

12 Testing and Tuning EPL monitors

}

More complex formsmight recurse after a connected chain of several events being routed between
different monitors.

There are no limits on how many routed events can be queued. Consequently, depending on the
nature of the bug, the correlator might run out of memory. Note that an overloaded correlator
would show similar symptoms, but can be distinguished by the fact that work is still being done
(events are being sent out from the correlator).

When the correlator is in an infinite loop, it quickly uses an entire CPU and if there are events
being routed as part of the loop then the correlator will run out of memory. Use the following
correlator diagnostics to diagnose an infinite loop:

rq—sumof the number of routed events on the input queues of all contexts.When the correlator
is in an infinite loop, this will always be 1 or it will always be increasing. It depends on the
application.

iq— sum of the number of entries on the input queues of all contexts. When the correlator is
in an infinite loop, this number is continuously increasing.

tx— number of transmitted events. This number is static when the correlator is in an infinite
loop.

To identify an infinite loop in a particular context, run engine_inspect -x a few times. This lists
each context along with the number of events on its input queue. See if there are contexts that
have input queues that are getting bigger and bigger.

Tuning contexts
You should implement contextswhenever youwant the correlator to perform concurrent processing.
Work to be divided among contexts should have minimum or no interdependencies and no
ordering requirements. Many applications present a natural way to partition work that is largely
independent. For example, you could partition a financial application by stock symbol, or by user,
or by strategy.

The following topics describe common ways to optimize use of contexts.

Parallel processing for instances of an event type
A candidate for implementing parallel processing is when an application performs calculations
for a number of events that are of the same type, but that have different identifiers. For example,
different stock symbols from a stockmarket data feed. You can use either of the following strategies
to implement parallel processing for this situation:

Create multiple public contexts. Each context listens for one identifier, operates on the events
that have that identifier, and discards events that have any other identifier.

Have one context distribute data to multiple contexts, which are each dedicated to processing
the events that have a particular identifier.

Developing Apama Applications 10.11.2 449

12 Testing and Tuning EPL monitors

The performance of these strategies varies according to the work being done. A distributor can be
a bottleneck. However, there is a cost in every context discarding events for which it is not
interested. In the following situations, the distributor strategy is likely to be more efficient:

There is a very large set of identifiers but a relatively low overall rate of arriving events.

Events must be pre-processed.

Events are not arriving from external sources. Instead, you must explicitly send events.

The sample code below shows the distributor strategy.
event Tick {

string symbol;
integer price;

}

/** In the main context, the following monitor distributes Tick events
to other contexts. There is one context to process each unique symbol. */

monitor TickDistributor {

/** The dictionary maps each unique Tick symbol to the (private)
context that ultimately processes it. */

dictionary<string, context> symbolMapping;

action onload() {
on all Tick() as t {

// If the context for this symbol does not yet exist, create it.
if(not symbolMapping.hasKey(t.symbol)) {

context c := context("Processing-"+t.symbol);
symbolMapping[t.symbol] := c;
spawn processSymbol(t.symbol) to c;

}

// Send each Tick event to the context that handles its symbol.
send t to symbolMapping[t.symbol];

}
}

/** The following action handles Tick events with the given symbol.
This action executes in a private context that processes all Tick
events that have one particular symbol. */

action processSymbol(string symbol) {
// Because this context receives a homogeneous stream of Tick events
// that all have the same particular symbol, there is no need to specify
// an event listener that discriminates based on symbol.
on all Tick() as t {

...
}

}
}

Parallel processing for long-running calculations
Suppose a required calculation takes a relatively long time. You can do the calculation in a context
while the main context performs other operations. Or, you might want multiple contexts to
concurrently perform the long calculation on different groups of the incoming events.

450 Developing Apama Applications 10.11.2

12 Testing and Tuning EPL monitors

The following code provides an example of performing the calculation in another context.
monitor parallel {

integer numTicks;
action onload() {

on all Tick() {
numTicks:=numTicks+1;
send NumberTicks(numTicks) to "output";

}
on all Calculate() as calc {

integer atNumTicks:=numTicks;
integer calcId:=integer.getUnique();
spawn doCalculation(calc, calcId, context.current())

to context("Calculation");
on CalculationResponse(id=calcId) as resp {

send CalculationResult(resp, atNumTicks, numTicks) to "output";
}

}
}
action doCalculation(Calculate req, integer id, context caller) {

float value:=actual_calculation_function(req);
send CalculationResponse(id, value) to caller;

}
}

For each Calculate event found, the event listener specifies a spawn...to statement that creates a
new context. All contexts have the same name — Calculation— and a different context ID. All
contexts can run concurrently.

A Calculation context might send a CalculationResponse event to the main context before the
main context sets up the CalculationResponse event listener. However, the correlator completes
the operations, including setting up the CalculationResponse event listener, that result fromfinding
a Calculate event before it processes the sent CalculationResponse event.

While the calculations are running, other Tick events might arrive from external components and
the correlator can process them.

The order in which CalculationResponse events arrive on the main context's input queue can be
different from the order of creation of the contexts that generated the CalculationResponse events.
The order of responses depends on when the calculation started and how long it took to complete
the calculation. The monitor instance in the main context uses the calcId variable to distinguish
responses.

Developing Apama Applications 10.11.2 451

12 Testing and Tuning EPL monitors

452 Developing Apama Applications 10.11.2

12 Testing and Tuning EPL monitors

13 Generating Documentation for Your EPL Code

■ Code constructs that are documented ... 454

■ Steps for using ApamaDoc ... 454

■ Inserting ApamaDoc comments ... 455

■ Inserting ApamaDoc tags ... 456

■ Inserting ApamaDoc references ... 459

■ Inserting EPL source code examples ... 460

■ Generating ApamaDoc from the command line ... 461

■ Generating ApamaDoc from an Ant script .. 463

Developing Apama Applications 10.11.2 453

Just as you can use the Javadoc tool to generate documentation for Java, you can use ApamaDoc
to generate documentation for EPL. ApamaDoc, which is based on Javadoc, generates reference
documentation from EPL source code. To enhance what ApamaDoc automatically generates, you
can insert annotations in block comments. Annotations are a mixture of text and tags.

ApamaDoc is an export wizard in Software AG Designer. It generates static HTML pages that
document the structure of all EPL code in a project. This includes the .mon files that you create as
well as all .mon files in all bundles that have been added to a project.

Alternatively, you can generate ApamaDoc using the apamadoc command-line tool or from an Ant
script.

Note:
ApamaDoc does not operate on .qry files. That is, you cannot use ApamaDoc to generate
reference documentation for Apama queries.

Code constructs that are documented
The ApamaDoc generates documentation for the following code constructs:

Monitors

Events (defined outside monitors)

Fields, constants and actions on events

Custom aggregate functions

Fields, constants and actions on custom aggregate functions

Plug-in import statements

By default, the ApamaDoc export wizard does not generate documentation for inner fields or
events of amonitor. If youwant to include inner fields and events of amonitor, generateApamaDoc
without a user interface using the --includeMonitorMembers option. See “Generating ApamaDoc
from the command line” on page 461 or “Generating ApamaDoc from an Ant script” on page 463
for more information.

To find out how ApamaDoc can be useful for documenting the storage and flow of personal data
within your application, see "Documenting personal data flows within an Apama application" in
Developing Apama Applications.

Steps for using ApamaDoc
The general steps for using ApamaDoc are as follows:

1. Create an Apama project in Software AG Designer.

2. Add a .mon file to your project.

454 Developing Apama Applications 10.11.2

13 Generating Documentation for Your EPL Code

3. In the .mon file, enhance the automatically generated documentation by adding annotations.
See “Inserting ApamaDoc comments” on page 455, “Inserting ApamaDoc tags” on page 456,
and “Inserting ApamaDoc references” on page 459.

4. Save and build the project.

5. Right-click the project name and select Export from the context menu.

6. In the Export dialog, expand Software AG, select ApamaDoc Export, and click Next.

7. Identify the folder that you want to contain the ApamaDoc output, and click Finish.

To view the ApamaDoc output, go to the output folder you identified and double-click the
index.html file. The generated ApamaDoc opens in your browser.

Try this with any project you already have, or with one of the demo projects. Even if you have not
added any ApamaDoc annotations, you can see that ApamaDoc automatically generates a lot of
documentation.

Inserting ApamaDoc comments
To augment the documentation automatically generated by ApamaDoc, insert comments in your
EPL files in the following format:

1. Start the comment with the /** characters, rather than the usual /* notation.

2. Enter the text you want to appear in the generated documentation.

3. After each newline, to continue the ApamaDoc comment, insert a * character at the beginning
of the next line.

4. As needed, insert one ormore tags for particular constructs. See “InsertingApamaDoc tags” on
page 456. Any tags must occur at the beginning of a newline (ignoring * and whitespace
characters). Documentation for a tag ends when you declare another tag or end the comment.

5. End the comment with the usual */ characters.

For example, your EPL code might look like this:
/**
* Called by the monitor when it executes the onload() action.
* This action maintains the configuration for this scenario.
* @param sId The scenario ID.
* @param updateCallback The callback after the configuration is updated.
*/

action init(string sId, action<> updateCallback) {
scenarioId:=sId;
route GetConfiguration(scenarioId);
listener l:=on Configuration(scenarioId=scenarioId) as c {

config := c.configuration;

Developing Apama Applications 10.11.2 455

13 Generating Documentation for Your EPL Code

defaultConfig := c.defaults;
configurationUpdated();
updateCallback();

}
listeners.append(l);

}

When ApamaDoc processes these comments, it removes initial and trailing whitespace and *
characters. For example, the ApamaDoc output would look like this:
init
void init(string sId, action< > updateCallback)
Called by the monitor during execution of the onload() action. This action
maintains the configuration for this scenario.
Parameters:

sId - The scenario ID.
updateCallback - The callback after the configuration is updated.

Listens:
com.apama.scenario.Configuration

Inserting ApamaDoc tags
ApamaDoc automatically generates documentation for EPL code constructs. To enhance the quality
of the documentation, you can insert tags that let you provide and link to additional information.
A tag begins with an @ symbol and is immediately followed by a name and other information. The
following table describes the tags you can insert.

Use ForDescriptionTag

Events, monitors,
and custom
aggregate functions

There are no restrictions on the name.
It can span multiple lines. It is ended
by the start of the next tag.

@author name

All code constructsThe optional description can be
anything pertinent to the deprecated

@deprecated [description]

construct. For example, you might
want to suggest a newer equivalent
or provide a reason for the
deprecation.

Actions and their
enclosing types

Documents events that are emitted.
eventRef specifies a link to an event
definition. The optional description

@emits eventRef [description]

can be anything pertinent to the
emitting of the event. See “Inserting
ApamaDoc references” on page 459.

Actions and their
enclosing types

Documents events that are enqueued.
eventRef specifies a link to an event
definition. The optional description

@enqueues eventRef [description]

can be anything pertinent to the
enqueueing of the event. See

456 Developing Apama Applications 10.11.2

13 Generating Documentation for Your EPL Code

Use ForDescriptionTag

“Inserting ApamaDoc references” on
page 459.

Actions and their
enclosing types

Documents events that are being
listened for. eventRef specifies a link
to an event definition. The optional

@listens eventRef [description]

description can be anything pertinent
to the event listener. See “Inserting
ApamaDoc references” on page 459.

Actions and custom
aggregate functions

Documents arguments to actions and
custom aggregate functions. codeRef
specifies the parameter name. The

@param codeRef [description]

description should be a sentence
describing the purpose of the
parameter and any constraints on the
permitted values that may be
specified.

All code constructsHides constructs fromApamaDoc.On
a line by itself, immediately precede

@private

the construct that you do not want to
generate documentation for with the
following:

/** @private */

Actions and custom
aggregate functions

Documents the return value of an
action or custom aggregate function.
The description should be a sentence

@returns description

describing the purpose of the return
value, and any pertinent information
about the possible values that may be
returned. Note that for backwards
compatibility reasons @return is
maintained as an alias for @returns.

Actions and their
enclosing types

Documents events that are being
routed. eventRef specifies a link to an
event definition. The optional

@routes eventRef [description]

description can be anything pertinent
to the routing of the event. See
“Inserting ApamaDoc references” on
page 459.

All code constructsThere are three forms of this tag. Each
form documents a relationship

@see

Developing Apama Applications 10.11.2 457

13 Generating Documentation for Your EPL Code

Use ForDescriptionTag

between a code fragment and some
other information.

@see "description"

Lets you insert text that explains the
relationship.

@see codeRef description

Lets you reference an EPL code
construct and describe the
relationship between this construct
and that construct. codeRef specifies
a link to some other EPL code. See
“Inserting ApamaDoc references” on
page 459.

@see linkText
[description]

Lets you specify an HTML link to an
external resource. Optionally, you can
add more information.

Actions and their
enclosing types

Documents events that are sent to a
channel. eventRef specifies a link to
an event definition. The optional

@sends eventRef [description]

description can be anything pertinent
to the sending of the event to a
channel. See “Inserting ApamaDoc
references” on page 459.

All code constructsDocuments when a code construct
was introduced. Replace versionwith

@since version

a particular version number, for
example, 9.9.

Actions and their
enclosing types

Lets you document the lifecycle of a
monitor. actionRef specifies a link to
an action definition. See “Inserting
ApamaDoc references” on page 459.

@spawns actionRef [description]

ActionsDocuments exceptions whichmay be
thrown from an action and the

@throws [description]

conditions which would cause the
action to throw an exception.

Events, monitors,
custom aggregate

Lets you specify a version of the
current incarnation of this code.

@version version

458 Developing Apama Applications 10.11.2

13 Generating Documentation for Your EPL Code

Use ForDescriptionTag

functions, and
import statements

Replace versionwith a particular
version number, for example, 9.9.

Inserting ApamaDoc references
Many ApamaDoc tags contain links to other parts of the EPL code. These tags specify one of the
following link types:

Code references

Type references

Event references

Action references

A code reference is a link to a monitor definition, an event type definition, an action definition,
a member (variable or named constant) declaration or an import declaration. A code reference has
two forms.

The first form links to constructs that are in the monitor definition or event type definition that
contains this ApamaDoc comment. The target of the link can be a variable declaration, named
constant declaration, import declaration, or action definition. The format for this code reference
is as follows:
[#] (member | import | (action()))

The hash symbol is optional. You must specify one of the following:

Name of a member (variable or named constant) that is in the monitor or event type definition
that contains this ApamaDoc comment.

Name of an item that is being imported in the monitor or event type definition that contains
this ApamaDoc comment.

Name of an action that is in the monitor that contains this ApamaDoc comment. If you specify
an action, the name of the action must end with parentheses. For example:
#updateOrder()

The second form links to constructs that are not in themonitor or event type definition that contains
this ApamaDoc comment. You can link to code constructs that are in the same package or in other
packages. The format for this code reference is as follows:
[package [. monitor].]type[#(member | import | (action()))]

Replace typewith the name of a monitor or event type definition. If the ApamaDoc comment is
in the same package as the link target, the package specification is optional. If you replaced type
with the name of an event that is defined in a monitor, you must replace monitorwith the name
of that monitor and you must specify the package name.

Developing Apama Applications 10.11.2 459

13 Generating Documentation for Your EPL Code

The hash symbol followed by a name is required when the link target is a variable declaration,
named constant declaration, import declaration, or action definition. If you specify an action, the
name of the action must end with parentheses.

If the code reference is valid the rendered HTML output contains a hyperlink to the referenced
code construct's documentation followed by the descriptions text, if any. If the reference is not
valid, the output displays only the tag's description text if you provided it.

A type reference is a subset of a code reference. It always links to amonitor or event type definition.

An event reference is a subset of a type reference. It always links to an event type definition.

An action reference is a subset of code reference. It always links to an action. The action can be in
an event type definition, in a monitor, or in an event type definition that is in a monitor.

Inserting EPL source code examples
ApamaDoc supports the <code>...</code> tag in ApamaDoc comments. You can use this tag to
specify code snippets as part of the comment. In this case, you need not specify the comment
character (*) at the beginning of each line.

The ApamaDoc <code> tag is a block element, and is not the same as the HTML <code> tag that is
used for inline markup. Unlike the HTML <code> tag, the ApamaDoc <code> tag preserves the
indentation and line breaks of the code snippet. You need not use the HTML
 tag to force a
line break.

If you want to mark up pieces of program code within the running text, use the HTML tag <tt>.

In many cases, you can enter the less-than (<) and greater-than (>) signs as they are. However, you
need to take care when you have text that is enclosed in these signs in your comment and which
has no spaces between the text and these signs (for example, sequence<string>). This will be
interpreted as anHTML tag. To avoid this,we recommend that you always add spaces (for example,
sequence< string >). If this is not possible for your particular use case, you have to use the <
and > entities instead (for example, sequence<string>). So check the generated result
carefully if you are using these signs.

Example:
/**
* This is an example of a comment.
*
* When using the <tt>code</tt> tag, all indentation and line breaks
* are preserved.
<code>
sequence< string > s :=

["Something", "Completely", "Different"];
print ", ".join(s);
</code>
* Note that the above < and > signs will be generated unchanged
* because spaces have been added.
*/

Note:

460 Developing Apama Applications 10.11.2

13 Generating Documentation for Your EPL Code

If you have to use the special symbol @ within the ApamaDoc <code>...</code> tag, you must
use the HTML ASCII code @ instead of the symbol. Otherwise, this will be interpreted as
an ApamaDoc tag (such as @param).

Generating ApamaDoc from the command line
The apamadoc tool generates HTML documentation in ApamaDoc format from EPL files (.mon
files).

The executable for this tool is located in the bin directory of the Apama installation. Running the
tool in the Apama Command Prompt or using the apama_envwrapper (see "Setting up the
environment using the ApamaCommand Prompt" inDeploying andManaging Apama Applications)
ensures that the environment variables are set correctly.

Synopsis

To generate HTML documentation from EPL files using the apamadoc tool, run the following
command:
apamadoc [options] output_folder input...

When you run this command with the --help option, the usage message for this command is
shown.

Description

The apamadoc tool generates the HTML documentation in the specified output folder, using the
input method described below.

You can view the ApamaDoc by opening output_folder/index.html in a web browser.

Options

The apamadoc tool takes the following options:

DescriptionOption

Uses the specified title in the generated
documentation.

-t title

Generates documentation for elements marked as
private.

-p

Generates verbose output on standard output.-v

Generates documentation for monitor members. By
default, ApamaDoc is only generated for the API

--includeMonitorMembers

exposed by the specified EPL files. The members of
monitors are therefore not generated (for example,

Developing Apama Applications 10.11.2 461

13 Generating Documentation for Your EPL Code

DescriptionOption

inner events, variables and constants, fields in events,
and actions).

Displays usage information.--help | -help | -h

Operands

The apamadoc tool takes the following operands:

DescriptionOperand

The name of the folder in which the documentation
is to be generated.

output_folder

The input method. Specify one or more of the
following (you can specify any combination of these):

input

A file containing a list of EPL files, separated by
newlines. The filename must be preceded by an
ampersand (@). For example, @epl_list.txt.

A folder that is recursively searched for the EPL
files.

An EPL file.

If the same EPL file occurs more than once in the
input, this file is only processed once.

If an input file or folder is not found, the apamadoc
tool reports an error. Documentation is not generated
in this case.

Examples

The following examples show the different ways in which the apamadoc tool can be started:

Generate documentation in the doc folder, using the EPL files listed in the epl_list.txt file:
apamadoc doc @epl_list.txt

Generate documentation as above, but with “Example” as the title in the generated
documentation:
apamadoc -t "Example" doc @epl_list.txt

Generate documentation in the doc folder, recursively processing the EPL files in the src/epl
folder with verbose output enabled:
apamadoc -v doc src/epl

462 Developing Apama Applications 10.11.2

13 Generating Documentation for Your EPL Code

Generate documentation in the doc folder from the src/epl/example.mon file only:
apamadoc doc src/epl/example.mon

Generate documentation in the doc folder, using the following: the EPL files listed in the epl_
list.txt file, the EPL files recursively found in the src/epl folder, and the myepl.mon file from
the parent folder:
apamadoc doc @epl_list.txt src/epl ../myepl.mon

.

Generating ApamaDoc from an Ant script
GeneratingApamaDoc fromanAnt script is useful if youwant to controlwhatApamaDoc generates
without user-interface intervention, for example, when you are running nightly build integrations.
Also, using the Ant script, you can control which files are exported and which files are omitted.
See the generate-apamadocmacro definition in the apama-macros.xml Ant script for more details.
You can find this Ant script in the etc directory of your Apama installation.

To generate ApamaDoc from an Ant script, you have to create a build.xml Ant script that uses
the generate-apamadocmacro to build ApamaDoc for the EPL files you wish to document. For
example:
<?xml version="1.0" encoding="UTF-8"?>
<project name="" default="apamadoc" basedir=".">
<property environment="env"/>
<import file="${env.APAMA_HOME}/etc/apama-macros.xml"/>
<target name="apamadoc">

<generate-apamadoc outputDir="./apamadoc-output" title="ApamaDoc Title">
<!-- standard Ant fileset to specify which files should be documented -->
<fileset dir="./monitors">

<include name="**/*.mon"/>
</fileset>

</generate-apamadoc>
</target>

</project>

By default, ApamaDoc is only generated for the API exposed by the specified EPL files. The
members ofmonitors are therefore not generated (for example, inner events, variables and constants,
fields in events, and actions). This can be enabled, however, using the includeMonitorMembers
attribute.

Note:
The script that you use to generate ApamaDoc requires Apache Ant. To set the path
appropriately, it is recommended that you run your script from the Apama Command Prompt
(see "Setting up the environment using theApamaCommandPrompt" inDeploying andManaging
Apama Applications). If you do not use the Apama Command Prompt, then you must ensure
that the PATH variable contains an entry for the Ant installation folder (such as C:\ant), which
makes the Apama ant.bat file accessible to ApamaDoc generation.

Developing Apama Applications 10.11.2 463

13 Generating Documentation for Your EPL Code

464 Developing Apama Applications 10.11.2

13 Generating Documentation for Your EPL Code

II Developing Apama Applications in Java

14 Overview of Apama JMon Applications .. 467

15 Defining Event Expressions ... 487

16 Concept of Time in the Correlator .. 511

17 Developing and Deploying JMon Applications ... 517

Developing Apama Applications 10.11.2 465

466 Developing Apama Applications 10.11.2

II Developing Apama Applications in Java

14 Overview of Apama JMon Applications

■ Introducing JMon API concepts .. 469

■ About event types ... 470

■ About monitors ... 476

■ About event listeners and match listeners .. 477

■ Description of the flow of execution in JMon applications .. 479

■ Parallel processing in JMon applications .. 480

■ Identifying external events .. 483

■ Optimizing event types ... 483

■ Logging in JMon applications ... 485

■ Using EPL keywords as identifiers in JMon applications .. 486

Developing Apama Applications 10.11.2 467

This part provides information and instructions for using Apama's in-process API for Java, called
JMon, to write applications that run on the correlator. To develop an Apama application you can
use the correlator's native Event Processing Language (EPL) or JMon. This part focuses exclusively
on how to use JMon to write an application that runs on the correlator.

JMon reference documentation is provided in Javadoc format.

Important:
Apama provides both EPL and JMon as ways to create powerful Complex Event Processing
(CEP) applications. Both types of application can use Apama's event expressions to set up
listeners that detect patterns of events.With JMon, however, there are restrictions on theApama
capabilities that can be used. Therefore, for new applications SoftwareAG strongly recommends
choosing the more powerful EPL language over JMon. A common pattern for writing the main
logic and event expressions for a CEP application is to use EPL (not JMon), with the EPL code
calling Java plug-ins (see “Writing EPL Plug-ins in Java” on page 551) as needed for specific
operations such as invoking a third-party library. Keep in mind that a Java plug-in is not the
same as a JMon application, and JMon - though not deprecated - should be considered a legacy
feature. Any future enhancements in this area will be made to the Java plug-in mechanism and
not to JMon. Any customer application that needs to tightly integrate CEP logic with Java
libraries should use the more modern pattern of EPL calling into Java plug-ins.

JMon restrictions include:

Streams cannot be defined.
Multiple contexts are not supported.
Channels are not supported.
Decimal data types are not supported.
Other EPL plug-ins cannot be called.

The correlator is Apama's core event processing and correlation engine. Interfaces to the correlator
let you inject monitors that

Analyze incoming event streams to find patterns of interest

Specify the actions to undertake when the correlator identifies such patterns

You can use the Apama JMon API to write applications that are to be deployed on the correlator.

The correlator embeds a Java Virtual Machine in which Apama JMon applications can be loaded
and run.

The JMon API provides a suite of Java classes that allow a developer to build a Java application,
and then inject it into the correlator. Apama JMon applications can define listeners, which specify
patterns and sequences of events to look for and actions to carry out when the correlator detects
those events.

You can develop Apama JMon applications in Software AG Designer. When you use Software
AG Designer to develop an application, it can automatically generate a framework for your JMon
event and JMon monitor files.

For more information on developing JMon applications in Software AG Designer, see, "Adding a
new JMon application", "Adding a JMon monitor", and "Adding a JMon event" in Using Apama
with Software AG Designer.

468 Developing Apama Applications 10.11.2

14 Overview of Apama JMon Applications

Note:
Apama includes the in-process API for Java (JMon) and the client API for Java. In most cases,
the context makes it clear which API the discussion is addressing. When this is not clear, the
APIs are referred to as the JMon API or Apama client API for Java.

Introducing JMon API concepts
This section introduces the main concepts behind programming the functionality within Apama
using JMon. It describes how events are modeled in JMon and how they are used to drive and
trigger listeners within JMon monitor classes.

Apama is designed to fit within an event (or message) driven world. In event driven systems
information is propagated through units of information termed events ormessages. Conceptually,
an event typically represents an occurrence of a particular item of interest at a specific time, and
is usually encoded as an asynchronous network message.

Apama is designed to process thousands of these event messages per second, and to sift through
them for sequences of interest based on their contents as well as their temporal relationships to
each other. When writing Apama applications using JMon, the Java code you write informs the
correlator of the sequences of interest and, when matching event sequences are detected, these
are passed to your JMon code for handling. Apama's correlator component is capable of looking
for hundreds of thousands of different event sequences concurrently.

In order to program the correlator using JMon, a developer must write their application as a set
of Java classes that implement the JMon APIs. This programming model is similar to writing
Enterprise JavaBeans intended for use in an application server. These Java classes then need to be
loaded (or “injected”) into the correlator, which instantiates and executes them immediately.

Almost all of the standard language functionality provided by Java and its libraries can be used
in JMon applications, just as in any other Java applications. However, the power of the correlator
is only truly leveraged by invoking its eventmatching, correlation and event generation capabilities.
As streams of events are passed into a correlator, the listeners defined in JMon applications sift
through the events looking for specific sequences of interest matching a variety of temporal
constraints. Once a listener triggers, amethod is invoked on a Java object, theMatch Listener object.
The developer specifies this object when the listener is created.

Three kinds of Java class objects can be loaded into the correlator; event types,monitors andmatch
listeners.

Event type classes serve to define the event types that the correlator can accept from external
sources and carry out correlations on.

Monitor classes program the correlator. They define what event patterns the correlator must
look for and allow arbitrary Java code to be executed.

Match listeners provide a method that is called when a specific event sequence is detected.

These three Java class types will be now be discussed in detail.

Developing Apama Applications 10.11.2 469

14 Overview of Apama JMon Applications

About event types
Apama events are strongly typed. Each event must be of a specific known type, henceforth called
the event type. An event type defines the name of the event, and its particular set of parameters.
Every parameter is named and can be one of a selection of types. Every event instance of a given
event type is therefore identical in structure; every instance has the same set (and order) of
parameters.

Before the correlator can understand and process events of a specific event type, it needs to have
been provided with an event type definition. This allows it to understand the event messages it is
passed, create optimal indexing structures, and allows listeners to be set up to look for event
sequences involving events of that type.

An event type definition defines the event type's name and the name, type and order of each of
its parameters. Parameters can be of any of the following types:

Java standard types String, long, double, boolean or Map.

Java arrays.

com.apama.jmon.Location type — This type corresponds to either a spatial point represented
by two coordinates, or a rectangular space expressed in terms of its two bounding corners.

Apama's JMon API supports Java generic maps. Apama recommends that you use these when
possible instead of the Event.getMapFieldTypes()method. Doing so lets you gain the benefits of
compile-time type safety as well as a simpler class definition.

However, while it is valid to declare a parameter to be an array of generic maps, assignment of
values to the map elements is not type-safe, and will be rejected by the Java compiler. If you need
a parameter that is an array ofmaps, use the Event.getMapFieldTypes()method instead of generic
maps.

You can nest a plain Map as a value (not a key) at any depth in a parameterized Map. You cannot
nest a parameterized Map in a plain Map. This is because you would not be able to specify the
parameterized types to be returned from the getMapFieldTypes()method. Of course, you can nest
a parameterized Map as a value (but not a key) in a parameterized Map. For example:

EPL:
event BadComplexEventExample {

dictionary <string , dictionary <string, SimpleEvent>> complex;
}

Java:
import java.util.Map;
import java.util.HashMap;
import com.apama.jmon.Event;
public class BadComplexEventExample extends Event {

// By using a non-parameterized map you lose the information that the
// field is a dictionary with values that are also dictionaries.
public Map complex;

470 Developing Apama Applications 10.11.2

14 Overview of Apama JMon Applications

public BadComplexEventExample() {
this(new HashMap());

}

public BadComplexEventExample(Map complex) {
this.complex = complex;

}
}

See also the definition of ComplexEvent in “About event parameters that are complex types” on
page 473.

An event can embed an event (potentially of a different type) as a parameter.

Simple example of an event type
An event type is defined as a Java class as per the following example,
/*
* Tick.java
*
* Class to abstract an Apama stock tick event. A stock tick event
* describes the trading of a stock, as described by the symbol
* of the stock being traded, and the price at which the stock was
* traded
*/

import com.apama.jmon.Event;

public class Tick extends Event {
/** The stock tick symbol */
public String name;

/** The traded price of the stock tick */
public double price;

/**
* No argument constructor
*/

public Tick() {
this("", 0);

}

/**
* Construct a tick object and set the name and price
* instance variables
*
* @param name The stock symbol of the traded stock
* @param price The price at which the stock was traded
*/

public Tick(String name, double price){
this.name = name;
this.price = price;

}
}

By Java programming conventions, the previous definition would need to be provided on its own
in a stand-alone file, for example, Tick.java.

Developing Apama Applications 10.11.2 471

14 Overview of Apama JMon Applications

The definition must import the definition of the Event class. This is provided as part of the
com.apama.jmon package providedwith yourApamadistribution. See “Developing andDeploying
JMon Applications” on page 517 on installation and deployment for details of where to locate this
package.

Event is the abstract superclass of all user classes implementing desired event types. Thenwemust
define our new event class as a subclass of the Event type.

The user-defined event class must have three primary elements:

A set of public variables that define the event's parameters

A “no argument” constructor, whose purpose is to construct an instance of the event with the
parameters set to default values

A constructor whose parameter list corresponds (in type and order) to the event's parameters.
This constructor allows creation of an instance of the event with specific parameter values.

In the above example the event is called Tick, and it has two parameters, name, of type String, and
price, of type double. The previous definition may be considered a simple template for how to
write all event definitions.

Note:
Non-public (like private and protected) variables are not considered to be part of the event
schema.

Extended example of a JMon event type
Let us now consider an extended example:
package test.jmon.example;

import java.util.Map;
import com.apama.jmon.*;

/*
* TestEvent.java
*
* Class to abstract an Apama event whose primary purpose is to
* showcase how to define an event class containing parameters of
* all the allowed types, including arrays and Maps.
*/

public class TestEvent extends Event {

// example of parameters of the basic types
public long primitiveInteger;
public double primitiveFloat;
public boolean primitiveBoolean;
public String referenceString;

// example of parameters consisting of arrays of the basic types
public long[] sequenceInteger;
public double[] sequenceFloat;
public boolean[] sequenceBoolean;

472 Developing Apama Applications 10.11.2

14 Overview of Apama JMon Applications

public String[] sequenceString;

// a nested event of type EmbeddedTestEvent
public EmbeddedTestEvent referenceNestedTestEvent;

// a parameter of type Location
public Location referenceLocation;

// a parameter of type Map
public Map<long, String> dictionaryIntegerString;

. . .

}

Comparing JMon and EPL event type parameters
Youmight already be familiar with EPL, the Apama complex event processing scripting language
through which the correlator can be programmed as an alternative to JMon. Event types defined
in JMon can be used in EPL, and vice-versa. JMon event type parameters map to EPL parameter
types as follows:

Equivalent EPL TypeJMon Type

integerlong

floatdouble

booleanboolean

stringString

locationLocation

sequence (of the same type)array

dictionary (with the same key and value types)Map

event (with the same equivalent subset of fields
as defined in this table)

com.apama.jmon.Event or its subclass

The correlator's performance can be optimized by wildcarding event type definitions where
appropriate. This procedure is described in “Optimizing event types” on page 483.

About event parameters that are complex types
It is possible in both EPL and JMon to declare a field of an event definition to be a complex type.
For example, the SequenceEvent definition below defines an event that is constructed from a
sequence of DataHolder events, which in turn contain a string and an integer. This is defined in
EPL in two events thus:
event DataHolder {

string name;
integer age;

Developing Apama Applications 10.11.2 473

14 Overview of Apama JMon Applications

}

event SequenceEvent {
sequence <DataHolder> complex;

}

An example constructed SequenceEvent event is show below:
SequenceEvent([DataHolder("kap", 1), DataHolder("gbs", 2)])

The equivalent event definitions for the above in Java are defined below:
import com.apama.jmon.Event;

public class DataHolder extends Event {
/** Event fields */
public String name;
public long age;

/** No argument constructor
*/
public DataHolder () {

this("", 0);
}
/** Construct a DataHolder object and set the instance variables
*/
public DataHolder (String n, long a) {

name = n;
age = a;

}
}

import com.apama.jmon.Event;

public class SequenceEvent extends Event {

/** Event field */
public DataHolder[] people;

/** No argument constructor
*/
public SequenceEvent() {

this(new DataHolder[]{});
}

/** Construct a SequenceEvent object and set the instance variable
*/
public SequenceEvent(DataHolder[] p) {

this.people = p;
}

}

Sample Java code to create and emit a SequenceEvent event is shown below:
s = new SequenceEvent(new DataHolder[] {new DataHolder("kap", 1),
new DataHolder("gbs", 2)});

s.emit();

474 Developing Apama Applications 10.11.2

14 Overview of Apama JMon Applications

Events can also include Map types, which are equivalent to EPL dictionary types. When you use
Map types, Apama recommends that you use generic maps whenever you can. For example, in
EPL the following event is a dictionary of dictionaries and each internal dictionary is a sequence
of SimpleEvent types:
event ComplexEvent {
dictionary <string,

dictionary <string, sequence<SimpleEvent>>> complex;
}

You can implement this in Java as follows:
import java.util.Map;
import java.util.HashMap;
import com.apama.jmon.Event;
import com.apama.jmon.annotation.EventType;

@EventType(description = "Event that contains a field with a complex structure")
public class ComplexEvent extends Event {

/** Event field */
public Map<String, Map<String, SimpleEvent[]>> complex;
/**
* No argument constructor
*/
public ComplexEvent() {

this(new HashMap<String, Map<String, SimpleEvent[]>>());
}

/**
* Construct a ComplexEvent object, set the instance variable complex
*
* @param complex The dictionary/Map to use as the field value
*/
public ComplexEvent(

Map<String, Map<String, SimpleEvent[]>> complex) {
this.complex = complex;

}
}

This example is provided in its complete form as a sample. It is distributed in the folder samples/
java_monitor/complex_event/.

Non-null values for non-primitive event field types
When the correlator creates an event to pass to the JMon code, it ensures that all fields of a
non-primitive type have a non-null value. Note that this is different from the Java default, which
is to allow null values for non-primitive types.

The com.apama.jmon.Event default constructor uses reflection to initialize non-primitive null fields
with the following values:

sequence— an empty array of the specified type.

dictionary— an empty java.util.HashMap object.

Developing Apama Applications 10.11.2 475

14 Overview of Apama JMon Applications

string— an empty java.lang.String object.

event— a default construction of the event, with recursive initialization for any of its
non-primitive fields that have null values.

In your application, if you explicitly assign a null value to a non-primitive event field, and your
application tries to emit, enqueue, or route that event, the correlator logs an error and terminates
your application.

About monitors
Monitor classes configure the activity of the correlator. This is analogous to how an Enterprise
JavaBean effectively defines the activity of an application server.

All monitor classes must implement the com.apama.jmon.Monitor interface and define an onLoad
method. When a monitor class is loaded into the correlator, it is instantiated as an object and its
onLoadmethod is executed. In Java parlance, this would be equivalent to the static void main
(args[])method.

Most Java code (with certain limitations) can be executed within the onLoadmethod, although its
primary purpose is probably to configure one or more asynchronous listeners for specific events
or event sequences.

A monitor class must define a “no argument” constructor. The Java code within the correlator
uses this when the class definition is loaded.

Below is a minimal monitor:
import com.apama.jmon.*;

public class Simple implements Monitor {
/**
* No argument constructor used by the jmon framework on
* application loading
*/

public Simple() {}

/**
* Implementation of the Monitor interface onLoad method.
* Does nothing.
*/

public void onLoad() {
}

}

The abovemonitor class does nothing and is shown here as a template for how to define amonitor
class.

EPL.Although there are similarities, the concept of a monitor in EPL and in JMon is not the same.
The EPL monitor is a very powerful custom programming structure, whereas in JMon a monitor
class is primarily a standard Java class with an entry method that gets automatically executed
upon loading (as described in the topics below).

476 Developing Apama Applications 10.11.2

14 Overview of Apama JMon Applications

About event listeners and match listeners
For a monitor class to leverage the intrinsic features of the correlator, it must set up one or more
listeners.

A listener is a conceptual entitywhose function is to sift through all incoming event streams looking
for a particular event or sequence of events. The event or sequence of events of interest is
represented as an event expression.

The simplest way of setting up a listener is by creating an instance of an EventExpression and then
specifying a MatchListener object that gets triggered when the expression becomes true, that is,
when a suitable event or event sequence is detected. Amore efficient alternative is to use a prepared
event expression, which is described in “Optimizing event types” on page 483.

Amatch listener is a Java object that implements the com.apama.jmon.MatchListener interface and
implements the matchmethod. This method is called by the correlator when the event expression
it is registered with is detected.

Example of a MatchListener
The following example illustrates this functionality:
import com.apama.jmon.*;
public class Simple implements Monitor, MatchListener {

/**
* No argument constructor used by the jmon framework on
* application loading
*/

public Simple() {}
/**
* Implementation of the Monitor interface onLoad method. Sets up
* a single event expression looking for all Tick events
* with a trade price of greater than 10.0. This class instance
* is added as a match listener to the event expression.
*/

public void onLoad() {
EventExpression eventExpr = new EventExpression("Tick(*, >10.0)");
eventExpr.addMatchListener(this);

}

/**
* Implementation of the MatchListener interface match method.
* Prints out
* a message when the listener triggers
*/

public void match(MatchEvent event) {
System.out.println("Pattern detected");

}
}

This example illustrates several new concepts.

Developing Apama Applications 10.11.2 477

14 Overview of Apama JMon Applications

Consider the onLoadmethod. Firstly it creates an event expression object variable. This object, of
type com.apama.jmon.EventExpression, represents an event, or sequence of events, to look for. The
constructor of an EventExpression is passed a string that defines the actual event expression.

As the syntax of an event expression will be illustrated in the next section it is enough to say that
this event expression is specifying “the ”first“ ”Tick“ event whose ”price“ parameter is greater
than the value ”10.0.

Then, amatch listener is registeredwith the newly created event expression object. Amatch listener
can be any object that implements the com.apama.jmon.MatchListener interface and defines the
match(MatchEvent event)method. For the sake of simplicity, the Simplemonitor class has here
been written to also implement the MatchListener interface, and therefore the statement,
eventExpr.addMatchListener(this);

is passing this as the reference to a suitable MatchListener.

Once amatch listener has been registeredwith an event expression the correlator creates a listener
entity to start looking for the specified event expression.

Listeners are asynchronous. Hence the matchmethod may be invoked at any time subsequent to
the activation of the listener, but always after all Java code in the currentmethod finishes executing.
Therefore in this case all Java statements in the onLoadmethodwould finish being executed before
match is called after a match.

Defining multiple listeners
A monitor can define any number of event expressions, and create any number of listeners. The
following code,
public void onLoad() {

EventExpression eventExpr1 = new EventExpression("Tick(*, >10.0)");
EventExpression eventExpr2 =

new EventExpression("NewsItem(\"ACME\", *)");

eventExpr1.addMatchListener(this);
eventExpr2.addMatchListener(this);

}

is creating two event expressions, eventExpr1 and eventExpr2. Then each is assigned a match
listener, thus activating two distinct listeners. The fact that both are being assigned the samematch
listener object, i.e. this same object this, is inconsequential. It just means that the same method,
the matchmethod of this object, will be called when the correlator detects either of the event
expressions.

As already described, creating a listener is an asynchronous operation that returns immediately.
In the above code, in practice both listeners are created concurrently. It is not possible for the
eventExpr1 listener to trigger before the eventExpr2 listener is created. However, once the enclosing
method's code has completed execution, the listeners can trigger at any time, and independently
of each other.

478 Developing Apama Applications 10.11.2

14 Overview of Apama JMon Applications

Removing listeners
A MatchListener instance that is no longer connected to an event expression, and to which there
are no references, is garbage collected in the usual way. In some situations, you might want to be
notified when the correlator removes its reference to the MatchListener (when it can no longer
fire). For example, youmight need this notification if the MatchListener has unmanaged resources
(for example, open files) that need to be explicitly cleaned upwhen it is no longer needed, or your
application has other references to the MatchListener that need to be removed when the listener
can no longer fire so that it can be garbage collected. In those situations, you can define your
listener so that it implements the com.apama.jmon.RemoveListener interface. There is no requirement
to implement this interface. It is up to you to determine whether you need it.

The RemoveListener interface extends the MatchListener interface by providing one additional
method: removed(). If you implement the RemoveListener interface, the correlator calls your
implementation of the removed()method in the following situations:

The application removes your listener from the event expression it is attached to.

The event expression your listener is attached to is in a state that will nevermatch. For example,
on A() within (10.0) after 10 seconds have elapsed without an A().

In the following example, the removed()method is called because the event expression dies after
10 seconds.
import java.util.HashMap;
import com.apama.jmon.*;

public class Test implements Monitor {
public Test() {}
public void onLoad() {

EventExpression e = new EventExpression("TestEvent() within(10.0)");

e.addMatchListener(new RemoveListener() {
public void match(MatchEvent event) {

System.out.println(Correlator.getCurrentTime() +
": Received match");

}
public void removed(EventExpression e) {

System.out.println(Correlator.getCurrentTime() +
": Received removed");

}
});

}
}

Description of the flow of execution in JMon
applications
The flow of execution of JMon applications through the correlator at any given time is single
threaded. All the listeners of JMon applications are fired in a single-threaded manner. However,
during the lifetime of a JMon application, its executionmay bemoved among a number of threads

Developing Apama Applications 10.11.2 479

14 Overview of Apama JMon Applications

by the correlator. This is particularly important since thread-local variables will not behave in the
same way as you would expect them to in a conventional Java application.

When a number of monitor classes are loaded into the JVM within the correlator their onLoad
methods are executed in turn, in the same order as the injected classes, and any listeners created
are set up and activated.

Control then reverts to the correlator, which takes in one event from its input queue. This event
is examined by each of the active listeners in turn (the order is undefined), and each one that
triggers immediately calls the match()method in its registered MatchListener object.

Once all the listeners have processed the event (and hence all matchmethods terminated), control
reverts to the correlator to process the next input event. Note that since events can also match
listeners in EPL monitors, these would also be processed before control reverts.

However, JMon applications can create other Java threads. In such multi-threaded JMon
applications, the correlator has no control of these additional Java threads. Consequently, you
should never route or emit an event from a Java thread that was not the thread in which the
correlator invoked the JMon application. Doing this results in unpredictable behavior. To
communicate fromyour JMon application to other parts of the correlator, use the enqueue()method
or preferably, the enqueueTo()method.

Parallel processing in JMon applications
By default, the correlator operates in a serial manner. If you want, you can implement contexts
for parallel processing. You can create contexts only with EPL but you can then use those contexts
from your Apama JMon code. This section provides information about how to use contexts in
Apama JMon applications.

For general information about contexts and instructions for creating contexts, see “Implementing
Parallel Processing” on page 287.

You can find a sample JMon application that implements the use of contexts in the samples\java-
monitor\context directory of your Apama installation directory.

Overview of contexts in JMon applications
The Apama JMon API provides the com.apama.jmon.Context type. This class corresponds to the
EPL context type, but with a more limited set of features:

A JMon event definition can contain a Context type field. This lets you transfer a reference to
a context to and from anApama JMon application. You cannot pass context references between
the correlator and your Apama JMon application on their own.

You can enqueue events to

Particular contexts:Event.enqueueTo(Context c)

A list or array of contexts:
Event.enqueueTo(java.util.List<Context> ctxList)

480 Developing Apama Applications 10.11.2

14 Overview of Apama JMon Applications

Event.enqueueTo(Context[] ctxList)

See “Emitting, routing, and enqueuing events” on page 493.

You can call Context.getCurrent() to obtain a reference to the context that a piece of code is
running in. See “Obtaining context references” on page 292.

The Context class provides accessor methods for context properties such as context name and
context ID.

Using contexts in JMon applications

To use EPL contexts in JMon applications

1. In EPL code, create a context that you want to use in your JMon application.

2. In your JMon application, define an event type that contains a Context field.

3. Use this event type to obtain a reference to the context you created in EPL.

4. Use the context reference to enqueue events to that context.

For an example, see the samples\java-monitor\context directory in your Apama installation
directory.

Using the Context class default constructor
The com.apama.jmon.Context class default constructor, public Context(), creates a dummy context
that provides the same functionality as an uninitialized context variable in EPL. A JMon dummy
context does not correspond to an actual correlator context. The JMon dummy context corresponds
to the implicit context that is created in EPL for uninitialized context variables. The default
constructor is provided for convenience. Use it when you want to enqueue an event to another
context from a JMon application and the event happens to have a context field that contains an
irrelevant value. As with other JMon types, this value cannot be null. Following is an example,
beginning with the event definition:
import com.apama.jmon.*;

public class ContextEvent extends Event {
public long id;
public boolean req;
public Context c;
public ContextEvent(long id) {

this.id = id;
this.req = true;
this.c = new Context();

}
}

Here is the JMon application:

Developing Apama Applications 10.11.2 481

14 Overview of Apama JMon Applications

public class SampleJMonApp implements Monitor {
...
public void onLoad() {
...
ContextEvent req = new ContextEvent(service_id);
...
// send requests here
req.route();
...
EventExpression cexpr =

new EventExpression("all ContextEvent(*,false,*):ackEvt");
cexpr.addMatchListener(new MatchListener() {

public void match(MatchEvent event){
ContextEvent ackEvt =
(ContextEvent)event.getMatchingEvents().get("ackEvt");
// extract the context here
Context serviceContext = ackEvt.evt;
...

}
});

}
...

}

Here is the EPL application:
monitor ContextFactory
{

...
action onload() {
...

on all ContextEvent(*, true, *) as req {
integer svcid;
...
context serviceContext := context("svc");
ContextEvent ack :=

ContextEvent(svcid, false, serviceContext);
route ack;
...

}
}
...

}

Descriptions of methods on the Context class
You can call the following methods on a Context object. For more information, see the description
of the context type in the API Reference for EPL (ApamaDoc).

public long getId()

Returns the unique identifier for the context. For a Context instance that would return the
following toString() result: "context(2,"context_name",false)", the getId()method returns
the value 2. This method returns 0 for a Context instance created with the default constructor.

public String getName()

482 Developing Apama Applications 10.11.2

14 Overview of Apama JMon Applications

Returns the name of the context. For example, suppose you create a context with the following
EPL code:

context c := context("test");

If you transfer a reference to this context into your JMon application, a call to the getName()
method on this context instance returns "test".

Thismethod returns an empty string for a Context instance createdwith the default constructor.

public String toString()

Returns a string representation of the context instance. This method produces a string that is
identical to the string that EPL produces. For example: "context(2,"context_name",false)".
The first item in the string, 2 in this example, is the context's unique identifier. The second item
in the string, "context_name", is the name of the context. The third item in the string is the
value of the receivesInput boolean flag, which indicates whether the context is public or
private.

This method returns "context(0,"",false)" for a Context instance created with the default
constructor.

For details about public and private contexts, see “Implementing Parallel Processing” on
page 287 and “Creating contexts” on page 290.

public static Context getCurrent()

Returns a Context instance that corresponds to the current correlator context. This is the context
that contains the code that you are calling. Apama executes single-threaded JMon applications
in the main correlator context. Consequently, this method always returns a Context instance
that references the main correlator context.

During execution, JMon applications can create new Java threads. Do not confuse new threads
with correlator contexts. The Context.getCurrent()method returns null when you call it inside
newly created Java threads.

Identifying external events
In some situations, youmightwant to determinewhether an event originated outside the correlator.
To do this, call the Event.isExternal()method:
public boolean isExternal()

This method returns true if the event was sent to the correlator by some external process and that
event was then passed into your JMon application.

Optimizing event types
“About event types” on page 470 introduced event type classes.

Developing Apama Applications 10.11.2 483

14 Overview of Apama JMon Applications

The correlator creates several indexing data structures for every event type. The complexity and
efficiency of these data structures depends on the number of parameters an event has, and therefore
“smaller” (with less parameters) events are processed more rapidly.

Therefore, if possible, when designing an application it is preferable to control it using a number
of “smaller” event types rather than through a single event typewith a large number of parameters.

Wildcarding parameters in event types
Alternatively, if large event types are unavoidable, you can optimize performance by reviewing
the usage of these event types in JMon, specifically within event templates in event expressions.

If a parameter of an event is never matched against directly within any event expressions, that is
only * (or wildcard) ever appears against it in event templates, then the event type's definition
can be amended to indicate this. This tells the correlator to ignore this parameter in its internal
indexing.

Consider the event type definition presented in “About event types” on page 470.
/*
* Tick.java
*
* Class to abstract an Apama stock tick event. A stock tick event
* describes the trading of a stock, as described by the symbol
* of the stock being traded, and the price at which the stock was
* traded
*
*/
import com.apama.jmon.Event;

public class Tick extends Event {
/** The stock tick symbol */
public String name;

/** The traded price of the stock tick */
public double price;

/**
* No argument constructor
*/

public Tick() {
this("", 0);

}

/**
* Construct a tick object and set the name and price
* instance variables
*
* @param name The stock symbol of the traded stock
* @param price The price at which the stock was traded
*/

public Tick(String name, double price){
this.name = name;
this.price = price;

}
}

484 Developing Apama Applications 10.11.2

14 Overview of Apama JMon Applications

If all references to this event type in event expressions look similar to this,
Tick("ACME", *)

that is, where the second parameter price is always specified as a *, then this parameter could be
wildcarded in the event type definition.

This can be done by annotating the field in the event type class, as shown here
/** The traded price of the stock tick */
@com.apama.jmon.annotation.Wildcard
public double price;

This definition in the Tick class will override the default behavior, and it lets the correlator know
that it can optimize its indexing by ignoring the price parameter.

As many parameters as desired can be wildcarded in this way. For example, if both price and
namewere to be wildcarded in Tick, they should be defined as follows,
/** The stock tick symbol */
@com.apama.jmon.annotation.Wildcard
public String name;

/**The traded price of the stock tick */
@com.apama.jmon.annotation.Wildcard
public double price;

Of course, if you were to do this, then
Tick(*, *)

would be the only valid event template that can be expressed in JMon. Any other expressionwould
cause a Java runtime error.

Logging in JMon applications
The logging facilities in JMon are provided by Log4j, a publicly available logging library for Java.
These logging facilities are included in com.apama.util.Logger. See the API Reference for Java
(Javadoc).

Note:
Full documentation for Log4j 2 can be found at https://logging.apache.org/log4j/2.x/.

It is recommended that you do not use the FATAL or CRIT log levels provided by the Logger class,
which are present only for historical reasons. It is better to use ERROR for all error conditions
regardless of how fatal they are, and INFO for informationalmessages. By default, the JMon classes
log at WARN level. See "Setting correlator and plug-in log files and log levels in a YAML configuration
file" inDeploying and Managing Apama Applications for information about configuring log levels in
the correlator.

To ensure that the correlator can serialize logging behavior, specify that instances of Logger are
static.

Developing Apama Applications 10.11.2 485

14 Overview of Apama JMon Applications

https://logging.apache.org/log4j/2.x/

Using EPL keywords as identifiers in JMon
applications
If you use EPL keywords as event name or field identifiers, then in the following situations you
must escape such identifiers by preceding them with hash (#) symbols:

You refer to the JMon identifier in EPL code: You must escape the identifier in the EPL code
that contains the reference.

You refer to the JMon identifier in a JMon event expression: You must escape the identifier in
that JMon event expression.

For example, consider the following Java code:
class test extends Event {

int id;
float price;
int integer;

}

Now suppose you want to write the following EPL code:
on all test(id=7) as f {

print f.toString();
emit f;

}

No escaping is necessary. However, suppose you want to write this EPL code:
print f.integer.toString();

In this case, you must escape integer as follows:
print f.#integer.toString();

Likewise, you must escape integer in the following JMon event expression:
new EventExpression("all test(#integer > 5)");

See also “Keywords” on page 711.

486 Developing Apama Applications 10.11.2

14 Overview of Apama JMon Applications

15 Defining Event Expressions

■ About event templates .. 488

■ Specifying parameter constraints in event templates ... 490

■ Obtaining matching events ... 492

■ Emitting, routing, and enqueuing events .. 493

■ Specifying temporal sequencing .. 495

■ Defining advanced event expressions .. 497

■ Optimizing event expressions ... 509

■ Validation of event expressions .. 510

Developing Apama Applications 10.11.2 487

Consider this code snippet from the previous example:
public void onLoad() {

EventExpression eventExpr =
new EventExpression("Tick(*, >10.0)");

eventExpr.addMatchListener(this);
}

The highlighted code is creating an event expression, and embeds the following event expression
definition string:
Tick(*, >10.0)

This is the simplest form of an event expression; specifically it contains a single event template.

In this case, the event expression is specifying “the first ”Tick“ event whose ”price“ parameter
contains a value greater than 10.0”.

If you are already familiar with EPL, the syntax for writing JMon event expressions is the same
as for EPL event expressions.

About event templates
The first part of an event template defines the event type of suitable events (in this case Tick),
while the section in brackets describes filtering criteria that must be applied to the contents of
events of the desired type for them to match.

In the example at the beginning of the chapter, the first parameter within the event template has
been set to a wildcard (*), specifying that all Tick events, regardless of the value of their name
parameter, are suitable. That is, as long as their second parameter, price, is greater than 10.The
filtering criteria supplied are applied to the event's contents in the same order as within the event
definition for that event type. This is known as positional syntax.

“Specifying parameter constraints in event templates” on page 490 lists all the filtering operators
(like >) that can be applied to the value of a parameter within an event template.

Specifying positional syntax
In positional syntax, the event template must define a value (or a wildcard) to match against for
every parameter of that event's type, in the same order as the parameter's definition in the event
type definition. Therefore, for the event type,
public class MobileUser extends Event {

public long userID;
public Location position;
public String hairColour;
public String starsign;
public long gender;
public long incomeBracket;
public String preferredHairColour;
public String preferredStarsign;
public long preferredGender;
// ... Constructors

488 Developing Apama Applications 10.11.2

15 Defining Event Expressions

}

a suitable event template definition might look like
MobileUser(*,*, "red", "Capricorn", *, *, *, *, 1)

This can get unwieldywhen you are working with event types with a large number of parameters
and very few of them are actually being used to filter on. An alternative syntax can be used that
addresses this. The above can instead be expressed as:
MobileUser(hairColour="red", starsign="Capricorn",
preferredGender=1)

This is known as named parameter syntax and in this style all other non-specified fields are set
to wildcard.

Given the following event types:
public class A extends Event {

public long a;
public String b;

// ... Constructors
}

public class B extends Event {
public long a;

// ... Constructors
}

public class C extends Event {
public long a;
public long b;
public long c;

// ... Constructors
}

Here are some equivalent event expressions that demonstrate how to use the two syntaxes:

Name/Value SyntaxPositional Syntax

on A(a=3,b="string")on A(3,"string")Using constants
and literals

on A(b="string",a=3)on A(=3,="string")

on B(a>3)on B(>3)Relational
comparisons

on B(a in [2:3])on B([2:3])Ranges

on C(b=4)on C(*,4,*)Wildcards

on C(a=*,b=4,c=*)on C(*,*,*)

on C()

Developing Apama Applications 10.11.2 489

15 Defining Event Expressions

More details about the operators and expressions possible within event templates are given in the
next section.

Note that it is possible to mix the two styles as long as you specify positional parameters before
named ones. There cannot be any positional parameters after named ones. Therefore the following
syntax is legal:
D(3,>4,i in [2:4])

while the following is not:
E(k=9,"error")

Specifying completed event templates
In some situations, youwant to ensure that the correlator completes all work related to a particular
event before your application performs some other work. In your event template, specify the
completed keyword to accomplish this. For example:
on all completed A(f < 10.0) {}

When an event that matches the template comes into the correlator, the correlator

1. Runs all of the event's normal and unmatched listeners.

2. Processes all routed events that result from those listeners.

3. Calls the completed listeners.

Specifying parameter constraints in event templates
The first part of an event template defines the event type of the event the listener is to match
against, while the section in brackets describes further filtering criteria that must be satisfied by
the contents of events of that type for a match.

Event template parameter operators specify constraints that definewhat values, or range of values,
are acceptable for a successful event match.

MeaningOperator

Specifies a range of values that canmatch. The values themselves
are included in the range to match against. For example:

[value1 : value2]

stockPrice(*, [0 : 10])

This event template will match a stockPrice event where the
price is between 0 and 10 inclusive. This range operator can only
be applied to double and long types.

490 Developing Apama Applications 10.11.2

15 Defining Event Expressions

MeaningOperator

Specifies a range of values that can match. The first value itself
is includedwhile the second is excluded from the range tomatch
against. For example:

[value1 : value2)

stockPrice(*, [0 : 10))

This example will match a stockPrice event where the price is
between 0 and 9 inclusive (assuming the parameter was of long
type).

This range operator can only be applied to double and long types.

Specifies a range of values that can match. The first value itself
is excluded from while the second is included in the range to
match against. For example:

(value1 : value2]

stockPrice(*, (0 : 10])

This example will match a stockPrice event where the price is
between 1 and 10 inclusive (assuming the parameter was of long
type).

This operator can only be applied to double and long types.

Specifies a range of values that canmatch. The values themselves
are excluded in the range to match against. For example:

(value1 : value2)

stockPrice(*, (0 : 10))

This example will match if a stockPrice event where the price
is between 1 and 9 inclusive (assuming the parameter was of
long type).

This operator can only be applied to double and long types.

All values greater than the value supplied will satisfy the
condition and match.

> value

This operator can only be applied to double and long types.

All values less than the value supplied will satisfy the condition
andmatch.This operator can only be applied to double and long
types.

< value

All values greater than or equal to the value suppliedwill satisfy
the condition and match.

>= value

This operator can only be applied to double and long types.

All values less than or equal to the value supplied will satisfy
the condition and match.

<= value

Developing Apama Applications 10.11.2 491

15 Defining Event Expressions

MeaningOperator

This operator can only be applied to double and long types.

Only a value equivalent to the value supplied will satisfy the
condition and match.

value

A String value must be enclosed in double quotes (" "), and
therefore these need to be preceded with an escape character
inside event expression definitions in an EventExpression
constructor (\")

A Location value must consist of a structure with four doubles
representing the coordinates of the corners of the rectangular
space being represented.

Any value for this parameterwill satisfy the condition andmatch.*

Obtaining matching events
An event template provides a definition against which several event instances could match. Once
a listener triggers, sometimes it is necessary to get hold of the actual event thatmatched the template.

This can be achieved through event tagging.

If you are familiar with EPL, event tagging in JMon is similar in principle to variable coassignment
in EPL. For this reason the term coassigned is sometimes used to refer to event tagging.

Consider this revised Simplemonitor:
import com.apama.jmon.*;

public class Simple implements Monitor, MatchListener {

/**
* No argument constructor used by the jmon framework on
* application loading
*/

public Simple() {}

/**
* Implementation of the Monitor interface onLoad method. Sets up
* a single event expression looking for all stock trade events
* with a trade price of greater than 10.0. This class instantiation
* is added as a match listener to the event expression.
*/

public void onLoad() {
EventExpression eventExpr = new EventExpression("Tick(*, >10.0):t");
eventExpr.addMatchListener(this);

}

/**
* Implementation of the MatchListener interface match method.
* Extracts the tick event that caused the event expression to

492 Developing Apama Applications 10.11.2

15 Defining Event Expressions

* trigger and emits the event onto the default channel
*/

public void match(MatchEvent event) {
Tick tick = (Tick)event.getMatchingEvents().get("t");
System.out.println("Event details: " + tick.name

+ " " + tick.price);
tick.emit();

}
}

Note the revised event expression
Tick(*, >10.0):t

This specifies that when a suitable Tick event is detected, it must be recorded with the t tag. This
allows a developer to get hold of the actual event that matched the event expression within the
registered match listener's matchmethod.

Once the eventExpr listener detects a suitable event it will trigger and call match, passing to it a
MatchEvent object. This object embeds within it all the individual event instances that together
caused the event expression to be satisfied and were tagged.

In this example our event expression still consists of a single event template, and since this is
tagged, then the MatchEvent object will contain the single Tick event that triggered the eventExpr
listener. This will be tagged as t.

A MatchEvent object has two methods:

HashMap getMatchingEvents() - Get the set of tagged Events that caused thematch. Thismethod
returns a Map of the tagged Event objects that hold the values that matched the source
EventExpression.

Event getMatchingEvent(String key) - Get one of the tagged Events that caused the match.
This method returns the tagged Event object that matched in the source EventExpression.

For complete class and method signatures, refer to the API Reference for Java (Javadoc).

The lines:
Tick tick = (Tick)event.getMatchingEvents().get("t");

or
Tick tick = event.getMatchingEvent("t");

show how the tagged event can be extracted by using the tag as a key.

Emitting, routing, and enqueuing events
Once the event has been extracted it can also be emitted, routed, or enqueued.

This functionality is provided by the following methods of the Event class:

route()—Route this event internally within the correlator.

Developing Apama Applications 10.11.2 493

15 Defining Event Expressions

emit()— Emit this event from the correlator onto the default channel.

emit(String channel)— Emit this event from the correlator onto the named channel.

enqueue()—Route this event internally within the correlator to a special queue just for
enqueued events.

enqueueTo()—Route this event internally within the correlator to the input queue of the
specified context or contexts.

The routemethod generates a new event that is dispatched back into the correlator. Any active
listeners seeking that event then receive this. There is no difference between an externally sourced
event (passed in through a live message feed) and an event that was issued internally through a
routemethod, other than that internally routed events are placed at the front of the input queue,
although in the same order as they are routed within an action.

The emitmethod dispatches events to external registered event receivers, that is, sends them out
from the correlator. Active listeners will not receive events that are emitted.

Events are emitted onto named channels. For an application to receive events from the correlator
it must register itself as an event receiver and subscribe to one or more channels. Then if events
are emitted to those channels they will be forwarded to it.

Channels effectively allowboth point-to-pointmessagedelivery aswell as through publish-subscribe.
Channels can be set up to represent topics. External applications can then subscribe to event
messages of the relevant topics. Otherwise a channel can be set up purely to indicate a destination
and have only one application connected to it.

The enqueue()method generates an event and places the event on a special queue just for events
generated by the enqueue()method. A separate thread moves each enqueued event to the input
queue of each public context. This arrangement ensures that if a public context's input queue is
full, the event generated by enqueue() still arrives on its special queue, and is moved to that
context's input queue when there is a room. Active listeners will eventually receive events that
are enqueued, once those eventsmake their way to the head of the context's input queue alongside
normal events.

Use the enqueue()method when you want to ensure that the correlator processes the generated
event after it processes all routed events. This means that you want the correlator to finish
processing the current external event. Completion of processing the current external event means
that all routed events that resulted from that external event have been processed.

In a parallel application, you can enqueue an event to a particular context by calling the following
method on an instance of com.apama.jmon.Event:
public void enqueueTo(Context ctx)

This method provides the same functionality provided by the EPL enqueue ... to statement. See
“Sending an event to a particular context” on page 296.

However, it is important to mention that when you enqueue an event to a particular context the
event goes on that context's input queue and not on the special queue for enqueued events.
Consequently, when you call this method from an application thread that was created from the

494 Developing Apama Applications 10.11.2

15 Defining Event Expressions

main JMon application and the destination context's input queue is full, this method blocks until
the queue is able to accept the event.

Call the following method to enqueue an event to a array of contexts:
public void enqueueTo(Context[] ctxArray)

Call the following method to enqueue an event to a list of contexts:
public void enqueueTo(List < Context> ctxList)

Specifying temporal sequencing
If you want to search for a temporal sequence of two events, for example, “locate the sequence of
a ”NewsItem“ event followed by a ”Tick“ event”, there are two ways you can proceed in JMon.

Chaining listeners
You can chain listeners, as follows:
// Code within the monitor class

public void onLoad() {
EventExpression eventExpr = new EventExpression("NewsItem(*, *)");
eventExpr.addMatchListener(matchListener1);

}

// Code within the first Match Listener class – matchListener1
public void match(MatchEvent event) {

// Arbitrary additional code …
EventExpression eventExpr = new EventExpression("Tick(*, *)");
eventExpr.addMatchListener(matchListener2);

}

// Code within the second Match Listener class – matchListener2

public void match(MatchEvent event) {
System.out.println("Detected a NewsItem followed"

+ " by a Tick event, both regarding any company.");
}

The Java code above shows how to set up a listener to seek the first event, and then once that is
located, start searching for the second. This programming style is particularly appropriate when
further actions need to be taken at each stage of the event detection, in this case between detecting
the NewsItem and seeking the Tick.

It is also the only way in which the event templates can be “linked” together. If the desired effect
was to locate “any” first NewsItem and then seek a Tick specifically for the same companymentioned
in the NewsItem, you could amend the example as follows,
// Code within the monitor class
public void onLoad() {

EventExpression eventExpr
= new EventExpression("NewsItem(*, *):n");

Developing Apama Applications 10.11.2 495

15 Defining Event Expressions

eventExpr.addMatchListener(matchListener1);
}

// Code within the first Match Listener class – matchListener1
public void match(MatchEvent event) {

NewsItem newsItem = (NewsItem)event.getMatchingEvents().get("n");
EventExpression eventExpr

= new EventExpression("Tick(\"" + newsItem.name + "\", *)");
eventExpr.addMatchListener(matchListener2);

}

// Code within the second Match Listener class – matchListener2
public void match(MatchEvent event) {

System.out.println("Detected a NewsItem, followed"
+ " by an Tick event regarding the same company.");

}

Note how the above code seeks out a NewsItem on any company, but then extracts the actual
NewsItem event detected, and uses its name parameter to create the event template for seeking the
Tick event.

Using temporal operators
Let us return to how to express searching for a temporal sequence. If there is no requirement to
execute any arbitrary code in between events and there is no requirement to link searches as
illustrated above, then you can embed a temporal event expression within a single listener.

The first code excerpt could be re-written as follows,
// Code within the monitor class

public void onLoad() {
EventExpression eventExpr

= new EventExpression("NewsItem(*,*) -> Tick(*,*)");
eventExpr.addMatchListener(matchListener1);

}

// Code within the first (and only) Match Listener class – matchListener1
public void match(MatchEvent event) {

System.out.println("Detected a NewsItem followed"
+ " by a Tick event, both regarding any company.");

}

The event expression definition for eventExpr no longer consists of a single event template. It now
has multiple clauses and contains a temporal operator.

In this case, the operator used is ->, or the followed-by operator. This is the primary temporal
operator for use in event expressions. It allows a developer to express a sequence of events to
match against within a single listener, with the listener triggering once the whole sequence is
encountered.

In Java, an event sequence does not imply that the events have to occur right after each other, or
that no other events are allowed to occur in the meantime.

For the sake of brevity, let A, B, C and D represent event templates, and A', B', C' and D' be
individual events that match those templates, respectively. If a listener is created to seek the event

496 Developing Apama Applications 10.11.2

15 Defining Event Expressions

expression (A -> B), the event feed {A',C',B',D'} would result in a match once the B' is received
by the correlator.

Followed-by operators can be chained to express longer sequences. Therefore you could write,
A -> B -> C -> D

within an event expression definition.

The next section focuses on the use of temporal operators in event expressions.

Defining advanced event expressions
An event template is the simplest form of an event expression. All event expression operators,
including ->, can themselves take entire event expressions as operands.

It is useful to think of event expressions as being Boolean expressions. Each clause in an event
expression can be true or false, and the whole event expression must evaluate to true before the
listener triggers and calls the match listener's matchmethod.

As before, for the sake of brevity, let us use the letters A, B, C and D to represent event templates,
and A', B', C' and D' to represent individual events that match those templates, respectively.

Once more, consider this representation of an event expression,
A -> B -> C -> D

When the listener is first activated it is helpful to consider the expression as starting off by being
false.When an event that satisfies the A clause occurs, the A clause becomes true. Once B is satisfied,
A -> B becomes true in turn, and evaluation progresses in a similar manner until eventually all A
-> B -> C -> D evaluates to true. Only then does the listener trigger and call the associatedmatch
listener's matchmethod. Of course, this event expression might never become true in its entirety
(as the events required might never occur) since no time constraint (see “Specifying the timer
operators” on page 505) has been applied to any part of the event expression.

Specifying other temporal operators
For a listener to trigger on an event sequence, the event expression definingwhat tomatch against
must evaluate to true.

The or operator allows you to specify event expressions where a variety of event sequences could
lead to a successful match. It effectively evaluates two event templates (or entire nested event
expressions) simultaneously and returns truewhen either of them become true.

For example,
A or B

means that either A or B need to be detected to match. That is, the occurrence of one of the operand
expressions (an A or a B) is enough to satisfy the listener.

Developing Apama Applications 10.11.2 497

15 Defining Event Expressions

The and operator specifies an event sequence that might occur in any temporal order. It evaluates
two event templates (or nested event expressions) simultaneously but only returns truewhen
they are both true.
A and B

will seek “an ”A“ followed by a ”B or “a ”B“ followed by an ”A. Both are validmatching sequences,
and the listenerwill seek both concurrently. However, the first to occurwill terminate allmonitoring
and trigger the listener.

The following example code snippets indicate a few patterns that can be expressed using the three
operators presented so far.

MeaningExample

Match on an A followed by either a B or a C.A -> (B or C)

Match on either the sequence A followed by a B, or just
a C on its own.

(A -> B) or C

Find an A first, and then seek for either the sequence B
followed by a C or C followed by a D. The latter sequences

A -> ((B -> C) or (C -> D))

will be looked for concurrently, but the monitor will
match upon the first complete sequence that occurs. This
is because the or operator treats its operands atomically;
that is, in this case it is looking for the sequences
themselves rather than their constituent events.

Find the sequence A followed by a B (A -> B) followed
by the sequence C -> D, or else the sequence C -> D

(A -> B) and (C -> D)

followed by the sequence A -> B. The and operator treats
its operands atomically; that is, in this case it is looking
for the sequences themselves and the order of their
occurrence, rather than their constituent events. It does
not matter when a sequence starts but it occurs when
the last event in it is matched.

Therefore {A',C',B',D'} would match the specification,
because it contains an A -> B followed by a C -> D. In
fact the specification would match against either of the
following sequences of event instances; {A',C',B',D'},
{C',A',B',D'}, {A',B',C',D'}, {C',A',D',B'},
{A',C',D',B'}, and {C',D',A',B'}.

The not operator is unary and acts to invert the truth value of the event expression it is applied
to.
A -> B and not C

therefore means that the correlator will match only if it encounters an A followed by a Bwithout
a C occurring at any time before the B is encountered.

498 Developing Apama Applications 10.11.2

15 Defining Event Expressions

Note:
The not operator can cause an event expression to reach a state where it can never evaluate to
true any more, that is, it will become permanently false.

Consider this listener event sequence:
on (A -> B) and not C

The listenerwill start seeking both A -> B and not C concurrently. If an eventmatching C is received
at any time before onematching B, the C clause will evaluate to true, and hence not C will become
false. This will mean that (A -> B) and not Cwill never be able to evaluate to true, and hence
this listener will never trigger. In practice the correlator cleans out these zombie listeners
periodically.

Note:
It is possible to write an event expression that always evaluates to true immediately, without
any events occurring.

Consider this listener:
on (A -> B) or not C

Assuming that A, B, and C represent event templates, their value will start off as being false.
However, that means that not Cwill become true immediately, and hence the whole expression
will become true right away. This listener will therefore trigger immediately as soon as it is
instantiated. If any of A, B or Cwere nested event expressions the same logic would apply for their
own evaluation.

Specifying a perpetual listener for repeated matching
So far all the examples given have created listeners that will trigger on the first occurrence of an
event (or sequence of events) that satisfies the supplied event expression.

For example,
public void onLoad() {

EventExpression eventExpr = new EventExpression("Tick(*, >10.0)");
eventExpr.addMatchListener(this);

}

locates the first occurrence of a Tick event that satisfies the Tick(*, >10.0) event template. This
first suitable event triggers the listener and calls the matchmethod of the registered match listener
object.

However, you might want to detect all Tick events that satisfy the above event template (or event
expression). To do this you must create a perpetual listener, that is, one that does not terminate
on the first suitable occurrence, but instead stays alive and triggers repeatedly on every subsequent
occurrence.

This effect can be achieved through use of the all event expression operator.

If the above is rewritten as follows,

Developing Apama Applications 10.11.2 499

15 Defining Event Expressions

public void onLoad() {
EventExpression eventExpr =

new EventExpression("all Tick(*, >10.0)");
eventExpr.addMatchListener(this);

}

the listener createdwill now seek the first Tick eventwhose price is greater than 10. Upon detecting
such an event it will trigger and call the matchmethod. It will then return to monitoring the
incoming event streams to look for the next suitable occurrence. This behavior will be repeated
indefinitely until the listener is explicitly deactivated. Thismeans that potentially the matchmethod
could be invoked multiple times.

Deactivating a listener
A listener whose event expression embeds an all operator will stay active indefinitely and trigger
repeatedly. It will continue doing this until it is explicitly deactivated. This can be done using the
removeMatchListenermethod on the EventExpression object.

For complete class and method signatures, refer to the API Reference for Java (Javadoc).

Temporal contexts
Imagine that we have seven event templates defined, which for the sake of brevity are represented
by the letters A, B, C, D, E, F and G in the following text. Now, consider a stream of incoming events,
where Xn indicates an event instance that matches the event template X. Likewise, Xn+1 indicates
another event instance that matches against X, but which need not necessarily be identical to Xn.

Consider the following sequence of incoming events:
C1 A1 F1 A2 C2 B1 D1 E1 B2 A3 G1 B3

Given the above event sequence, what should the event expression
A -> B

match upon?

In theory the combinations of events that correspond to “an ”A“ followed by a ”B are:
{A1, B1}, {A1, B2}, {A1, B3}, {A2, B1}, {A2, B2}, {A2, B3}, {A3, B3}

In practice it is unlikely that a developer wanted their monitor to match seven times on the above
example sequence, and it is uncommon for all the combinations to be useful.

In fact, consistent with the truth-value based matching behavior already described, the event
expression A -> Bwill only match on the first event sequence that matches the expression. Given
the above event sequence the listenerwill trigger only on {A1, B1}, call the associated matchmethod,
and then terminate.

If a developer wishes to alter this behavior, and have the monitor match on more of the
combinations, they can use the all operator within the event expression.

If the listener's specification was rewritten to read:

500 Developing Apama Applications 10.11.2

15 Defining Event Expressions

all A -> B

the listener would match on “every ”A and the first B that follows it.

The way this works is that upon encountering an A, a second child listener (or sub-listener) is
created to seek for the next A. Both listeners would continue looking for a B to successfully match
the sequence specified. Ifmore As are encountered the procedure is repeated; this behavior continues
until the parent listener is explicitly deactivated.

Therefore all A -> Bwould match on {A1, B1}, {A2, B1} and {A3, B3}.

Note that all is a unary operator and has higher precedence than ->, or and and. Therefore all A
-> B is the same as (all A) -> B or ((all A) -> B).

The following table illustrates how the execution of on all A -> B proceeds over time as the above
sequence of input events is processed by the correlator. The timeline is from left to right, and each
stage is labeled with a time tn, where tn+1 occurs after tn. To the left are listed the listeners, and
next to each one (after the ?) is shownwhat event template that listener is looking for at that point
in time. In the example, assuming Lwas the initial listener, L', L'' and L''' are other sub-listeners
that are created as a result of the all operator.

Guide to the symbols used:

indicates the followingThis symbol

A specific point in time when a particular event is received.

No match was found at that time.

The listener has successfully located an event that matches its current active
template.

A listener has successfully triggered.

A new listener is going to be created.

Developing Apama Applications 10.11.2 501

15 Defining Event Expressions

The parent listener denoted by all A -> Bwill never terminate as therewill always be a sub-listener
active looking for an A.

If, on the other hand, the specification is written as,
A -> all B

the listener would now match on all the sequences consisting of the first A and each possible
following B.

The way this works is by creating a second listener upon matching a B that then goes on to search
for an additional B, and so on repeatedly until the listener is explicitly killed.

Therefore A -> all Bwould match {A1, B1}, {A1, B2} and {A1, B3}.

502 Developing Apama Applications 10.11.2

15 Defining Event Expressions

Graphically this would now look as follows:

The table shows the early states of L' and L'' in light color because those listeners actually never
reallywent through those states themselves. However, since theywere created as a clone of another
listener, it is as though they were.

The parent listener denoted by A -> all Bwill never terminate, as therewill always be a sub-listener
looking for a B.

The final permutation is to write the monitor as,
all A -> all B

Now the listener would match on an A and create another listener to look for further As. Each of
these listeners will go on to search for a B after it encounters an A. However, in this instance all
listeners are duplicated once more after matching against a B.

The effect of this would be that all A -> all Bwould match {A1, B1}, {A1, B2}, {A1, B3}, {A2, B1}, {A2,
B2}, {A2, B3} and {A3, B3}, i.e. all the possible permutations. This could cause a very large number
of sub-listeners to be created.

Note:
The all operatormust be usedwith caution as it can create a very large number of sub-listeners,
all looking for concurrent patterns. This is particularly applicable if multiple all operators are
nested within each other. This can have an adverse impact on performance.

Developing Apama Applications 10.11.2 503

15 Defining Event Expressions

As with all other event expression operators, the all operator can be used within nested event
expressions, and be nested within the operating context of another all operator. This can have a
dramatic effect on the number of sub-listeners created.

Consider the example,
all (A -> all B)

This will match the first A followed by all subsequent Bs. However, as on every match of an A
followed by B, (A -> all B) becomes true, then a new search for the next A followed by all
subsequent Bs will start. This will repeat itself recursively, and eventually there could be several
concurrent sub-listeners thatmightmatch on the same sequences, thus causing duplicate triggering.

On the same event sequence as previously, graphically, this would be evaluated as follows:

504 Developing Apama Applications 10.11.2

15 Defining Event Expressions

Thusmatching against {A1, B1}, {A1, B2}, {A1, B3}, and twice against {A3, B3}. Notice how the number
of active listeners is progressively increasing, until after t12 there would actually be six active
listeners, three looking for a B and three looking for an A.

Specifying the timer operators
So far we have shown how to use event expressions to define interesting sequences of events to
look for, where the events of interest depend not only on their type and content, but also on their
temporal relationship to (whether they occur before or after) other events.

Developing Apama Applications 10.11.2 505

15 Defining Event Expressions

Being able to define temporal relationships can be useful, but typically it also needs to be constrained
over some temporal interval.

Looking for event sequences within a set time

Consider this earlier example:
// Code within the monitor class
public void onLoad() {

EventExpression eventExpr = new EventExpression(
"NewsItem(\"ACME\",*) -> Tick(\"ACME\",*)");

eventExpr.addMatchListener(matchListener1);
}

// Code within the first (and only) Match Listener
// class – matchListener1

public void match(MatchEvent event) {
System.out.println("Detected a NewsItem followed"

+ " by an Tick event, both regarding the ACME company.");
}

This will look for the event sequence of a news item about a company followed by a stock price
tick about that company. Once improved this could be used to detect the beginning of a rise (or
fall) in the value of shares of a company following the release of a relevant news headline.

However, unless a temporal constraint is put in place, themonitor is not going to be that pertinent,
as it might trigger on an event sequence where the price change occurs weeks after the news item.
That would clearly not be so useful to a trader, as the two events were most likely unrelated and
hence not indicative of a possible trend.

If the event expression above is rewritten as follows,
EventExpression eventExpr = new EventExpression(

"NewsItem(\"ACME\",*) -> Tick(\"ACME\",*) within(30.0)");

the Tick event would now need to occur within 30 seconds of NewsItem for the listener to trigger.

The within(float) operator is a postfix unary operator that can be applied to an event expression
(the Tick event template in the above example). Think of it like a stopwatch. The clock starts ticking
as soon as the event expression it is attached to becomes active, i.e. when the listener actually starts
looking for it. If the stopwatch reaches the specified figure before the event expression evaluates
to true the event expression becomes permanently false.

In the above code, the timer is only activated once a suitable NewsItem is encountered. Unless an
adequate StockTick then occurs within 30 seconds andmakes the expression evaluate to true, the
timer will fire and fail the whole listener.

As already specified, the within operator can be applied to any event expression, hence A within(x),
where A represents just an event template and x is a float value specifying a number in seconds,
is perfectly valid.

506 Developing Apama Applications 10.11.2

15 Defining Event Expressions

Waiting within a listener

The second timer operator available for use within event expressions is wait(float).

wait allows you to insert a “temporal pause” within an event expression. Once activated, a wait
expression becomes true automatically once a set amount of time passes. For example,
A -> wait(x seconds) -> C

will proceed as follows: activate the listener and look for the A event expression or template, then
once A becomes true, pause (that is, wait) for x seconds, then finally start looking for the C event
expression or template.

In addition to being part of an event expression, wait can also be used on its own,
wait(20.0)

is a valid event expression in its own right. When its listener activates it just waits for the number
of seconds specified (here being 20), then it evaluates to true and calls any registered matchmethods.

Therefore a wait clause starts off being false, and then turns to true once its time period expires.
This behavior can be inverted through use of not. The expression
not wait(20.0)

would start off being true, and stay true for 20 seconds before becoming false.

The following,
B and not wait(20.0)

is an interesting example. It effectivelymeans that this listenerwill trigger only if a B occurswithin
20 seconds of its activation. After that, the not wait(20) clause would become false and prevent
the listener from ever triggering.

By using allwith wait, you can easily implement a periodic repeating timer:
all wait(5.0)

This listener will trigger every 5 seconds and calls any registered matchmethods.

Working with absolute time

The final temporal operator is the at operator. This operator allows you to express temporal activity
with regards to absolute time.

The at operator allows triggering of a timer:

At a specific time; for example, at 12:30pm on April, 5th.

Repeatedlywith regards to the calendar when used in conjunction with the all operator,
across seconds,minutes, hours, days of theweek, days of themonth, andmonths; for example,
on every hour, or on the first day of the month, or every 10 minutes past and 40 minutes past.

Developing Apama Applications 10.11.2 507

15 Defining Event Expressions

Important:
Triggering using the at operator always uses the time zone in which the correlator is running.

The syntax is as follows:
at(minutes, hours, days_of_the_month, month, days_of_the_week [, seconds])

where the last operand, seconds, is optional.

Valid values for each operand are as follows:

ValuesTimer operand

0 to 59, indicating minutes past the hour.minutes

0 to 23, indicating the hours of the day.hours

1 to 31, indicating days of the month. For some months
only 1 to 28, 1 to 29 or 1 to 30 are valid ranges.

days_of_the_month

1 to 12, indicating months of the year, with 1
corresponding to January

month

0 to 6, indicating days of the week, where 0 corresponds
to Sunday.

days_of_the_week

0 to 59, indicating seconds past the minute.seconds

The operator can be embeddedwithin an event expression in amanner similar to the wait operator.
If used outside the scope of an all operator it will trigger only once, at the next valid time as
expressed within its elements. In conjunction with an all operator, it will trigger at every valid
time.

The wildcard symbol (*) can be specified to indicate that all values are valid, that is
at(5, *, *, *, *)

would trigger at the next “five minutes past the hour”, while
all at(5, *, *, *, *)

would trigger at five minutes past each hour (that is, every day, every month).

Whereas,
all at(5, 9, *, *, *)

would trigger at 9:05am every day.

However,
all at(5, 9, *, *, 1)

would trigger at 9:05am only on Mondays, and never on any other weekday. This is because the
effect of the wildcard operator is different when applied to the days_of_the_week and the

508 Developing Apama Applications 10.11.2

15 Defining Event Expressions

days_of_the_month elements. This is due to the fact that both specify the same entity. The rule is
therefore as follows:

As long as both elements are set to wildcard, then each day is valid.

If either of the days_of_the_week or the days_of_the_month elements is not a wildcard, then
only the days that match that element will be valid. The wildcard in the other element is
effectively ignored.

If both the days_of_the_week and the days_of_the_month elements are not a wildcard, then the
days valid will be the days which match either. That is, the two criteria are or, not and.

A range operator (:) can be used with each element to define a range of valid values. For example
all at(5:15, *, *, *, *)

would trigger every minute from 5 minutes past the hour till 15 minutes past the hour.

A divisor operator (/x) can be used to specify that every xth value is valid. Therefore
all at(*/10, *, *, *, *)

would trigger every ten minutes, that is, at 0, 10, 20, 30, 40 and 50 minutes past every hour.

If youwish to specify a combination of the above operators youmust enclose the element in square
brackets ([]), and separate the value definitions with a comma (,). For example,
all at([*/10,30:35,22], *, *, *, *)

indicates as following values for minutes to trigger on: 0,10, 20, 22, 30, 31, 32, 33, 34, 35, 40 and 50.

A further example,
all at(*/30,9:17,[*/2,1],*,*)

would trigger every 30 minutes from 9am to 5pm on even numbered days of the month as well
as specifically the first day of the month.

Optimizing event expressions
When a developer creates an event expression, a substantial percentage of the computational
overhead goes into parsing the event expression itself.

If you need to create several instances of an event expression where only literal values in event
templates vary, this repeated parsing cost can be removed through the use of a prepared event
expression.

Instead of writing,
EventExpression eventExpr1 = new EventExpression(

"NewsItem(\"ACME\",*) -> Tick(\"ACME\",*)");
EventExpression eventExpr2 = new EventExpression(

"NewsItem(\"EMCA\",*) -> Tick(\"EMCA\",*)");
eventExpr1.addMatchListener(matchListener1);
eventExpr2.addMatchListener(matchListener2);

Developing Apama Applications 10.11.2 509

15 Defining Event Expressions

you could write,
PreparedEventExpressionTemplate et

= new PreparedEventExpressionTemplate(
"NewsItem(?,*) -> Tick(?,*)");

PreparedEventExpression pex1=et.getInstance();
pex1.setString(0, "ACME");
pex1.setString(1, "ACME");

PreparedEventExpression pex2=et.getInstance();
pex2.setString(0, "EMCA");
pex2.setString(1, "EMCA");

pex1.addMatchListener(matchListener1);
pex2.addMatchListener(matchListener2);

The above example shows how instead of creating two very similar event expressions you can
create a single prepared event expression template, and then customize multiple instances of it.
The main advantage of the latter approach is the fact that the event expression was parsed in Java
only once. With an example as simple as the ones above this would in fact hardly make any
difference, but in Java codewith hundreds of such event expressions the difference in performance
can be significant.

As shown in the code snippet above, the procedure for creating listeners with prepared event
expressions is slightly different from that of normal event expressions.

Youmust create a PreparedEventExpressionTemplate and define within that the event expression.
The syntax for event expression definitions is the same as previously with the exception of the ?
operator. This can be used instead of any literal value. The next step is to get an instance of a
PreparedEventExpression, and then to set values for any literals replaced by ? in the prepared
event expression template. Finally, you can create listeners on the PreparedEventExpression
instances just as with normal event expressions.

Validation of event expressions
When an EventExpression or PreparedEventExpressionTemplate is created or when
addMatchListener() is called on an event expression within a JMon monitor the event expression
is not validated immediately. It is queued for processing later when the JMon monitor yields
control back to the correlator. This means that a badly formed event expression does not cause an
exception to be thrown from the constructor. Instead, the correlator logs an error message later
when it tries to validate the event expression.

510 Developing Apama Applications 10.11.2

15 Defining Event Expressions

16 Concept of Time in the Correlator

■ Getting the current time .. 512

■ About timers and their trigger times ... 513

Developing Apama Applications 10.11.2 511

An understanding of how the correlator handles time is essential to writing Apama applications.
See “Understanding time in the correlator” on page 180 for more information. Note that the
information provided there applies when developing Apama applications in EPL. Most of this,
however, and especially the following topics also apply when developing Apama applications in
Java:

“Correlator timestamps and real time” on page 180

“Event arrival time” on page 181

“Disabling the correlator's internal clock” on page 183

The topics in this section are specific to Java. Similar topics are provided for developing Apama
applications in EPL.

Getting the current time
In the correlator, the current time is the time indicated by the most recent clock tick. There are two
exceptions to this:

If you specify the -Xclock optionwhen you start the correlator, the correlator does not generate
clock ticks. Instead, you must send time events (&TIME) to the correlator. The current time is
the time indicated by themost recent externally generated time event. See “Externally generating
events that keep time (&TIME events)” on page 184.

When the correlator is firing a timer, the current time is the timer's trigger time. See “About
timers and their trigger times” on page 513.

The information in the remainder of this topic assumes that the current time is the time indicated
by the most recent clock tick.

Use the staticmethod double com.apama.jmon.Correlator.getCurrentTime() to obtain the current
time. The value returned by the getCurrentTime()method is the current time represented as
seconds since the epoch, January 1st, 1970 in UTC.

In the correlator, the current time is never the same as the current system time. In most
circumstances it is a few milliseconds behind the system time. This difference increases when
public context input queues grow.

When a listener triggers, it causes a call to the listener's match()method. The correlator executes
the entire method before the correlator starts to process another event. Consequently, while the
listener is executing a method, time and the value returned by the getCurrentTime()method do
not change.

Consider the following code snippet,
double a;
void checkTime() {

a = Correlator.getCurrentTime();
}

// A listener calls the following method some time later
void logTime() {

512 Developing Apama Applications 10.11.2

16 Concept of Time in the Correlator

System.out.println("a: "+a);
// The time when checkTime() was called

System.out.println("current time: "+Correlator.getCurrentTime());
// The time now

}

In this code, a method sets double variable a to the value of getCurrentTime(), which is the time
indicated by the most recent clock tick. Some time later, a different listener prints the value of a
and the value of getCurrentTime(). The values logged might not be the same. This is because the
first use of getCurrentTime()might return a value that is different from the second. If the two
listeners have processed the same event, the logged values are the same. If the two listeners have
processed different events, the logged values are different.

About timers and their trigger times
In an event expression, when you specify the within, wait, or at operator you are specifying a
timer. Every timer has a trigger time. The trigger time is when you want the timer to fire.

When you use the within operator, the trigger time iswhen the specified length of time elapses.
If a within timer fires, the listener fails. In the following listener, the trigger time is 30 seconds
after A becomes true.
A -> B within(30.0)

If B becomes truewithin 30 seconds, the trigger time for the timer is not reached, the timer
does not fire, the listener triggers, and the monitor calls any attached JMon listeners. If B does
not become truewithin 30 seconds, the trigger time is reached, the timer fires, and the listener
fails. The monitor does not call the MatchListener.

When you use the wait operator, the trigger time iswhen the specified pause during processing
of the event expression has elaspsed. When a wait timer fires, processing continues. In the
following expression, the trigger time is 20 seconds after A becomes true. When the trigger
time is reached, the timer fires. The listener then starts watching for B. When B is true, the
monitor calls any attached listeners.
A -> wait(20.0) -> B

When you use the at operator, the trigger time is one or more specific times. An at timer fires
at the specified times. In the following expression, the trigger time is five minutes past each
hour every day. This timer fires 24 times each day. When the timer fires, the monitor calls any
attached JMon listeners.
all at(5, *, *, *, *)

At each clock tick, the correlator evaluates each timer to determine whether that timer's trigger
time has been reached. If a timer's trigger time has been reached, the correlator fires that timer.
When a timer's trigger time is exactly at the same time as a clock tick, the timer fires at its exact
trigger time. When a timer's trigger time is not exactly at the same time as a clock tick, the timer
fires at the next clock tick. This means that if a timer's trigger time is .01 seconds after a clock tick,
that timer does not fire until .09 seconds later.

Developing Apama Applications 10.11.2 513

16 Concept of Time in the Correlator

When a timer fires, the current time is always the trigger time of the timer. This is regardless of
whether the timer fired at its trigger time or at the first clock tick after its trigger time.

A single clock tick can make a repeating timer fire multiple times. For example, if you specify all
wait(0.01), this timer fires 10 times every tenth of a second.

Because of rounding constraints,

A timer such as all wait(0.1) drifts away from firing every tenth of a second. The drift is of
the order of milliseconds per century, but you can notice the drift if you convert the value of
the current time to a string.

Two timers that you might expect to fire at the same instant might fire at different, though
very close, times.

The rounding constraint is that you cannot accurately express 0.1 seconds as a float because
you cannot represent it in binary notation. For example, the on wait(0.1) listener waits for
0.10000000000000000555 seconds.

To specify a timer that fires exactly 10 times per second, calculate the length of time to wait by
using a method that does not accumulate rounding errors. For example, calculate a whole part
and a fractional part:
@Application(author="Tim Berners", company="Apama",
description="Demonstrate tenth of second timers", name="Tenth",
version="1.0")
@MonitorType
public class TenthOfSecond implements Monitor {

private static final Logger LOGGER =
Logger.getLogger(TenthOfSecond.class);

private static final NumberFormat formatter =
NumberFormat.getInstance();

static { formatter.setGroupingUsed(false); }

double startTime;
double fraction;

public void onLoad() {
startTime = Math.ceil(Correlator.getCurrentTime());
fraction = Math.ceil(

(Correlator.getCurrentTime() - startTime) * 10.0);
setupTimeListener();

}
void setupTimeListener() {

fraction++;
if (10.0 <= fraction) {

fraction = 0.0;
startTime++;

}
EventExpression ee = new EventExpression("wait("+ ((startTime +

(fraction / 10.0))-Correlator.getCurrentTime()) +")");
ee.addMatchListener(new MatchListener() {

public void match(MatchEvent evt) {
LOGGER.info(formatter.format(Correlator.getCurrentTime()));
// System.out.println(Correlator.getCurrentTime());
// This would go to STDOUT, and isn't as pretty

514 Developing Apama Applications 10.11.2

16 Concept of Time in the Correlator

new TestEvent(Correlator.getCurrentTime()).emit();
setupTimeListener();

}
});

}
}
// TenthOfSecond

When a timer fires, the correlator processes items in the following order. The correlator

1. Triggers all listeners that trigger at the same time.

2. Routes any events, and routes any events that those events route, and so on.

3. Fires any timers at the next trigger time.

Developing Apama Applications 10.11.2 515

16 Concept of Time in the Correlator

516 Developing Apama Applications 10.11.2

16 Concept of Time in the Correlator

17 Developing and Deploying JMon Applications

■ Steps for developing JMon applications in Software AG Designer 518

■ Java prerequisites for using Apama's JMon API .. 519

■ Steps for developing JMon applications manually .. 520

■ Deploying JMon applications .. 520

■ Removing JMon applications from the correlator ... 521

■ Creating deployment descriptor files .. 521

■ Package names and namespaces in JMon applications .. 529

■ Sample JMon applications ... 529

Developing Apama Applications 10.11.2 517

This section describes the steps required to develop and deploy a JMon application. You can
develop JMon applications with Apama in Software AG Designer or manually, outside Software
AG Designer. When you use Software AG Designer, some development steps are performed
automatically for you. This section describes all development steps and noteswhich steps Software
AG Designer automatically performs.

For more information on developing JMon applications in Software AG Designer, see "Working
with Projects" in Using Apama with Software AG Designer.

See also “Writing EPL Plug-ins in Java” on page 551 which describes how it is possible to call out
to code written in Java even when the main application logic is written in EPL rather than JMon.

Steps for developing JMon applications in Software
AG Designer

To develop JMon applications in Software AG Designer

1. Add Java support to a project.

See "Adding the Java nature to an Apama project" in Using Apama with Software AG Designer.

2. Create your application's source files.

Select File > New > Java Event or select File > New > Java Monitor.

Or, in the Project Explorer, right-click your project and select New > Java Event or select
New > Java Monitor.

Awizard appears that lets you specify the event ormonitor's name, the package, a description,
the Java source folder and Java package. Software AG Designer automatically adds an entry
for the event or monitor to the jmon-jar.xml deployment descriptor file and regenerates the
JMon JAR file to include the new event or monitor.

If you want to build your JAR files manually, right-click your project and select Apama >
Build JAR Files. This is useful if you unselected the Build jar files automatically option in
the apama_java.xml file, which is in the config directory of your project. One reason youmight
not want to build the JAR files automatically is that the build takes too long. When Build jar
files automatically is selected, Software AG Designer builds the JAR files every time you
modify a JMon file.

If there are events that you defined in JMon and you refer to those events, or listen for those
events in EPL code, then you must define those events in EPL as well as JMon. If you do not
also define the events in EPL, Software AG Designer flags EPL references to those events as
errors.

See also "Creating new files for JMon applications" in Using Apama with Software AG Designer.

3. Create your application's launch configuration.

518 Developing Apama Applications 10.11.2

17 Developing and Deploying JMon Applications

Software AG Designer adds all JMon JAR files to the correlator initialization list and all
non-JMon JAR files to the correlator class path.

If you want to build your project's files outside Software AG Designer and Eclipse, right-click
your project and select Apama > Generate Ant Buildfiles. Software AG Designer generates
an Ant build file (with the name build-project_name.xml), which you can use only to build
your project's JMon JAR files outside of the Eclipse environment. Note that this is unrelated
to the Software AG Designer feature for exporting an Ant build file that you can use for
deployment.

See "Defining custom launch configurations" in Using Apama with Software AG Designer.

4. Run and test your application.

See "Launching Projects" in Using Apama with Software AG Designer.

5. Debug your application.

See "Debugging JMon Applications" in Using Apama with Software AG Designer.

6. Deploy your application.

See “Deploying JMon applications” on page 520.

Software AG Designer generates your application's JMon JAR file in the jmon_config_name
java application files folder of your project's directory. By default, jmon_config_name is
the project name.

You can manage the content of the JMon JAR file and jmon-jar.xml file by using the editor in
SoftwareAGDesigner to update the apama_java.xml file, which is located in the project's config
folder. You can use this editor to do the following:

Set JMon metadata.

Set the injection order of the events and monitors.

Add non-JMon Java classes to the JMon JAR files.

Add JMon classes that were not created by the Apama wizards in Software AG Designer
to the JMon JAR file.

Java prerequisites for using Apama's JMon API
When you install Apama, the installation script installs the JMonAPI as ap-correlator-extension-
api.jar in the Apama lib directory.

Software AG Designer includes the required Java compiler for running your application.

Developing Apama Applications 10.11.2 519

17 Developing and Deploying JMon Applications

Steps for developing JMon applications manually

To develop JMon applications outside Software AG Designer

1. Ensure that ap-correlator-extension-api.jar is in your Java CLASSPATH environment variable.

2. Create a folder in which to develop your application.

3. In this development folder, define one .java file for each event type and one .java file for each
monitor class.

4. Ensure that there is a deployment descriptor file named jmon-jar.xml. See “Creatingdeployment
descriptor files” on page 521.

5. In your development folder, compile all your Java source code.

javac *.java

If ap-correlator-extension-api.jar is not already in your CLASSPATH environment variable,
you can specify the –classpath command-line option to point to ap-correlator-extension-
api.jar.

6. In your development folder, create a JAR file that contains the deployment descriptor and all
class files. The command line format is as follows:

jar –cf application_name.jar META-INF/jmon-jar.xml *.class

Replace application_namewith a name you choose for your application. On Windows, use
backslashes (\) instead of forward slashes (/).

If your application uses an event type definition class that is also used by another JMon
application, youmust include the event type definition class in the JAR file of each application
that uses it. If you do not include a shared event type definition class in your application's JAR
file, injection fails with an ApplicationVerificationException.

You cannot specify the location of a shared event type definition class in your CLASSPATH
environment variable. The correlator uses a separate classloader for each application, and it
cannot use the system classloader for event type definition classes.

7. If any of your application's .class files are in your CLASSPATH environment variable, remove
them. If the JRE can resolve a class path by using either your application's JAR file or your
CLASSPATH environment variable, Apama fails to load your application.

Deploying JMon applications

To deploy and run your application outside Software AG Designer

520 Developing Apama Applications 10.11.2

17 Developing and Deploying JMon Applications

1. Start a correlator with Java enabled:

correlator –j other_options

2. Inject the application JAR file:

engine_inject –j application_name.jar

Apama creates an object instance of each monitor class defined in the deployment descriptor
file and executes its onLoadmethod. If there are multiple monitor classes, they are injected in
the order in which they are specified in the jmon-jar.xml file.

The classes in the application's JAR file cannot also exist (have the same packaging and name)
anywhere else on the classpath. If they do, it causes the application to fail to load.

When you start the correlator, you can pass properties and options to the embedded JVMwith
the –J option. Specify the -J option with each property or option you want to specify.

For example, you can use this mechanism to specify a global classpath for the JVM with:
-J-Djava.class.path=path. Apama prepends its own internal classpath .jar files to the path
you specify. If you specify both the CLASSPATH environment variable and a classpath on the
correlator start-up command line, the classpath specified on the command line takes precedence.
See also “Specifying the classpath in deployment descriptor files” on page 523 for information
about specifying the classpath for each individual application.

Removing JMon applications from the correlator
To stop and delete a running JMon application, execute the engine_delete operation:
engine_delete [options_to_identify_correlator]application_name

If the application youwant to delete is not running on the local host on the default correlator port,
be sure to specify options that indicate the correlator that is running the application you want to
delete.

Replace application_namewith the name of the application as specified in the deployment
descriptor. This is not necessarily the same as the name of the application's JAR file.

Deleting a JMon application does the following:

Terminates the application's active listeners.

Deletes the application's monitor classes.

Leaves the event type definitions loaded in the correlator. To remove the event type definitions,
execute engine_delete and specify the files that contain the event type definitions.

Creating deployment descriptor files
The JMon application's JAR file must contain a deployment descriptor file. Inside the correlator,
the JVM processes the application's deployment descriptor file and uses it as a guide to the event

Developing Apama Applications 10.11.2 521

17 Developing and Deploying JMon Applications

types and monitor classes to load. The name of the deployment descriptor file must be jmon-
jar.xml.

When you use the Java support in Software AG Designer to develop your JMon application, the
deployment descriptor file is generated for you. If you develop your JMon application outside
Software AG Designer, there are two ways to create a deployment descriptor file:

Manually write the deployment descriptor XML file. Use your favorite editor to create this
XML file according to the “Format for deployment descriptor files” on page 522.

Insert Java annotations in your source files and run a utility to generate the deployment
descriptor file. The annotations you can insert are defined in the java.apama.jmon.annotation
package.

Of course, you can use the utility to generate the deployment descriptor file and then manually
edit the result. If you then run the utility again, you would lose any manual changes you had
made.

The technique you use is largely a matter of personal preference — hand-coded or
machine-generated. If you have a very large application with many event types and monitors,
youmight prefer to insert the annotations and generate the deployment descriptor file. If you have
a small application, you might find it easier to write the deployment descriptor file.

Format for deployment descriptor files
The format of the deployment descriptor file must be compliant with the XML defined by the
following XML Document Type Definition (DTD):
http://www.apama.com/dtd/jmon-jar_1_2.dtd

You should become familiar with this DTD to understand the exact definition of the deployment
descriptor file. However, the normal structure of the file is as follows. In the following format, all
text inside XML element tags,which is in italic typeface, indicates placeholders for which youwould
supply an actual value.
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE jmon-jar PUBLIC "-//Apama, Inc.//DTD Java Monitors 1.2//EN"
"http://www.apama.com/dtd/jmon-jar_1_2.dtd">

<jmon-jar>

<name>Application Name in the Correlator</name>
<version>Version Number</version>
<author>Author</author>
<company>Company Name</company>
<description>Description of this application</description>
<classpath>${sys:MY_THIRD_PARTY_DIR}/lib/foo.jar;

${sys:MY_THIRD_PARTY_DIR}/lib/bar.jar</classpath>
<application-classes>

<event>
<event-name>Event Type name in the Correlator</event-name>
<event-class>Event Type's class location</event-class>
<description>Description of Event Type</description>

</event>

522 Developing Apama Applications 10.11.2

17 Developing and Deploying JMon Applications

<monitor>
<monitor-name>Monitor's name in the Correlator</monitor-name>
<monitor-class>Monitor's class location</monitor-class>
<description>Description of Monitor class</description>

</monitor>
</application-classes>

</jmon-jar>

The most important part of the deployment descriptor file is the application-classes element.
This element must contain an event element for each event type your JMon application defines.
It must also contain a monitor element for each monitor your JMon application defines.

The application name that you specify in the name element is important because it defines the JMon
application's name in the correlator. The engine_inspectmanagement tool displays this name
when it lists data for your application. If you want to delete your application, you specify this
name. The application name must be unique across all currently loaded applications. If the
application name is not unique, injection fails.

Specifying the classpath in deployment descriptor files
Each JMon or Java plug-in JAR is loaded in its own dedicated Java classloader, which by default
has access only to its own classes, and those available globally in the correlator's system classloader.

Note: The correlator's system classloader includes some standard Apama libraries such as the ap-
correlator-extension-api.jar and ap-util.jar JAR files plus any additional JAR files the user
chooses to specify on the correlator command line using -J-Djava.class.path=path.

It is also possible to specify additional JAR files for use by a specific JMon application or Java
plug-in, to provide access to any third-party libraries that the JAR requires. This approach is more
self-contained than adding to the correlator's global classloader.

The classpath string for a JMon application or Java plug-in is specified in its deployment descriptor
XML file as follows:

If you are manually writing the deployment descriptor XML, add the optional classpath
element just after the description element, for example:
...
<description>Description of this application</description>
<classpath>${sys:MY_THIRD_PARTY_DIR}/lib/foo.jar;

${sys:MY_THIRD_PARTY_DIR}/lib/bar.jar</classpath>
...

Note that the classpath element is only available in the 1.2 (and greater) versions of the JMon
XMLDTD (jmon-jar_1_2.dtd), so itmay be necessary to update the DOCTYPE of the deployment
descriptor to specify this DTD version if it does not already.

If you are generating the deployment descriptor automatically using Java annotations, then
use the optional classpath attribute in the @Application annotation:
@Application(

name = "Simple",
author = "My Name",

Developing Apama Applications 10.11.2 523

17 Developing and Deploying JMon Applications

version = "1.0",
company = "Apama",
description = "My simple JMon application or Java plug-in",
classpath = "${sys:MY_THIRD_PARTY_DIR}/lib/foo.jar;

${sys:MY_THIRD_PARTY_DIR}/lib/bar.jar"
)

If you are using Software AG Designer to generate the .jar and deployment descriptor, use
the @Application annotation approach to specify the classpath.

In both cases, the classpath string consists of any number of classpath entries, delimited by
semicolon characters (;). Note that the semicolon must be used even on platforms that typically
use a colon or other character to separate path entries, and also that forward slashes (/) should be
used instead of backslashes (\), in order to ensure that the application works in the same way
regardless of the platform it is deployed on.

Avoid using absolute paths in the classpath, as this makes it difficult to use the application JAR
on different machines. Instead, use ${...} placeholders to identify the first part of each path, for
example, the installation directory of a third party whose libraries you wish to use. Currently two
types of placeholder are supported:

${sys:MY_SYS_PROP_NAME} is replaced by a Java system property called MY_SYS_PROP_NAME

${env:MY_ENV_VAR_NAME} is replaced by an environment variable called MY_ENV_VAR_NAME

The values for system property placeholders can be specified on the correlator command line
using: -J-DMY_SYS_PROP_NAME=path.

The correlator will log a warning for any path that cannot be found, but will fail to inject the
application entirely if the classpath includes any ${...} placeholders that are not defined.

You canmake the location of your project directory available by defining an environment variable
in aYAMLconfigurationfile as described in "Setting environment variables forApama components"
in Deploying and Managing Apama Applications. You can use ${PARENT_DIR} as the value of the
property if the YAML file is located in your project directory root. If you do this, you can specify
JAR files from your project directory. For example:
<classpath>
${env:APAMA_PROJECT_DIR}/lib/foo.jar;${env:APAMA_PROJECT_DIR}/lib/bar.jar

</classpath>

Defining event types in deployment descriptor files
The deployment descriptor file must define an event element for each event type class in your
JMon application's JAR file. Each event element must contain the following two elements:

event-name— The name by which this event type is to be defined within the correlator. The
correlator has a single namespace. Consequently, this name must be unique across all
applications. For example, Tick or SimpleApp.Tick. If you specify a package qualified name,
it is the qualified name that must be unique.

event-class— The name of the Java class in which this event type is defined. This must
correspond to the fully qualified name of the class, for example, Tick if the event type class is

524 Developing Apama Applications 10.11.2

17 Developing and Deploying JMon Applications

defined within the default Java package, or com.apama.example.types.Tick if the event type
class is defined in the com.apama.example.types package. The file, for example, Tick.java, is
expected to be located within a folder structure that maps to the packaging, as per standard
Java convention.

The event element can optionally contain a third element. This is the description element. Specify
a description of the event type. For example:
<event>

<event-name>Tick</event-name>
<event-class>Tick</event-class>
<description>Event that signals a stock trade</description>

</event>

JMon and EPL share a single namespace for event types. After an event type is loaded into the
correlator, using either JMon or EPL, it is available for use in either environment. However, within
a JMon application, you cannot instantiate variables of an event type defined in EPL.

When you try to inject an event type definition that has the same name as a loaded event type,
the correlator checks whether the two definitions are duplicates. If they are, the correlator ignores
the duplicate you are trying to load. If the definitions are different, the correlator generates an
injection error.

Defining monitor classes in deployment descriptor files
The deployment descriptor filemust define a monitor element for eachmonitor class in your JMon
application's JAR file. Each monitor element must contain the following two elements:

monitor-name— The name by which this monitor is to be defined within the correlator. The
correlator has a single namespace. Consequently, this name must be unique across all
applications. For example, SimpleMon or SimpleApp.SimpleMon. If you specify a package qualified
name, it is the qualified name that must be unique.

monitor-class— The name of the Java class in which this monitor is defined. This must
correspond to the fully qualified name of the class, for example, SimpleMon if the monitor class
is defined within the default Java package, or com.apama.example.monitors.SimpleMon if the
monitor class is defined in the com.apama.example.monitors package. The file, for example,
SimpleMon.java, is expected to be locatedwithin a folder structure that maps to the packaging,
as per standard Java convention.

The monitor element can optionally contain a third element. This is the description element.
Specify a description of the monitor. For example:
<monitor>

<monitor-name>Simple</monitor-name>
<monitor-class>Simple</monitor-class>
<description>A simple JMon monitor, used to show functionality of

a new installation.</description>
</monitor>

Developing Apama Applications 10.11.2 525

17 Developing and Deploying JMon Applications

Inserting annotations for deployment descriptor files
In your JMon source files, you can specify the following annotations:

@Application— This annotation indicates the name of the application, as well as the author,
version, company, and description of the application. Insert this annotation in any one, and
only one, of your JMon source files. Each value is required. This annotation must be after any
import statements and before the class definition statement. For example:
@Application(

name = "Simple",
author = "Moray Grieve",
version = "1.0",
company = "Apama",
description = "Deployment descriptor for a simple JMon monitor",
classpath = "${sys:MY_THIRD_PARTY_DIR}/lib/foo.jar;

${sys:MY_THIRD_PARTY_DIR}/lib/bar.jar"
)

@MonitorType— This annotation indicates the definition of a monitor. In each monitor class,
insert this annotation immediately before the monitor class definition statement. You can
specify a name and a description for the monitor. The name is the fully qualified EPL name
for the monitor. If you do not specify a name, the name defaults to the fully qualified JMon
class name of the class you are annotating.
@MonitorType(description = "A simple JMon monitor, used to show

functionality of a new installation.")

@EventType— This annotation indicates the definition of an event type. In each event type
definition class, insert this annotation immediately before the definition statement for the event
type. You can specify a name and a description for the event. The name is the fully qualified
EPL name for the event. If you do not specify a name, the name defaults to the fully qualified
JMon class name of the class you are annotating. For example:
@EventType(description = "Event that signals a stock trade")

@Wildcard—This annotation indicates a wildcard event field. Insert it immediately before the
field definition statement. You must have specified the @EventType annotation for the event
type that defines this field. For example:
import com.apama.jmon.*
import com.apama.jmon.annotation.*

@EventType
public class EventWithWildcard extends Event {

public long indexedField;
@Wildcard
public long wildcardField;
public EventWithWildcard() {

this(0, 0);
}
public EventWithWildcard(long iField, long wField) {

this.indexedField = iField;
this.wildcardField = wField;

}

526 Developing Apama Applications 10.11.2

17 Developing and Deploying JMon Applications

Sample source files with annotations
Following are two sample source files with annotations. These are the source files for the simple
sample application provided with Apama. The lines with the annotations are in bold typeface for
your convenience.

Here is the Simple.java file with comments removed:
import com.apama.jmon.*;
import com.apama.jmon.annotation.*;

@Application(name = "Simple",
author = "Moray Grieve",
version = "1.0",
company = "Apama",
description = "Deployment descriptor for the Simple JMon monitor",
classpath = ""
)

@MonitorType(description = "A simple JMon monitor, used to show
functionality of a new installation.")

public class Simple implements Monitor, MatchListener {

public Simple() {}

public void onLoad() {
EventExpression eventExpr = new EventExpression(

"all Tick(*, >10.0):t");
eventExpr.addMatchListener(this);

}
public void match(MatchEvent event) {

Tick tick = (Tick)event.getMatchingEvents().get("t");
tick.emit();

}
}

Here is the Tick.java file with comments removed:
import com.apama.jmon.Event;
import com.apama.jmon.annotation.*;

@EventType(description = "Event which signals a stock trade")
public class Tick extends Event {

public String name;
public double price;
public Tick() {

this("", 0);
}

public Tick(String name, double price){
this.name = name;
this.price = price;

}
}

Developing Apama Applications 10.11.2 527

17 Developing and Deploying JMon Applications

Generating deployment descriptor files from annotations
There are two utilities that you can use to generate the deployment descriptor file from annotations
in your source files:

com.apama.jmon.annotation.DirectoryProcessor— This utility processes a directory and
generates the deployment descriptor file, which you must add to your application's JAR file.

com.apama.jmon.annotation.JarProcessor— This utility processes an application's JAR file
and adds the deployment descriptor file to that JAR file.

You can execute these utilities from the command line or from a Java build file.

The DirectoryProcessor utility takes three optional arguments:

-r indicates that you want to recursively process the .class files in each directory and
subdirectory in the specified directory. The default is that the utility processes only the .class
files that are in the specified directory.

-d specifies the directory that contains the .class files you want to process. The default is that
the utility processes any .class files in the current working directory.

-o specifies the file in which to store the output. The default is that output goes to stdout. In
the JMon application JARfile, the name of the deployment descriptor filemust always be jmon-
jar.xml.

After you generate the deployment descriptor file, you must place it in the META-INF directory of
your development directory. For example, you can execute the DirectoryProcessor utility from
the command line as follows:
cd src
javac -classpath
$APAMA_CORRELATOR_HOME/lib/ap-correlator-extension-api.jar
*.java
java -DAPAMA_LOG_LEVEL=WARN -classpath
$APAMA_CORRELATOR_HOME/lib/ap-correlator-extension-api.jar
com.apama.jmon.annotation.DirectoryProcessor -r -d ./src -o
./src/META-INF/jmon-jar.xml
jar -cf ../simple-jmon.jar META-INF/jmon-jar.xml *.class

The JarProcessor utility takes one required argument, which is the name of the JAR file to operate
on. To execute the JarProcessor utility from a Java build file, you can define something like the
following:
<!--Target to process the annotations in the JMon application classes

to produce jmon-jar.xml -- the deployment descriptor file.
-->
<target name="process-jar" depends="jar">
<echo message=

"Process annotations in jar file: ${process-jar-file}" />
<java jvm="java"

classname="com.apama.jmon.annotation.JarProcessor" dir="."
fork="yes">
<classpath>

<fileset dir="${lib-dir}">

528 Developing Apama Applications 10.11.2

17 Developing and Deploying JMon Applications

<patternset refid="libs" />
</fileset>

</classpath>
<jvmarg value="-DAPAMA_LOG_LEVEL=WARN" />
<arg value="${process-jar-file}" />

</java>
</target>

<target name="process" depends="jar">
<antcall target="process-jar">

<param name="process-jar-file" value="${jar-file}" />
</antcall>

</target>

Package names and namespaces in JMon
applications
There is no correlation between the correlator namespace defined for a named JMon event or
monitor, and the Java package structure of the class file in which that event or monitor is
implemented. Event expressions are based on the correlator namespace, not on the Java package
of the implementation.

Consider the following example. An event type defined in a Java class a.b.c.MyEvent that is given
the correlator name x.MyEvent. Also a monitor defined in a Java class a.b.c.MyListener that is
given the correlator name y.MyListener. Now, although the two classes are in the same Java
package and need not use import statements to see each other, their correlator names are in different
namespaces. Thismeans that an event expression in y.MyMonitorwill need to use the fully qualified
name x.MyEvent to refer the event.

Sample JMon applications
The Apama distribution includes a number of complete sample applications. These applications
are in the samples/java_monitor folder, and are called simple, stockwatch, vwap, dos, context and
complex.

See the README.txt file included with each sample for complete instructions for how to compile
and run the sample application.

Developing Apama Applications 10.11.2 529

17 Developing and Deploying JMon Applications

530 Developing Apama Applications 10.11.2

17 Developing and Deploying JMon Applications

III Developing EPL Plug-ins

18 Introduction to EPL Plug-ins ... 533

19 Providing an EPL Event Wrapper for a Plug-in ... 535

20 Writing EPL Plug-ins in C++ ... 537

21 Writing EPL Plug-ins in Java .. 551

22 Writing EPL Plug-ins in Python .. 563

Developing Apama Applications 10.11.2 531

532 Developing Apama Applications 10.11.2

III Developing EPL Plug-ins

18 Introduction to EPL Plug-ins

Although the correlator's native programming language, the Apama Event Processing Language
(EPL), has most of the functionality of modern programming languages, its primary purpose is
enabling the detection of, correlation across, and triggering on complex event patterns.

In most cases, existing code could be ported and rewritten in EPL, but in practice this might not
be feasible. For example, an application might need to carry out advanced arithmetic operations
and a significant programming library of such functions might already be available. Porting such
complex code to EPL would be a lengthy, expensive and error prone task, and is unnecessary.

The following topics describe Apama's EPL plug-in APIs and illustrate how to use them.

Note:
After upgrading to a new release of Apama, you always have to recompile your EPL plug-ins.

In order to incorporate existing specialized functionality, you can write EPL plug-ins in the
following languages:

C++: An EPL plug-in consists of an appropriately formatted library of C++ functions, which
can be called from within EPL code.

Java: The Java classes that are called from an application's EPL code are contained in a .jar
file.

Python: An EPL plug-in consists of a Python class with methods decorated to indicate they
should be exported to EPL with the EPL action signature.

The correlator does not need to be modified to enable or to integrate with a plug-in, as the plug-in
loading process is transparent and occurs dynamically when required.

CustomEPLplug-ins can be developed usingApama's EPL plug-inAPIs for C++, Java, and Python.
Once a plug-in is developed, you can call the functions it contains directly from the EPL code,
passing EPL variables and literals as parameters, and getting return values that can bemanipulated.

Note:
It is very important that strict plug-in development guidelines are followed when developing
a plug-in. The functions providedmust be adequately debugged prior to their integrationwithin
a plug-in. This is because when the correlator loads a plug-in, it is dynamically linked with the
correlator's runtime process. If any codewithin the plug-in causes a runtime error, the correlator
might fail and terminate.

Developing Apama Applications 10.11.2 533

For this reason, Apama customers who experience problems with correlator stability while
using plug-ins will be asked by Apama Technical Support to remove the plug-in and reproduce
the problem prior to being offered further technical help. Apama Technical Support will only
lift this restriction if the plug-ins have had prior certification by Apama.

534 Developing Apama Applications 10.11.2

18 Introduction to EPL Plug-ins

19 Providing an EPL Event Wrapper for a Plug-in

When creating a plug-in, it is considered best practice to provide an EPL event wrapper to access
all methods of the plug-in. This provides type safety at runtimewith respect to EPL objects of type
chunk, that is, opaque objects whose contents cannot be seen or directly manipulated in EPL.

An example of this is the TimeFormat event which is provided as a wrapper for the Time Format
plug-in (see also “Using the TimeFormat Event Library” on page 343). Using the plug-in directly,
you can write code such as the following:
monitor UsePlugin {
import "TimeFormatPlugin" as timeMgr;
chunk pattern;

action onload() {
pattern := timeMgr.compilePattern("EEE MMM dd HH:mm:ss yyyy");
float stateTimestampSec :=

timeMgr.parseTimeFromPattern(pattern, "1996.07.10 AD at 15:08:56");
}

}

Of course there is nothing to prevent someone passing a chunk from another plug-in as the
parameter to the parseTimeFromPatternmethod. You can forestall this possibility and enforce type
safety by using an event wrapper instead to hide the chunk type as in the following example:
using com.apama.correlator.timeformat.TimeFormat;
using com.apama.correlator.timeformat.CompiledPattern;

monitor UseEventWrapper {
CompiledPattern pattern;

action onload() {
TimeFormat timeFormat := TimeFormat();
pattern := timeFormat.compilePattern("EEE MMM dd HH:mm:ss yyyy");
float stateTimestampSec := pattern.parseTime("1996.07.10 AD at 15:08:56");

}
}

The event definitions for the TimeFormat and CompiledPattern events can be found in the
TimeFormatEvents.mon file, which is located in the monitors directory of your Apama installation.
Note how the CompiledPattern event wraps a chunk object, and the parseTimemethod on the
CompiledPattern event uses the chunk in the CompiledPattern object and the string parameter
passed in to the action.

Developing Apama Applications 10.11.2 535

This approach gives a more object-oriented feel to using the plug-in and can be used to emulate
calling methods on C++ or Java objects. The signatures of actions on event definitions are also
available to Apama in Software AG Designer, so they can be viewed there and benefit from
completion proposals and type checking.

Note:
SoftwareAGDesigner does not knowabout the actions exposed by plug-ins, so it cannot provide
type checking for them.

536 Developing Apama Applications 10.11.2

19 Providing an EPL Event Wrapper for a Plug-in

20 Writing EPL Plug-ins in C++

■ Creating a plug-in using C++ .. 538

■ Using plug-ins written in C++ ... 549

Developing Apama Applications 10.11.2 537

Creating a plug-in using C++
The APIs for writing plug-ins in C++ are all documented in the API Reference for C++ (Doxygen).
The relevant classes are in the com::apama::epl:: namespace, provided in the epl_plugin.hpp
header file.

To create a plug-in for EPL in C++, you have to create a class which inherits from EPLPlugin.
EPLPlugin is a class template with one template parameter, which should be the derived class
which implements your plug-in. Your classmust provide a zero-argument constructor and a static
initializemethod which takes a base_plugin_t::method_data_t & argument. For example:
class MyPlugin: public EPLPlugin<MyPlugin>
{
public:

MyPlugin(): base_plugin_t("MyPlugin")
{}
static void initialize(base_plugin_t::method_data_t &md)
{
}

};

base_plugin_t is a convenience typedef to the EPLPlugin base class. The base class constructor
takes a single argument of descriptive string which is used for logging purposes. The base class
provides two members to derived classes:

DescriptionMember

A Logger object which can be used to write to the correlator
log file. See also “Writing to the correlator log file” on
page 543.

logger

Returns a CorrelatorInterface &which can be used tomake
various callbacks into the correlator.

static getCorrelator()

A single instance of your class is created when the plug-in is loaded. Functions which you want
to expose to EPL are member functions on that instance. To export a function to EPL, you need to
declare a member function on the class with argument and return types which can be translated
into EPL (see “Method signatures” on page 540). The function is exported into EPL by calling
registerMethod on the method_data_t passed to initialize:
static void initialize(base_plugin_t::method_data_t &md)
{

md.registerMethod<decltype(&MyPlugin::doSomething),
&MyPlugin::doSomething>("doSomething");

}
void doSomething(int64_t arg1, double arg2)
{

// ...
}

registerMethod is templated over the following:

the type of the function to export, which can be shortcut with decltype() as shown above, and

538 Developing Apama Applications 10.11.2

20 Writing EPL Plug-ins in C++

the function to export.

registerMethod takes a mandatory argument, which is the name of the function in EPL, and two
optional arguments.

If the method signatures in EPL are not deducible from the C++ arguments, then you must
provide the EPL type signature of the method.

There is a final Boolean parameter, which defaults to true. It should be true if the plug-in may
block (see “Blocking behavior of plug-ins” on page 547) and false otherwise.

md.registerMethod<decltype(&MyPlugin::simpleSignature),
&MyPlugin::simpleSignature>("simpleMethod");

md.registerMethod<decltype(&MyPlugin::simpleSignatureNonBlocking),
&MyPlugin::simpleSignatureNonBlocking>("nonBlockingMethod", false);

md.registerMethod<decltype(&MyPlugin::complexSignature),
&MyPlugin::complexSignature>("complexMethod",

"action<sequence<string>, integer> returns string");

Finally, to export the plug-in, you have to use the APAMA_DECLARE_EPL_PLUGINmacro. If your class
is in a namespace, then you have to put the macro inside the same namespace and give it the class
name without qualification as an argument:
APAMA_DECLARE_EPL_PLUGIN(MyClass)

Plug-ins are loaded into the correlator by using the import statement in themonitor or eventwhich
wants to use the plug-in. The argument is the name of the library which contains the plug-in.
import "MyPlugin" as plugin;

Complete simple example

This example implements a plug-in which simply keeps a single global count.
#include <epl_plugin.hpp>
using namespace com::apama::epl;

class CountPlugin: public EPLPlugin<MyPlugin>
{
public:

CountPlugin()
: base_plugin_t("CountPlugin"),
count(0)

{}
static void initialize(base_plugin_t::method_data_t &md)
{

md.registerMethod<decltype(&CountPlugin::incrementCount),
&CountPlugin::incrementCount>("increment");

md.registerMethod<decltype(&CountPlugin::getCount),
&CountPlugin::getCount>("getCount");

}
int64_t getCount() { return count; }
void incrementCount(int64_t n) { count += n; }
// Note that this is not thread-safe; a real plug-in would
// want to use some synchronization here

private:
int64_t count;

Developing Apama Applications 10.11.2 539

20 Writing EPL Plug-ins in C++

};

monitor foo
{

import "PluginLibrary" as counter;
action onload()
{

on all A() {
counter.increment(1);
print "Current count: "+counter.getCount().toString();

}
}

}

Method signatures
Only methods which have arguments and return values which can be converted into EPL types
may be exported. For some of the types, the equivalent EPL signature can automatically be deduced.
For methods which only take and return those types, you do not need to supply the explicit type.
For other types, you must provide the EPL signature when registering the function.

EPL method signatures take the following forms:
action<integer>
action<sequence<string>, integer>
action<> returns integer
action<dictionary<string, string>, string> returns string

The following tables lists the EPL types and their equivalent C++ types.

Automatically deducible types

NotesC++ return typeC++ argument typeEPL type

int64_tint64_tinteger

Youmust onlyuse const
char * as a return type

const char *const char *string

if it refers to a static
string or a string whose
lifetime is controlled
outside of the function
being returned from,
such as one owned by a
chunk.

If you are constructing
the string in the
function, you must use
std::string as the

540 Developing Apama Applications 10.11.2

20 Writing EPL Plug-ins in C++

NotesC++ return typeC++ argument typeEPL type

return type of the
function instead.

Use std::string as the
return type for your

std::stringstd::stringstring

function unless you are
certain that the lifetime
of the stringwill outlast
the function returning
it.

doubledoublefloat

boolboolboolean

decimal_tdecimal_tdecimal

Works for any class as
the template parameter
T.

custom_t<T>const custom_t<T> &chunk

Types requiring explicit signatures

NotesC++ return typeC++ argument typeEPL type

int64_twill be deduced
to integer, can be

int64_tint64_tcontext

explicitly changed to
context.

Works for any sequence
contents type.

list_tconst list_t &sequence<A>

Works for any
dictionary contents
type.

map_tconst map_t &dictionary<A, B>

Works for any event
type. The event is

map_tconst map_t &EventType

converted to a map_t
where the key is of type
string and the value is
of type data_t. Keys are
the names of the fields
in the event.

Events are converted to
a map_t (with the name

data_tconst data_t &any

Developing Apama Applications 10.11.2 541

20 Writing EPL Plug-ins in C++

NotesC++ return typeC++ argument typeEPL type

set). See "C++ data
types" in Connecting
Apama Applications to
External Components for
further information.

Compiling C++ plug-ins
To compile a C++ plug-in, you need to do the following:

1. Add #include <epl_plugin.hpp> to the source file.

2. Put $APAMA_HOME/include on your compiler's include path.

3. Link the plug-in with apclient.dll (Windows) or libapclient.so (Linux).

4. Put $APAMA_HOME/lib on your compiler's linker path.

5. Enable C++11 standards mode.

6. Compile your class into a shared library .dll (Windows) or .so (Linux).

Using GCC on Linux this would look like this:

g++ --shared --std=c++0x -I$APAMA_HOME/include -L$APAMA_HOME/lib -lapclient -o
libMyPlugin.so MyPlugin.cpp

You can find example makefiles (Linux) and Visual Studio project files (Windows) in the samples
directory of your Apama installation.

The C++ EPL plug-in API is implemented using a C-only ABI, even though it has a C++ API. This
means that there is no requirement to compile your plug-in library with a specific compiler or
compiler version. However, the compiler must support the C++ 11 syntax used in the API header
files. We recommend use of the compilers specified in the Supported Platforms document for the
current version, which is available from the following web page: http://
documentation.softwareag.com/apama/index.htm.

If you are building a shared library to be used by multiple plug-ins and using the plug-in-specific
data structures as part of your API between the library and the plug-ins, then you must ensure
that the library and all of the plug-ins are compiled using the same version of the Apama header
files. This means that if you upgrade Apama and want to recompile one of them, you must
recompile all of them. You can choose not to recompile anything and they will still work.

If you compilewith headers frommultiple service packs of Apama, then youmay see errors similar
to the following when you try to link them.

Linux :

undefined reference to `Foo::test(com::softwareag::connectivity10_5_3::data_t const&)'

542 Developing Apama Applications 10.11.2

20 Writing EPL Plug-ins in C++

http://documentation.softwareag.com/apama/index.htm
http://documentation.softwareag.com/apama/index.htm

Windows:

testlib2.obj : error LNK2019: unresolved external symbol "public: void __cdecl
Foo::test(class com::softwareag::connectivity10_5_3::data_t const &)"
(?test@Foo@@QEAAXAEBVdata_t@connectivity10_5_3@softwareag@com@@@Z) referenced in
function "public: void __cdecl Bar::test(class
com::softwareag::connectivity10_5_3::data_t const &)"
(?test@Bar@@QEAAXAEBVdata_t@connectivity10_5_3@softwareag@com@@@Z)

testlib2.dll : fatal error LNK1120: 1 unresolved externals

If you encounter a similar error, try recompiling all your components with the same version of
the headers.

If you are compiling a single plug-in, or multiple completely independent plug-ins, you can
recompile them in any combination at any time.

Exceptions
Plug-ins can throw exceptions from plug-in methods. Theymust be derived from std::exception
as normal.

If a plug-in throws an exception, this will be turned into an exception in EPLwhichmay be caught
with the EPL try { } catch syntax.

If you do not catch the exception, then the calling monitor instance will be terminated with the
message in the exception thrown from the plug-in.

Writing to the correlator log file
The EPLPlugin base class provides a member called logger to plug-ins. This can be used to write
messages to the correlator's log file.

Logmessages are prefixedwith the string plugins.PluginName, which is also the category that can
be used to control the log level for this plug-in via the correlatorLogging section in the YAML
configuration file (see "Setting correlator and plug-in log files and log levels in a YAML
configuration file" in Deploying and Managing Apama Applications).
void logMessage(const char *msg) {

logger.info("Message is: %s", msg);
}

Documentation about the available functions and log levels can be found in the API Reference for
C++ (Doxygen).

Storing data using chunks
By themselves plug-ins can only store global statewhichmust be protected by threading primitives
from access frommultiple EPL contexts simultaneously. It is possible for plug-ins to store state in
an opaque (to EPL) object. This can be stored specific to a single monitor instance and then passed
back into the plug-in for further processing. In EPL, this is represented using a chunk object. Chunk

Developing Apama Applications 10.11.2 543

20 Writing EPL Plug-ins in C++

objects are specific to a single plug-in, and an attempt to pass them to other plug-ins will throw
an exception.

You can store any C++ type from your plug-in in a chunk, provided that it is copyable using the
default copy constructor. If you have multiple different types from a single plug-in stored in EPL
chunks, then you must have them share a class hierarchy so that you can distinguish them when
they are passed back from EPL.

The argument and return type that you must use to pass chunks is custom_t<T>. custom_t is
templated over the type that you are storing in the chunk. Chunks can only be created by your
plug-in and returned from a function to EPL. When they are passed back to your plug-in, you can
modify the referred to class, but not change which object it points to. Chunk objects are garbage
collected by the EPL runtime for you and will be deleted when they go out of scope. You do not
retain ownership of them.

If you need lifetime shared between EPL and the plug-in (or another chunk object), then indirectly
access the shared object via std::shared_ptr. The custom_twould then point to a std::shared_ptr
or a class containing a std::shared_ptr, and the plug-in follows the shared_ptr to access the shared
object. The plug-in can also have a std::shared_ptr to the shared object. The object will not be
destroyed until both EPL has garbage collected the chunk object and the plug-in has destroyed
its shared_ptr to the object.
class EPLData
{
public:

EPLData(int64_t value): value(value) {}
// default copy constructor and destructor
int64_t value;

};

custom_t<EPLData> createChunk(int64_t value)
{

return custom_t<EPLData>(new EPLData(value));
}
void logChunkValue(const custom_t<EPLData> &chunk)
{

logger.info("Chunk value is: %" PRId64, chunk->value);
}

monitor m {
import "DataPlugin" as plugin;
action onload() {

chunk c := plugin.createChunk(42);
plugin.logChunkValue(c);

}
}

Chunk objects can be copied in EPL. This occurs when the explicit clone()method is called on a
chunk or an event containing the chunk, or if the monitor spawns. When a chunk object is copied,
the value in the custom_t is copied, using the default copy constructor of the template parameter
for custom_t. Thus, each instance will only be accessible from a single monitor instance and thus
only from one thread at a time (though copiesmay be accessed concurrently to the original object).

544 Developing Apama Applications 10.11.2

20 Writing EPL Plug-ins in C++

If you have multiple different chunk types, then use the base class as the template parameter for
custom_t and then use dynamic_cast or virtual dispatch to distinguish between them. When
returning a custom_t value, you must use the derived type as the template parameter, because
that is the type used to create a copy of the object, if needed.
class ChunkBase
{

virtual void doSomething() = 0;
};
class DerivedChunk: public ChunkBase
{
};
void modifyChunk(const custom_t<ChunkBase> &chunk)
{

chunk->doSomething(); // virtual dispatch
auto derived = dynamic_cast<DerivedChunk*>(chunk.get());
if (derived) {

// derived-specific methods
}

};

Sending events
Method calls on plug-ins are synchronous and generally should be written not to take too long or
holdupprocessing in the correlator (see “Blocking behavior of plug-ins” onpage 547).One technique
to enable asynchronous behavior in the plug-in is to interact with EPL by sending events which
can be handled asynchronously, potentially from a background threadwhich is processing events
as well as from methods themselves.

The CorrelatorInterface returned from getCorrelator() contains several methods for sending
events into the correlator. You can send events either as the string representation of the event in
Apama's internal string format (for example, MyEvent(1.3, true)) or as a map_t type where the
keys are strings corresponding to the field names in the event, and the values are the values for
those fields, in the appropriate type/format for the type of the field. In the latter case, you also
need to supply the name of the event type to parse the map as.

You can select the destination of the event in several ways:

Named channel. The preferred method is to deliver the event to a specific named channel.
This will go to everything which has subscribed to that named channel. Subscribers can either
be context, external receivers, connectivity chains or other plug-ins which are subscribed to
receive events on that channel (see “Receiving events” on page 546).

Send as string:
getCorrelator().sendEventTo("MyEvent(42)", "channelName");

Send as object:
map_t event;
event.insert(data_t("number"), data_t(int64_t(42));

getCorrelator().sendEventTo("MyEvent", std::move(event), "channelName");

Developing Apama Applications 10.11.2 545

20 Writing EPL Plug-ins in C++

Context by ID. You can deliver the event to a specific context by context ID. Context IDs can
either be passed into a plug-in from an EPL context() object, or they can be obtained with the
CorrelatorInterface.getCurrentContextId()method.

Send as string:
getCorrelator().sendEventTo("MyEvent(42)", ctxId);

Send as object:
map_t event;
event.insert(data_t("number"), data_t(int64_t(42));

getCorrelator().sendEventTo("MyEvent", std::move(event), ctxId);

You can send events from within a method called from EPL, from any callback handler method,
or from threads spawned by the plug-in itself.

Receiving events
Plug-ins can subscribe to receive events which are delivered to certain named channels. They will
receive events sent to those channels from EPL, from external senders, from connectivity chains
or from other plug-ins (see “Sending events” on page 545). To subscribe to events, you need to
subclass the EventHandler class and implement the handleEvent() virtual method. Then you need
to call registerEventHandler on the CorrelatorInterface returned by getCorrelator()with an
instance of your EventHandler. registerEventHandler takes ownership of the handler object.
class MyHandler: public EventHandler
{

virtual void handleEvent(const char *type, data_t &&event,
const char *channel)

{
// do something with event

}
};
MyPlugin(): base_plugin_t("MyPlugin") {

EventHandler::subscription_t handler = getCorrelator().registerEventHandler(
MyHandler::ptr_t(new MyHandler()), "channelName",
/*mode=*/MAP_MODE, /*blocking=*/true);

}

registerEventHandler() parameters

registerEventHandler() has mandatory and optional parameters:

DescriptionParameter

Required. The handler object which will process delivery of the events.handler

Required. The initial channel to subscribe to.channel

546 Developing Apama Applications 10.11.2

20 Writing EPL Plug-ins in C++

DescriptionParameter

Optional. If set to STRING_MODE, then events are delivered inApama string
form. If set to MAP_MODE (default), events are delivered in map_t form (see
“Sending events” on page 545).

mode

If set to true, then this handler may block the thread. If set to false, the
handlerwill never block (see “Blocking behavior of plug-ins” onpage 547).

blocking

handleEvent() parameters

handleEvent() is called with the following parameters:

DescriptionParameter

The name of the type of the event.type

The event itself. The data_t contains a const char * if the handler was
subscribed in STRING_MODE or a map_t if it was subscribed in MAP_MODE.

event

You are given ownership of the event so you can move it for further
processing without taking a copy.

The channel on which this event was delivered.channel

EventHandler::subscription_t methods

registerEventHandler() returns an object of type EventHandler::subscription_t, which can be
used to add channels to a subscription, remove channels from a subscription, or remove the handler
entirely. You must not call either of the remove methods from inside the handler object.

EventHandler::subscription_t has the following methods:

DescriptionMethod

Subscribe to an additional channel.void addChannel(const char *channel)

Unsubscribe from the channel, if subscribed to it. If
this reduces the subscription count to 0, then it

bool removeChannel(const char *channel)

destroys the handler. Returns true if the handler was
destroyed.

Remove all subscriptions and destroy the handler.void removeAllChannels()

Blocking behavior of plug-ins
The correlator system assumes that all functions return in a reasonable amount of time, and do
not do potentially blocking operations such as file-system operations or remote calls. For code
written in EPL, the correlator can enforce this. For code provided in plug-ins, the correlator cannot

Developing Apama Applications 10.11.2 547

20 Writing EPL Plug-ins in C++

enforce this or knowwhether themethodmay block. Therefore, by default, the correlator assumes
that any plug-in method may block indefinitely. This may cause the correlator to create new
operating system threads to service incoming events on other contexts.

If you know that your plug-in does not do anything long-running or potentially blocking, then
you may declare the method as “non-blocking” at the point it is registered in the initialize
function:
static void initialize(base_plugin_t::method_data_t &md)
{

md.registerMethod<decltype(&MyPlugin::nonBlockingMethod),
&MyPlugin::nonBlockingMethod>("methodName", /*blocking=*/false);

}

For event handlers, this is done with the call to registerEventHandler (see “Receiving events” on
page 546).

If you do this, then the correlator assumes that the method will return soon and not spawn
additional threads. This can avoid extra overhead of starting and stopping operating system
threads.

CAUTION:
Declaring a method as non-blocking when it actually blocks can cause poor performance or
even deadlock the correlator entirely.

If you have a method which is normally non-blocking, but may sometimes block, you can declare
it as non-blocking initially and then, when it encounters a condition which is blocking, notify the
correlator that this call is blocked to allow the correlator to spawn additional threads.
int64_t get(int64_t key) {

if (local(key)) {
return local(key);

} else {
getCorrelator().pluginMethodBlocking();
return remote(key);

}
}

Load-time or unload-time code
If you need to execute code at the time the plug-in is loaded, then you should put it in the plug-in
class constructor.

If you need to execute code at the time the plug-in is unloaded, then you should put it in the
plug-in class destructor.

Typically, you will register any callbacks at load time in the constructor.
class MyPlugin: public EPLPlugin<MyPlugin>
{

MyPlugin(): base_plugin_t("MyPlugin") {
// load-time code here

}
~MyPlugin() {

// unload-time code here

548 Developing Apama Applications 10.11.2

20 Writing EPL Plug-ins in C++

}
};

Handling thread-specific data in plug-ins
The correlator executes plug-ins on a number of internal threads which may change over time,
including spawning new threads or destroying old threads. If a plug-in needs to store any state
in thread-local variables, then - as well as cleaning up this state when the plug-in unloads - it also
needs to clean it up when a thread is destroyed. To enable this, plug-ins can register to receive a
callbackwhenever the correlator destroys a thread. This is done by subclassing ThreadEndedHandler
with an implementation of threadEnded() and then passing an instance of your subclass to the
receiveThreadEndedCallbacks()method on CorrelatorInterface. receiveThreadEndedCallbacks
takes ownership of the handler and may only be called once per plug-in.
class MyThreadHandler: public ThreadEndedHandler {
public:
virtual void threadEnded() {

// cleanup code here
}

};
MyPlugin(): base_plugin_t("MyPlugin")
{
getCorrelator().receiveThreadEndedCallbacks(

MyThreadHandler::ptr_t(new MyThreadHandler()));
}

Using plug-ins written in C++
The plug-in library you compiled must be available on the correlator's PATH (Windows) or
LD_LIBRARY_PATH (Linux). By default, the $APAMA_WORK/libdirectory is included on the appropriate
path, and we recommend that you use this location for your own plug-ins.

Plug-ins are loaded using the import statement in EPL:
monitor m {

import "MyPlugin" as plugin;
}

This statement can be made at the top-level of either monitors or events.

The correlator then attempts to load MyPlugin.dll (Windows) or libMyPlugin.so (Linux) from the
path. The correlator reads the list of exported methods from the plug-in. These methods are then
available on the name provided in the as statement in the rest of that monitor or event:
event E {

import "MyPlugin" as plugin;
action increment(integer i) {

plugin.increment(i);
}
action get() returns integer {

return plugin.getCount();
}

}

Developing Apama Applications 10.11.2 549

20 Writing EPL Plug-ins in C++

Note:
When compilingwith theGNU compiler collection (g++), it is not possible to completely unload
plug-ins when GNU UNIQUE symbols are present. These are created transparently by the
compiler. If you try and unload a plug-in via engine_delete and you see the warning telling
you that the unloading of plug-in_name failed and that theDSOprobably containsGNUUNIQUE
symbols, then you are affected by this issue. If you need to do hot redeployment of your plug-in
code (without restarting the correlator), then you will have to rename your plug-in and change
the references to it in order to reload it into the same correlator.

550 Developing Apama Applications 10.11.2

20 Writing EPL Plug-ins in C++

21 Writing EPL Plug-ins in Java

■ Creating a plug-in using Java ... 552

■ Using EPL plug-ins written in Java ... 554

■ Sample plug-ins in Java ... 560

Developing Apama Applications 10.11.2 551

EPLplug-ins can bewritten in Java. Java plug-in classes are automatically analyzed by the correlator
and any suitable methods exposed as methods that can be called from EPL.

EPL plug-ins written in Java are packaged and deployed in the same way as JMon applications.
See “Developing and Deploying JMon Applications” on page 517 for more information.

Creating a plug-in using Java

To create a Java class to use as an EPL plug-in

1. In the Java class used as a plug-in, you need to have one or more public static methods that
match the permitted signatures,which are described in “Permitted signatures formethods” on
page 553.

All calls from an Apama application will be made to these static methods from all contexts.

As the plug-in author you are responsible for any concurrency concerns.

2. EPL plug-ins in Java are deployed using a JMon application and are packaged in a .jar file.
Youneed to create a JMondeployment descriptor file in the application's META-INF/jmon-jar.xml
file. For the plug-in, you need to add a <plugin> to the <application-classes> element.

For more information on Apama deployment descriptor files, see “Creating deployment
descriptor files” on page 521.

An example plug-in stanza looks like this:
<plugin>
<plugin-name>TestPlugin</plugin-name>
<plugin-class>test.TestPlugin</plugin-class>
<description>A test plugin</description>

</plugin>

plugin-name defines the name visible to EPL.

plugin-class indicates the class to load from the jar for this plug-in.

description is a simple textual description that appears in log messages.

Instead ofwriting a deployment descriptor filemanually, if you are using SoftwareAGDesigner
to create the plug-in, you can annotate the plug-in class and have Software AG Designer
automatically generate the descriptor file. Here is an example annotation:
@com.apama.epl.plugin.annotation.EPLPlugin(name="TestPlugin",

description="A test plugin")
class testplugin
{

...
}

552 Developing Apama Applications 10.11.2

21 Writing EPL Plug-ins in Java

3. Create a .jar file for deploying the plug-in and add the Java class file and the deployment
descriptor file META-INF/jmon-jar.xml to it. In Software AG Designer when you create a JMon
application, this is done automatically.

For applications that you plan to inject into a correlator, the recommendation is to create separate
.jar files for:

EPL plug-ins written in Java

JMon applications

Although the mechanism for creating these jars and describing their meta-data is similar, the
interactions of these two different uses of injected jarsmean that theywill often need to be injected
into the correlator separately. The creation of separate .jar files ensures that you can inject your
application components in the correct order, which is typically:

1. EPL plug-ins written in Java

2. EPL monitors and events

3. JMon applications

Permitted signatures for methods
For a method to be exposed to EPL, it must be public, must be static and every argument plus the
return type must be one of the following:

NotesEPL TypeJava Entry

Truncated when passed in,
for compatibility.

integerint

integerlong

Copy in / copy out.stringString

booleanboolean

floatdouble

Is either java.lang.Double
type for NaN or infinity, or

decimaljava.lang.Number

java.math.BigDecimal for a
value.

Passing in either NaN or
infinity throws an exception

decimaljava.math.BigDecimal

that kills the monitor
instance if not caught.

Deprecated, use
java.lang.Number instead.

Developing Apama Applications 10.11.2 553

21 Writing EPL Plug-ins in Java

NotesEPL TypeJava Entry

New type defined for
plug-ins.

contextcom.apama.epl.plugin.Context

New type defined for
plug-ins.

com.apama.Channelcom.apama.epl.plugin.Channel

Any Java object can be held
in EPL via a chunk.

chunkObject

Any above type except int
can be passed in as an

sequence<TYPE>TYPE[]

arbitrary-depth nested
array->sequence. The
sequence is strictly copy-in,
non-modifiable, but can be
returned as copy-out.

Permitted as a return type
only.

N/Avoid

Any method not matching this signature is ignored and logged at DEBUG.

Overloaded functions

Any function with multiple overloads is ignored (none of them are exposed) and this is logged
once at WARN and once per method at DEBUG.

Using EPL plug-ins written in Java
After you create an EPL plug-in in Java, it must be injected into a Java-enabled correlator before
it is available for use in Apama applications. Applications that will use the plug-in also need to
import the plug-in by name.

Injecting

The .jar file containing the EPL plug-in must be injected into a correlator that has been started
with the --java option, which enables support for JMon applications. When using the Apama
engine_inject utility to inject the .jar file, you also need to use the --java option.

Importing

Once a Java plug-in has been injected it is available for import using the plugin-name defined in
the deployment descriptor file. The correlator will automatically introspect the class and make
available any suitable, public methods that can be called directly from EPL. For example, the
following code imports a plug-in named TestPlugin and calls its dosomethingmethod:
monitor m {

554 Developing Apama Applications 10.11.2

21 Writing EPL Plug-ins in Java

import "TestPlugin" as test;
action onload()
{

test.dosomething();
}

}

Note, if the plug-in .jar has been incorrectly injected, the correlator will try to load the plug-in
as a C++ plug-in and may give an error such as Error opening plug-in library libfoo.so:
libfoo.so: cannot open shared object file: No such file or directory. If this happens and
you were trying to load a plug-in written in Java, then check that the .jar file was created and
injected correctly before your EPL file was injected.

Classpath

Each JMon or Java plug-in application is loaded into its own separate classloader. This means that
they have no access to any classes loaded in other .jar files. If your plug-in requires any other
Java libraries they must be listed in the classpath element of the deployment descriptor, included
in the correlator's global classpath, or injected in the same application .jar as the plug-in. See
“Specifying the classpath in deployment descriptor files” on page 523 for more details.

Deleting

An EPL plug-in can be explicitly deleted by calling engine_deletewith the application name
defined in the deployment descriptor, as with JMon applications. Monitors using the plug-in
depend on the plug-in type in the normal fashion. The plug-in will not be deleted until the
application and all dependent monitors are deleted.

As each plug-in is loaded in its own classloader, once the application has been deleted, the plug-in
can be re-injected and it will be loaded into a new classloader.

Interacting with contexts

EPL plug-ins can be passed context objects using the com.apama.epl.plugin.Context type. The
Context object is defined as:
package com.apama.epl.plugin;
public class Context
{
public String toString();
public Context();
public String getName();
public int hashCode();
public boolean isPublic();
public boolean equals(Context other);
public static native Context getCurrent();

}

The getCurrentmethod returns the context that this method was called from.

Developing Apama Applications 10.11.2 555

21 Writing EPL Plug-ins in Java

Interacting with the correlator

EPL plug-ins can use the com.apama.epl.plugin.Correlator class to send an event, subscribe to a
channel, or to specify blocking behavior. The Correlator class is defined as:
package com.apama.epl.plugin;
public class Correlator
{
public static native void sendTo(String evt, String chan);
public static native void sendTo(String evt, Context ctx);
public static native void sendTo(String evt, Context[] ctxs);
public static native void sendTo(String evt, Channel c);

public static native void subscribe(EventHandler handler, String[] channels);
public static native void unsubscribe(EventHandler handler, String[] channels);
public static native void unsubscribe(EventHandler handler);

public static native void pluginMethodBlocking();
}

The Correlatormethods are:

sendTo(String, String) – Sends the event represented in the first String to the channel specified
in the second String. Any contexts and external receivers that are subscribed to the specified
channel receive the event. If there are no subscribers the event is discarded.

sendTo(String, Context) – Sends the event represented in String to the context referred to
by the com.apama.epl.plugin.Context argument. An exception is thrown if the context reference
is invalid.

sendTo(String, Context[]) – Sends the event represented in String to the array of contexts
referred to by the com.apama.epl.plugin.Context[] argument. If one context reference is invalid
an exception is thrown and the event is not sent to any context.

sendTo(String, Channel)— Sends the event represented in String. If the specified
com.apama.epl.plugin.Channel object contains a string then the event is sent to the channel
that has that name. If Channel contains a context then the event is sent to that context.

subscribe(EventHandler, String[]) – Subscribes the handler object to the channels listed in
the string array. If the handler is already subscribed to some channels then the channels listed
in the array are added to the list of existing subscriptions. Subscribing to the same channel
multiple times results in a single subscription. However, to completely remove a channel
subscription that has been added multiple times you must unsubscribe from that channel the
same number of times that it was subscribed to.

unsubscribe(EventHandler, String[]) – For the channels specified in the string array, this
method removes the subscriptions from the specified handler. It is possible for the result of
this method to be that the handler is not subscribed to any channels. Unsubscription from a
channel that the handler is not subscribed is ignored.

unsubscribe(EventHandler) – Removes all subscriptions from the specified handler. If this
handler is not subscribed to any channels the method is ignored.

556 Developing Apama Applications 10.11.2

21 Writing EPL Plug-ins in Java

pluginMethodBlocking() – Informs the correlator that the plug-in is potentially blocking for
the rest of this call and the correlator is free to spin up additional threads onwhich to run other
contexts.

For more information on com.apama.epl.plugin.Context and com.apama.epl.plugin.Correlator,
see the API Reference for Java (Javadoc).

Receiving events from named channels

A Java plug-in can register callbacks to receive events that are sent to named channels. This is
similar to the monitor.subscribe()method in EPL. Events are delivered in string form by means
of a method on a known interface.

To register a callback, the plug-in must define a class that implements the
com.apama.epl.plugin.EventHandler interface:
public interface EventHandler
{

void handleEvent(String event, String channel);
}

The handleEvent()method is called once for each event sent to a channel that this handler is
subscribed to, with the channel on which it was received. To manage EventHandler object channel
subscriptions, use the subscribe() and unsubscribe()methods on
com.apama.epl.plugin.Correlator. When a handler is unsubscribed from all channels any
in-progress callbacks will complete, but no further callbacks will be made to that handler.

Working with Channel objects

Similar to context objects, you can pass EPL com.apama.Channel objects into a Java plug-in. The
equivalent Java class is com.apama.epl.plugin.Channel and you can use objects of this class to send
events to channels. Like the EPL Channel type, the Java Channel class has three constructors:
Channel (String name)
Channel (com.apama.epl.plugin.Context c)
Channel ()

A Channel object can contain a string that is the name of a channel or it can contain a context. The
no-argument constructor creates a Channel object that contains an empty context. If you try to send
an event to an empty context the sendTo()method throws an exception.

You can call the empty()method on a Java Channel object. It returns true only if the object contains
an empty context.

Exceptions

If a method throws an exception, that exception is passed up to the calling EPL and can be caught
by the calling monitor. If an exception is not caught it will terminate the monitor instance. Details
on catching exceptions in EPL can be found in “Exception handling” on page 278.

If a Java plug-in throws a java.lang.RuntimeException, or subclass,which is in the java. namespace
(for example, java.lang.NullPointerException) then it will be logged at ERRORwith a stacktrace

Developing Apama Applications 10.11.2 557

21 Writing EPL Plug-ins in Java

before being rethrown. Unchecked exceptions from other sources (for example client exception
types) will not be logged.

Load, unload, and shutdown hooks

If a plug-in needs to run anything when it is loaded, you can do this in a static initializer:
public class Plugin
{

static {
... // initialization code here

}
}

It is not natively possible for a plug-in to run anything when it is unloaded. If you need this
functionality you can declare amethod to be calledwhen the plug-in is unloaded using annotations:
public class Plugin
{

@com.apama.epl.plugin.annotation.Callback(
type=com.apama.epl.plugin.annotation.Callback.CBType.SHUTDOWN)

public static void shutdown()
{

... // shutdown code here
}

}

Themethodmust be a public static functionwhich takes no arguments and returns void. Currently,
Apama does not support callbacks other than SHUTDOWN.

Non-blocking plug-ins and methods

In a correlator some threads have the potential to block and others do not. If a threadmight block,
the correlator starts new threads if it has additional runnable contexts. By default the correlator
assumes that a plug-in call may block and will start additional threads on which to run other
contexts. In situations where the plug-in call can never block, the additional overhead of starting
new threads when all CPUs are busy is unnecessary. If you know that a plug-in or an individual
method is non-blocking, you can improve efficiency by annotating either entire plug-ins or
individual methods as non-blocking.

Note, however, if amethod declared as non-blocking does block, the correlator can block all threads
waiting for them to finish, resulting in a deadlocked correlator. For methods that are normally
non-blocking, but may block in predictable situations, see "Sometimes-blocking functions" below.

Annotations. You can apply the annotation com.apama.epl.plugin.annotation.NoBlockwith
no arguments to either a plug-in class, or to a method on a class:
@com.apama.epl.plugin.annotation.NoBlock()
public class Plugin
{
...

}

When applied to a class, the annotation indicates that nomethod on the plug-in can ever block.

558 Developing Apama Applications 10.11.2

21 Writing EPL Plug-ins in Java

public class Plugin
{
@com.apama.epl.plugin.annotation.NoBlock()
public static String getValue() { ... }

}

When applied to a method, the annotation indicates that this method will never block, but
other methods may block.

Sometimes-blocking functions. If you have a function that usually will not block, but under
some known conditions may block, then the method can be declared as NoBlock as long as it
then uses a callback to indicate when it is starting the potentially-blocking behavior. The
callback is a staticmethod on com.apama.epl.plugin.Correlator called pluginMethodBlocking.
This function takes no arguments, returns no value and is idempotent. When it is called, the
correlator will then assume that the plug-in is potentially blocking for the rest of this call and
is free to spin up additional threads on which to run other contexts.
public class Plugin
{

@com.apama.epl.plugin.annotation.NoBlock()
public static String getValue()
{

if (null != localValue) return localValue;
else {

com.apama.epl.plugin.Correlator.pluginMethodBlocking();
localValue = getRemoteValue();
return localValue;

}
}

}

Logging

EPL plug-ins written in Java can log to the correlator's log file. This is done via the
com.apama.util.Logger class, or alternatively using the open-source SLF4J API. The SLF4J API is
provided in the /common/lib/ext directory of your Software AG installation.

Each plug-in must create a static instance of com.apama.util.Logger using the static getLogger
method. This instance provides debug(...), info(...), warn(...) and error(...)methods,which
log a string at that log level in the correlator log file. See also "Setting correlator and plug-in log
files and log levels in a YAML configuration file" in Deploying and Managing Apama Applications.

For more information on using the Logger class, including how to override the default log level,
see the API Reference for Java (Javadoc).

The following is an example of logging in an EPL plug-in:
package test;
import com.apama.util.Logger;
public class MyPlugin
{

private static final Logger logger = Logger.getLogger("plugins.test.MyPlugin");
public static void foo()
{

logger.info("A string that's logged at INFO");
}

Developing Apama Applications 10.11.2 559

21 Writing EPL Plug-ins in Java

}

This will produce entries in the correlator log file like this:

2019-06-24 14:22:21.974 INFO [1167792448:processing] - <test.MyPlugin> A string that's
logged at INFO

It is recommended to put “plugins.” at the beginning of the category name (as shown in the above
example).

If your plug-in uses a third-party library that logs with SLF4J or Log4j 2, then the log output goes
to themain correlator log file automatically. The root classloader also contains the Log4j 1.x bridge
(log4j-1.2-api.jar) which redirects calls tomost of the Log4j 1API through to Log4j 2. So provided
you do not use internal features such as programmatic configuration, Log4j 1 libraries should
work fine. However, we recommend that you transition away from Log4j 1 since it has reached
end-of-life status.

When using a library which uses some other logging implementation, such as the JDK logger, or
Apache Java commons logging (JCL), then add a bridging jar to convert it to SLF4Jwhere possible.
Several bridges are available in the common/lib/ext and common/lib/ext/log4j directories of your
Software AG installation.

Sample plug-ins in Java
Apama provides sample EPL plug-ins written in Java, located in the samples\correlator_plugin\
java directory of your Apama installation. The samples are:

SimplePlugin – a basic plug-in with onemethod that takes a string, and returns another string.

ComplexPlugin – a plug-in that has several methods and handles more complex types.

SendPlugin – a plug-in that demonstrates passing contexts around and sending events.

SubscribePlugin – a plug-in that shows how to subscribe to receive events sent on a particular
channel.

The samples\correlator_plugin\java directory contains the Java code for the samples, the EPL
code for the Apama applications that call each of the plug-ins, the deployment descriptor files,
and an Ant build.xml file for building all of the samples. The directory also contains a README.txt
that describes how to build and run the samples as well as text files that depict what the output
of the samples should be like.

A simple plug-in in Java
The simple plug-in sample can be found in the samples\correlator_plugin\java directory of your
Apama installation.

The Java code for the SimplePlugin class contains the public static testmethod. (Methods that
will be called from EPL code need to be public and static.)
public class SimplePlugin
{

560 Developing Apama Applications 10.11.2

21 Writing EPL Plug-ins in Java

public static final String TEST_STRING = "Hello, World";
public static String test(String arg)
{

System.out.println("SimplePlugin function test called");
System.out.println("arg = "+arg);
System.out.println("return value = "+TEST_STRING);
return TEST_STRING;

}
}

The SimplePlugin.xml file is the deployment descriptor and contains the following <plugin> stanza
that illustrates how to specify the plug-in.

<application-classes>
<plugin>

<plugin-name>SimplePlugin</plugin-name>
<plugin-class>SimplePlugin</plugin-class>
<description>A test plugin</description>

</plugin>
</application-classes>

The SimplePlugin.mon file contains the EPL code. It imports the plug-in and calls the testmethod.
monitor SimplePluginTest {
// Load the plugin
import "SimplePlugin" as simple;

// To hold the return value
string ret;
string arg;
action onload() {

// Call plugin function
arg := "Hello, Simple Plugin";
ret := simple.test(arg);
// Print out return value
log "simple.test = " + ret at INFO;
log "arg = " + arg at INFO;

}
}

A more complex plug-in in Java
The complex plug-in sample can be found in the samples\correlator_plugin\java directory of
your Apama installation.

The Java code for the ComplexPlugin class contains the public static methods: test1, test2, test3,
and test4. It also contains an object, ComplexChunk that represents a complex type.

The complex_plugin.xml file is the plug-in's deployment descriptor and contains the <plugin>
stanza that specifies the name, class, and description for the plug-in.

The sample's ComplexPlugin.mon file contains the EPL code for the Apama application. It imports
the plug-in and calls the various testxmethods.

Developing Apama Applications 10.11.2 561

21 Writing EPL Plug-ins in Java

A plug-in in Java that sends events
The SendPlugin.java file in the samples\correlator_plugin\java directory of your Apama
installation is a sample plug-in that shows how to pass contexts around and how to send events
to specific contexts.

The Java class for the plug-in imports com.apama.epl.plugin.Context and
com.apama.epl.plugin.Correlator and it declares a publicmethod that sends an event to a channel
and another public method that sends an event to a particular context.

The SendPlugin.xml deployment descriptor file contains the name, class, and description of the
plug-in in the <plugin> stanza.

The Apama application SendPlugin.mon first imports the plug-in and then calls the plug-in's
sendEventToChannel()method as well as its sendEventTo()method with a variety of contexts.

A plug-in in Java that subscribes to receive events
The SubscribePlugin.java file in the samples\correlator_plugin\java directory of your Apama
installation is a sample that shows how a plug-in subscribes to receive events sent on a particular
channel.

The Java code for the SubscribePlugin class contains the public static createHandlermethod.
(Methods that will be called from EPL code need to be public and static.)

The deployment descriptor file SubscribePlugin.xml contains the <plugin> stanza that illustrates
how to specify the plug-in.

The EPL code in the file SubscribePlugin.mon imports the plug-in and calls the createHandler()
method.

562 Developing Apama Applications 10.11.2

21 Writing EPL Plug-ins in Java

22 Writing EPL Plug-ins in Python

■ Creating a plug-in using Python ... 564

■ Using Python plug-ins .. 568

■ Installing Python modules .. 570

■ Sample plug-ins written in Python .. 571

Developing Apama Applications 10.11.2 563

Creating a plug-in using Python
The APIs for writing plug-ins in Python are documented in the API Reference for Python. The
relevant classes are in the apama.eplpluginmodule.

Note:
EPL plug-ins written in Python support Python 3, which is shipped with Apama. They do not
support Python 2.

To create a plug-in for EPL in Python, you have to create a class which inherits from
apama.eplplugin.EPLPluginBase. Your class must provide a one-argument constructor and pass
the argument verbatim to the EPLPluginBase constructor. For example:
import apama.eplplugin

class MyPluginClass(apama.eplplugin.EPLPluginBase):
def __init__(self, init):

super(MyPluginClass, self).__init__(init)
...

The base class provides two member functions to derived classes:

DescriptionMember

Returns a logger object which can be used to write to the correlator log
file. See also “Writing to the correlator log file” on page 567.

getLogger()

Returns a dictionary of the configuration from the correlator configuration
file. See also “Using Python plug-ins” on page 568.

getConfig()

A single instance of your class is created for each time it is listed in the configuration file. Functions
which you want to expose to EPL are member functions on that instance. To export a function to
EPL, you need to declare a member function on the class and decorate it to indicate the name and
signature of the function in EPL using the EPLAction decorator:
@EPLAction("getCounter", "action<string> returns integer")
def lookupCounter(name):

return counters[name].value()

You configure the plug-ins in the YAML configuration file for the correlator, in the eplPlugins
stanza:
eplPlugins:

counterPlugin:
pythonFile: counters.py
class: MyPluginClass

Note:
In SoftwareAGDesigner, you can easily do this by adding the above configuration to the config/
CorrelatorConfig.yaml file. For further information, see "YAML configuration file for the
correlator" in Deploying and Managing Apama Applications.

564 Developing Apama Applications 10.11.2

22 Writing EPL Plug-ins in Python

You load the plug-ins into EPL by using the import statement in themonitor or event whichwants
to use the plug-in:
import "counterPlugin" as plugin;

Note:
If your plug-in starts any Python background threads, you must ensure all such threads are
stopped before unloading the plug-in. Failure to do so can cause the correlator to terminate
with a Py_EndInterpretermessage, indicating that this is not the last thread.

Complete simple example

This example implements a plug-in which simply keeps a single global count.
from apama.eplplugin import EPLPluginBase,EPLAction

class CountPlugin(EPLPluginBase):
def __init__(self, init):

super(MyPluginClass, self).__init__(init)
self.count = 0

@EPLAction("action<integer>", "increment") # override name
def incrementCount(self, number):

self.count = self.count + number
@EPLAction("action<> returns integer")
def getCount(self):

return self.count

eplPlugins:
countPlugin:

pythonFile: ${PARENT_DIR}/countplugin.py
class: CountPlugin

monitor foo
{

import "countPlugin" as counter;
action onload()
{

on all A() {
counter.increment(1);
print "Current count: "+counter.getCount().toString();

}
}

}

Method signatures and types
Only methods which take arguments and return values which can be converted into EPL types
can be used in an EPL plug-in written in Python. For each action, you must provide the EPL
signature for the method to the EPLAction decorator. Typing is not strictly enforced by Python,
but is enforced by EPL when being used as a plug-in. EPL method signatures take the following
forms:

Developing Apama Applications 10.11.2 565

22 Writing EPL Plug-ins in Python

action<integer>
action<sequence<string>, integer>
action<> returns integer
action<dictionary<string, string>, string> returns string

EPL to Python type conversion

NotesPython typeEPL type

integerinteger

unicodestring

floatfloat

boolboolean

decimal.Decimaldecimal

Maps to an arbitrary Python
object.

any typechunk

All keys must be the same
type. All values must be the
same type.

dictdictionary<T>

All elementsmust be the same
type.

listsequence<T>

apama.eplplugin.Contextcontext

unicode or apama.eplplugin.ContextChannel

May be None.Toptional<T>

apama.eplplugin.Locationlocation

All EPL event types are
mapped to a single Python

apama.eplplugin.EventEventType

Event type. It has two fields.
Type is the event name and
fields is a dict of fieldname :
fieldvalue.

apama.eplplugin.Anyany

Methods using args/kwargs

You can either explicitly specify all the arguments that your plug-in methods take or you can rely
on *args-type argument handling.

You can pass any number of EPL arguments into a Python function expecting *args. This functions
in the same way as passing the arguments from within Python.

566 Developing Apama Applications 10.11.2

22 Writing EPL Plug-ins in Python

Expanding a sequence as function parameters is not supported. In this case, *argswould contain
a single parameter, of type list. It is possible to achieve this using awrapper function fromwithin
Python. For example:
def funcThatUsesArgs(*args):

...

@EPLAction("action<sequence<any>>")
def foo(d):

funcThatUsesArgs(*d)

Apama does not invoke plug-in methods with argument names, so **kwargs patterns will not
work. However, it is possible to use Python functions expecting **kwargs by using a wrapper
function in the same way as with *args. For example:
def funcThatUsesKwargs(**kwargs):

...

@EPLAction("action<dictionary<string, any>>")
def foo(d):

funcThatUsesKwargs(**d)

Exceptions
Plug-ins can raise exceptions from plug-in methods. They must be derived from
exceptions.Exception as normal.

If a plug-in throws an exception, this will be turned into an exception in EPLwhichmay be caught
with the EPL try ... catch statement. See also “The try ... catch statement” on page 679.

If you do not catch the exception, then the calling monitor instance will be terminated with the
message in the exception thrown from the plug-in.

Writing to the correlator log file
The EPLPluginBase class provides a member function getLogger to plug-ins. This can be used to
write messages to the correlator's log file.

Logmessages are prefixedwith the string plugins.PluginName, which is also the category that can
be used to control the log level for this plug-in via the correlatorLogging section in the YAML
configuration file (see "Setting correlator and plug-in log files and log levels in a YAML
configuration file" in Deploying and Managing Apama Applications).
def logMessage(msg):

getLogger().info("Message is: %s", msg);

Documentation about the available functions and log levels can be found in the API Reference for
Python.

Developing Apama Applications 10.11.2 567

22 Writing EPL Plug-ins in Python

Sending events
Method calls on plug-ins are synchronous. Generally, they should be written not to take too long
or hold up processing in the correlator. One technique to enable asynchronous behavior in the
plug-in is to interactwith EPL by sending eventswhich can be handled asynchronously, potentially
from a background thread which is processing events as well as from methods themselves.

The apama.eplplugin.Correlator class contains several methods for sending events into the
correlator. You can send events either as the string representation of the event in Apama's internal
string format (for example, MyEvent(1.3, true)) or as a dictionary either with the event type
specified explicitly or as an apama.eplplugin.Event type. In the dictionary case, the keys are strings
corresponding to field names in the event, and the values are the value for those fields in the
appropriate type/format for the type of the field.

You can select the destination of the event in two ways:

Named channel. The preferred method is to deliver the event to a specific named channel.
This will go to everything which has subscribed to that named channel. Subscribers can either
be contexts, external receivers, connectivity chains or other plug-ins which are subscribed to
receive events on that channel.

Send as string:
Correlator.sendTo("channelName", "MyEvent(42)")

Send as object:
event = {}
event["number"] = 42
Correlator.sendTo("channelName", event, type="MyEvent")

Context. You can deliver the event to a specific context using an apama.eplplugin.Context
object. Contexts can either be passed into a plug-in from an EPL context object, or they can be
obtained with the apama.eplplugin.Correlator.getCurrentContext()method.

Send as string:
Correlator.sendTo(Correlator.getCurrentContext(), "MyEvent(42)")

Send as object:
apama.eplplugin.Event event;
event.fields["number"] = 42
event.type = "MyEvent"
Correlator.sendTo(contextObject, event)

Using Python plug-ins
After you have created an EPL plug-in in Python, you must configure it in a Python-enabled
correlator so that it is available for use in your Apama applications. Applications that use the
plug-in also need to import the plug-in by name.

568 Developing Apama Applications 10.11.2

22 Writing EPL Plug-ins in Python

Enabling Python support in the correlator

To enable Python support in the correlator, you must use the --python command-line option of
the correlator executable. See also "Starting the correlator" in Deploying and Managing Apama
Applications.

You can also enable Python support using the YAML configuration file for the correlator:
correlator:
pythonSupport: true

If you are using a standard Apama installation, a copy of Python is provided in your installation.
This Python will be used by default. If you are using the core installer, or wish to use a different
version of Python, then you will need to override the location of your Python installation. You
can do this by setting the AP_PYTHONHOME environment variable.

Adding a Python plug-in to the correlator

EPL plug-ins written in Python are made available to EPL via the YAML configuration file for the
correlator (see also "Configuring the correlator" in Deploying and Managing Apama Applications).

To configure a specific Python plug-in once you have enabled Python support, you need to add
an eplPlugins section to the configuration file:
eplPlugins:

myPluginName:
pythonFile: ${PARENT_DIR}/plugin.py
class: PluginClass
pythonPath:

- ${PARENT_DIR}/dependencies
config:

key: value

The plug-in name is an arbitrary string which will be used to refer to the plug-in from EPL. The
following configuration options are available for each plug-in:

DescriptionConfiguration option

Required. The path to the Python file which contains the
plug-in.

pythonFile

Required. The name of the class in the file which exposes
methods decorated with EPLAction.

class

Optional. A single string or list of strings containing locations
to add to the Python path.

pythonPath

Optional. An arbitrary dictionarywhichwill be available to the
plug-in via the self.getConfig()method.

config

You can create multiple instance of the same plug-in with different names.

Developing Apama Applications 10.11.2 569

22 Writing EPL Plug-ins in Python

Importing a Python plug-in to EPL

Once a Python plug-in has been configured, it is available for import using the plug-in name
defined in the configuration file. The correlator will make available all methods decorated with
the EPLAction decorator to be called directly from EPL. For example, the following code imports
a plug-in named TestPlugin and calls its dosomethingmethod:
monitor m {

import "TestPlugin" as test;
action onload()
{

test.dosomething();
}

}

If the plug-in has been incorrectly configured, the correlator will try to load the plug-in as a C++
plug-in and may give an error such as Error opening plug-in library libTestPlugin.so:
libTestPlugin.so: cannot open shared object file: No such file or directory. If this happens and
you were trying to load a plug-in written in Python, then check the name in your configuration
file and make sure that it matches the name you are trying to import.

Python plug-ins and correlator persistence

Since Python plug-ins provide no way to persist data stored inside the plug-in, or in chunks from
a Python plug-in, it is not permitted to import a Python plug-in from a persistent monitor or to
use an event which imports a Python plug-in from a persistent monitor. You can use Python
plug-ins from non-persistent monitors in a persistent correlator.

Installing Python modules
The standard (full) installation of Apama includes a copy of Python which is used by default in
the Apama environment. It provides a pip (pip3 on Linux) wrapper to the Python interpreter that
is shipped with Apama.

To install a Python module, run the following command in the Apama Command Prompt or
apama_envwrapper (see also "Setting up the environment using the Apama Command Prompt"
in Deploying and Managing Apama Applications).

Windows:
pip install module

Linux:
pip3 install module

Note:
If you are facing any build issues after reinstalling (python3 -m pip install --upgrade
--force-reinstall pip) or upgrading (python3 -m pip install --upgrade pip) the pipmodule,
prefer to use pip3 shipped with Apama Python.

570 Developing Apama Applications 10.11.2

22 Writing EPL Plug-ins in Python

Sample plug-ins written in Python
Apama provides sample EPL plug-ins written in Python, located in the samples\correlator_
plugin\python directory of your Apama installation.

Developing Apama Applications 10.11.2 571

22 Writing EPL Plug-ins in Python

572 Developing Apama Applications 10.11.2

22 Writing EPL Plug-ins in Python

IV Protecting Personal Data in Apama Applications

23 Introduction ... 575

24 Where personal data is held within the Apama platform .. 577

25 Documenting personal data flows within an Apama application 581

26 Handling personal data in the "in-memory" state of the correlator 583

27 Handling personal data "at rest" in the correlator persistence and JMS datastores 587

28 Handling personal data "in motion" from dashboards .. 589

29 Handling personal data "at rest" in log files .. 591

30 Handling personal data "at rest" in the correlator input log file 597

31 Handling personal data "at rest" in containerization environments 599

Developing Apama Applications 10.11.2 573

574 Developing Apama Applications 10.11.2

IV Protecting Personal Data in Apama Applications

23 Introduction

Legislation in various parts of the world – such as the General Data Protection Regulation (GDPR)
of the EuropeanUnion (EU) - specifies that personal data cannot be collected andprocessedwithout
a person’s consent or other legitimate basis, and that organizations are responsible for protecting
personal data that is entrusted to them. The concept of “personal data” typically covers details
that can be used to identify a person, such as the person's name, email address or IP address.

Note:
In the different countries of the EU, the GDPRmay be known under another, language-specific
name. For example, it known as the Datenschutz-Grundverordnung (DSGVO) in Germany and
as Règlement Général à la Protection des Données (RGPD) in France.

Apama is a general-purpose event processing platform on which customers build their own
applications.Most of the data handled byApama is arbitrary customer-defineddatawhosemeaning
is defined by the customer who developed the application. Some of that customer-defined data
may qualify as “personal data”, so if you are developing applications on the Apama platform,
you should be careful to ensure compliance with laws related to that data.

See the following topics for some suggestions to help with identifying how personal data can be
protected when building applications on the Apama platform.

Developing Apama Applications 10.11.2 575

576 Developing Apama Applications 10.11.2

23 Introduction

24 Where personal data is held within the Apama

platform
Most deployments of Apama deal with personal data only in customer-defined data fields, which
are largely under the control and responsibility of the customerwhowrites and deploys theApama
application.

In Apama applications, customer-defined data is usually held “in memory” in EPL event fields
and monitor variables, by connectivity plug-ins, or by EPL plug-ins such as the MemoryStore.

Customer-defined application data may also be stored “at rest” in the following places:

Correlator, IAF and dashboard server log files (the main log file, and for the correlator also
any additional files defined by eplLogging and correlatorLogging configuration). These files
include logging performed by the customer's application and by standardApama connectivity
and EPLplug-ins and the correlator itself. For example, the contents of Apama events are often
logged (either in full, or truncated) if an error occurs during processing or sending of the event,
and data from events or other EPL data structures may be logged as part of correlator error
messages.

Correlator input log. If enabled, it contains the contents of all events sent into the correlator.

Correlator persistence database (and if using JMS, the reliable receive database). If enabled, it
contains an on-disk representation of the state of the Apama application.

Apama also provides the ability to store customer-defined data in external systems such as a
Terracotta distributed cache (using our MemoryStore API) or a database. You should consult the
documentation of systems such as these for information about how to ensure personal datawritten
there by your application is properly handled and protected, and you should also check that your
Apama application logic includes mechanisms to rectify or erase personal data stored there, if
required.

We strongly advise against allowing any personal data to exist in the application logic itself (the
EPL source files), and this documentation assumes that this principle is being followed.

In addition to the customer-defined data mentioned above, there are a small number of situations
where the Apama platform could potentially be considered to directly handle personal data. You
should establish whether in your own environment any of the “users” listed below represent the
“personal data” of an identifiable human protected by legislation, and which merely represent
machine-to-machine communication, or system administrators who have accepted the logging of
their user name and IP address as part of their terms of employment.

Developing Apama Applications 10.11.2 577

Where data could be storedPotential "personal data"Product area

User identifiers and IP addresses for
direct connections to/fromApama server

Correlator, IAF,
dashboard servers

correlator main log file

correlator input logprocesses (typically only for
machine-to-machine communication correlator persistence

databasebetween server processes, or monitoring
andmanagement by systemadministrator
accounts). These are logged to provide an IAF and dashboard server

log filesaudit trail in case of an attack or
accidental mistake by a system
administrator.

The Scenario Service event protocol
contains a “username” field, identifying

Scenario Service API,
queries, DataViews,

correlator and dashboard
server log files

users who created instances of scenariosdashboard servers,
correlator input log(for example, DataViews or queries).

There are various places where this
username could show up.

custom clients and
dashboards correlator in-memory state

correlator persistence
databaseSee also "Scenario Service API" in

Connecting Apama Applications to External
Components.

User identifiers and IP addresses of
dashboard clients that connect, who may

Dashboard servers dashboard server log files

be end-users. These are logged to provide
an audit trail.

See also "Managing the dashboard data
server and display server" in Building and
Using Apama Dashboards.

Under the control of the JAAS
plug-in used. For example, the

User identifiers of dashboard clients for
authenticationpurposes. These are logged
to provide an audit trail.

Dashboard servers, if
using JAAS

UserFileLoginModule provided
by Apama stores usernames in

See also "Managing the dashboard data
server and display server" in Building and
Using Apama Dashboards.

plaintext in anXMLfile,whereas
other plug-ins are available that
hold usernames on a remote
server such as an LDAP server.
See "Administering Dashboard
Security" in Building and Using
Apama Dashboards.

You can choose an appropriate
JAAS plug-in which complies
with theway you need to protect
the user data if required.

578 Developing Apama Applications 10.11.2

24 Where personal data is held within the Apama platform

Where data could be storedPotential "personal data"Product area

User identifiers and IP addresses of clients
that connect to the HTTP server, as

HTTP server
connectivity plug-in

correlator main log file

correlator input log filespecified in HTTP header. These are
written to the log file. Along with other correlator in-memory state
HTTP headers they are also present in the
message metadata. Thus they can correlator persistence

databaseoptionally be mapped to fields in an
Apama event, using a connectivity codec
such as the mapper codec.

See also "The HTTP Server Transport
Connectivity Plug-in" inConnectingApama
Applications to External Components.

User identifiers of clients who are
permitted to connect to the HTTP server
(with a secure hash of the passwords).

HTTP server
connectivity plug-in,
only if authentication
is enabled

HTTP server authentication
password file, which is
stored on disk in plaintext
and contains un-encrypted
usernames andhashed saltedSee also "The HTTP Server Transport

Connectivity Plug-in" inConnectingApama
Applications to External Components.

passwords, see
"Authentication" in
Connecting Apama
Applications to External
Components. As the file is
completely under the user's
control, you canuse standard
tools included with your
operating system to set
access control for protecting
this data as needed. Users
can be deleted from the file
using a text editor or the
httpserver_passman
provided by Apama as
described in the
documentation.

Developing Apama Applications 10.11.2 579

24 Where personal data is held within the Apama platform

580 Developing Apama Applications 10.11.2

24 Where personal data is held within the Apama platform

25 Documenting personal data flows within an

Apama application
You are strongly encouraged towrite andmaintain a personal data register, a document describing
the places where personal data is handled within your application, how long it is stored for, and
how that data is protected through access controls and policies. This should also describe the flows
of personal data, for example, being explicit about when personal data is passed to an EPL plug-in
such as the MemoryStore, or sent outside the correlator to another system such as a Universal
Messaging topic or queue, a database or a distributed store such as Terracotta. This register will
be useful for demonstrating compliancewith regulations, and also for enabling an effective response
should any data breach occur.

In addition to documenting occurrences of standard “personally identifiable information” (PII)
such as usernames and IP addresses, any “sensitive personal information” (SPI) such as information
aboutmedical conditions should be explicitly called out, since additional regulations and a higher
level of caution may apply for such data.

At aminimum,we recommendwritingApamaDoc comments on all event definitions andmonitors
that handle personal data. See “Generating Documentation for Your EPL Code” on page 453 for
more information about writing ApamaDoc. Using ApamaDoc as a starting point for describing
personal data flows has several advantages:

It ensures that developers working on the application are aware of the regulatory implications
of changes they make to code that involves personal data.

It helps developers to be more mindful of the need to write the application code in a way that
minimizes the amount of personal data held and transferred between parts of the system.

It reduces the chance of personal data documentation getting out of sync with the codebase,
as the application evolves.

The HTML that can be generated from the ApamaDoc comments provides a great starting
point for writing and maintaining other documents regarding personal data that your
organization's compliance policies may require.

The conventions and guidelines for ApamaDoc commenting should be defined by the customer
developing the Apama application, and checked through a code review process.

See below for an example illustrating a possible use of ApamaDoc to describe personal data storage
and flows:
/** Represents an incoming order to be handled by Apama.

Developing Apama Applications 10.11.2 581

Contains "personal data" in the "username" and "ip" fields.
This personal data is stored in the OrderManager monitor, is
stored in the distributed MemoryStore table "MyOrders",
and is also sent out to the Universal Messaging "OrderAlert" topic.
@see OrderManager
*/

event MyOrder
{
string orderId;
float timestamp;

/** This field contains "personal data". */
string username;

/** This field contains "personal data". */
string ip;

}

/** Manages orders.

Holds "personal data" identifying customers who placed orders, and
stores this data in the distributed MemoryStore table "MyOrders".

@listens MyOrder Receives incoming orders containing "personal data".
@sends OrderAlert Sends "personal data" to the UM "OrderAlert" topic.

*/
monitor OrderManager
{

/** Contains "personal data". */
dictionary<string, MyOrder> orders;
...

}

If you intend to use the HTML ApamaDoc to summarize personal data uses, make sure that the
@private tag is not applied to any fields containing personal data, which would suppress them
from the HTML documentation.

582 Developing Apama Applications 10.11.2

25 Documenting personal data flows within an Apama application

26 Handling personal data in the "in-memory" state

of the correlator
In Apama applications, customer-defined data - potentially including personal data - is held “in
memory”, in various places:

event fields

monitor variables

variables in the scope of an event listener

MemoryStore

state held in EPL plug-ins

state held in connectivity plug-ins

As for languages such as C++ or Java, for Apama it is the responsibility of both the author of the
application and those responsible for deploying and using it to ensure that this personal data is
handled appropriately, by writing suitable logic into the application, and ensuring that the right
policies and access controls are in place.

Some key areas to consider are listed below:

Data minimization should be practiced by ensuring that no personal data is sent into Apama
other than that absolutely required to implement the required functionality. For example,
consider using the ApamaDoc to review all the event definitions used for data entering or
leaving the correlator, and any monitors that store personal data, and use them to check for
data that could be safely removed. If there is some personal data that Apama does not need
to make direct use of, but must be opaquely passed through to another system that Apama is
sending messages to, consider whether it is possible to avoid that data existing as plaintext
inside Apama by having the system that generated the messages pass it into Apama as a
Base64-encoded encrypted string, with the key shared only between the originating upstream
system and the downstream system that needs to use the data.

Rectification (correction) or erasure of data can be implemented by identifyingwhichmonitor
instances and data structures hold personal data, and ensuring that EPL logic is in place to
change or delete it for a given person, in response to an Apama event requesting this. If the
application has a monitor instance dedicated to each user, this could be as simple as making
that monitor instance “die” in response to an event requesting removal. Otherwise, it may be
a case of removing that user fromdictionaries and other data structures. If the application uses

Developing Apama Applications 10.11.2 583

plug-ins such as theMemoryStore to hold personal data, the EPL applicationmust also remove
the keys holding personal data from theMemoryStore. It is important that any rectification or
erasure capabilities are built into the application from the beginning and carefully tested, since
it would often not be possible to add them once the application is deployed without losing the
correlator's state.

On-demand access to a user's personal data can be implemented by identifyingwhere personal
data is held and ensuring EPL logic is in place to return it, perhaps by sending an event
containing the data in response to an event requesting the data. Personal data can be exported
in an open and portable format by using the JSON EPL plug-in to serialize it to a JSON string
(see also “Using the JSON plug-in” on page 420).

Pseudonymization should be practiced where possible. This means keeping the identity of a
person and data about that person separate as much as possible. For example, rather than
sending a message into Apama containing a user's real name and information such as the
user's medical history, the user's name could be replaced by a unique identifier (for example,
a GUID) assigned and protected by the upstream system, so that the user's identity and the
information about the user are not held together inside the correlator. By separating the user's
name from the other information, and ensuring that the mapping between the real name and
the assigned unique identifier is kept secure, the risk of the data about that user being leaked
and linked back to the person it relates to is significantly reduced. Pseudonymization techniques
should be applied as early as possible in the processing ofmessages, ideally before themessage
enters the Apama correlator. This will help to minimize the number of systems where both
the data about the persons and their identity exist together. If that is not possible, it should be
performed as early as possible in the correlator's handling of the data, for example, in a
connectivity plug-in before it is passed to any EPL, or in the initial EPL listener but before it
is stored in a data structure inside the application. This reduces the chance of the personal data
leaking out in a log message.

A security audit trail should be created, where practical, whenever personal data is created,
modified or deleted, in order to protect its accuracy and allow errors to be tracked down,
whether introduced accidentally or as part of an attack. For example, this could be achieved
by using EPL log statements. It is possible to configure the file that log entries are written to;
so if necessary, audit logging could be written to a dedicated log file. It is usually best to
perform logging regarding personal data at the application level in EPL, rather than relying
on logging of input events or connections from connectivity plug-ins. However, it is important
to ensure that user identifiers in the incoming events can be relied upon, which means using
a connectivity plug-in such as the HTTP server that supports per-user authentication, or if
using a message bus such as Universal Messaging, ensuring that channel permissions are set
appropriately and that the system that is publishing messages can be relied upon to set
usernames accurately. See “Specifying log statements” on page 281 formore information about
logging from EPL.

Securitymust be architected into the design and deployment of the Apama application to
ensure the information security of personal data handled by Apama, and protect the
confidentiality and integrity of data. Key points are:

See "Security Requirements for Apama" in Deploying and Managing Apama Applications for
detailed information about how to ensure your Apama deployment is secure.

584 Developing Apama Applications 10.11.2

26 Handling personal data in the "in-memory" state of the correlator

Remember to also fully configure all connected systems to perform adequate authentication
and authorization, for example, setting appropriate permissions on all channels if using
Universal Messaging (see "Configuring the connection to Universal Messaging
(dynamicChainManagers)" in Connecting Apama Applications to External Components).

Note that it is possible for a user with direct access to the correlator's port to receive events
passing through the correlator - which may contain customer-defined personal data - or
to inject code that may change or access that data. Similar considerations apply to the IAF
port and the dashboard server management port. There is no encryption or authentication
for these ports, but in a properly configured deployment they would always be locked
down using standard operating system configuration tools and firewalls, so that you can
be confident that only trusted server processes and system administrators are able to
connect to them. For monitoring purposes, products such as webMethods API Gateway
can expose required correlator features such as the read-only monitoring REST APIs in a
secure way without exposing other features that are security-critical. Alternatively,
Command Central can be used for management and monitoring, in which case there is no
need for the correlator port to be exposed beyond the machine it is running on.

Apama providesmanyways to get data in and out of the correlator that support encryption
(for example, SSL/TLS) and authentication to protect the confidentiality and integrity of
data: for example, the dashboard servers, and correlator connectivity plug-ins such as the
HTTP server (when configured to use TLS/HTTPS). Be sure to check the documentation
for your chosen means of connectivity carefully to ensure all the required security options
are enabled. If using a message bus such as Universal Messaging or JMS, ensure that the
permissions on the channels/topics/queues are set securely, and that if message publishers
are providing information to identify users that will be relied upon for authorization or
audit logging, that they are implementing authentication securely to ensure the information
is accurate.

Apama application developers can use EPL to implement any user-specific authorization
checks needed to protect access to personal data. However it is essential to check that
authentication is being securely performed by the connectivity plug-ins or upstream
message publisher that is setting the username field that the EPL will be relying on, to
ensure an adequate security audit trail.

Ensure that you regularly install the latest Apama fixes and keep your operating system
fully patched, to ensure the latest security fixes are present.

Apama also provides the ability to store customer-defined data in external systems such as a
Terracotta distributed cache (using our MemoryStore API) or a database. You should consult the
documentation of systems such as these for information about how to ensure personal datawritten
there by your application is properly handled and protected, and you should also make sure that
your Apama application logic includes mechanisms to rectify or erase personal data stored there
by the application.

Developing Apama Applications 10.11.2 585

26 Handling personal data in the "in-memory" state of the correlator

586 Developing Apama Applications 10.11.2

26 Handling personal data in the "in-memory" state of the correlator

27 Handling personal data "at rest" in the correlator

persistence and JMS datastores
You may be using the correlator persistence feature, in which the correlator periodically takes a
snapshot of its current in-memory state and saves it on disk. Most of the correlator's in-memory
application state that contains personal datawill therefore be included in the persistence datastore.
There are a few exceptions: state in non-persistent monitors and in-memory stores will not be
included. See also "Using Correlator Persistence" in Developing Apama Applications.

It is important to protect this personal data “at rest” by setting appropriate permissions on
directorieswhere datastore fileswill bewritten to ensure only the correlator process (and authorized
system administrators and backup processes) have access to it. On Windows, this would mean
setting an inheritable Access Control List (ACL) limiting read access to the contained files. On
UNIX systems, this would involve restricting read and execute permissions to only the owning
user (that is, “700”) and if possible also setting a umask of 0077 on the correlator process to ensure
files created by the correlator also have locked down permissions.

There is no need to implement rectification or erasure, since the persistence store is intended for
access only by the correlator, and any rectification or erasure operations performed on the main
correlator state will be automatically replicated into the persistence datastore within a very short
time.

There is an additional datastore used to hold recently received JMS messages when reliable
correlator-integrated messaging for JMS is used. See "XML configuration bean reference" in
Connecting Apama Applications to External Components for details about how to configure the
reliableReceiveDatabase location. The same considerations apply as for the persistence datastore
- rectification and erasure are not necessary as only recently received messages are retained, and
the datastore should not be read by any process other than the correlator. In the case of
AT_LEAST_ONCE receivers, messages are retained only until they have been acknowledged by the
correlator. In the case of EXACTLY_ONCE receivers, unique message identifiers (uniqueMessageId)
may be retained for longer in order to avoid duplicates (see "Duplicate detectionwhen using JMS"
in Connecting Apama Applications to External Components for details) but this should not have any
privacy implications, provided user identifiers are not used in the message identifiers.

Developing Apama Applications 10.11.2 587

588 Developing Apama Applications 10.11.2

27 Handling personal data "at rest" in the correlator persistence and JMS datastores

28 Handling personal data "in motion" from

dashboards
See "Security Requirements for Apama" inDeploying andManaging Apama Applications for detailed
information about how to secure dashboard servers in your Apama deployment.

Data will be automatically removed from the dashboard servers shortly after it has been removed
from the correlator state.

Developing Apama Applications 10.11.2 589

590 Developing Apama Applications 10.11.2

28 Handling personal data "in motion" from dashboards

29 Handling personal data "at rest" in log files

■ Example log messages containing personal data .. 592

■ Protecting and erasing data from Apama log files .. 593

■ Recommended log levels ... 594

■ Recommendations for logging by Apama application code .. 594

Developing Apama Applications 10.11.2 591

Personal data can appear in the log files of any Apama server process, such as the correlator, IAF,
or dashboard servers.

Example log messages containing personal data
These files include logging performed by the customer's application and by standard Apama
connectivity, EPL or IAF plug-ins and the correlator, IAF and dashboard servers themselves.

For example, customer application log statements may contain personal data. It is also important
to note that the contents of Apama events are often logged (either in full, or truncated so that only
the beginning of the event's fields are displayed) if an error occurs during processing or sending
of the event, and data from events or other EPL data structures may be logged as part of error
messages.

We provide a small set of indicative log messages as examples to give an idea of the kind of data
that may be present. Note that this is for illustrative purposes only. It is not possible to provide
an exhaustive list of all possible log messages, and the format of the messages shown below is
subject to change at any time and should not be relied upon.

When a client connects directly to the correlator port, the IP addresses and username are logged
(note that the username is not authenticated, so should not be relied upon for security purposes;
this would be either a system administrator or another machine, not an end user):
2018-05-3014:23:43.950 INFO [30188] - Sender engine_inject
(MY_USERNAME) (0000000000435490) (component ID
6561364086281508704/6561645561258219360) connected from 127.0.0.1:6714

When the HTTP server connectivity plug-in receives a new incoming connection, the IP address
and username is logged (authentication and TLS may optionally be enabled, in which case the
username can be relied upon):
2018-05-30 14:23:45.257 INFO [29300] -
<connectivity.httpServer.httpServer-instance> Started receiving messages
from host 127.0.0.1
2018-05-30 14:23:45.260 WARN [29300] -
<connectivity.httpServer.httpServer-instance> Authentication failed for
user 'uniqueusername' from host 127.0.0.1.

When an event is sent directly to the correlator and cannot be parsed (perhaps due to an application
bug, or an error in the format used by the sender), amessage like thiswill be logged (in logmessages
like this, all the personal data is in customer-defined fields):
2018-05-30 16:36:58.609 WARN [29308] - Failed to parse the event
"com.acme.MyEvent("private political opinions go here", "1/2/1990",
"My full name", "MY_USERID")" from My Sender Client due to the error:
Unable to find event type com.acme.MyEvent

When a connectivity plug-in fails to transform an incomingmessage into the form the application
is expecting, the message will be logged. The order in which the fields appear is undefined, and
it is possible the message will be truncated:
2018-05-30 16:44:47.811 WARN [17644:processing] -
<connectivity.myCodec.myFirstChain> Codec plug-in MyCodec failed to
transform message Message<metadata={"sag.channel"="MyFirstChainChannel",

592 Developing Apama Applications 10.11.2

29 Handling personal data "at rest" in log files

"sag.type"="MyMessage", "username":""J_BLOGGS"}, payload={"medical
info": "Embarrassing medical info here", "name":"Joe Bloggs",
"username:"J_BLO...}>: java.lang.Exception: Something bad happened

When correlator-integrated JMS receives an invalid incoming message, it may log some or all of
the body (which may contain customer-defined personal data), potentially truncated if it is long:
2018-05-30 16:25:37.114 WARN
[11708:JMSReceiver:myConnection-receiver-apama-queue-01] -
1 mapping rule warning(s) while mapping to target event:
test.TestMessage("DOB=1/2/1990","Embarrassing medical info here",
"Joe Bloggs","J_BLO...:
- MappingRule<source="${jms.body.textmessage}",

target="${apamaEvent['str']}", action="xpath", actionResource="/xxx">
- Exception evaluating the xpath "/xxx": org.xml.sax.SAXParseException;

lineNumber: 3; columnNumber: 70; The element type "xxx" must be
terminated by the matching end-tag "</xxx>".

with source JMS message:
Property.USERNAME=J_BLOGGS
---> JMSDestination=Queue<apama-queue-01>
---> Body=<mydata>
---> <val key="date_of_birth">1/1/2018</val>
---> <val key="name">Joe Bloggs</val>
---> <val key="medicalinfo">Embarrassing medical info here</val>
---> <val key="username">J_BLO...

Protecting and erasing data from Apama log files
To protect the security of personal data in log files, it is important that operating system file
permissions are set on the log files and directory containing them to ensure that only the correlator
process and authorized system administrators have access to the files. On Windows, this would
mean setting an inheritable Access Control List (ACL) limiting read access to the contained files.
OnUNIX systems, thiswould involve restricting read and execute permissions to only the owning
user (that is, “700”) and if possible also setting a umask of 0077 on the correlator process to ensure
files created by the correlator also have locked down permissions.

As there aremany situations inwhich usernames, IP addresses or events containing personal data
may be logged, including by customer-providedplug-ins and third-party libraries, it is not practical
to enumerate all of the log messages that may contain such data, or the set of categories they may
be logged under.

Log files are by nature immutable and formatted for reading by human system administrators
(not machines), so rectification of data contained within them does not make sense, and erasure
of data for individual persons is not practical. The retention of complete information in log files
also serves an important and legitimate purpose, in providing a security audit trail, and the ability
to diagnose and fix accidental or unlawful events compromising the availability, integrity or
confidentiality of the application and personal data it contains.

For these reasons, the recommended approach to protecting personal data in Apama log files is
to regularly rotate the logs, and archive the old log files to a secured location protected by
encryption.

Optionally, old log files may be deleted after a set time period, though this should be done only
when necessary as it will destroy information that might be important for diagnosing bugs or

Developing Apama Applications 10.11.2 593

29 Handling personal data "at rest" in log files

attacks that compromise the integrity or availability of the application. Software AG may not be
able to provide assistance with support requests if the relevant log files have been deleted.

Apama provides a variety of mechanisms for rotating its various log files. These can be combined
with operating system features such as Linux's periodic cron jobs, Windows Scheduled Tasks, or
common utilities such as logrotate and gnupg, to implement whatever log handling scheme best
fits with your organization's data protection policies. For full information about how to rotate
logs, see the following topics:

"Rotating correlator log files" in Deploying and Managing Apama Applications.

"IAF log file rotation" in Connecting Apama Applications to External Components.

"Rotating the log files of the data server and display server" in Building and Using Apama
Dashboards.

You may wish to inform your employees or end-users - or in some cases request from them -
regarding the fact personal data may be stored in server log files, along with details of the steps
your organization takes to protect the data they contain.

Recommended log levels
We recommend the main correlator, IAF and dashboard server log level to always be set to INFO.
If it is set to WARN or higher, then security-relevant events will not be recorded and diagnosing
failures can be difficult. But if it is set to DEBUG or lower, then therewill be a significant performance
impact and security-sensitive information will likely be written to the logs.

For similar reasons (as well as to avoid performance problems), it is important not to go into
productionwith diagnostic logging of input/outputmessages enabled. For example, do not enable
theDiagnostic codec connectivity plug-in or set logJmsMessages to true, except for non-production
testing when there is no real personal data present in the messages.

Recommendations for logging by Apama application
code
If you are developing EPL applications, connectivity plug-ins or EPL plug-ins, you will need to
make your own choices about what information to log and at what level from the code you write.
To comply with the principle of data minimization, it is best to avoid unnecessarily including
personal data in log output. Sowhere possible, avoid logging details such as username, IP address
or the contents of messages, unless needed for security auditing or for legitimate interests such as
diagnosing and resolving application errors. In some cases, “pseudonymization”will be possible.
That is, when logging personal data, use an application-generated globally unique identifier
(GUID) instead of a username, or an IP address that could be used to link the data to an individual
person, and protect the mapping between GUIDs and usernames.

It is important to select an appropriate log level for application-generated log messages. It is
possible to select different log levels for individual packages within your EPL application, and to
direct the output to different log files. See "Setting EPL log files and log levels dynamically" in

594 Developing Apama Applications 10.11.2

29 Handling personal data "at rest" in log files

Deploying andManaging Apama Applications for more details. If usingmultiple log files, ensure that
the same file system permissions and secure rotation policies are applied to all of them.

You may wish to gather together all the security audit logging from your EPL application into a
single file, or perhaps all of the logging that may include personal data. As EPL log statements
are written to a category based on the event definition where they exist, these use cases can be
addressed by defining a dedicated Apama event definition to perform the logging. For example:
package com.mycompany;
event SecurityAuditLogging
{

action logModification(string username, string resource)
{

log "Security event: user '"+username+"' modified resource: "
+resource at INFO;

}
}
...
SecurityAuditLogging.logModification("myuserid", "resource");

The log level and log file for this could then be configured in the correlator's YAML configuration
file as described in "Setting EPL log files and log levels in a YAML configuration file" inDeploying
and Managing Apama Applications. For example:
eplLogging:
com.mycompany.SecurityAuditLogging:

file: apama-security-auditing.log
level: INFO

Developing Apama Applications 10.11.2 595

29 Handling personal data "at rest" in log files

596 Developing Apama Applications 10.11.2

29 Handling personal data "at rest" in log files

30 Handling personal data "at rest" in the correlator

input log file
The correlator has an optional input log, which when enabled records all incoming Apama events
to a text file on disk (see also "Replaying an input log to diagnose problems" in Deploying and
Managing Apama Applications). This can be very useful for diagnosing and reproducing problems
experienced in a production environment, for use when you are debugging your application, or
by Software AG support.

Many of the same considerations apply to the input log as to other correlator log files: it is essential
to protect the contents by setting appropriate file system permissions on the input log files.

Aswith the other log files, it is possible to periodically rotate the input log as described in "Rotating
an input log file" inDeploying andManaging Apama Applications. Note that an incomplete input log
is useless. So if rotation is in use, it is important that all previous input logs from a given invocation
of the correlator are able to be retrieved if necessary from secure backups or archives (that is, they
have not been deleted). It is necessary to manually concatenate the input log files before they can
be used with the extract_replay_log.py script.

Input logs are read-only logs (not databases), and the file format is not intended for modification
by users, so rectification of personal data is not relevant.

In some cases, you may wish to implement erasure of personal data in input logs, particularly if
they are being kept for a long time. Input logs contain every Apama event sent into the correlator.
The input log file format is not intended for consumption or editing by customers. However, in
practice it is usually safe to remove individual lines that start with “EVNT” (indicating an incoming
event), and this could be used to strip out lines containing the personal data of a particular user
on request. It is possible that removing lines from the input log will prevent it from accurately
replaying the original behavior, but in most cases where the processing of different users is fairly
independent, it is likely to work adequately.

If correlator persistence is enabled, then the input log contains a copy of the persistence datastore
at the point when the correlator was started. It is not possible to provide any erasure of data in
the persistence datastore, so this approach is only possible when persistence is disabled.

Developing Apama Applications 10.11.2 597

598 Developing Apama Applications 10.11.2

30 Handling personal data "at rest" in the correlator input log file

31 Handling personal data "at rest" in

containerization environments
As described in the previous topics, there are a number of places where Apamawill store data “at
rest” on disk. If you are using a containerization environment such as Docker, we recommend
putting log files and persistence data stores on storage external to the container, in order to make
security permissions and any rotation/expiry policies easier to enforce.

Clients should select appropriate storage requirements from their cloud provider to meet the
privacy and security requirements their data has.

Developing Apama Applications 10.11.2 599

600 Developing Apama Applications 10.11.2

31 Handling personal data "at rest" in containerization environments

V EPL Reference

32 Introduction ... 603

33 Types .. 607

34 Events and Event Listeners .. 625

35 Monitors .. 643

36 Queries ... 651

37 Aggregate Functions .. 665

38 Statements ... 669

39 Expressions .. 683

40 Variables ... 701

41 Lexical Elements .. 707

42 Limits .. 719

Developing Apama Applications 10.11.2 601

602 Developing Apama Applications 10.11.2

V EPL Reference

32 Introduction

■ Hello World example .. 604

Developing Apama Applications 10.11.2 603

The Apama Event Processing Language (EPL) is the native language of the Apama correlator. You
use EPL towrite programs that process events in the correlator. This EPL reference is a companion
to the Apama EPL tutorials in Software AG Designer and , which you can use to learn how to
write programs in EPL. Use this EPL reference to answer questions and obtain complete details
about a particular construct.

EPL is a flexible andpowerful curly-brace, domain-specific, languagedesigned forwriting programs
that process events.

In EPL, an event is a data object that contains a notification of something that has happened, such
as a customer order was shipped, a shipment was delivered, a sensor state change occurred, a
stock trade took place, or myriad other things. Each kind of event has an event type name and
one or more data elements (called event fields) associated with it. External events are received by
one or more adapters, which receive events from an event source and translate them from a
source-specific format into Apama's internal canonical format. Derived events can be created as
needed by EPL programs.

Note:
MonitorScript is the old name for EPL. You might still see the old name in the product
documentation.

Hello World example
Though it contains many of the familiar constructs and features found in general-purpose
programming languages like Python or Java, EPL also has special features to make it easy to
aggregate, filter, correlate, transform, act on, and create events in a concise manner. Here is the
canonical "hello world" example written in EPL:
monitor HelloWorld
{

action onload()
{

print "Hello world!";
}

}

The Apama event processor, called the correlator, receives events of various types from external
sources and routes them to one or more active EPL programs, called monitors or queries.

Monitors have registered event handlers, called listeners, for events of particular types with
specific combinations of data values or ranges of values. When the correlator detects an event
of interest, it calls the appropriate event handlers. If there are no handlers for an event, the
correlator discards it or passes it to an event handler specifically for events that have no handler.

Event handlers in EPL are conceptually similar to methods or functions used for handling
user-interface events in other languages, such as Java Swing or SWT applications. In EPL, code
is executed only in response to events. Except, that is, for the special EPL onload(), ondie(),
and onunload() actions. See “Monitor lifecycle” on page 644 for information about these actions.

Queries define particular event types as input and then partition incoming events of those
types according to a specified key. For example, a query might partition bank transactions

604 Developing Apama Applications 10.11.2

32 Introduction

according to their account numbers. Like a monitor, a query watches for an event pattern of
interest, but it does this in each partition independently of every other partition.

When the correlator finds a match, it executes the procedural code specified in the query.

Developing Apama Applications 10.11.2 605

32 Introduction

606 Developing Apama Applications 10.11.2

32 Introduction

33 Types

■ Primitive and string types ... 608

■ Reference types ... 608

■ Default values for types .. 610

■ Type properties summary ... 611

■ Timestamps, dates, and times ... 614

■ Type methods and instance methods ... 615

■ Type conversion .. 616

■ Comparable types .. 617

■ Cloneable types .. 618

■ Potentially cyclic types .. 619

■ Support for IEEE 754 special values .. 622

Developing Apama Applications 10.11.2 607

EPL has primitive types and reference types. Data in the primitive types are simple scalar values.
Reference types (also called complex types or object types) have values that are more complicated
and some, like the dictionary type, have multiple values and have definitions that involve more
than one type.

When values are passed as parameters in action and method invocations, primitive types are
passed by value, and reference types are passed by reference. When a parameter is passed by
value, the called action or method receives a copy of the value and has no direct way to change
the variable that the valuemay have been derived from.When a parameter is passed by reference,
the called action or method receives a reference instead of a copy and if the called action changes
the value, the caller also sees the change.

In addition to the primitive types and reference types, there is also the monitor pseudo-typewhich
provides static methods to configure the monitor instance or context they are called from.

Note that there is no type equivalent to a memory address or pointer.

See the API Reference for EPL (ApamaDoc) for detailed descriptions of all of these types. You can
find themunderAll Types, and under the headingsBuilt-in types andAggregates. Alternatively,
you can find them in the following packages:

<Default Package> (most of the built-in types can be found here)

com.apama (includes the Channel type)

com.apama.aggregates (includes all of the built-in aggregate functions such as avg)

com.apama.exceptions (includes the Exception and StackTraceElement types)

Primitive and string types
Apama supports the following primitive types:

boolean

decimal

float

integer

In addition, there is stringwhich is technically a reference type. However, strings are immutable.
Therefore, string behaves more like a primitive type than a reference type.

Reference types
In addition to the primitive types, EPL provides for a number of object types. These types are
manipulated by reference as opposed to by value (in the same way as complex types are handled
in Java). These are the following reference types:

action

608 Developing Apama Applications 10.11.2

33 Types

any

Channel

chunk

context

dictionary

event

Exception

listener

location

optional

sequence

StackTraceElement

stream

When a variable of reference type is assigned to another one of the same type, the latter will
reference the same object as the former, and should one be changed, the other one would reflect
the change as well.

If you require a variable of reference type to contain a copy of another one of the same type, that
is a completely distinct but identical copy, then you should use the clone()method as described
below. This returns a deep copy of the variable, that is, it copies it and all its contents (and their
contents in turn) recursively.

The string type is technically a reference type, but unlike all other reference types, the string
type is immutable; its value cannot change. The clone()method has no effect on strings, as they
cannot be changed. Therefore, string behaves more like a primitive type.

Note that you cannot use an object type for matching in an event template. For example, suppose
you have the following event types:
InnerEvent
{

float f;
}

WrapperEvent
{

string s;
InnerEvent anInnerEvent;

}

The following statement is correct:
on all WrapperEvent(s = "some_string")

Developing Apama Applications 10.11.2 609

33 Types

However, the following statement is not allowed:
on all WrapperEvent(anInnerEvent.f = 5.5)

More than one variable can have a reference to the same underlying data value. For example,
consider the following code:
sequence <integer> s1;
sequence <integer> s2;
s1 := [12, 55, 42];
s2 := s1;
print s1[1].toString; // print second element of s1
s2[1] := 99; // change the second element
print s1[1].toString; // print second element of s1 again

Both s1 and s2 refer to the same array, so whichever variable you use, there is only one copy of
the data values. So the program's output is:
55
99

Default values for types
The following table lists the default values for the primitive types and reference types.

String formDescriptionType

An empty value that throws an exception if you
try to execute the action.

action

any()Empty value.any

falseboolean

Contains no state. Each plug-in must define
what to do upon receiving a default-initialized
chunk as an argument.

chunk

An empty context that cannot be used in any
meaningful way. To use this variable, youmust

context

explicitly assign a context thatwas createdwith
a name.

0.0ddecimal

{}Empty dictionary.dictionary

event_name (default fields)Instance of the event where each of its fields
has the standard default values as per this table.

event

0.0float

0integer

610 Developing Apama Applications 10.11.2

33 Types

String formDescriptionType

An empty listener that cannot be used in any
meaningful way. To use this variable, youmust

listener

assign a listener to it from within an on
statement, from another listener variable, or
from a stream listener in a from statement.

(0.0,0.0,0.0,0.0)location

optional()Empty.optional

[]Empty sequence.sequence

An empty stream that cannot be used in any
meaningful way. To use the variable you must
assign a non-empty stream to it.

stream

""Empty string.string

Type properties summary
Apama type properties include the following:

Indexable — An indexable type can be referred to by a qualifier in an event template.

Parseable — A parseable type can be parsed and has canParse() and parse()methods. The
type can be received by the correlator.

Routable — A routable type can be a field in an event that is

Sent by the route statement

Sent by the send...to or enqueue...to statement

Sent outside the correlator with the emit statement

Comparable — A comparable type can be used as follows:

Dictionary key

Item in a sequence on which you can call sort() or indexOf()

Stream query partition key

Stream query group key

Stream query window with-unique key

Stream query equijoin key

Developing Apama Applications 10.11.2 611

33 Types

Potentially cyclic—Apotentially cyclic type uses the @n notationwhen it is parsed or converted
to a string. When a potentially cyclic type is cloned, the correlator uses an algorithm that
preserves aliases. See “Potentially cyclic types” on page 619

Acyclic — An acyclic type is a type that is not potentially cyclic.

E-free — E-free types cannot contain references to instances of a particular event type E. This
property is used only to determine whether E is acyclic.

The following table shows the properties of each Apama type.

E-freeAcyclicComparableRoutableParseableIndexableType

boolean

1decimal

1float

integer

string

location

2Channel

Exception

context

333any

listener

chunk

stream

action

sequence

612 Developing Apama Applications 10.11.2

33 Types

E-freeAcyclicComparableRoutableParseableIndexableType

dictionary

optional

44event E

Legend:

DescriptionSymbol

Yes. This type has the corresponding property.

1 Attempts to use a NaN in a key terminates the monitor instance.

2 A Channel object is parseable only when it contains a string.

3 The any type is treated as parseable, routable and comparable, but it is comparable
only if the contained type does not contain aliases. If the type of the value contained
within it does not meet these requirements, such operations will throw an exception at
runtime. An empty any value is parseable and comparable, and can be routed as a field
of an event, but not as an argument to route.

No. This type does not have the corresponding property.

This type inherits the corresponding property from its constituent types, that is, the item
type in a sequence, the key and item types in a dictionary, the types of fields in an event.
The type has the corresponding property only when all its constituent types have that
property.

4 An event defined inside a monitor cannot be received from an external source nor
emitted from that correlator. An event defined inside amonitor can be sent or enqueued
only within the same correlator.

The type is comparable only when all its constituent types are both comparable and
acyclic.

An event E is acyclic only when all its constituent types are both acyclic and E-free.

Examples

The following code provides examples of event type definitions and their properties.
// You can do everything with "Tick", including index both its fields.

event Tick {
string symbol;

Developing Apama Applications 10.11.2 613

33 Types

float price;
}

// You can do everything with "Order", except refer to its target or
// properties fields in an event template.

event Order {
string customer;
Tick target;
string symbol;
float quantity;
dictionary<string,string> properties;

}

// The correlator cannot receive the next event as an external event,
// but you can send it, route it, or enqueue it to a context.

event SubscriptionRequest {
string channel;
context recipient;

}

// You can do very little with this event except access its members and
// methods. It cannot be routed, you cannot sort sequence<TimeParse>,
// trying to group a stream query by TimeParse is illegal, and so on.

event TimeParse {
import "TimeFormatPlugin" as TF;
string pattern;
chunk compiledPattern;

}

// This has all the same restrictions as TimeParse, but is also
// potentially cyclic, so will use the @n format when parsed or
// converted to a string.

event Room {
string roomName;
float squareFeet;
sequence<Room> adjacentRooms;
sequence<Employee> occupants;

}

Timestamps, dates, and times
Although EPL does not have time, date, or datetime types, timestamp (a date and time) values
can still be represented andmanipulated because EPL uses the float type for storing timestamps.
See “currentTime” on page 704.

Timestamp values are encoded as the number of seconds and fractional seconds (to a resolution
ofmilliseconds) elapsed sincemidnight, January 1, 1970UTCanddonot have a time zone associated
with them. Although the resolution is to milliseconds, the accuracy can be plus or minus 10
milliseconds, or some other value depending on the operating system.

If you have two float variables that both contain timestamp values, subtracting one from the other
gives you the difference in seconds.

614 Developing Apama Applications 10.11.2

33 Types

You can add or subtract a time interval from a timestamp by adding or subtracting the appropriate
number of seconds (60.0 for 1 minute, 3600.0 for 1 hour, 86,400.0 for 1 day, and so forth).

See also:

event.getTime() for information about when the correlator assigns timestamps to events (see
the API Reference for EPL (ApamaDoc)).

“Using the TimeFormat Event Library” on page 343 for information about formatting
timestamps.

Type methods and instance methods
There are two kinds of inbuilt methods: type methods and instance methods. Type methods are
associated with types. Instance methods are associated with values.

Type methods

To call a type method, you specify the name of the type followed by a period, followed by the
method namewith its parameters enclosed in parentheses. Somemethods do not have parameters
and for them you must supply an empty parameter list.

Examples:
event someEvent;
{

integer n;
}
integer i;
i:=integer.getUnique();
print someEvent.getName();

Instance methods

Each type (except action), whether primitive or reference, has a number of instance methods that
provide a number of useful functions and operations on instance variables of that type. These
methods are quite similar to actions except that they are predefined and associatedwith variables,
not monitors or events.

To call an instance method, you specify an expression followed by a period and the name of the
method, followed by a parenthesized list of actual parameters or arguments to be passed to the
method when it is called. Some methods do not have parameters and for them you must supply
an empty parameter list.

Examples:
integer i := 642;
float f;
f := i.toFloat ();
print f.formatFixed (5);

Developing Apama Applications 10.11.2 615

33 Types

See also

See the descriptions of the built-in types in the API Reference for EPL (ApamaDoc) for the methods
you can call on types and instances.

Type conversion
EPL requires strict type conformance in expressions, assignment and other statements, parameters
in action and method calls, and most other constructs. The only implicit conversion in EPL is to
convert concrete types to the any type. This means that:

The left and right operands of most binary operators must be of the same type.

An actual parameter passed in a method or action invocation must be of the same type as the
type of the corresponding formal parameter in the action or method definition, or the
parameter's type must be the any type.

The expression on the right side of an assignment statement must be the same type as that of
the target variable, or the target variable is of the any type, or an optional of the value type.

The expression in a variable initializer must be the same type as that of the target variable, or
the target variable is of the any type, or an optional of the value type.

The expression in a subscript expression (to locate a sequence entry) must be integer. The
expression used as an index for a dictionarymust be the same type as the dictionary's key type
(or the dictionary's key type is any).

The expression in a return statement must be the same type as that of the action's returns
clause, or the return type is the any type.

For conversions between concrete types, the inbuiltmethods on each type include a set ofmethods
which perform type conversion. For example:
string number;
integer value;
number := "10";
value := number.toInteger();

This illustrates how to map a string to an integer. The string must start with some numeric
characters, and only these are considered. So if the string's valuewas 10h, the integer value obtained
from it would have been 10. Had the conversion not been possible because the string did not start
with a valid numeric value, then valuewould have been set to 0.

These method calls can also be made inside event expressions as long as the type of the value
returned is of the same type as the parameter where it is used. Therefore one can write:
on all StockTick("ACME", number.toFloat());

Method calls can be chained. For example one can write:
print ((2 + 3).toString().toFloat() + 4.0).toString();

Note that as shown in this example, method calls can also be made on literals.

616 Developing Apama Applications 10.11.2

33 Types

The following table indicates the source and target type-pairs for which type conversion methods
are provided.

In the table above, “assign” means values of the type can be directly assigned to another variable
of the same type, without calling a type conversion method. “clone” means a value of the type
can be copied by calling the clone()method. “cast” means that any type values can be cast (see
“Handling the any type” on page 271 for more information).

Comparable types
The following types are comparable, and the operators <, >, <=, >=, =, or != can be used to compare
two values of one of these types if both are the same type:

boolean

decimal

float

integer

string

context

dictionary if it contains items that are a comparable type

event if it contains only comparable types

location

sequence if it contains items that are a comparable type

optional if it contains a comparable type

any if it contains items that are a comparable type

com.apama.exceptions.Exception

Developing Apama Applications 10.11.2 617

33 Types

com.apama.exceptions.StackTraceElement

The correlator cannot compare the following types of items:

action

chunk

dictionary if it contains items that are an incomparable type

event if it contains at least one incomparable type

listener

sequence if it contains items that are an incomparable type

stream

any if it contains items that are an incomparable type

Potentially cyclic types

For details about how the correlator compares items of a particular type, see the topic about that
type.

In EPL code, you must use a comparable type in the following places:

As the key for a dictionary. The type of the items in the dictionary does not need to be
comparable.

In a sequence if you want to call the indexOf() or sort()method on that sequence.

As a key in the following stream query clauses:

Equi-join

group by

partition by

with unique

Cloneable types
Since variables of reference types are bound to the runtime location of the value rather than the
value itself, direct assignment of a variable of reference type copies the reference (that is, the value's
location) and not the value. To make a copy of the value, you must use the clone instance method
instead of assignment. The types that have this property are called cloneable types.

The cloneable types are string, dictionary, event, location, optional, any and sequence.

For dictionary, event, any and sequence types, the behavior of the clone()method varies according
to whether or not the instance is potentially cyclic.

618 Developing Apama Applications 10.11.2

33 Types

When the instance is potentially cyclic, the correlator preserves multiple references, if they
exist, to the same object. That is, the correlator does not create a copy of the object to correspond
to each reference. See also “Potentially cyclic types” on page 619.

When the instance is not potentially cyclic, and there aremultiple references to the same object,
the correlator makes a copy of that object to correspond to each reference.

While you can call the clone()method on a stream value, or a value that indirectly contains a
stream or listener value, cloning returns another reference to the original stream or listener and
does not clone it.

Potentially cyclic types
A cyclic object is an object that refers directly or indirectly to itself. For example:
event E {

sequence<E> seq;
}
E e := new E;
e.seq.append(e);

When an object is cyclic or contains a reference to a cyclic object, it can be referred to as containing
cycles. If it is possible to create an object that contains cycles, the type of that object is referred to
as potentially cyclic.

When a type has the potential to contain cycles, and you call parse() on that type, or toString()
or clone() on an object of that type, the result is different from when those methods are called on
a type, or object of a type that is not potentially cyclic. Consequently, it is sometimes important
to understand which types are potentially cyclic and what the string form of these objects looks
like.

Which types are potentially cyclic?
A type is potentially cyclic if it contains one or more of the following:

A dictionary, sequence or optional type that has a parameter that is of the enclosing type. For
example:
event E {

dictionary<integer,E> dict;
}
event E {

sequence<E> seq;
}
event E {

optional<E> opt;
}

An action variable member. For example:
event E {

action<E> a;
}

Developing Apama Applications 10.11.2 619

33 Types

An any variable member. For example:
event E {

any a;
}

A potentially cyclic type. For example:
event E {

sequence <E> seq;
}

event F {
E e;

}

F does not have any members that refer back to F, nor does it contain any action variables.
However, it does contain E, which is a potentially-cyclic type. Therefore, an instance of Fmight
contain cycles.

Likewise, a dictionary or sequence is potentially cyclic if it has a parameter that is a potentially
cyclic type. Consider the following event type:
event E {

sequence <E> seq;
}

Given this event type, dictionary<string, E> is potentially cyclic because its parameter is
potentially-cyclic. Similarly, sequence<E> is potentially cyclic.

A cyclic object can indirectly contain itself. Consider the following, using the same definition of E
as above.
E e1 := new E;
E e2 := new E;
e1.seq.append(e2);
e2.seq.append(e1);

In this example, both e1 and e2 are cyclic:

e1 is e1.seq[0].seq[0]

e2 is e2.seq[0].seq[0]

Following is another example of an object that indirectly contains a cycle:
E e3 := new E;
E e4 := new E;
e3.seq.append(e4);
e4.seq.append(e4);

In this example, e3 is cyclic, even though it does not refer back to itself. Instead, e3 refers to e4 and
e4 refers back to itself.

You can pass objects that contain cycles between EPL and Java. Remember that JMon programs
do not support action type variables, and so any cyclic types you pass cannot contain them.

620 Developing Apama Applications 10.11.2

33 Types

String form of potentially cyclic types
A potentially cyclic object might have more than one reference to the same object. When you need
the string form of a potentially cyclic object, the correlator uses a special syntax to ensure that you
can distinguish multiple references to the same object from references to separate objects that
merely have the same content.

When the correlator converts a potentially cyclic object to a string, the correlator labels that object
@0. If the correlator encounters a second object during execution of the samemethod, it labels that
object as @1, and so on.Whenever the correlator encounters an object that it has already converted,
it outputs that object's @index label rather than converting it again. For example:
event E { sequence<E> seq; }
E e := new E;
e.seq.append(e);
print e.toString(); // "E([@0])"

Following is a more complicated example:
event Test {

string str;
sequence<Test> seq;
string str2;

}

monitor m {
action onload() {

Test t:=new Test;
t.str:="hello";
t.str2:=t.str;
t.seq.append(t);
Test t2:=new Test;
t.seq.append(t2);
t.seq.append(t2);
t2.seq.append(t);
print t.toString();

}
}

This prints the following:
Test("hello",[@0,Test("",[@0],""),@2],"hello")

The objects @0, @1, @2, and @3 correspond to the following:

t in the above exampleTest("hello",[@0,Test("",[@0],""),@2],"hello")@0

t.seq in the above example[@0,Test("",[@0],""),@2]@1

t2 in the above exampleTest("",[@0],"")@2

t2.seq in the above example[@0]@3

The following example uses the clone()method and contains action references. The result uses
the new string syntax for aliases to the same object.

Developing Apama Applications 10.11.2 621

33 Types

event E {
action<> act;
sequence<string> x;
sequence<string> y;

}

monitor m {
action onload() {

E a:=new E;
a.x.append("alpha");
a.y:=a.x;
E b:=a.clone();
b.x[0]:="beta";
print b.y.toString();
print a.toString();

}
}

The output is as follows:
["beta"]
E(new action<>,["alpha"],@1)

Note that dictionary keys can never contain aliases so they do not receive @n labels for referenced
objects in toString() and parse()methods.

Whether you need to do anything to handle this string syntax depends on why you want a string
representation of your object:

If you are using the string for diagnostic messages, you just need to understand the syntax.

If you plan to feed the string into the parse()method, the parse()method will handle it
correctly.

If you plan to feed the string into some other program, you should either avoid repeated
references in an object or make sure the other program can handle the @index syntax.

Support for IEEE 754 special values
EPL supports the following IEEE 754 special float and decimal values:

NaN— In EPL, these are quiet NaNs. The string representation is "NaN".

+Infinity— The string representation is "Infinity".

-Infinity— The string representation is "-Infinity".

The correlator returns one of these values as the result of an invalid computation. For example,
dividing zero by zero or calculating the square root of a negative number. The correlator returns
infinities as the result of computations that overflow, for example, taking a very large number and
dividing it by a very small number.

The correlator can receive external events that contain these special values. You can send, route,
emit, and enqueue events that contain these values. If the correlator receives an event that contains

622 Developing Apama Applications 10.11.2

33 Types

a floating point value that is too large to be represented as a 64-bit floating point number, the
behavior is as if the value had overflowed and the correlator represents the value as infinity.

See the descriptions of decimal and float in the API Reference for EPL (ApamaDoc) for more
information.

The following operations return NaN:

0.0/0.0

x.sqrt() (if x < 0)

x.ln() (if x < 0)

x.log10() (if x < 0)

Infinity - Infinity

0.0 * Infinity

In addition, most operations that accept NaN as a parameter return NaN. For example:

NaN.exp() = NaN

NaN + 3.0 = NaN

The NaN value behaves differently when compared to other floating point numbers. NaN does not
compare equal to any other number, including itself. It is unordered with respect to all other
floating point numbers, so NaN < x and NaN > x are both false.

The following operations return positive infinity (note that IEEE 754 has signed zeroes):

x/0.0 (if x > 0)

x/-0.0 (if x < 0)

Infinity.sqrt()

The following operations return negative infinity:

x/0.0 (if x < 0)

x/-0.0 (if x > 0)

(0.0).ln()

The constants that are supported by EPL ensure consistent values, and a few have been provided
for convenience. For a list of all available constants, see the descriptions of decimal, float and
integer in the API Reference for EPL (ApamaDoc).

Operations where rounding is required use the IEEE standard approach of “round half to even”
(also known as “banker's rounding”).

Developing Apama Applications 10.11.2 623

33 Types

624 Developing Apama Applications 10.11.2

33 Types

34 Events and Event Listeners

■ Event definitions ... 626

■ Event templates .. 628

■ Event listener definitions .. 633

■ Event lifecycle ... 633

■ Event listener lifecycle .. 634

■ Event processing order for monitors ... 635

■ Event processing order for queries ... 636

■ Event expressions .. 637

■ Event channels ... 642

Developing Apama Applications 10.11.2 625

In EPL, an event is a data object that is a notification of something happening, such as arrival of
a customer order, shipment delivery, sensor state change, stock trade, or myriad other things.
Each kind of event has an event type name, zero or more data elements or fields, and zero or more
event actions associated with it.

Event objects can also be used simply as complex data structures to hold multiple related data
values. They can also be used as a container for actions that can be shared by multiple monitors.

Event objects are hierarchical structures that can contain simple values, other events, and arrays.

When the correlator executes an on statement, it creates an event listener. An event listenerwatches
for an event, or a sequence of events, that matches the event or event sequence specified in the on
statement. Conceptually, event listeners sift the events that come in to the correlator and watch
for matching events.

Event definitions
An event definition specifies the event type, and any event fields and/or event action fields.

Example:
event MyEvent {
string s;
MyOtherEvent e;
location l;
wildcard integer i;
}

For detailed information, see “Defining event types” on page 26.

Event fields
An event field definition specifies the type and name of the field.

Event fields and variables are similar, but unlike variables, event fields cannot be initialized with
a value.

Event fields that do not have the wildcard attribute are indexed by the correlator when you listen
for them. There can be at most 32 indexes on an event type. Event fields of the type location use
two indexes for each field.

An event that contains an action, chunk, listener, and/or stream field is valid only within the
monitor that creates it. You cannot send, enqueue or route an event that contains, directly or
indirectly, a field of such types.

Event actions
An event action is a subprogram or function that is associated with the event definition. It can be
invoked or called from anymonitor or from another action in the same event. Likemonitor actions,
the caller must supply actual parameters of the same type and number as the event action's formal
parameters and if the action returns a value, then the return valuemust be consumed by the caller.

626 Developing Apama Applications 10.11.2

34 Events and Event Listeners

Like monitor actions, event actions can optionally be prefixed with annotations. See
“Annotations” on page 718.

Unlikemonitor actions (see “Monitor actions” on page 647), events do not have the special actions
onload(), onunload(), and ondie().

Event action example:
action myEventAction(string s, location l) returns float {
...
return 10.0;

}

See “Defining actions” on page 252 for further information.

It is also possible to define static actions which apply only to the event type (and not to specific
instances of an event). For example:
event E {

static action someStaticAction(){
print "I am a static action on event type E";

}
}

See “Defining static actions” on page 264 for further information.

Event action formal parameters

The formal parameters are a comma-separated list of parameter definitions, enclosed in parentheses.
A parameter definition consists of a type name and an identifier. The identifier is the name of a
parameter variable which will be bound to a copy of the value of an expression specified by the
caller (that is, the value passed by the caller) when the action is invoked. The number and type of
actual parameter values passed by a callermustmatch those listed in the action's formal parameters.

The scope of a parameter variable is the statement or block that forms the action body. Parameter
variables are very similar to an action's local variables.

Event action return value

An event action return value specifies the return value type.

If the event action definition includes a returns clause, then the action returns a value of the
specified type. All control paths within the action body must lead to a return statement before
the end of the action body.

Event action body

The block construct forms the event action body. All variable references within an event action
body must be one of the following:

A field of the event

A formal parameter of the action

Developing Apama Applications 10.11.2 627

34 Events and Event Listeners

A local variable defined in the action body

Event field and action scope
The scope of an event's fields and actions is the same as the scope of the event itself except that
the event fields are always referenceable within the event's actions.

Event templates
An event template is a construct that allows you to specify qualifying or matching criteria based
on values of one or more of an event's fields. In event templates, you can qualify only on those
event fields whose type is a primitive type. Event templates are used with on statements. See “The
on statement” on page 678.

An event template begins with the name of an event type that is to be matched. It can also start
with any, in which case it will match against all events regardless of their type; see “Listening for
events of all types” on page 152.

Event templates can be either positional (see “By-position qualifiers” on page 628) or named (see
“By-name qualifiers” on page 629) or a combination of both. Further, the criteria can be omitted
entirely, in which case any event of the same event type will match. When both positional and
named qualifiers are present in an event template qualifier expression list, the positional matches
must come first.

Optionally, a colon and an identifier can follow the event expressions. This is called an event
coassignment and specifies a variablewhose valuewill become (that is, will be assigned) a reference
to the matched event structure when the correlator detects a matching event and listener, and
invokes the actions defined in the listener.

See also “Stream source templates” on page 699.

By-position qualifiers
The correlator evaluates a positional event template against the event field that is at the same
position in the event definition as the qualifier's position in the qualifier list.

For example, suppose an event has the fields shown below:
event sample1
{

string itemName;
float price;
integer quantity;

}

An example of a by-position qualifier list for this event is as follows:
sample1 ("eggs", 0.50, 3)

This templatematches sample1 events that have an itemName value of "eggs", a price value of 0.50,
and a quantity value of 3.

628 Developing Apama Applications 10.11.2

34 Events and Event Listeners

In a by-position qualifier, an asterisk (*) matches any value of an event field in the corresponding
position.

A range expressionmatches the event field values in the corresponding position to a low and high
boundary value of the range. Amatch occurs when the field value is within the range. See “Range
expressions” on page 629.

The comparison operators < (less than), <= (less than or equal to), > (greater than), >= (greater than
or equal to), and = (equal to) specify a comparison of the event field value with the expression
value that follows. A match occurs when the relation result is true. The expression to the right of
the comparison operator cannot contain any references to the event's fields andmust have a result
type that is the same as the event field's type andmust be one of decimal, float, integer or string.

By-name qualifiers
A by-name qualifier names an event field whose value is to be matched, instead of matching by
position.

The identifier must be the name of one of the event's fields. The field's type must be integer,
decimal, float, or string. Each event field is allowed to appear only once on the left side of a
by-name qualifier, and the same field is not allowed in both a by-position qualifier and a by-name
qualifier in the same event template.

An example of a by-name qualifier list is as follows (see the example in “By-position qualifiers” on
page 628 for the event fields that are also used for this example):
sample1 (itemName="eggs", price=0.50, quantity=3)

If the qualifier uses = *, then the qualifier matches all possible values of the specified event field.

If the qualifier uses one of the relational operators < (less than), <= (less than or equal to), > (greater
than), >= (greater than or equal to), and = (equal to), then the event field value is compared with
the event template's value, and a match occurs when the result of the comparison is true.

If the qualifier uses in followed by a range expression, then the field is compared against the
boundary values of the range.

The expression or range expression on the right side is not allowed to refer to any of the event's
fields.

The expression or range expression is evaluated once, when the on statement containing the
template is executed and its event expressions evaluated, not each time an event of the same type
is processed by the correlator.

Range expressions
A range expression is a part of a qualifier expression that describes a range of consecutive decimal,
float, integer, or string values between a low boundary and a high boundary. The correlator
tests an event's field value against this range to determinewhether or not it falls within the specified
range.

Developing Apama Applications 10.11.2 629

34 Events and Event Listeners

The values for the low boundary and the high boundary are the expression values. Both expression
values must be of the same type and one of decimal, float, integer, or string. Both expression
types must be of the same type as the event field being tested. Neither expression can contain any
references to the event's fields.

If the low boundary value is greater than the high boundary value, the EPL runtime automatically
reverses them.

Example

In the following EPL, the three on statements specify event listeners that are all listening for the
same range of events:
event test
{

string s;
float f;

}
monitor RangeExample
{

test t;
action onload()
{

on test (f > 9.0) and test (f <= 10.0)
{
}
on test ("", (9.0 : 10.0])
{
}
on test (f in (9.0 : 10.0])
{
}

}
}

Depending on which of the starting operators, [or (, and ending operators,] or), you use, the
boundary values will either be included in the range or excluded from it.

If the starting operator is [, then the low boundary value is included and candidate values
greater than or equal to the low boundary value are in the range.

If the starting operator is (, then the low boundary value is excluded and candidate values
larger than the low boundary value are in the range.

If the ending operator is], then the high boundary value is included and candidate values less
than or equal to the high boundary value are in the range.

If the ending operator is), then the high boundary value is excluded and candidate values
lower than the high boundary value are in the range.

Note that you can have one kind of starting operator at the beginning and the other kind at the
end; they do not need to match.

630 Developing Apama Applications 10.11.2

34 Events and Event Listeners

Field operators
Field operators can appear within event templates to define a field value.

The on keyword creates an event listener thatwatches the series of events processed by the correlator
for individual events or patterns of particular events. You define the sequence of interest in an
event expression made up of one or more event templates. The first part of an event template
defines the event type of the event the event listener is to match against, while the section in
brackets describes further filtering criteria that must be satisfied by the contents of events of that
type for there to be amatch. Event template field operators define what values, or range of values,
are acceptable for a successful event match.

The value that a field operator applies to can be the result of an expression. Therefore, it is possible
to have >, <, >=, <= , and/or = present in both their roles, as expression operators and as field
operators, within an event template. This is not a problem, since the latter are unary while the
former are binary and the semantics are quite different.

The following table describes the field operators:

DescriptionOperator

Specifies a range of values that can match. The values themselves are
included in the range to match against. For example:

[value1:value2]

on stockPrice(*, [0 : 10]) doSomething();

This examplewill invoke the doSomething() action if a stockPrice event
is receivedwhere the price is between 0 and 10 inclusive. You can apply
this range operator to decimal, float, integer and string types.

Specifies a range of values that can match. The first value itself is
included in the range to match against while the second value is
excluded from the range to match against. For example:

[value1:value2)

on stockPrice(*, [0 : 10)) doSomething();

This examplewill invoke the doSomething() action if a stockPrice event
is received where the price is between 0 and 9 inclusive (assuming the
fieldwas of integer type). You can apply this range operator to decimal,
float, integer and string types.

Specifies a range of values that can match. The first value is excluded
from the range to match against while the second value is included.
For example:

(value1:value2]

on stockPrice(*, (0 : 10]) doSomething();

This example invokes the doSomething() action if a stockPrice event
is received where the price is between 1 and 10 inclusive (assuming
the field was an integer). This operator can apply to decimal, float,
integer and string types.

Developing Apama Applications 10.11.2 631

34 Events and Event Listeners

DescriptionOperator

Specifies a range of values that can match. The values themselves are
excluded from the range to match against. For example:

(value1:value2)

on stockPrice(*, (0 : 10)) doSomething();

This examplewill invoke the doSomething() action if a stockPrice event
is received where the price is between 1 and 9 inclusive (assuming the
fieldwas of integer type).You can apply this range operator to decimal,
float, integer and string types.

All values greater than the value supplied will satisfy the condition for
a match. You can apply this operator to decimal, float, integer, and

> value

string types. When used with a string, the operator assumes lexical
ordering.

All values less than the value supplied will satisfy the condition for a
match. You can apply this operator to decimal, float, integer, and

< value

string types. When used with a string, the operator assumes lexical
ordering.

All values greater than or equal to the value supplied will satisfy the
condition for a match. You can apply this operator to decimal, float,

>= value

integer, and string types. When used with a string, the operator
assumes lexical ordering.

All values less than or equal to the value supplied will satisfy the
condition for a match. You can apply this operator to decimal, float,

<= value

integer, and string types. When used with a string, the operator
assumes lexical ordering.

All values equal to the value supplied will satisfy the condition for a
match. You can apply this operator to decimal, float, integer, and

= value

string types. When used with a string, the operator assumes lexical
ordering.

With one exception, only a value equivalent to the value supplied will
satisfy the condition for amatch. The exception is a location type field.

value

A location value consists of a structure with four floats representing
the coordinates of the corners of the rectangular space being
represented. A listener that is watching for a particular value for a
location field matches when it finds a location field that intersects
with the location value specified in the listener's event expression. In
the following example, the listener matches each A event whose loc
field specifies a location that intersectswith the square defined by (0.0,
0.0, 1.0, 1.0).
location l := location(0.0, 0.0, 1.0, 1.0);
on all A(loc = l) ...

Any value for this field satisfies the condition for a match.*

632 Developing Apama Applications 10.11.2

34 Events and Event Listeners

Event listener definitions
You define an event listener in an on statement. See “The on statement” on page 678.

Event lifecycle
An event enters the correlator in one of the following ways:

An event is received from another component, such as the engine_send utility, an adapter,
another correlator, or a process that is using the Apama client API. The correlator places the
event on the input queue of each context that is subscribed to the channel on which the event
is sent. If an event is not sent on a named channel then the correlator places the event on the
input queue of each public context and each context that is processing a query.

Events sent on the com.apama.queries channel are put on the input queue of each context that
is processing a query. These contexts automatically receive events sent on the com.apama.queries
channel.

A correlator pulls an event from a JMS message queue that is set up to distribute events to a
cluster of correlators that is processing queries. The correlator adds the event to the input
queue of each context that is processing queries.

An EPL program creates an event instance and executes a send..to statement. If the target is
a channel then the correlator places the event on the input queue of each context that is
subscribed to that channel. If the target is a context (or a sequence of contexts) then the correlator
places the event on the input queue of that context (or on the input queue of each context in
the sequence).

An EPL program creates an event instance and executes an enqueue...to statement. The
correlator places the event on the input queue of the specified context or on the input queue
of each context in the specified sequence of contexts.

An EPL program creates an event instance and executes a route statement. The correlator
places the event on the input queue of only the context that contains the monitor instance that
routed the event.

Monitors

When the event gets to the front of the context's input queue, the correlator evaluates the event to
determine if it is amatch for any active event listeners in that context. That is, the correlator checks
whether there are any event listeners in that context that are watching for that particular event. If
there is a match, the match triggers the event listener. This means that the correlator executes the
actions defined in the matching event listener.

It is possible for the actions defined in the event listener to route one or more events back to the
context's input queue. A routed event goes right to the front of the context input queue. When the
correlator is finished processing the event that triggered the event listener action, the correlator
evaluates any routed events before it moves on to the event that was on the input queue after the
matching event.

Developing Apama Applications 10.11.2 633

34 Events and Event Listeners

Queries

When the event gets to the front of the context's input queue, the correlator extracts the key of the
event according to the definitions of running queries that use that event. The window of events
for that key value is retrieved from the distributed cache. The correlator adds the event to the
retrieved window, which it writes back to the cache. The event pattern of interest is evaluated
against the stored window to determine whether the addition of the event causes a match set.

The event remains in its windowuntil the correlator ejects it tomake room for a new event or until
the query instance or parameterization terminates.

Event listener lifecycle
When you inject a monitor into the correlator, the correlator instantiates the monitor in the main
context and executes the monitor's onload() action. The onload() action typically specifies at least
one on statement. An on statement includes an event expression that identifies the event or sequence
of events that you are interested in. This is what you want to listen for. An onload() statement is
not required to specify an on statement. If there is no on statement, the correlator immediately
unloads the monitor.

When the correlator executes an on statement, it sets up an event listener for the specified event
or sequence of events. After the correlator sets up the event listener, the event listener watches for
an event that matches its event expression. When the event listener detects a matching event, the
event listener triggers and the correlator executes the action specified in the on statement.

For an event listener that is looking for a single instance of an event, this is straightforward.
However, the event expression that defines what you are looking for can specify all instances of
an event, all instances of a sequence of events, and it can have temporal and logical constraints.
This makes the lifecycle of an event listener less straightforward.

For example, consider the following event listener:
on all A() success();

When the correlator sets up this event listener, it sets up an event template to look for an A event.
When an A event arrives, the correlator does the following:

Executes the success() event listener action.

Sets up a new event template to look for the next A event.

Now consider this event listener:
on all A() -> all B() success();

Again, suppose that the correlator sets up this event listener and an A event arrives. This time the
correlator does the following:

1. Sets up an event template to listen for the next B event.

2. Sets up an event template to listen for the next A event.

634 Developing Apama Applications 10.11.2

34 Events and Event Listeners

This event listener will be active until it is explicitly killed because there will always be an event
listener that is looking for the next A event.

Additional information about event listener lifecycles is in “How the correlator executes event
listeners” on page 168.

Event processing order for monitors
As mentioned earlier, contexts allow EPL applications to organize work into threads that the
correlator can execute concurrently. When you start a correlator it has a main context. You can
create additional contexts to enable the correlator to concurrently process events. Each context,
including the main context, has its own input queue. The correlator can process, concurrently,
events in each context.

Concurrently, in each context, the correlator

Processes events in the order in which they arrive on the context's input queue

Completely processes one event before it moves on to process the next event

When the correlator processes an event within a given context, it is possible for that processing
to:

Send or enqueue an event to a particular channel.The correlator places the event on the input
queue of each context that is subscribed to the specified channel.

Send or enqueue an event to a particular context or to a sequence of contexts. The correlator
places the event on the input queue of the specified context or on the input queue of each
context in the specified sequence.

Route an event. The correlator places the routed event at the front of that context's input queue.
The correlator processes the routed event before it processes the other events in that input
queue.

If the processing of a routed event routes one or more additional events, those additional
routed events go to the front of that context's input queue. The correlator processes them before
it processes any events that are already on that context's input queue.

For example, suppose the correlator is processing the E1 event and events E2, E3, and E4 are on the
input queue in that order.

While processing E1, suppose that events En1 and En2 are created in that order and enqueued or
sent to the context. Assuming that there is room on the input queue of that context, those events
go to the end of the input queue of that context:

Developing Apama Applications 10.11.2 635

34 Events and Event Listeners

While still processing E1, suppose that events R1 and R2 are created in that order and routed. These
events go to the front of the queue:

When the correlator finishes processing E1, it processes R1. While processing R1, suppose that two
event listeners trigger and each event listener action routes an event. This puts event R3 and event
R4 at the front of that context's input queue. The input queue now looks like this:

It is important to note that R3 and R4 are on the input queue in front of R2. The correlator processes
all routed events, and any events routed from those events, and so on, before it processes the next
routed or non-routed event already on the queue.

Now suppose that the correlator is done processing R1 and it begins processing R3. This processing
causes R5 to be routed to the front of that context's input queue. The context's queue now looks
like the following:

See also “Understanding time in the correlator” on page 180.

Event processing order for queries
Unlike EPL monitors, the order in which queries process events is not necessarily the order in
which they were sent into the correlator. In particular, if two events that will be processed by the
same query with the same key value are sent very close together in time (both events received less
than about .1 seconds of each other) then they may be processed as if they had been sent in a
different order. For example, consider a query that is looking for an A event followed by an A event.
If two A eventswith the same key arrive 1millisecond apart then the eventsmight not be processed
in the order in which they were sent.

636 Developing Apama Applications 10.11.2

34 Events and Event Listeners

Queries usemultiple threads to process events and to scale acrossmultiple correlators onmultiple
machines. To do this efficiently, there is no enforcement that the events are processed in order.
However, when events that have the same key arrive roughly about .5 seconds apart or more then
out-of-order processing is typically avoided provided the system can keep up with the load.
Therefore, you want to specify a query so that it operates on partitions in which the arrival of
consecutive events is spaced far enough apart. For example, consider a query that operates on
credit card transaction events, which could mean thousands of events per second. You want to
partition this query on the credit card number so that there is one event or less per partition per
second. By following this recommendation, it becomes possible to process events that are generated
at rates of up to 10,000 events per second.

When creating an evt file for testing purposes, the recommendation is to begin the file with a
&FLUSHING(1) line to cause more predictable and reliable event-processing behavior. See "Event
timing" in the "CorrelatorUtilities Reference" section ofDeploying andManagingApamaApplications.

Event expressions
An event expression is a special type of expression that is used with the on statement to define the
rules for detecting events of interest and invoking an action when a matching event is detected.
In an event expression, you can specify filtering rules based on an event's field values, sequencing
rules for events followed by other events, times and time ranges during which an event is of
interest, and other rules. See also “The on statement” on page 678.

Event expressions should not be confused with ordinary EPL expressions of type event. Ordinary
EPL expressions of all types are described in “Expressions” on page 683.

Event primaries
The event primary is the simplest form of an event expression clause and can be combined with
other event primaries and event operators to form more complex event expressions.

An event primary can be an event template (see “Event templates” on page 628) optionally prefixed
with completed or unmatched, or it can be a timer (see “Timers” on page 639).

Event templates are constructs that allow you to specify filtering or matching criteria based on
values of one or more of an event's fields.

The completed operator

A completed event template matches only after all other work is completed. When an event that
matches a completed template comes into the correlator, the correlator:

1. Runs all of the event's normal or unmatched event listeners. Normal event templates do not
specify the completed or unmatched keyword.

2. Processes all routed events that result from those event listeners.

3. Triggers the completed event listeners.

For example:

Developing Apama Applications 10.11.2 637

34 Events and Event Listeners

on all completed A(f < 10.0) {}

The unmatched operator

An unmatched event template matches against events for which both of the following are true:

Except for completed and unmatched event templates, the event is not a match with any other
event template currently loaded in the context.

The event matches the unmatched event template.

The correlator processes events as follows:

1. The correlator tests the event against all normal event templates in the context. Normal event
templates do not specify the completed or unmatched keyword. If there are any matches, those
event listeners trigger and the correlator executes those event listener actions. If execution of
the event listener actions routes any events, the correlator then processes those events.

2. If the correlator does not find amatch, the correlator tests the event against all event templates
in the context that specify the unmatched keyword. If the correlator finds one or more matches,
it triggers an event listener for each match found. In other words, if multiple unmatched event
templatesmatch a given event, they all trigger. The correlator executes the event listener actions
defined by the event listeners that trigger. If any events are routed during execution of those
actions, the correlator processes the routed events.

3. The correlators tests the event against all event templates in the context that specify the
completed keyword. If the correlator finds one or more matches, it triggers an event listener
for each match found.

Example

For example, suppose you have the following code:
on all A("foo", < 10) as a {

print "Match: " + a.toString();
a.count := a.count+1; // count is second field of A
route a;

}
on all unmatched A(*,*) as a {

print "Unmatched: " + a.toString();
}
on all completed A("foo", *) as a {

print "Completed: " + a.toString();
}

The incoming events are as follows:
A("foo", 8);
A("bar", 7);

The output is as follows.
Match: A("foo", 8)
Match: A("foo", 9)
Unmatched: A("foo", 10)

638 Developing Apama Applications 10.11.2

34 Events and Event Listeners

Completed: A("foo", 10)
Completed: A("foo", 9)
Completed: A("foo", 8)
Unmatched: A("bar", 7)

Specify the unmatched keyword with care. Be sure to communicate with any others who write
event templates. If you are relying on an unmatched event template, and someone else injects a
monitor that happens to match some events that you expected to match your unmatched event
template, youwill not get the results you expect. The firing of an event-specific unmatched listener
is suppressed if an on any() listener matches the event (not just a type-specific listener).

Parenthesized event expressions

Just as with primary and bitwise expressions, event expressions can be enclosed in parentheses
to control expression evaluation order or to improve readability.

Timers
Specify a timerwith the wait, at, or within keyword. Formore detailed information, see “Defining
event listeners with temporal constraints” on page 175.

The wait event operator

The wait operator can be used to limit the amount of time that an event listener can match an
event. The wait operator's expression specifies the time in seconds. The result of evaluating the
wait expression must be of type float.

See also “Waiting within an event listener” on page 177.

The at event operator

The at operator allows triggering of an event listener at a specific time or repeatedly at multiple
times, depending on how the series of expressions that follow the at operator are constructed.

The time specification of the at operator consists of either five or six expressions, corresponding
to the number of minutes of the hour (0 to 59), hour of the day (0 to 23), day of the month (1 to
31), month of the year (1 to 12), day of the week (0 to 6, 0=Sunday), and seconds respectively.

If the optional number of seconds is omitted, 0 is used.

The * operator means that all times (minute, hour, etc.) for the corresponding part of the time
specification will match.

You can specify one or more time values separated by commas.

See also “Triggering event listeners at specific times” on page 178.

The within operator

The within operator takes one operand, which is an expression of type float, whose value is the
number of elapsed seconds from an event primary's activation time that the event primary can be

Developing Apama Applications 10.11.2 639

34 Events and Event Listeners

matched. The within operator's result type is boolean. If the event is matched before the specified
time has elapsed, the within operator's result is true. When the time has elapsed and the event
has not been matched, the within operator's result is false.

See also “Listening for event patterns within a set time” on page 176.

The not operator
The not operator specifies logical negation.

Example:
on A() and not B() executeAction();

The all operator
When the all operator appears before an event template, when that event template finds a match,
it continues to watch for subsequent events that also match the template.

Consider the following event expression:
all A -> B

This event listener would match on every A and the first B that follows it. The way this works is
that upon encountering an A, the correlator creates a second event listener to seek the next A. Both
event listenerswould be active concurrently; one looking for a B to successfullymatch the sequence
specified, the other initially looking for an A. If more As are encountered the procedure is repeated;
this behavior continues until either the monitor or the event listener are explicitly killed.

Consider the following sequence of incoming events:
C1 A1 F1 A2 C2 B1 D1 E1 B2 A3 G1 B3

With these input events, on all A() -> B()would return the following:

{A1, B1}, {A2, B1} and {A3, B3}.

Note that all is a unary operator and has higher precedence than ->, or and and.

The and, xor, and or logical event operators
The logical operators and, xor, and or are binary operators, operating on event expressions that
are either side of them. They are similar to the corresponding operators in primary and bitwise
expressions, but do not have quite the same precedence. See also “Event expression operator
precedence” on page 641.

DescriptionOperator

Logical intersectionand

Logical exclusive orxor

640 Developing Apama Applications 10.11.2

34 Events and Event Listeners

DescriptionOperator

Logical oror

The followed-by event operator
The followed-by operator -> takes left and right operands, both event expressions. The followed-by
operator waits for the left operand to become true and then waits for the right operand to become
true.When both are true, then the result value is true. If either becomes false, then the result value
is false.

Event expression operator precedence
The following table lists the event expression operators in order by their precedence, from lowest
to highest. See “Expression operator precedence” on page 693 for a corresponding table of primary
and bitwise expression operator precedence.

PrecedenceOperatorOperation

1->Followed-by

2orLogical union

3xorLogical exclusive or

4andLogical intersection

5allAll

6notLogical negation

For clarity, it is strongly recommended to use brackets in event expressions. This makes it very
easy to understandwhat an expressionmeans. Do not use un-bracketed expressions, exceptwhere
trivial.

For example, the following expression:
on all A()or B() and not C() -> D()

is equivalent to this expression, which is much easier to understand:
on (

(all A())
or
(B() and (not C()))
) -> D()

Developing Apama Applications 10.11.2 641

34 Events and Event Listeners

Event channels
Adapter and client configurations can specify the channel to deliver events to. A channel is a string
name that contexts and receivers can subscribe to in order to receive particular events. In EPL,
you can send an event to a specified channel. Sending an event to a channel delivers it to any
contexts that are subscribed to that channel, and to any clients or adapters that are listening on
that channel.

You can use the com.apama.Channel type to send an event to a channel or context. The Channel
type holds a string or a context. When it holds a string an event is sent to the channel that has that
name. When it holds a context an event is sent to that context.

The default channel is the empty string. Events sent to the default channel and events sentwithout
a channel specification are added to the input queue of each public context as well as each context
that is processing queries.

You can use the com.apama.queries channel to send events to all contexts that process queries.

642 Developing Apama Applications 10.11.2

34 Events and Event Listeners

35 Monitors

■ Monitor lifecycle .. 644

■ Monitor files .. 645

■ Packages .. 645

■ The using declaration ... 646

■ Monitor declarations ... 646

■ The import declaration ... 646

■ Monitor actions ... 647

■ Contexts ... 648

■ Plug-ins .. 649

■ Garbage collection ... 649

Developing Apama Applications 10.11.2 643

A .mon file is a file that contains the source text for an optional package specification and one or
more event declarations and/ormonitor definitions. A file can consist entirely of event declarations
without any monitors.

Note:
Monitors and queries are the two main EPL programming units. A monitor cannot contain a
query. A query cannot contain a monitor. Each unit offers a different approach to event
processing. See "Architectural comparison of queries and monitors" in Introduction to Apama.

A monitor is a group of related variable declarations and actions. An action is a group of related
variable declarations and statements. An action can either be part of a monitor or part of an event
declaration.

The executable statements (except for global variable initializers) are always inside an action. An
action can be either a subprogram or a function. The difference is that a function has a return value
and a subprogram does not.

Each file is injected whole or not at all; if some parts compile validly but others do not, nothing is
injected and an error is returned. Injecting can also return warnings about the code injected. For
example, use of keywords that may be reserved in the future.

Monitor lifecycle
Monitors are compiled and run (executed) by theApama correlator. The correlator starts executing
in the monitor's onload() action. To execute a monitor, you load (inject) it into the correlator. The
correlator then does the following:

1. Compiles the monitor's source text

2. If no errors are detected, creates the main monitor instance along with its global variables

3. Invokes the monitor instance's onload() action

When the onload() action has executed to completion (that is, the control path reaches the closing
curly brace of the onload() action), if themonitor instance has event listeners or streaming networks,
then it remains active but in a suspended state.

The correlator calls the monitor instance's event listeners whenever it detects events that match
the event listeners' event expressions.

A monitor instance terminates when one of the following events occurs:

The monitor instance executes a die statement in one of its actions.

A runtime error condition is raised.

The monitor is terminated externally (for example, with the engine_delete utility.

Themonitor instance has executed all its code and there are no remaining listeners or streaming
networks. This will occur rapidly if the onload() action does not create any.

When a monitor instance terminates, the correlator does the following:

644 Developing Apama Applications 10.11.2

35 Monitors

1. Invokes the monitor instance's ondie() action, if it is defined.

2. If themonitor instance that is terminating is the last active instance of thatmonitor, the correlator
also does the following:

Invokes the monitor's onunload() action if it is defined.

Removes the monitor's code from the correlator.

Frees all the monitor's resources.

To summarize, consider that when a monitor spawns monitor instances, there is a set of monitors
that includes the original monitor instance and any spawned monitor instances. As the monitor
instances in this set terminate, the correlator calls the ondie() action, if it is defined, for each
monitor instance that terminates.When the lastmonitor instance in the set terminates, the correlator
also calls the onunload() action. Thus, the correlator calls ondie() once for each monitor instance
in the set, and calls onunload() only once for the entire set.

See “About executing ondie() actions” on page 44 for information about how ondie() can optionally
receive exception information if an instance dies due to an uncaught exception.

Monitor files
An EPL monitor file contains an optional package declaration, optional using declaration, event
declarations and/or monitor declarations and/or custom aggregate definitions.

Packages
A package declaration provides a scope for events and/or monitors, and/or queries.

Example:
package com.myCorporation.myproject;

See “Names” on page 717 for further information.

Developing Apama Applications 10.11.2 645

35 Monitors

The using declaration
The using declaration lets you use a type in a package other than the package the typewas defined
in without having to specify the fully qualified name of the type.

Insert a using declaration (after the optional package declaration and before any other declarations)
that specifies the fully qualified name of the type. For example:
using com.myCorporation.custom.myCustomAggregate;

You can specify multiple using declarations in a file.

In a file, you cannot specify two using declarations that bring in types that have the same base
name. See also “Name Precedence” on page 717.

You cannot specify a using declaration for named objects such as monitors, JMon monitors, and
namespaces.

A using declaration can be in a monitor or in a query.

Monitor declarations
Specify persistentwhen youwant a persistence-enabled correlator to save the state of themonitor
in a recovery datastore on disk. In a monitor, import declarations, event declarations, variable
declarations, and action definitions can be freely mixed in any order. For detailed information,
see “Defining Monitors” on page 33.

A monitor can be optionally prefixed (before the persistent keyword) with annotations. See also
“Annotations” on page 718.

The import declaration
The import declaration loads a plug-in library and makes it available to an EPL program. Plug-in
libraries are shared libraries on Linux andUNIX systems andDynamic Link Libraries onWindows
systems.

On Linux and UNIX systems, the library is loaded from a libPlugInName.so file located in one of
the directories listed in the environment variable LD_LIBRARY_PATH. On Windows, the library is
loaded from a PlugInName.dll file located in the bin folder.

You can name a plug-in. The plug-in name is a library filename, not a full filepath, and is not
allowed to contain any of the characters used as directory or device separators (forward slash,
colon, or backslash).

You can also give the plug-in an identifier (an alias name) for use in the EPL program when you
call the library's actions.

For example, to call a plug-in action foo() in the plug-in library wffftl.so or wffftl.dll, you
would write the following:

646 Developing Apama Applications 10.11.2

35 Monitors

monitor m {
import "wffftl" as fft;
action onload()
{

sequence <float> data := [];
fft.foo (data);

}
}

For detailed information, see “Using EPL Plug-ins” on page 341.

Monitor actions
Monitors can have two forms of actions: simple actions and actionswith parameters and/or return
values. These types of actions are discussed in the topics below.

Monitor actions can optionally be prefixed with annotations. See “Annotations” on page 718.

Simple actions
A simple action has a name and a body consisting of a block. The body contains the executable
code of the action. There are no parameters.

The action names given in the table below have special meaning in a monitor. These actions are
invoked automatically when certain events in a monitor's life cycle occur. Apama recommends
that you do not use these names in queries.

A block must follow the action name. Note that there are no formal parameters in this form of
action definition and the action cannot return a value.

DescriptionAction

This action is invoked immediately after a monitor has
been loaded. This actionmust be present in everymonitor.

onload()

If present, this action is invoked by the correlator when a
monitor instance terminates.

ondie()

If present, this action is invoked by the correlator after all
instances of amonitor have terminated, just before the last
monitor instance is unloaded.

onunload()

If present, this action is invoked by the correlator during
recovery of a persistence-enabled correlator. The correlator

onBeginRecovery()

executes onBeginRecovery() on monitors and any live
events after it reinjects source code and restores state in
persistent monitors.

If present, this action is invoked by the correlator during
recovery of a persistence-enabled correlator. The correlator

onConcludeRecovery()

Developing Apama Applications 10.11.2 647

35 Monitors

DescriptionAction

executes onConcludeRecovery() on monitors and any live
events before it begins to send clock ticks.

Actions with parameters
An action can take an optional list of parameters.

Formal parameters

The formal parameters are a comma-separated list of type name and identifier pairs.

The identifier is the name of a parameter variable that will be bound to a copy of the value of an
expression specified by the caller (that is, the value passed by the caller) when the action is invoked.
The number and type of actual parameters passed by a callermustmatch those listed in the action's
formal parameters.

The scope of a parameter variable is the statement or block that forms the action body. Parameter
variables are very similar to an action's local variables.

Action return value

If you specify a returns clause, then the action must return a value whose type matches that
specified in the returns clause. You specify the return value by using a return statement and result
expressionwithin the action. Every control path (see “Transfer of control statements” on page 680)
within the action bodymust lead to a return statementwith a result expression of the correct type.

Action body

After the returns clause (or after the formal parameters if there is no returns clause), a statement
forms the action body. The action body can be a single statement or a block.

Within the action body, you use the parameter variable names to obtain the values that are passed
to the action by its caller.

Contexts
Contexts allow EPL applications to organizework into threads that the correlator can concurrently
execute. For detailed information, see “Implementing Parallel Processing” on page 287. This also
provides information on the properties of a context (see “About context properties” on page 289).

Note:
In monitors, you must implement the use of contexts. In queries, the use of contexts is
automatically done for you.

You can create any number of contexts. Creating a context just allocates an ID and creates a small
object. See also “Creating contexts” on page 290.

648 Developing Apama Applications 10.11.2

35 Monitors

For information on how to obtain a reference to a context, see “Obtaining context references” on
page 292.

Plug-ins
EPL can be extended through the use of plug-ins, which are modules written either in C++, C, or
Java and loaded dynamically into the EPL runtime with the import statement. Plug-in modules
are invoked in exactly the same way as actions in an EPL event.

See “Using EPL Plug-ins” on page 341.

Garbage collection
EPL, like languages such as Java or C#, relies on garbage collection. Intermittently, the correlator
analyses the events that have been allocated, including dictionaries, sequences, closures and
streaming networks, and allows memory used by events that can no longer be referenced to be
re-used. Thus, the actual memory usage of the correlator might be temporarily above the size of
all live objects. While running EPL, the correlator might wait until a listener or onload() action
completes before performing garbage collection. Therefore, any garbage generatedwithin a single
action or listener invocation might not be disposed of before the action/ listener has completed. It
is thus advisable to limit individual actions/listeners to performing small pieces of work. This also
aids in reducing system latency.

The cost of garbage collection increases as the number of events a monitor instance creates and
references increases. If latency is a concern, it is recommended to keep this number low, dividing
the working set by spawning new monitor instances if possible and appropriate. Reducing the
number of event creations, including string operations that result in a new string being created,
also helps to reduce the cost of garbage collection. The exact cost of garbage collection could change
in future releases as product improvements are made.

Developing Apama Applications 10.11.2 649

35 Monitors

650 Developing Apama Applications 10.11.2

35 Monitors

36 Queries

■ Query lifetime ... 652

■ Query definition .. 654

■ Metadata section .. 655

■ Parameters section ... 656

■ Inputs section ... 656

■ Query input definition ... 656

■ Find statement .. 658

Developing Apama Applications 10.11.2 651

An Apama query is a self-contained processing element that communicates with other queries,
and with its environment, by sending and receiving events. Queries are designed to be
multithreaded and to scale across machines.

Note:
Queries and monitors are the two main EPL programming units. A query cannot contain a
monitor. A monitor cannot contain a query. Each unit offers a different approach to event
processing. See "Architectural comparison of queries and monitors" in Introduction to Apama.

You use Apama queries to find patterns within, or perform aggregations over, defined sets of
events. For each pattern that is found, an associated block of procedural code is executed. Typically
this results in one or more events being transmitted to other parts of the system.

A query is defined in a .qry file. A query finds specified event patterns or aggregates event values.

Apama queries are useful when you want to monitor incoming events that provide information
updates about a very large set of real-world entities such as credit cards, bank accounts, or cell
phones. Typically, you want to independently examine the set of events associated with each
entity, that is, all events related to a particular credit card account, bank account, or cell phone. A
query application operates on a huge number of independent sets with a relatively small number
of events in each set.

The following topics provide reference information for the parts of a query definition. For user
guide type information, see “Defining Queries” on page 59.

Query lifetime
You inject queries into a running correlator with the Apama macros for Ant, (install_dir\etc\
apama-macros.xml) orwith SoftwareAGDesigner. You can delete queries from a running correlator
by performing a delete operation and specifying a query name. You can use the same tools that
you use to delete monitors: engine_delete utility, Software AG Designer, Apama macros for Ant
(apama-macros.xml), or deleteName()method on the engine client API.

If you are using a cluster of correlators, it is your responsibility to inject each query into each
correlator in the cluster, and to delete a query from each correlator in a cluster. This keeps deployed
queries in sync across the cluster. In other words, injecting or deleting a query on one host in a
cluster does not automatically inject or delete the query on the other cluster members.

Unlikemonitors, the lifetime of query instances is either automatic (for non-parameterized queries)
or controlled by the Scenario Service (for parameterized queries, see "Scenario Service API" in
Connecting Apama Applications to External Components). There are no spawn or die equivalents in
queries, and you cannot use these EPL statements in queries.

When a non-parameterized query is injected, a single instance of the query is automatically created
at injection time and it begins processing events. You cannot use the Scenario Service API to edit
or delete this single instance or to create new instances. For parameterized queries, after injection,
only the query definition is created automatically. The query does not start processing events
specified in its inputs section until at least one parameterization is created bymeans of the Scenario
Service. You can control this by using a dashboard or scenario browser. The Scenario Service has
methods to create new query instances, edit instances and delete instances.

652 Developing Apama Applications 10.11.2

36 Queries

When using a cluster of correlators, the parameterizations are kept in sync across all members of
the cluster. Creating a query instance while connected to one cluster member will create it on all
members. The instance can be edited or deleted by any client connected to any member. There
may be short delays in replicating parameterization data on each cluster member because this
happens asynchronously. However, the recommendation is to edit or delete a particular
parameterization from Scenario Service clients that are all connected to the same correlator. This
ensures that edit and delete operations are performed in the same order on every cluster member.
If you try to edit or delete the same parameterization from different cluster members the results
are unpredictable.

If a query executes code in a where clause, aggregate or other expression that results in an exception
due to the current values in the window, the query ignores the exception and continues running.
For example, an attempt to divide an integer by zero causes an ArithmeticException. If a query
experiences an exception that means it cannot continue (such as repeated exceptions while trying
to retrieve or store window data), then the query instance will enter the failed state, which will be
reported by the Scenario Service. In this case, the query does not process additional events. The
correlator log file should contain information that explains why the query failed. The problem
that caused the failed state needs to be corrected. After correcting the problem, if the query is a
parameterized query, you should delete the failed parameterization and then re-create it. For a
non-parameterized query, you must delete and then re-inject the query.

When a query is deleted with the engine_delete utility or equivalent, all instances of the query
are terminated and the Scenario Service will reflect that the query definition has been unloaded.
The query can be re-injected, if needed. Remember that deletions and injectionsmust be performed
on every member in a cluster.

Lifetime of find statements

As long as a query is active, the find statement in a query is active for each value of the key that
is specified in the query's inputs section. Thus, find A as a in a query is similar to on all A()
as a in a monitor. The find statement generates a match set each time the latest event causes a
match. If the find statement specifies any aggregates and the everymodifier, which can only be
used with aggregates, then each newmatch set causes the find statement to add to the aggregate.

In monitors, listeners can match either the first set of matching events, or specify the all operator
to fire for every set of matching events. For example, on A() as a -> B() as b fires on the first A
and B events, while on all A() as a -> all B() as b fires for every combination of an A event
with a later B event. In a query, find A as a -> B as b fires on every B event after an A event if
an A event is still in the window defined in the inputs section. The match set contains the most
recent A event and themost recent B event. The following table provides examples. The assumption
is that all input events remain in the query's window.

Developing Apama Applications 10.11.2 653

36 Queries

Monitor match
sets for:

on all A() as a ->
all B() as b

Monitor match
sets for:

on A() as a -> B()
as b

Query match sets
for:

find every A as a
-> B as b

select... - inputs to
aggregates

Query match sets
for:

find A as a -> B as
b

Input events

A(1)

A(1), B(1)A(1), B(1)A(1), B(1)A(1), B(1)B(1)

A(2)

A(1), B(2)A(1), B(1)A(2), B(2)B(2)

A(2), B(2)A(1), B(2)

A(2), B(2)

A(1), B(3)A(1), B(1)A(2), B(3)B(3)

A(2), B(3)A(1), B(2)

A(2), B(2)

A(1), B(3)

A(2), B(3)

Query definition
A query searches for an event pattern that you specify. You define a query in a file with the
extension “.qry”. Each .qry file contains the definition of only one query.

654 Developing Apama Applications 10.11.2

36 Queries

If specified, any package or using statementsmust be before the querydeclaration. See “Packages” on
page 645 and “The using declaration” on page 646.

You must specify an identifier for the query name. See “Identifiers” on page 711. The convention
for specifying the name of a query is to use UpperCamelCase, as shown in the example below.

Specification of metadata is optional. See “Metadata section” on page 655. The convention for
specifying the key in the key-value pair of the metadata is to use lowerCamelCase as shown in
the example below.

Specification of query parameters is optional. See “Parameters section” on page 656.

An inputs section is required. It specifies at least one event type. These are the event types that
the query operates on. See “Inputs section” on page 656.

The find statement is required. It specifies the event pattern of interest and a block that contains
procedural code. See “Find statement” on page 658.

Action definitions, in the same form as actions in events, are optional. See “Event actions” on
page 626.

Example:
query ImprobableWithdrawalLocations {

metadata {
"author":"Apama",
"version":"1"

}
parameters {

float period;
}
inputs {

Withdrawal() key cardNumber within (period);
}
find

Withdrawal as w1 -> Withdrawal as w2
where w2.country != w1.country {
log "Suspicious withdrawal: " + w2.toString() at INFO;

}
}

Metadata section
In a query, the optional metadata section specifies a list of key-value pairs. If there is a metadata
section, it must be the first section in the query. See “Defining metadata in a query” on page 70
for further information.

Developing Apama Applications 10.11.2 655

36 Queries

Parameters section
In a query, the optional parameters section specifies any parameters used by the query. If there is
a parameters section, it must follow the metadata section, if defined, and it must precede the inputs
section. Parameter values are available throughout a query. See “Implementing parameterized
queries” on page 129 for further information.

Inputs section
In a query, the required inputs section specifies the events that the query operates on.

At least one input definition is required. Typically, nomore than four input definitions are specified.

If there is a parameters section, then the inputs section follows it. The inputs sectionmust be before
the find statement.

Example:
inputs {

A() key k retain 20;
B() key k retain 10;

}

For more information, see “Defining query input” on page 77.

Query input definition
In a query, the required inputs section must contain at least one input definition.

656 Developing Apama Applications 10.11.2

36 Queries

An event type you specify must be parseable. See “Type properties summary” on page 611. Event
type names can come from the root namespace, a using declaration, or a local package as specified
in a package declaration.

Event filters are optional. Specifying a filter here determines which events are added to a query
window. The rules for what you can specify for the event filter are the same as for what you can
specify in an event template in EPL. See “Event templates” on page 628.

Specification of a key is optional, but rarely omitted. If there is no key specification, all events are
in one partition. The correlator uses the key to partition events. Each partition is identified by a
unique key value. Specify one or more fields that are in the input event type. One or two fields in
a key is typical. Three fields in a key is unusual and rarely needed. More than three fields is
discouraged. If you define more than one input in a query

The number, type, and order of the key fields in each input definition must be the same.

Developing Apama Applications 10.11.2 657

36 Queries

If the names of the key fields are not the same in each input definition, you must insert the as
keyword to specify aliases so that the names match. For details, see “About keys that have
more than one field” on page 76.

A retain clause or a within clause is required. Alternatively, you can specify both.

A retain clause indicates how many events to hold in the window. Follow the retain keyword
with a positive integer. If you specify a negative integer or zero, it is a runtime error that terminates
the query.

A within clause indicates the length of time that an event stays in the window. Follow the within
keyword with a positive float expression or a time literal. If you specify a negative float value
or zero it is a runtime error that terminates the query.

For information on other clauses, see “Format of input definitions” on page 80.

Examples:
inputs {

Withdrawal(amount > 500) key userId within 1 hour;
}

inputs {
APNR() key road within(150.0);
Accident() key roadName as road within(10.0);

}

Find statement
Aquery find statement tries to find amatch for the event pattern that the find statement specifies.
When the query finds a match it executes the EPL in the find statement block.

658 Developing Apama Applications 10.11.2

36 Queries

When a find statement specifies a select or having clause, the everymodifier is required.
Conversely, you cannot specify the everymodifier if you do not specify a select or having clause.

When a find statement specifies the every identifier, the identifiers in the select clause are available
in the having clause and in the find block, but the coassignments in the pattern are not available.

Pattern coassignments are available in a where clause that applies to the pattern.

When you do not specify the everymodifier, all pattern coassignments, except a without clause
coassignment, are available in the find block.

In a where clause that is part of a without clause, pattern coassignments aswell as the coassignment
in the without clause are available.

Example:
find Withdrawal as w1 -> Withdrawal as w2

where w1.country = "UK" and w2.country = "Narnia" {
// Recent card fraud in Narnia against UK customers
emit SuspiciousWithdrawal(w2);

}

Pattern
In a query definition, the find statement specifies the event pattern of interest followed by a
procedural block that specifies what you want to happen when a pattern match is found.

A coassignment variable specified in an event pattern is within the scope of the find block and it
is a private copy in that block. Changes to the content that the variable points to do not affect any
values outside the query. Unlike EPL event expressions, you need not declare this identifier before
you coassign a value to it.

In an event pattern in a find statement, each coassignment variable identifier must be unique. You
must ensure that an identifier in an event pattern does not conflict with an identifier in the
parameters section or inputs section.

If a pattern specifies a wait operator, then it must be at the beginning of a pattern, at the end of a
pattern, or both. It cannot be in the middle of a pattern. The followed-by operator (->) must be
after or before each instance of the wait operator. For example:
wait(1) as w -> (A as a and B as b) // Allowed
{(A as a and B as b) -> wait(1) as w } // Allowed
wait(1) as w1 -> (A as a and B as b) -> wait(1) as w2 // Allowed
wait(1) as w and A as a // Not allowed
A as a -> wait(1) as w -> B as b // Not allowed

A wait operatormust specify a positive float value or a time literal. A float value always indicates
a number of seconds.

Optionally, specify and, or or -> and then specify an event_type and coassignment variable.
Parentheses are allowed in the pattern specification and you can specify multiple operators, each
followed by an event_type and coassignment variable. For example, the following is a valid find
statement:

Developing Apama Applications 10.11.2 659

36 Queries

find (A as a1 -> ((A as a2)) -> (A as a3) ->
(A as a4 -> A as a5 -> A as a6) ->
(((A as a7) -> A as a8) -> A as a9) -> A as a10 {
print "query with 10: "+a1.toString()+ " - "+a10.toString();

}

Where condition
A find statement can specify a where clause that filters which events match the specified event
pattern.

Note:
You can specify a find where clause that applies to the event pattern, and you can also specify
a without where clause that is part of a without clause. Any where clauses that youwant to apply
to the event pattern must precede any within or without clauses.

Specify the where keyword followed by a Boolean expression that refers to the events you are
interested in. The Boolean expression must evaluate to true for the events to match.

The where clause is optional. You can specify zero, one or more where clauses.

Coassignment variables specified in the find or select statements are in scope in a find where
clause. Also available in a find where clause are any parameter values and key values.

Example:
find Withdrawal as w1 -> Withdrawal as w2

where w2.country != w1.country {
log "Suspicious withdrawal: " + w2.toString() at INFO;

}

Within condition
In a find statement, a within clause sets the time period during which all events in the match set
or some events in the match set must have been added to their windows.

A pattern can specify zero, one, or more within clauses. These must appear after any find where
clauses and before any without clauses.

Specify the within keyword followed by a float expression or a time literal, which indicates the
time period during which the events in the match set must be received.

Optionally, specify a between clause to indicate that the time constraint applies to only some of
the events in the match set. See “Between clause” on page 662.

Example:
find LoggedIn as lc -> OneTimePass as otp

where lc.user = otp.user
within 30.0 {

emit AccessGranted(lc.user);
}

660 Developing Apama Applications 10.11.2

36 Queries

Without condition
In a find statement, a without clause specifies an event type whose presence prevents a match.

Specify the without keyword followed by an event type coassigned to an identifier.

An event type that you specify in a without clause must be specified in the inputs block of the
query. A pattern can specify zero, one, or more without clauses.

Optionally, after each without clause, you can specify one where clause, which is referred to as a
without where clause to distinguish it from a find where clause. When a where clause is part of a
without clause:

The Boolean expressionmust evaluate to true for the presence of the specified event to prevent
a match. In other words, when the Boolean expression evaluates to false, then there can be a
match even when the specified event is in the window.

The where clause applies to the event specified in its without clause.

The Boolean expression can refer to parameters, coassignment identifiers in the event pattern,
and the coassignment identifier in the without clause.

A without clause cannot use the -> or and pattern operators. However, you can specify multiple
without clauses. If there aremultiple without clauses each one can refer to only its own coassignment
and not coassignments in other without clauses. However, all without clauses can make use of the
pattern's standard coassignments.

If there are multiple without clauses, a matching event for any one of them prevents a pattern
match.Multiple without clauses can use the same type and the same coassignment,which is useful
only when their where conditions are different.

Typically, a without where clause references the event in its without clause, but this is not a
requirement.

Optionally, after each without clause, you can specify a between clause, which lists two or more
coassigned events or wait operators. For an event to cause amatch, the type specified in the without
clause cannot be added to the window between the points specified in the between clause. See
“Between clause” on page 662.

Any without clauses must be after any find where clauses and within clauses. If you specify both
optional clauses, the without where clause must be before the between clause.

Example:
find OuterDoorOpened as od -> InnerDoorOpened as id

where od.user = id.user
without SecurityCodeEntered as sce where od.user = sce.user {

emit Alert("Intruder "+id.user);
}

Developing Apama Applications 10.11.2 661

36 Queries

Between clause
In a within clause and in a without clause, an optional between clause restricts which part of the
pattern the within or without clause applies to.

Specify the between keyword followed by two or more identifiers that are specified in the event
pattern. Enclose the identifiers in parentheses.

The identifiers set a period of time that starts when one of the specified events is received and
ends when one of the other specified events is received. The range is exclusive. That is, the range
applies only after the first event is received and before the last event is received.

A between clause is the only place in which you can specify a coassignment identifier that was
assigned in a wait clause. You cannot specify identifiers used in a without clause. Also, the same
event cannot match both the coassignment identifier in the without clause and an identifier in a
between clause.

The condition that the between clause is part of must occur in the range of identifiers specified in
the between clause.

It is illegal to have two within clauses with identical between ranges. This would be redundant,
as only the shortest within duration would have any effect. It is, however, legal to have more than
one without clause with the same between range. Typically, these would refer to different event
types or where conditions.

Example:
find A as a -> B as b -> (C as c and D as d)

within 10.0 between (a b)
within 10.0 between (c d)

See “Query condition ranges” on page 118 for an explanation of this example.

Select clause
A find statement that specifies the every keyword can specify a select clause to calculate an
aggregate value in order to find data based on many sets of events.

Specify the select keyword followed by a projection expression coassigned to an identifier. The
projection expression contains aggregate function(s) that operate on one ormore input events. See
“Built-in aggregate functions” on page 666 as well as “Custom aggregates” on page 666.

The projection expression can use coassignments from the pattern if the coassignments are within
a single aggregate function call. For example, the following pattern computes the average value
of the xmember of event type A in the query's input and coassigns that average value to aax.
find every A as a select avg(a.x) as aax

662 Developing Apama Applications 10.11.2

36 Queries

A select clause can use parameter and key values.

In an aggregating find statement, only the projection expression can use the coassignments from
the pattern. The procedural block of code can use projection coassignments and any parameters
or key values, but it cannot use coassignments from the pattern.

In find statements without the everymodifier, only the most recent set of events that match the
pattern are used to invoke the procedural code block. With the everymodifier, every set of events
that matches the pattern is available for use by the aggregate function, provided that the latest
event is present in one of the sets of events. Any events or combinations of events that do not
match the pattern or do not match the where clause, or are invalidated due to a within or without
clause, are ignored; their values are not used in the aggregate calculation.

Examples:
find every ATMWithdrawal as w

select last(w.transactionId) as tid
having last(w.amount) > THRESHOLD * avg(w.amount) {
route SuspiciousTransaction(tid);

}

find every A as a -> B as b
where b.x >= 2
select avg(a.x + b.x) as aabx {
print aabx.toString();

}

See “Aggregating event field values” on page 122 for explanations of these examples, as well as
additional examples.

Having clause
A find statement that specifies the every keyword can specify a having clause to restrict when
procedural code is invoked.

Specify the having keyword followed by a Boolean projection expression. The Boolean projection
expression refers to an aggregate calculation. Procedural code is executed only when the Boolean
projection expression evaluates to true.

You can specify zero, one, or more having clauses.When you specify more than one having clause,
it is equivalent to specifying the and operator. That is, each Boolean projection expression must
evaluate to true for the procedural code to be executed.

A having clause can refer to an aggregate value by using the select coassignment name.

When you want to test for an aggregate condition but you do not want to use the aggregate value,
you can specify a having clause without specifying a select clause.

Examples:
find every A as a

select avg(a.x) as aax
having aax > 10.0 {

Developing Apama Applications 10.11.2 663

36 Queries

print aax.toString();
}

find every A as a
having avg(a.x) > 10.0 {
print "Average value is greater than ten!";

}

664 Developing Apama Applications 10.11.2

36 Queries

37 Aggregate Functions

■ Built-in aggregate functions .. 666

■ Custom aggregates .. 666

Developing Apama Applications 10.11.2 665

In Apama queries and in EPL stream queries, you can specify aggregate functions in the select
clause. An aggregate function calculates a single value across all items currently in the window.
EPL provides a number of commonly used aggregate functions. If a supplied aggregate function
does not meet your needs, you can define a custom aggregate function.

See “Select clause” on page 662 for information about the select clause in Apama queries.

See also “Stream queries” on page 695.

Built-in aggregate functions
EPL provides built-in aggregate functions in the com.apama.aggregates package. All of these
functions are available for either bounded or unbounded use. See the com.apama.aggregates
package in theAPI Reference for EPL (ApamaDoc) for detailed information on each built-in aggregate
function.

To use a built-in aggregate function in a query, you must do one of the following:

Specify the full name of the aggregate function. For example:
select com.apama.aggregates.sum(x)

For each aggregate function you want to use in your code, add a using statement. This lets
you specify aggregate function names without specifying the package name. For example:
using com.apama.aggregates.mean;
using com.apama.aggregates.stddev;
...
...select MeanSD(mean(s), stddev(s));

Insert the using statement after the optional package declaration and before any other
declarations in the .mon file.

See also:

“Select clause” on page 662 for information about the select clause in Apama queries.

“Working with Streams and Stream Queries” on page 189

“Aggregating items in projections” on page 220

Custom aggregates
In an Apama query and in a stream query, you can specify an aggregate function in the select
clause. If one of the supplied aggregate functions does not meet your needs, you can define a
custom aggregate function for use in a select clause.

You define custom aggregate functions in a .mon file and outside of an event or a monitor. The
aggregate function's scope is the package inwhich youdeclare it. To use customaggregate functions
inmonitors and inApamaqueries in other packages, specify the aggregate function's fully-qualified
name, for example:

666 Developing Apama Applications 10.11.2

37 Aggregate Functions

from a in all A() select com.myCorporation.custom.myCustomAggregate(a)

Alternatively, you can specify a using statement. See “The using declaration” on page 646.

Specify boundedwhen you are defining a custom aggregate function that will work with only a
boundedwindow. That is, a stream query cannot specify retain all. Specify unboundedwhen you
are defining a custom aggregate function that will work with only an unbounded window. That
is, a stream query must specify retain all. Do not specify either bounded or unboundedwhen you
are defining a custom aggregate function that will work with either a bounded or an unbounded
window.

A custom aggregate function that you want to use in an Apama query must either be a bounded
function or it must support both bounded and unbounded operation.

The name of a custom aggregate function must be unique within a package; you cannot overload
it or define an event, monitor, or query with the same name as an aggregate function.

The list of formal parameters consists of zero or more comma-separated type/name pairs. Each
pair indicates the type and the name of an argument that you are passing to the aggregate function.
For example, (float price, integer quantity).

The data type namemust be an EPL type. This is the type of the value that your aggregate function
returns.

The body of a custom aggregate function can contain fields that are specific to one instance of the
custom aggregate function and actions to operate on the state.

Actions

In a custom aggregate function, the init(), add(), remove() and value() actions are special. They
define how Apama queries and stream queries interact with custom aggregate functions.

init()— If a custom aggregate function defines an init() action, it must take no arguments
and must not return a value. The correlator executes the init() action once for each new
aggregate function instance it creates in a query (stream query or Apama query).

add()—A custom aggregate functionmust define an add() action. The add() actionmust take
the same ordered set of arguments that are specified in the customaggregate function signature.
That is, the names, types, and order of the arguments must all be the same. The correlator
executes the add() action once for each item added to the set of items that the aggregate function
is operating on.

remove()—A bounded aggregate function must define a remove() action. An unbounded
aggregate function must not define a remove() action. If you do not specify either bounded or
unbounded, the remove() action is optional. The remove() action must take the same ordered
set of arguments as the add() action, followed by an argument of the type returned by add(),
if any, and must not return a value. The correlator executes the remove() action once for each
item that leaves the set of items that the aggregate function is operating on. The value that
remove() is called with is the same value that add()was called with.

Developing Apama Applications 10.11.2 667

37 Aggregate Functions

value()—All custom aggregate functions must define a value() action. The value() action
must take no arguments and its return type must match the return type in the aggregate
function signature. The correlator executes the value() action as follows:

In an Apama query, once for each match set and returns the current aggregate value to the
query.

In a stream query, once per batch per group and returns the current aggregate value to the
query.

Custom aggregate functions can declare other actions, including actions that are executed by the
above named actions. A custom aggregate function cannot contain a field whose name is
onBeginRecovery, onConcludeRecovery, init, add, value, or remove, even if, for example, the custom
aggregate function does not define a remove() action.

Fields

In the body of a custom aggregate function, you can define fields that are specific to the custom
aggregate instance they are in.

668 Developing Apama Applications 10.11.2

37 Aggregate Functions

38 Statements

■ Simple statements .. 670

■ Compound statements ... 675

■ Transfer of control statements .. 680

Developing Apama Applications 10.11.2 669

Sequences of EPL statements define the steps that are performed by a program. They are executed
in the order they are written: sequentially from top to bottom and left to right within a statement
block. (For expressions, the evaluation order is affected by parentheses, associativity, and operator
precedence.)

The order in which statements are executed is called the flow of control or the control path. Some
statements can contain other statements enclosedwithin their structure and can be used to execute
statements conditionally, thus altering the normal control path. You can use the break, continue,
and return statements to change the normal control path.

A block is zero ormore statements enclosed in curly braces. A block can be usedwherever a single
statement can be used. Variables declared in a block are able to be referenced only in the block in
which they are declared, and only in statements that come after the variable's declaration.

Simple statements
Simple statements are statements that do not enclose other statements or statement blocks and
that do not cause a transfer of control. They are executed in the order they are written.

Assignments
An assignment binds a value to a variable, member, sequence element or dictionary value. The
value is determined by evaluating the expression on the right side of the assignment operator :=.
The result type of the expression must match the type of the variable.

Example:
integer x := 100;
sequence<float> seq := [0.0, 200.0];
seq[0] := x.toFloat();
dictionary<string, string> dict := {};
dict["key"] := "value";

For variables of the reference types, the same value can be bound to more than one variable. See
the API Reference for EPL (ApamaDoc) for detailed descriptions of all types.

The emit statement
The emit statement publishes an event to a named channel of the correlator's output queue. If a
channel name is not specified, then the event goes to the default channel whose name is the empty
string (""). External receivers get events on the default channel only if they are subscribed to all
channels.

Note:
The emit statement will be deprecated in a future release. Use the send statement instead. See
“The send . . . to statement” on page 673.

The first expression is an expression whose result type is either an event type or string. If the type
is string, then the value of the string is assumed to be in the same format as that produced by the
event's toString()method.

670 Developing Apama Applications 10.11.2

38 Statements

The expression following the keyword tomust be of type string and is the name of the channel
to which the event will be sent.

The emitmethoddispatches events to external registered event receivers. That is, the emit statement
causes events to go out of the correlator. Active event listeners will not receive events that are
emitted.

Events are emitted onto named channels. For an application to receive events from the correlator
it must register itself as an event receiver and subscribe to one or more channels. Then if events
are emitted to those channels they will be forwarded to it.

Channels effectively allowboth point-to-pointmessagedelivery aswell as through publish-subscribe.
Channels can be set up to represent topics. External applications can then subscribe to event
messages of the relevant topics. Otherwise a channel can be set up purely to indicate a destination
and have only one application connected to it.

You cannot emit an event whose type is defined inside a monitor.

The emit statement can operate on any values as well as events, provided that the any value is of
a routable event type.

You cannot emit an event that has a field of type action, chunk, listener, or stream. There is a
runtime check if the event (or one of its members) can contain an any field; an exception is thrown
if the any field contains an object of type action, chunk, listener, or stream.

When you emit an event type that has a dictionary field, the items in the dictionary are sorted in
ascending order of their key values.

The enqueue . . . to statement
The enqueue...to statement sends an event to a context you identify.

Note:
The enqueue...to statement is superseded by the send...to statement. The enqueue...to
statement will be deprecated in a future release. Use the send...to statement instead. See “The
send . . . to statement” on page 673.

You must enqueue an expression of type event, and the destination must be one of the following:

context— The enqueue...to statement sends an event to the back of the input queue of the
specified context. The expression is evaluated and the resulting event is sent to the input queue
of only the specified context.

sequence<context>—The enqueue...to statement sends a copy of the event to the back of the
input queue of each context in the specified sequence. The expression is evaluated and the
resulting event is sent to the input queue of all the contexts in the sequence.

For example:
sequence <context> ctxs := [c1, c2, c3];
Ping ping = Ping();
enqueue ping to ctxs;

Developing Apama Applications 10.11.2 671

38 Statements

You cannot enqueue an event to a com.apama.Channel object that contains a context. You cannot
enqueue an event to a dictionary of contexts. However, it is a common pattern to enqueue to a
sequence generated by dictionary.values(). For example:
enqueue x to d.values;

If the target context's input queue is full the sending context blocks and waits for space on the
queue unless doing so would cause a deadlock. See “Deadlock avoidance when parallel
processing” on page 307.

Note that enqueued events are processed in the order they are enqueued. Enqueued events are
put on the back of the input queue, behind any externally sourced events already queued.

You must create the context before you enqueue an event to the context. You cannot enqueue an
event to a context that you have declared but not created. For example, the following code causes
the correlator to terminate the monitor instance:
monitor m {

context c;
action onload()
{

enqueue A() to c;
}

}

If you enqueue an event to a sequence of contexts and one of the contexts has not been created
first then the correlator terminates the monitor instance. For details, see “Sending an event to a
particular context” on page 296.

Enqueueing an event to a sequence of contexts is non-deterministic. For details, see “Sending an
event to a sequence of contexts” on page 297.

The enqueue...to statement can operate on any values as well as events, provided that the any
value is of a routable event type.

You cannot enqueue an event that has a field of type action, chunk, listener, or stream. There is
a runtime check if the event (or one of itsmembers) can contain an anyfield; an exception is thrown
if the any field contains an object of type action, chunk, listener, or stream.

The log statement
The log statementwritesmessages and accompanying date and time information to the correlator's
log file, if one was specified when the correlator was started.

If there is no log file, then themessage is written to the correlator's standard output stream stdout.

The expression that you logmust be of type string. The value is written only if the current logging
level in effect is a priority equal to or higher than the log level specified in the log statement, with
the exception of OFF. If you do not specify a level, INFO is used. At a log level equal to OFF, only
logs explicitly set to this level are written. For details, see “Logging and printing” on page 281.

For example:
log "Your message here" at INFO;

672 Developing Apama Applications 10.11.2

38 Statements

This EPL statement produces a log message that looks like this:
2020-01-11 09:08:49.200 INFO [3716] - MyMonitor[1] Your message here

The print statement
The print statement writes textual messages followed by a newline to the correlator's standard
output stream— stdout. The expression you print must be of type string.

For example:
print "Your message here.";

This EPL statement produces output that looks like this:
Your message here.

The print statement is less useful for reporting diagnostic information than the log statement, as
it does not contain any information about the time or origin of the message, and cannot be turned
off by changing the log level.

For more detailed information, see “Logging and printing” on page 281.

The route statement
The route statement evaluates the expression and then sends the resulting event to the front of
the current context's input queue.

The expression you route must be an event. The event is processed only within the same context
that executes the route statement.

Routed events are put on the input queue, ahead of any externally sourced events, and ahead of
any previously routed events that have not yet been processed. For more details, see “Event
processing order for monitors” on page 635.

The isExternal() property on events is not changed by routing an event.

The route statement can operate on any values as well as events, provided that the any value is of
a routable event type.

You cannot route an event that has a field of type action, chunk, listener, or stream. There is a
runtime check if the event (or one of its members) can contain an any field; an exception is thrown
if the any field contains an object of type action, chunk, listener, or stream.

The send . . . to statement
The send...to statement sends an event to the channel, context, sequence of contexts, or
com.apama.Channel object that you specify.

You must send an expression of type event, and the destination must be one of the following:

Developing Apama Applications 10.11.2 673

38 Statements

string— The send...to statement sends the event to the specified channel. All contexts and
external receivers subscribed to that channel receive the event. If there are no subscribers to
the specified channel or if no receivers are listening on the specified channel then the event is
discarded.

context— The send...to statement sends the event to the back of the input queue of the
specified context. The event expression is evaluated and the resulting event is sent to the input
queue of only the specified context.

sequence<context>— The send...to statement sends a copy of the event to the back of the
input queue of each context in the specified sequence. The event expression is evaluated and
the resulting event is sent to the input queue of each context in the sequence.

For example:
sequence <context> ctxs := [c1, c2, c3];
Ping ping = Ping();
send ping to ctxs;

com.apama.Channel—The send...to statement sends the event to the specified Channel object.
If the Channel object contains a string, the event is sent to the channel with that name. If the
Channel object contains a context, the event is sent to that context. You cannot send an event
to an empty context object.

You cannot send an event to a dictionary of contexts. However, it is a common pattern to send to
a sequence generated by dictionary.values(). For example:
send x to d.values;

If the target context's input queue is full the sending context blocks and waits for space on the
queue unless doing so would cause a deadlock. See “Deadlock avoidance when parallel
processing” on page 307.

Sent events are processed in the order they are sent. Sent events are put on the back of the input
queue, behind any events already queued.

You must create the context before you send an event to the context. You cannot send an event to
a context that you have declared but not created. For example, the following code causes the
correlator to terminate the monitor instance:
monitor m {

context c;
action onload()
{

send A() to c;
}

}

If you send an event to a sequence of contexts and one of the contexts has not been created first
then the correlator terminates themonitor instance. For details, see “Sending an event to a particular
context” on page 296.

Sending an event to a sequence of contexts is non-deterministic. For details, see “Sending an event
to a sequence of contexts” on page 297.

674 Developing Apama Applications 10.11.2

38 Statements

The send...to statement can operate on any values as well as events, provided that the any value
is of a routable event type.

You cannot send an event that has a field of type action, chunk, listener, or stream. There is a
runtime check if the event (or one of its members) can contain an any field; an exception is thrown
if the any field contains an object of type action, chunk, listener, or stream.

The spawn statement
The spawn statement creates a copy of the currently executing monitor instance in the current
context.

See also “Spawning monitor instances” on page 39.

The spawn action to context statement
The spawn action() to context statement creates a copy of the currently executing monitor
instance in the specified context. Amonitor instancemust have a reference for the specified context
in order to spawn to that context.

The expression that you spawnmust be of type context. The spawn action()to context statement
spawns a new monitor instance in the specified context.

For more detailed information, see “Spawning to contexts” on page 293.

The throw statement
The throw statement causes an exception to be thrown. If it is not caught by a try ... catch in
that action or any calling actions, then the monitor instance is terminated along with any listeners
it has. The syntax is:
throw expression;

where expressionmust be of the Exception type.

Example:
action getAverageReading() returns float {

if readingsCount <= 0 {
throw Exception("No readings", "IllegalArgumentException");

}
return readingsSum / readingsCount.toFloat();

}

See also “Exception handling” on page 278.

Compound statements
Compound statements enclose other statements or blocks and affect how the enclosed statements
are executed.

Developing Apama Applications 10.11.2 675

38 Statements

The for statement
The for statement is used to iterate over the members of a sequence and execute the enclosing
statement or block once for each member.

The iteration variable is assigned a value successively obtained from each element of the sequence,
startingwith the first, and if the last sequence entry has not been reached, the statement that forms
the loop body is executed.

The iteration variable's type must match the type of the sequence elements.

The loop body is either a single statement or a block.

Within the loop body, the break statement can be used to cause early termination of the loop by
transferring control to the next statement after the loop body. The continue statement can be used
to transfer control to the end of the body, after which the sequence size is tested to determine if
the last entry has been reached. If it has not, then the loop body is executed. The return statement
can be used to terminate both the loop and the action that contains it.

For more information, see “Defining loops” on page 277.

The from statement
The from statement is used to create a stream listener. A stream listener watches for items from a
stream and passes output items to procedural code.

A from statement is similar to an on statement, which listens for events processed by the correlator
and then executes an event listener action for each matching event or pattern. See “The on
statement” on page 678.

You can assign the result of a from statement to a listener variable. This lets you call quit() on
the stream listener.

A stream listener passes output items from a stream to procedural code. The stream, specified in
the expression, can be a reference to an existing stream or a stream source template. Alternatively,
it can be the stream created by an in-line stream query.

A colon and an identifier follow the expression or in-line stream query. This signifies a
coassignment: when new items are available from the stream, the stream listener coassigns each
output item to the specified variable.

The statement following the identifier can be a single EPL statement or a block of EPL statements.
The from statement passes the output item to this statement or block and executes the statement
or block once for each output item. If the output of the query is a lot that contains more than one
item, and you want to execute the statement or block just once for the lot, coassign the output to
a sequence. See “Workingwith Streams and StreamQueries” on page 189, and “Workingwith lots
that contain multiple items” on page 227.

676 Developing Apama Applications 10.11.2

38 Statements

The if statement
The if statement is used to conditionally execute a block of code. It checks whether a condition is
true or false, that is, the result type must be boolean. The conditional statement may optionally
be followed by the keyword then followed by a block of code.

If the condition result is true, the block is executed. After the body of the if has been executed,
control is transferred to the next statement following the if statement.

If the condition result is false and an else clause is present, the statement or block following the
else is executed. After the body of the else clause has been executed, control is transferred to the
next statement following the if statement.

If the condition result is false and the else clause is not present, control is transferred to the next
statement following the if statement.

For more information, see “Defining conditional logic with the if statement” on page 275.

The ifpresent statement
The ifpresent statement is used to check if one or more values are empty. It unpacks the values
into new local variables and conditionally executes a block of code.

If all of the expressions are non-empty, then their values are unpacked into new local variables
(in the scope of the first block of the ifpresent statement) and the first block of code is executed.
If the expression is a simple identifier (that is, it is referring to a variable or parameter) or casting
an any type, then the as identifier part can be omitted; the new local retains the same name. An
optional else block is executed if any of the expressions have an empty value.

ifpresent operates on expressions of the following types:

optional (in which case the new local variable is of the unpacked type)

chunk (ifpresent treats chunk as empty only if its value is the default value)

stream (ifpresent treats stream as empty if its value is the default value or if it has been quit)

listener (ifpresent treats listener as empty if its value is the default value or if it has been
quit)

context (ifpresent treats context as empty only if its value is the default value)

action (ifpresent treats action as empty only if its value is the default value)

Developing Apama Applications 10.11.2 677

38 Statements

any (ifpresent treats any as empty only if it has an empty value)

See the API Reference for EPL (ApamaDoc) for more information on these types.

For more information on the default values, see “Default values for types” on page 610.

Formore information on the ifpresent statement, see “Defining conditional logicwith the ifpresent
statement” on page 276.

The on statement
The on statement is used to create an event listener that looks for input events that match the
pattern specified by an event condition.When amatching event is detected, the event listener fires
(also referred to as triggers) and the specified event listener action is executed.

A listener assignment clause is used to obtain a reference to the event listener that is created by
the on statement. One can either define a new variable of type listener or specify a reference to
an existing listener variable.

An Apama query cannot specify an on statement.

Example:
listener l := on ...
sequence <listener> aSequence;
aSequence[0] := on ...

The event condition specifies what events are of interest. See “Event expressions” on page 637.

A listener action defines the processing that will be performed when a matching event is detected
and the event listener fires. The listener action can be one of the following:

A statement

A block

The listener action is invoked automatically by the correlatorwhen the event condition is satisfied.
This may be:

When a matching event is detected.

If unmatched is specified in the condition, the event matches the condition, and there are no
matching event listeners that do not specify the unmatched keyword.

If completed is specified in the condition, and any matching events have been completely
processed by other event listeners.

For more information, see “Specifying the on statement” on page 147.

678 Developing Apama Applications 10.11.2

38 Statements

The switch statement
The switch statement is used to conditionally execute a block of code based on the type of an any
expression. Unlike the if and if ... else statements, the switch statement can have a number
of possible execution paths.

The switch statement names the expression as an identifier with the as keyword followed by an
identifier to name the value. In each case clause block, the identifier has the same type as the case
clause.

If the expression is a simple identifier (that is, it is referring to a variable or parameter), then the
as Identifier part can be omitted. The new local retains the same name.

For more details, see “Handling any values of different types with the switch statement” on
page 274.

The try ... catch statement
The try ... catch statement is used to handle runtime exceptions.

The catch clause must specify a variable whose type is com.apama.exceptions.Exception.

You can nest try ... catch statements in an action, and you can specify multiple actions in a try
block and specify a try ... catch statement in any number of actions.

See also “Exception handling” on page 278.

Example:
using com.apama.exceptions.Exception;
...
action getExchangeRate(

dictionary<string, string> prices, string fxPair) returns float {
try {

return float.parse(prices[fxPair]);
} catch(Exception e) {

return 1.0;
}

}

Developing Apama Applications 10.11.2 679

38 Statements

The while statement
The while statement is used to repeatedly evaluate a boolean condition and execute a block as
many times as the condition result is found to be true.

The condition, whose result type must be boolean, is evaluated and if the result is true, the block
is executed. Control then transfers to the top of the loop and the condition is evaluated again.
When the condition result is false, control is transferred to the next statement following the while
statement.

The body of the loop must be a block; it must be inside curly braces.

Within the loop body, the break statement can be used to cause early termination of the loop by
transferring control to the next statement after the loop body. The continue statement can be used
to transfer control to the end of the body, after which the condition will be evaluated again and
the loop body executed if the condition result is true. The return statement can be used to terminate
both the loop and the action that contains it.

For more information, see “Defining loops” on page 277.

Transfer of control statements
Transfer of control statements alter the normal control path by stopping the sequential execution
of statements within a block. All of them end execution of the block that contains them. After a
continue statement is executed, the containing block might be executed again in a new loop
iteration. The die and return statements also end the action in which they are executed.

The break statement
The break statement transfers control to the next statement following the loop (for or while
statement) that encloses the break statement. A break statement can only be used within a for or
while statement. Any statements between the break statement and the end of the block are not
executed. For more information, see “Defining loops” on page 277.

The continue statement
The continue statement can be used in a block enclosed by a for or while statement to end execution
of the current iteration and transfer control to the beginning of the loop.When a continue statement
is executed, control is immediately transferred to the beginning of the inner most enclosing for
or while statement. Any statements between the continue statement and the end of the block are
not executed. For more information, see “Defining loops” on page 277.

The die statement
The die statement terminates the execution of a monitor. When the correlator executes a die
statement, it terminates only the monitor instance that contains the die statement being executed.
If the monitor instance that spawned the monitor instance being terminated is still active, that

680 Developing Apama Applications 10.11.2

38 Statements

monitor instance is not affected. If that original monitor instance spawned any other monitor
instances, thosemonitor instances are not affected. If themonitor instance being terminated defines
an ondie() action, the correlator executes the ondie() action for just the monitor instance being
terminated, and then terminates the monitor instance.

An Apama query cannot specify a die statement.

For more information, see “Terminating monitor instances” on page 43.

The return statement
The return statement ends the execution of an action and control is transferred to the action's
caller, at the point following the action call (which might be in the middle of an expression). Any
statements between the return statement and the end of action are not executed.

If the action does not have a returns clause, then an expression is not permitted in the return
statement.

If the action has a returns clause, then an expression whose value is the action's return value is
required in the return statement. The expression typemustmatch the type specified in the returns
clause.

For more information, see “Format for defining actions” on page 253.

Developing Apama Applications 10.11.2 681

38 Statements

682 Developing Apama Applications 10.11.2

38 Statements

39 Expressions

■ Introduction to expressions .. 684

■ Using an expression as a statement .. 684

■ Primary expressions ... 685

■ Bitwise logical operators ... 685

■ Logical operators .. 687

■ Shift operators .. 688

■ Comparison operators .. 689

■ Additive operators ... 690

■ Multiplicative operators ... 691

■ Unary additive operators .. 692

■ Expression operators ... 692

■ Expression operator precedence ... 693

■ Postfix expressions ... 694

■ Stream queries ... 695

■ Stream source templates ... 699

Developing Apama Applications 10.11.2 683

In many programs, much work is performed by evaluating expressions, which are combinations
of operators, operands, and punctuation. They are used to detect events of interest to the program,
perform calculations, comparisons, invoke actions, invoke inbuilt methods, compute parameter
values passed to action and method calls, and so on.

Introduction to expressions
EPL has several kinds of expressions:

Primary expressions, bitwise expressions, logical expressions etc. are used for computations.

In a monitor, a stream query definition creates a derived stream from an existing stream.

In a monitor, a stream source template creates a new stream from an event template.

Event expressions are used in on statements for event pattern matching and sequence detection.
Event expressions are not ordinary EPL expressions. See “Event expressions” on page 637.

When an expression is evaluated (that is, it is executed), it will produce a result value if the
expression is a variable, a literal, or a combination of values and operators. If the expression is an
action or inbuilt method call, then evaluating the expression produces a result value when the
action or inbuiltmethod returns a value, but if the action or inbuiltmethod does not return a value,
then the expression does not produce a result. Note that when an expression includes action or
method calls, then evaluating the expression might produce side effects. A side effect is a change
in the state of the execution environment. For example, a called action might change the value of
a global variable or generate a derived event. If evaluating an expression produces a result, then
in addition to a value, the expression result has a type. This is the expression type. An expression's
type is always known at compile time.

The elements of an expression are evaluated roughly from left to right, taking into account
parentheses and operator precedence. Binary operators have a left operand and a right operand.
If an operator is left-associative, its left operand is evaluated first, followed by the right, and then
the operation is performed. If an operator is right-associative, its right operand is evaluated first,
followed by the left, then the operation is performed. In action calls, the actual parameter list
expressions are evaluated from left to right. Many of the operators used in expressions are
polymorphic and can operate on operands of several types. For example, the addition operator
performs floating point addition when its operands are of type decimal or float and performs
integer addition when its operands are of type integer. Here are some examples of expressions:
i := (a.size() + b[3]) / (n -1);
i := "foo" + s + " " + b.toString() + f.formatFixed(8);

Using an expression as a statement
An expression that does not return a value can be used as a statement. For example, an action or
method call can be used in this way.

Example:
action doSomething() { // Action has a side-effect but returns nothing

...

684 Developing Apama Applications 10.11.2

39 Expressions

}

doSomething(); // Expression as a statement

Primary expressions
The primary expression is the simplest form of expression. It can take the following forms:

Identifier. In an expression, an identifier is a variable name, an instance method name, a type
method name, or an action name.

Literal.A literal in an expression is a compile-time constant value as described in “Literals” on
page 713.

Postfix expression. See “Postfix expressions” on page 694.

Action/method. See “Action and method calls” on page 694.

Bitwise logical operators
The bitwise logical operators examine one bit at a time in their operands and compute the
corresponding bit value in the result.

The bitwise operators and, or, and xor are binary operators that have a left and right operand. The
bitwise operator not is a unary operator that has only a right operand.

The result type of all four bitwise operators is integer. Note that EPL integers are 64 bits wide.

Bitwise intersection (and)
The bitwise intersection operator and produces a result by comparing all 64 bits of its left and right
operands, which must be expressions of type integer, one bit at a time. For each bit in the two
operands, the corresponding bit in the result value is set to 1 if both operand bit values are 1 and
set to 0 if either operand bit value is 0.

Example

The following illustrates this using 64-bit binary values.

a := 42;

00101010

b := 642;

001010000010

a and b

0010

Developing Apama Applications 10.11.2 685

39 Expressions

Bitwise union (or)
The bitwise union or produces a result by comparing all 64 bits of its left and right operands,
which must be expressions of type integer, one bit at a time. For each bit in the two operands, the
corresponding bit in the result value is set to 1 if either or both operands bit values is 1 and set to
0 if both operand bit values are 0.

Example

The following illustrates this using 64-bit binary values.

a := 42;

00101010

b := 642;

001010000010

a or b

001010101010

Bitwise exclusive (xor)
The bitwise exclusive or operator xor produces a result by comparing all 64 bits of its left and right
operands, which must be expressions of type integer, one bit at a time. For each bit in the two
operands, the corresponding bit in the result value is set to 1 if either operand's bit value is 1 and
the other is 0 and set to 0 if both operand bit values are 0 or both are 1. In other words, the result
bit is 1 if both bit values are different and 0 if they are the same.

Example

The following illustrates this using 64-bit binary values.

a := 42;

00101010

b := 642;

001010000010

a xor b

001010101000

Note that the expression a xor b yields the same result as not (a and b).

686 Developing Apama Applications 10.11.2

39 Expressions

Unary bitwise inverse
The unary bitwise not operator produces a result by computing the bitwise complement or inverse
of its right operand, which must be an expression of type integer. For each bit in the operand's
value, the corresponding bit in the result value is set to 1 if the operand's bit value is 0 and 0 if the
operand's bit value is 1.

Example

The following illustrates this using 64-bit binary values.

b := 42;

00101010

not b

11010101

Logical operators
The logical operators and, or, xor and not perform Boolean arithmetic on their operands.

The logical operators' left and right operands are expressions whose result type must be boolean.
The result type of all four operators is boolean.

Logical intersection (and)
The and operator produces a result of true if both of its operand values are true and false otherwise.

When the correlator evaluates a logical and expression, it evaluates the left operand first. If the left
operand evaluates to false, then the correlator does not evaluate the right operand since the
expression cannot be true. For example:
a and b

If a is false, then whether or not b is true, the expression will be false so the correlator does not
evaluate b. This lets you write code such as the following:
if (dict.hasKey(k) and dict[k] = "someValue")

If k is not in the dictionary then the left operand evaluates to false and so the entire logical
expression is false. The correlator never evaluates dict[k] = "someValue", which would cause
an error if k is not in the dictionary.

Logical union (or)
The or operator produces a result of true if either of its operand values is true and false otherwise.

Developing Apama Applications 10.11.2 687

39 Expressions

When the correlator evaluates a logical or expression, it evaluates the left operand first. If the left
operand evaluates to true, then the correlator does not evaluate the right operand since the
expression will always be true. For example:
a or b

If a is true, then regardless of what b evaluates to, the expression will be true so the correlator
does not evaluate b.

Logical exclusive or (xor)
The xor operator produces a result of true if either of its operand values is true and the other is
false and false if both are true or both are false.

Unary logical inverse (not)
The unary not operator produces the result true if its right operand value is false, and false if
the operand value is true.

Shift operators
The shift operators << and >> perform a shift of an integral value, moving bits in the result a
specified number of positions to the right or left. The result type of both shift operators is integer.

The left operand is an expression of type integerwhose value is to be shifted. The right operand
is the shift count, an expression of type integerwhose value is the number of bits the left operand
value is to be shifted.

The shift count must be a nonnegative value less than 64. If the shift value is zero, then the result
value is equal to the left operand value. Values less than zero or greater than 63 will produce
unpredictable results and should not be used.

Left shift operator
The left shift operator << produces a result by moving the left operand value's bits to the left and
filling the vacated bits on the right with 0 bits. Bits that are moved beyond the leftmost bit (the
sign bit) position are discarded.

Example

The following illustrates this using 64-bit binary values.

i := 42;

00101010

i << 24

0000000000000000000000000000000000101010000000000000000000000000

688 Developing Apama Applications 10.11.2

39 Expressions

Right shift operator
The right shift operator >> produces its result by moving the left operand value's bit to the right.
The vacated bits on the left are filled with 0 bits if the left operand value is zero or positive and
filled with 1 bits if the left operand value is negative. Bits that are moved to beyond the rightmost
bit (the least significant bit) position are discarded.

Example

The following illustrate this using 64-bit binary values.

i := 42;

00101010

i >> 24

00

i := -42;

11010110

i >> 24

11

Comparison operators
The comparison operators are used to determine the equality, inequality, or relative values of their
left and right operands.

The left and right operands must be expressions of the same type and the type must be allowed
for that operator. You can use each comparison operator on decimal, float, integer, and string
types. On boolean types, you can use the = and != comparison operators. See also the descriptions
of these types in the API Reference for EPL (ApamaDoc).

The result type of all comparison operators is boolean.

The comparison operators are:

DescriptionOperationOperator

Produces the result true if the left operand's value is smaller
than the right operand's value and false otherwise.

Less than<

Produces the result true if the left operand's value is smaller
than or equal to the right operand's value and false
otherwise.

Less than or equal<=

Developing Apama Applications 10.11.2 689

39 Expressions

DescriptionOperationOperator

Produces the result true if the left operand's value is equal
to the right operand's value and false if they are not equal.

Equality=

Produces the result true if the left operand's value is not
equal to the right operand's value and false if they are equal.

Inequality!=

Produces the result true if the left operand's value is larger
than or equal to the right operand's value and false
otherwise.

Greater than or equal to=>

Produces the result true if the left operand's value is larger
than the right operand's value and false otherwise.

Greater than>

Additive operators
The additive operators are used to perform arithmetic on two operands of matching type: both of
type decimal, both of type integer, or both of type float. The result type of the additive operators
is the same as the type of the operands.

The additive operators are:

DescriptionOperationOperator

Produces a result by computing the numeric sum of its left
and right operands. If the two operands are both expressions

Addition+

of type integer, then integral addition is performed and the
result is of type integer. If the two operands are both of type
decimal or both of type float, then floating-point addition
is performed and the result type is the same as the operand
type.

Produces a result by computing the numeric difference
between the left and right operands by subtracting the value

Subtraction–

of the right operand from the left. If the two operands are
both expressions of type integer, then integral subtraction
is performed and the result is of type integer. If the two
operands are both of type decimal or both of type float, then
floating-point subtraction is performed and the result type
is the same as the operand type.

Produces a result by “adding” two strings together. The result
is a new stringwhose value is the value of the right operand,

String concatenation+

an expression of type string, appended to the value of the
left operand, an expression of type string. The result type
of the string concatenation operator is string.

690 Developing Apama Applications 10.11.2

39 Expressions

Multiplicative operators
The multiplicative operators are used to perform arithmetic on two operands of matching type:
both decimal, or both float, or both integer.

The left and right operands must both be expressions of type decimal, or both be of type float, or
both be of type integer.

The result type of the multiplicative operators is the same as the type of the operands.

The multiplicative operators are:

DescriptionOperationOperator

Produces a result by computing the numeric product of its
two operands. If the two operands are both expressions of

Multiplication*

type integer, then integral multiplication is performed and
the result is of type integer. If the two operands are both of
type decimal or both of type float, then floating-point
multiplication is performed and the result type is the same
as the operand type.

Produces a result by computing the numeric quotient of its
two operands. The left operand value, the dividend, is

Division/

divided by the right operand value, the divisor. If both
operands are of type integer, any fractional part of the result
value is discarded. In other words, the result is truncated
toward zero. For example, the expression 13/5 yields a result
of 2. If both operands are of type integer, then integral
division is performed and the result is of type integer. If
both operands are of type decimal or both are of type float,
then floating-point division is performed and the result type
is the same as the operand type.

If the right operand's value is zero, a runtime error is raised.

Produces a result by computing the numeric remainder from
dividing the left operand value by the right operand value.

Remainder%

For example, the expression 13%5 yields a result of 3. If both
operands are of type integer, then the integral remainder is
computed and the result is of type integer. If both operands
are of type decimal or both of type float, then the
floating-point remainder is computed and the result type is
the same as the operand type.

If the right operand's value is zero, a runtime error is raised.

Developing Apama Applications 10.11.2 691

39 Expressions

Unary additive operators
The unary additive operators are used to perform arithmetic on one right operand of type decimal,
float or integer. The result type of the unary arithmetic operators is the same as the type of the
operand.

Both of the unary arithmetic operators have one operand, which must be an expression of type
decimal , float or integer. The result type is the same as the type of the operand.

Unary inverse

The unary additive inverse operator produces a result that is its right operand value with the sign
reversed. If the operand value is negative, the result value is positive. If the operand value is
positive, the result value is negative. If the operand value is zero, the result value is zero.

Unary identity

The unary additive identity operator + produces a result that is its right operand value.

Expression operators
You can use the following operators wherever you can specify an expression. Note that they are
all binary operators.

DescriptionOperationOperator

Returns a decimal, float or an integer according to the
operands, or concatenation in the case of string operands

Addition+

Returns a decimal, float or an integer according to the
operands

Subtraction-

Returns an integer and is a valid operator only for integersModulus%

Returns a decimal, float or an integer according to the
operands

Division/

Returns a decimal, float or an integer according to the
operands

Multiplication*

Returns a boolean value indicating whether the condition
expressed is true or false

Greater than>

Returns a boolean value indicating whether the condition
expressed is true or false

Less than<

Returns a boolean value indicating whether the condition
expressed is true or false

Greater than or equal to>=

692 Developing Apama Applications 10.11.2

39 Expressions

DescriptionOperationOperator

Returns a boolean value indicating whether the condition
expressed is true or false

Less than or equal to<=

Returns a boolean value indicating whether the condition
expressed is true or false

Equivalence=

Returns a boolean value indicating whether the condition
expressed is true or false

Not equals!=

On boolean types, on integersLogical or, bitwise oror

On boolean types, on integersLogical and, bitwise andand

On boolean types, on integersLogical xor, bitwise xorxor

On boolean typesLogical notnot

Expression operator precedence
The following table lists the primary and bitwise expression operators in order by their precedence,
from lowest to highest. See also “Event expression operator precedence” on page 641.

PrecedenceOperatorOperation

1orLogical or bitwise union

2xorLogical or bitwise exclusive or

3andLogical or bitwise intersection

4notUnary logical or bitwise inverse

5<, <=, >, >=, !=, =Relational

6+, –Additive

6+String concatenation

7*, /, %Multiplicative

8+, –Unary additive

9<type>Cast

10.Name qualifier (dot)

10newObject constructor

10[]Subscript

11actionName()Action call

Developing Apama Applications 10.11.2 693

39 Expressions

PrecedenceOperatorOperation

11()Parenthesized expression

11fromStream query

11allStream source template

For clarity, it is strongly recommended to use brackets in expressions. This makes it very easy to
understand what an expression means. For example:
(10 * 10) > (9 * 9)

Donot use un-bracketed expressions, exceptwhere trivial. The following is equivalent to the above
expression and is just about acceptable:
10 * 10 > 9 * 9

It is bad practice, however, to use an expression such as the following as it relies on intimate
knowledge of the precedence:
1 + 2 - 3 * 4 / 5 < -1 or 5

Postfix expressions
A primary followed by a "." symbol, and an identifier must represent a variable reference, an
action call, or amethod call. Action andmethod calls are described in “Action andmethod calls” on
page 694.

An expression enclosed by the [and] symbols denotes a subscript operation for a sequence or
dictionary. This can be used on the right or left side of an assignment statement.

The new operator is used to create an instance of a reference type or event type.

Action and method calls
An action call within an expression transfers control to the statements within the action body
during expression evaluation and temporarily suspends the expression evaluation. If the action
has parameters, then their values are copied to the action's formal parameter variables. When the
control flow reaches the action's end or the action executes a return statement, control is transferred
back to the expression and evaluation continues.

The actual parameters are a comma-separated list of expressions. The entire list is enclosed in
parentheses. It forms the set of parameter values that are passed when the action is called. Each
expression value is copied to the corresponding parameter variable specified in the action
definition's formal parameters, and the expression result typemustmatch the parameter variable's
type. The number and order of actual parameters passed by a caller must also match those listed
in the action definition's formal parameters.

The action or method being invoked in the expression must return a value. The action's return
type becomes the expression result type.

694 Developing Apama Applications 10.11.2

39 Expressions

The subscript operator []
The subscript operator takes one operand. The operand can be an integer index into a sequence
or a key type index of a dictionary. The subscript operator produces a result of the same type as
the sequence's entry type or dictionary's item type.

The new object creation operator
The operator new produces a result whose type is the type of the object parameter. It has one
operand, the name of the type of object to be created.

Stream queries
Astreamquery defines an operation that the correlator applies continuously to one or two streams
of items. The output of a stream query is a continuous stream of derived items, stream<X>, where
X is the type returned by the expression in the select clause. See also “Defining stream queries” on
page 195.

Developing Apama Applications 10.11.2 695

39 Expressions

A from clause specifies a stream that the query is operating on.

An item in a stream can be an event, a simple type (boolean, decimal, float, integer or string) or
a location type. The first Identifier is the identifier that represents the current item in the stream
you are querying. You use this identifier in subsequent clauses in the stream query.

The first Expression identifies the stream that you want to query.

A stream query window definition is optional. If you do not specify any window then the stream
query operates on only the items that arrive on the stream for a given activation of that query. See
“Stream query window definitions” on page 697.

A subsequent from clause indicates a cross-join operation.

Alternatively, a subsequent join clause indicates an equi-join operation. An equi-join has a key
expression for each of the two streams that are being joined. Two items are joined into an output
item only if the values of their key expressions are equal.

A where clause qualifies the items produced from a window or a join operation.

696 Developing Apama Applications 10.11.2

39 Expressions

A group by clause organizes the qualified items, or the items produced from a window or join
operation.

A having clause filters the output items produced from the projection.

The required select clause specifies how to generate the output items.

Semantic constraints

from Identifier in Expression join Identifier in Expression
The identifier can be any legal identifier and, within the stream query's scope, is associated
with items from the source stream and therefore has their type. In a joined stream query, the
two identifiers must be distinct.
The expression's result must be a value of some stream type. The correlator evaluates the
expression outside the stream query's scope. For example:
stream<A> a := all A();
from a in a ...

This is legal, because the identifier a is not in scope for evaluation of the expression a.

on Expression1 equals Expression2
The correlator evaluates both expressions within the stream query's scope.
Expression1must contain the first item identifier and cannot contain the second. Expression2
must contain the second item identifier and cannot contain the first.
The two expressions must return the same type, and that type must be a comparable type.

where Expression group by Expression, Expression, ...
The item identifier or identifiers are in scope and should be used in these expressions. The where
expression must return a boolean value. The group by expressions can return any comparable
types.

having Expression
The item identifier or identifiers are in scope and can be used in this expression. The presence
of this clause implies that the projection must be an aggregate projection. The expression must
return a boolean value.
You can use one or more aggregate functions in the having expression. In fact, you can use
aggregate functions only in having expressions and select expressions.

select [rstream] Expression
The item identifier or identifiers are in scope and can be used in this expression. The expression
must return a value.
You can use one or more aggregate functions in a select expression. In fact, you can use
aggregate functions only in having expressions and select expressions. If you specify an
aggregate function you cannot specify the rstream keyword.

Stream query window definitions
In a stream query, the optional window definition specifies which items in a stream to operate on.
See also “Adding window definitions to from and join clauses” on page 201.

Developing Apama Applications 10.11.2 697

39 Expressions

Typically, stream queries process a window over a stream. A stream is an ordered sequence of
items over time. A window specifies which items to operate on. Windows can contain a portion
of the stream based on number of items, time of item arrival, content of item, or other criteria.

When the stream query window definition is retain all, the window contains all items that have
ever been in the stream. Conceptually, once an item enters a retain allwindow, it remains in
the window indefinitely, or until the stream query is terminated. The retain all clause specifies
an unbounded window. Unbounded windows have restrictions on their use:

You cannot have a partitioned or batched unbounded window.

You cannot perform a join operation on an unbounded window.

You cannot specify an unbounded window when you use rstream in the select clause of a
stream query.

When you use a custom aggregate function in a streamquery that contains an unboundedwindow,
you cannot use a bounded aggregate function. You should also be aware that, if you use a badly
implemented custom aggregate function in a stream query that contains an unbounded window,
then this can result in uncontrolled memory usage.

698 Developing Apama Applications 10.11.2

39 Expressions

A partition by clause divides the input data into several partitions and then applies the stream
query window definition separately to each partition. The partition by expressions must be
comparable types.

The retain clause specifies the maximum number of items to be retained by the window. The
retain expressionmust be an integer expression. In a size-basedwindow, as each new item arrives
in the stream, it is added to the window. After the number of items in the window reaches the
window size limit specified in the retain clause, the arrival of a new item causes removal of the
oldest item from the window.

The within clause specifies the number of seconds to keep each new item in the window. The
within expression must be a float expression. In a time-based window, as each new item arrives
in the stream, it is added to thewindow.As soon as an itemhas been in thewindow for the number
of seconds specified by the within expression, the correlator removes the item from the window.

By default, the contents of a window change upon the arrival of each item. The every keyword
can be used to control when the contents of the window change, which causes the items to be
added to the window in batches of several items at once. Time-based windows can be controlled
to update only every p seconds and size-based windows can be controlled to update only every
m events.

The contents of the window can also depend on the content of individual items in the stream.
Specify with unique Expression to limit the window to containing only the most recent item for
each key value identified by the expression.

Semantic constraints

In a stream query window definition for one of a joined stream query's input streams, it is always
an error to refer to the other input stream's item identifier.

partition by Expression, Expression, ...
You should use the item identifier in each expression. Expressions can return any comparable
types.

retain Expression [every Expression]
You cannot use the item identifier in these expressions. These expressions must return integer
values.

within Expression [every Expression]
You cannot use the item identifier in these expressions. These expressions must return float
values.

with unique Expression
You should use the item identifier in this expression. The expression can return any comparable
type.

Stream source templates
A stream can be created from an event template using the all keyword. This is referred to as a
stream source template.

Developing Apama Applications 10.11.2 699

39 Expressions

A stream source template is the all keyword followed by a single event template. The output of
a stream source template is a continuous stream of items, stream<X>,where X is the type specified
by the event template.

See also “Creating streams from event templates” on page 191.

700 Developing Apama Applications 10.11.2

39 Expressions

40 Variables

■ Variable declarations .. 702

■ Variable scope .. 702

■ Provided variables .. 703

■ Specifying named constant values ... 705

Developing Apama Applications 10.11.2 701

Variables are names that are bound to data values (in the case of primitive types) or the location
of data values (in the case of reference types). Variables are declared by specifying a type, a name,
and optionally, an initial value. With the exception of the string type, once declared, new values
can be computed and assigned to variables as needed. Strings are immutable and variable
assignment causes a new string value to be created and bound to the string variable.

Variable declarations
Before a variable can be referenced in a program, it must be declared. The declaration gives the
variable a unique name, a type and, optionally, an initial value. See also “Assignments” on page 670.

A variable declaration statement can appear anywhere in a block. Variables declared in a block
are in scope in that block and can be used in statements that follow the declaration.

Example:
location rect := location(1.0, 1.0, 5.0, 5.0);
integer i;
boolean c := true, d := false;
sequence <integer> s := [1, 3, 5, 7, 11, 13, 17];
string s1 := "abcdefghijklmnopqrstuvwxyz";

Variable scope
The parts of a program in which a particular variable can be referenced (that is, its value used or
a new value assigned) is called the scope of the variable. In EPL, variables can have scopes that
include:

All monitors. These are global variables that are part of EPL, also called predefined variables.

The monitor within which they are declared.

The action within which they are declared.

The block within which they are declared.

The event within which they are declared.

The custom aggregate function in which they are declared.

The stream query within which they are identified.

Regardless of the scope of a variable, it cannot be referenced in statements or expressions until
after it has been declared or specified as an item identifier in a stream query. Further, variables
scoped to actions or blocks cannot be referenced until a value has been assigned.

Within a scope at a particular level, variables declared at that level must have unique names. They
can, however, have names that are the same as variables defined at an outer scope and in that case
the variables declared at the inner level hide or mask the ones defined at the outer level(s) until
the end of their scope.

702 Developing Apama Applications 10.11.2

40 Variables

Predefined variable scope
Predefined variables are defined by the correlator and are accessible in all monitors. See “Provided
variables” on page 703.

Monitor scope
A variable that is defined in a monitor is visible and can be referenced in all parts of the monitor.
Such variables are also called global variables.

Action scope
A variable that is declared in an action (also called a local variable) can only be referenced within
the action. A variable that is a formal parameter of an action can only be referenced within the
action. If a local variable declared in an action has the same name as a global variable declared at
the monitor level, the local variable hides the global variable until the end of the action.

Block scope
A variable that is declared within a block can only be referenced within the block. A block is one
ormore statements enclosedwithin curly braces (the characters { and }). If a local variable declared
in a block has the same name as a global variable declared at the monitor level, or a local variable
declared at the action level, the block's local variable hides the global variable or the action's
variable, or both if all three have the same name, until the end of the block (the closing }).

Event action scope
The fields of an event are part of the event declaration. An event field's scope depends on where
it is declared. When an event also includes action definitions, the statements in the action can
reference the event's fields as simple identifiers. From the point of view of an event's action, the
fields can be said to be scoped to the event.

Custom aggregate function scope
A variable that is declared in a custom aggregate function (also called a local variable) can only
be referenced within the custom aggregate function. If a local variable declared in a custom
aggregate function has the same name as a global variable declared at the monitor level, the local
variable hides the global variable until the end of the custom aggregate function.

Provided variables
The EPL execution environment provides several variables. You can use these variables in the
sameway as variables you declare yourself, except that you cannot assign values to them. Instead,
the correlator automatically assigns values to these variables.

Developing Apama Applications 10.11.2 703

40 Variables

currentTime
The currentTime variable is a read-only float global variable that contains a timestamp valuewith
the current time and date as read from the correlator's clock. Timestamps are encoded as the
number of seconds and fractional seconds elapsed since midnight, January 1, 1970 UTC and do
not have a time zone associated with them.

The current time is the time indicated by the most recent clock tick. Use the currentTime variable
to obtain the current time. The value of the currentTime variable is always changing to reflect the
correlator's current time.

If you havemultiple contexts, it is possible for the current time to be different in different contexts.
A particular context might be doing so much processing that it cannot keep up with the time ticks
on its queue. In other words, if contexts are mostly idle, then they would all have the same current
time.

In a context, the current time is never the same as the current system time. In most circumstances
it is a fewmilliseconds behind the system time. This difference increases when the context's input
queue grows.

When a listener executes an action, it executes the entire action before the correlator starts to
process another event. Consequently, while the listener is executing an action, time and the value
of the currentTime variable do not change. Consider the following code snippet,
float a;
action checkTime() {

a := currentTime;
}
// ... Lots of additional code
// A listener calls the following action some time later
action logTime() {

log a.toString(); // The time when checkTime was called
log currentTime.toString(); // The time now

}

In this code, an event listener sets float variable a to the value of currentTime, which is the time
indicated by the most recent clock tick. Some time later, a different event listener logs the value
of a and the value of currentTime. The values logged might not be the same. This is because the
first use of currentTimemight return a value that is different from the second use of currentTime.
If the two event listeners have processed the same event, the logged values are the same. If the
two event listeners have processed different events, the logged values are different.

The correlatormaintains a clock that advances at a fixed interval (default) of 0.1 seconds. The clock
does not advance while an event is being processed.

Event timestamps
The correlator defines an arrival timestamp for every event it receives. The arrival time value is
set from themain context's clockwhen an event is received by the correlator, just before it is placed
on the input queue of each public context.

704 Developing Apama Applications 10.11.2

40 Variables

You can access the arrival timestamp by calling the event's inbuilt getTime()method (see the
description of event in the API Reference for EPL (ApamaDoc)). After the correlator creates an event
or after you coassign an event, the getTime()method returns the time in the context when the
event was created or coassigned. An event's arrival timestamp has the same scope as the event
itself.

self
The predefined variable self is an event reference that can be used to refer to an event instance
within the event's definition.

Within an event action body, you can use the self variable to refer an event instance of that event
type. In other words, the scope of self is each action body in the event definition. For example:
event Circle
{

float radius;
action circumference() returns float
{

return (2.0 * float.PI * self.radius);
}
action area() returns float
{

// Note the use of "radius" is equivalent to
// "self.radius" in the statement below.
return (float.PI * radius * self.radius);

}
}

Note:
You cannot use the self variable in an Apama query or in a static action.

Specifying named constant values
A constant is a named literal and its value cannot be changed during runtime. It resembles a
variable declaration with constant before it.

You can declare an identifier for a constant value in an event type definition or in a monitor. A
constant appears in memory once. Spawning a monitor that contains a constant does not make
copies of the constant.

The type of a constant must be boolean, decimal, float, integer, or string.

The name you assign to a constant must be unique within the event type or monitor that contains
the constant definition.

The literal that you assign to the constant must be the specified type.

When you define a constant event field, you can refer to that constant from outside the event.
Qualify the name of the constant with the event name, for example, MyEvent.myConstant.

You cannot declare a constant in an action, directly in a package, or in a custom aggregate function.

Developing Apama Applications 10.11.2 705

40 Variables

See also “Specifying named constant values” on page 251.

706 Developing Apama Applications 10.11.2

40 Variables

41 Lexical Elements

■ Program text ... 708

■ Comments .. 708

■ White space .. 709

■ Line terminators ... 710

■ Symbols .. 711

■ Identifiers .. 711

■ Keywords .. 711

■ Operators ... 712

■ Separators .. 713

■ Literals .. 713

■ Names .. 717

■ Annotations .. 718

Developing Apama Applications 10.11.2 707

The lexical rules of the EPL grammar describe how sequences of characters are used to form the
basic elements of the language, that is, identifiers, constants (string, numeric, and so on), operators,
separators, white space, comments, and language keywords. These elements, after discarding any
white space and comments, form the symbols used in the syntactical grammar of the language.

Program text
Aprogram's source text is composed of an optionalUTF-8 byte-ordermarker followed by characters
that form a sequence of symbols, white space, comments, and line terminators, up to the end of
file (denoted by the EOF symbol).

The UTF-8 byte order marker is a sequence of three consecutive bytes with the values 0xEF, 0xBB,
and 0xBF respectively, appearing at the beginning of a file containing EPL source text. The UTF-8
character encoding format does not need a byte-order marker to indicate the byte order because
UTF-8 is by definition a bytewise encoding. A UTF-8 byte-order marker at the start of a file just
indicates that the program text is encoded in the UTF-8 format. It is inserted automatically by
some text editors, such as Notepad on Windows systems.

Aprogram's source text can be encoded asUnicodeUTF-8, as 7-bit ASCII (which is a proper subset
of UTF-8), or various other encodings. The comiler will convert the source text from the locale's
encoding to UTF-8 if necessary. In practice, this really only affects comments, white space, and
string literals because all other EPL constructs are limited to the ASCII subset. “Identifiers” on
page 711, for example, are limited to only a few of the many possible Unicode characters.

Comments
Comments are explanatory notes or text intended for human readers to help them understand
what a program or section of a program does.

There are several kinds of comments:

Block comments

Block comments begin with the character sequence slash-asterisk /*, which is followed by any
number of other characters and line breaks, followed by a closing asterisk-slash */ sequence.
The entire contents of all block comments are ignored.

End-of-line comments

End-of-line comments beginwith two consecutive slash characters // followed by any number
of characters up to and including the end of the current line. The entire contents of all end-of-line
comments are ignored.

ApamaDoc comments

ApamaDoc comments are a special kind of block comment which begin with the character
sequence slash-asterisk-asterisk /**. Their content is used when generating documentation
for your EPL code. See also “Generating Documentation for Your EPL Code” on page 453.

708 Developing Apama Applications 10.11.2

41 Lexical Elements

White space
White space characters are characters such as spaces and tabs that are used between symbols to
separate them.White space characters are sometimes required between symbolswhen theywould
otherwise be misinterpreted or unrecognizable. For example, the symbol / is used as the division
operator and the symbol * is used as the multiplication operator, but the character pair /*with
no white space between them marks the beginning of a block comment.

Though they act as separators between symbols, white space characters are otherwise ignored
and discarded during program compilation.

Judicious use of white space improves a program's readability.

The ASCII white space characters and their encodings are listed below:

NameASCII EncodingUTF-8 EncodingCode Point

Space0x200x200x0020

Horizontal Tab0x090x090x0009

Form Feed0x0c0x0c0x000c

File Separator0x1c0x1c0x001c

Group Separator0x1d0x1d0x001d

Record Separator0x1e0x1e0x001e

Unit Separator0x1f0x1f0x001f

The Unicode white space characters, as defined by the Unicode character dictionary, and their
encodings are listed below:

NameUTF-8 EncodingCode Point

unnamed control character0xc2 0x850x0085

NO-BREAK SPACE0xc2 0xa00x00a0

OGHAM SPACE MARK0xe1 0x9a 0x800x1680

MONGOLIAN VOWEL SEPARATOR0xe1 0xa0 0x8e0x180e

EN QUAD0xe2 0x80 0x800x2000

EM QUAD0xe2 0x80 0x810x2001

EN SPACE0xe2 0x80 0x820x2002

EM SPACE0xe2 0x80 0x830x2003

THREE-PER-EM SPACE0xe2 0x80 0x840x2004

Developing Apama Applications 10.11.2 709

41 Lexical Elements

NameUTF-8 EncodingCode Point

FOUR-PER-EM SPACE0xe2 0x80 0x850x2005

SIX-PER-EM SPACE0xe2 0x80 0x860x2006

FIGURE SPACE0xe2 0x80 0x870x2007

PUNCTUATION SPACE0xe2 0x80 0x880x2008

THIN SPACE0xe2 0x80 0x890x2009

HAIR SPACE0xe2 0x80 0x8a0x200a

LINE SEPARATOR0xe2 0x80 0xa80x2028

PARAGRAPH SEPARATOR0xe2 0x80 0xa90x2029

NARROWNO-BREAK SPACE0xe2 0x80 0xaf0x202f

MEDIUMMATHEMATICAL SPACE0xe2 0x81 0x9f0x205f

IDEOGRAPHIC SPACE0xe3 0x80 0x800x3000

All white space characters appearing between two symbols are ignored. However, note that white
space appearing within string literals is not ignored. See “Literals” on page 713.

Line terminators
Line terminators are used to mark the end of a line of source text. Different operating systems use
different characters or character sequences to mark the end of a line.

The following terminators are used on various operating systems:

Line TerminatorOperating System

ASCII Carriage Return (0x0D)Mac OS X

ASCII Newline (0x0A)UNIX

ASCII Newline (0x0A)Linux

ASCII Carriage Return (0x0D) followed by ASCII Newline (0x0A)Windows

In general, any number of line terminators can be used between any two symbols in a program
and they are treated the same as other white space. A line terminator appearing at the end of an
end-of-line comment terminates the comment.

710 Developing Apama Applications 10.11.2

41 Lexical Elements

Symbols
Symbols (also called tokens, atoms, or lexemes) are the elements and words of the language,
consisting of identifiers, keywords, operators, separators, and literals. Symbols are composed of
one or more characters, excluding white space, comments, and line terminators.

Identifiers
An identifier is a character sequence composed of a combination of the following characters:

The 26 letters of the Roman alphabet in upper and lower case

Digits 0 through 9

Underscore character (_)

Dollar sign ($)

The first character must not be a digit. Identifiers are case sensitive. An identifier must not have
the same spelling as a keyword. For example, the word action is a keyword and cannot be used
as an identifier. An identifier can also contain a hash symbol (#) as the first character. This is helpful
if you want to use a keyword as an identifier. See also “Keywords” on page 711.

Keywords
EPL keywords are case sensitive. They are reservedwords that are an intrinsic part of the language,
andmust not be used as identifiers (for example, monitor, print and event). See also “Identifiers” on
page 711.

There are also some words that EPL may use as keywords in a future release, and you should
avoid using them as identifiers (for example, public, class and byte).

Software AGDesigner and the correlator will warn you if you attempt to use a keyword or a word
reserved for future use.

Developing Apama Applications 10.11.2 711

41 Lexical Elements

If you absolutely have to use a keyword or a word reserved for future use as an identifier, then
you have to prefix this word using the hash symbol (#). This may be the case if an external system
mandates a particular field name in an event type. For example, if an externally created digital
event type has a field name that is an EPL keyword, such as action, you would have to specify
#action as the field name. Adding the hash symbol (#) makes sure that EPL accepts a keyword as
an identifier. Internally, however, Apama treats #action as action.

If using JMon, a Java class that contains an EPL keyword may need to map to an equivalent EPL
event definition using the hash symbol (#) in EPL.

Operators
Operators are symbols used in expressions and statements to perform a computation on or test a
relation between data values or, in event expressions, to detect sequences and patterns of events.
As you will see, the same symbol is sometimes used for different operations, depending on the
context in which the operator is used. For example, the and operator is used both in logical
expressions, and event sequencing and the * operator is used both for integer and floating point
multiplication and to match any value in event templates.

Ordinary operators

The ordinary operators are used in primary and bitwise expressions. See “Expressions” on page 683
to perform calculations and comparisons on variables, data values, and other constructs. The
descriptions of the built-in types in the API Reference for EPL (ApamaDoc) provide information
about the operators that you can use with values of each type.

The ordinary operators are grouped into the following subcategories:

Arithmetic operators. See the corresponding topics in “Expressions” on page 683.

Comparison operators. See “Comparison operators” on page 689.

Logical operators. See the corresponding topics in “Expressions” on page 683.

Event operators

Event operators are special operators that are used in the on statement's event expression. An on
statement defines an event listener. See “Event expressions” on page 637 and “Event expression
operator precedence” on page 641.

An on statement is not allowed in an Apama query.

Field operators

Field operators are used within event expressions to define conditions on individual fields in an
event template. See “Field operators” on page 631.

712 Developing Apama Applications 10.11.2

41 Lexical Elements

Separators
Separators are symbols that are used in certain statements and expressions. These are:

{

}

[

]

(

)

.

;

,

:

white space

Separators are used to:

Keep the various parts frombumping into each other, for example commas between parameter
values in an action call.

Group related elements together, for example the left and right braces at the beginning and
end of a block of statements.

Literals
A literal is a source text representation of a constant value of a primitive type, or a location,
dictionary, or sequence type.

You might want to declare a constant for a frequently used literal so that you can refer to it by
name. See “Specifying named constant values” on page 705.

Boolean literals
There are two Boolean literal values: true and false.

Example:
a := true;
b := false;

Developing Apama Applications 10.11.2 713

41 Lexical Elements

Integer literals
Integer literal values can be written either base 10 (decimal) or base 16 (hexadecimal).

Base 10 literals

Base 10 integral literal values are a sequence of one or more of the digits 0 through 9.

Examples:
i := 0;
i := 11;
i := 1023;
i:= 9223372036854775807;

The value can optionally be preceded by a sign. If the sign is omitted, + is assumed.

The number 9223372036854775807 or (263 - 1) is the largest base 10 integer literal value that can
be represented.

Base 16 literals

Base 16 integral literal values begin with the characters 0x, and consist of a combination of the
decimal digits 0 through 9 and the hexadecimal digits a through f and A through F.

Examples:
j := 0x0;
j := 0x0d;
j := 0x0aFF;
j := 0x7fffffffffffffff;

The number 0x7fffffffffffffff or (263 - 1) is the largest base 16 integer literal value that can
be represented.

Floating point and decimal literals
Floating-point literal values can take one of the following forms:

Optional sign, integer digits followed by an exponent.

Optional sign, integer digits, a decimal point, and an optional exponent,

Optional sign, integer digits, a decimal point, fraction digits, and an optional exponent.

Optional sign, a decimal point, fraction digits, and an optional exponent.

If the sign is omitted, + is assumed. If the exponent is omitted, e0 is assumed.

The exponent is the letter “e” followed by an optional sign, and one or more decimal digits.

Examples:

714 Developing Apama Applications 10.11.2

41 Lexical Elements

f := 0.0;
f := 1.;
f := 200128.00005
f := 3.14159265358979;
f := 1e4;
f := 1e-4;
f := 10000e0;
f := .1234;
f := .1234e4;
f := 1.E-32;
f := 1.E-032;
f := 6.0221415E23;
f := 1.7976931348623157e308;

The largest positive floating point literal value that can be represented in EPL is 1.7976931348623157
* 10308. The smallest positive nonzero value that can be represented is 2.2250738585072014 *
10-308. If you write a floating-point literal whose value would be outside the range of values that
can be represented, the compiler raises an error.

String literals
A string literal is a sequence of characters enclosed in double quotes.

The backslash character is used as an escape character to allow inclusion of special characters such
as newlines and horizontal tabs.

To include a double quote in a string literal, precede it with a \ character which serves as an escape
character, which means "do not treat this quote as the end of the string literal".

To include a newline, use \n.

To include a tab character, use \t.

To include a single \ character, use two: \\. The compiler will remove the extra backslashes.

Examples:
s := "Hello, World!";
s := "\ta\tstring\twith\ttabs\tbetween\twords";
s := "a string on\n two lines";
s := "a string with \\ a backslash and a \" quote";

The length of a string literal is limited only by available memory at compile time and runtime. In
practice, this means you can make them as long as you need.

Location literals
The four float literals form the location's corner point coordinates, x1, y1 and x2, y2.

Example:
location(0.0, 0.0, 10.0, 10.0)

Developing Apama Applications 10.11.2 715

41 Lexical Elements

Dictionary literals
A dictionary literal can contain one or more pairs of key/item values.

The first expression in a dictionary literal entry is the key value and the second expression is the
item value. In a dictionary literal, all key values must be the same type and all item values must
the same type. Bothmust be of a type that matches the types specified in the dictionary variable's
definition.

A dictionary literal must contain at least one key/item pair except when the dictionary literal is
in an initializer. For example, the following statement is valid:
myDictionary := {};

The following statement is not valid:
takesADictionaryArgument({});

Example:
{1:"One", 2:"Two", 3:"Three"}

Sequence literals
A sequence literal can contain one or more sequence item values.

Each expression in the comma separated list is one entry in the sequence literal. The types must
all be the same and must match the sequence type.

A sequence literal must contain at least one item except when the sequence literal is in an initializer.
For example, the following statement is valid:
mySequence := [];

The following statement is not valid:
takesASequenceArgument([]);

Example:
[1,2,3,4]

Time literals
In Apama query definitions, time literals can be in within clauses. They are either float or integer
literals followed by a unit. Not all units are required, but they have to be in order.

You can specify the following time literals, in the following order:

day/days

hour/hours

716 Developing Apama Applications 10.11.2

41 Lexical Elements

min/minute/minutes

sec/second/seconds

msec/millisecond/milliseconds

For example:

10 hours

1.5 days

1 day 2.5 hours 10 min 4 sec

2 day 3.5 minutes

A space is required between a float or integer literal and its associated time unit. A space is
required between a time unit and a float or integer literal that follows it. Additional whitespace
is also allowed.

You cannot specify a negative number.

Outside a query, you can use these keywords as identifiers. Inside a query, you cannot use these
keywords as identifiers unless you prefix them with a hash symbol (#). See also “Keywords” on
page 711.

Names
Names are used in EPL programs to refer to the various different kinds of entities in the program.
Actions, variables and reference variable members, parameters, monitors, queries, methods,
aggregate functions, events, packages, and plug-ins all have names.

Description

Names are either simple or qualified. Simple names consist of a single identifier. Qualified names
consist of a sequence of identifiers separated by . symbols, with an optional . prefix.

Every name has a scope, which is the part of a program's text where the name can be used as a
simple identifier. The scope is determined by where in the program the name is declared. See
“Variable scope” on page 702.

Do not create EPL structures in the com.apama namespace. This namespace is reserved for future
Apama features. If you inadvertently create an EPL structure in the com.apama namespace, the
correlator might not flag it as an error in this release, but it might flag it as an error in a future
release.

Name Precedence

When there are duplicate unqualified names for types, the correlator searches for the associated
definition in the following order, and uses the first one it finds:

Developing Apama Applications 10.11.2 717

41 Lexical Elements

1. Themonitor-internal type definitions, for example, event type definitions and customaggregate
function definitions.

2. Definitions that have been brought in with a using declaration in the current file.

3. Definitions in the current package (this could be the root namespace if a packagewas omitted).

4. The root namespace.

The fully qualified name of a type can always be named by using a dot (.) followed by the fully
qualified name. For example, select .com.apama.aggregates.avg(x) uses the built-in avg type,
even if com is a name in the current package.

If you try to create a package-level type that has the same name as a definition brought in with a
using declaration, it causes a compiler error and the code does not inject. For example:
package foo;
using bar.Bar;
event Bar { // Causes an error when injecting as Bar has already been

// defined by a "using" declaration.}

You cannot define a type that has the same fully-qualified name as another type.

If two types have the same name but are in different packages, either one can take precedence
over the other depending on their ordering in the precedence list. The correlator uses the first
match it finds even if that results in an error when a lower-priority match would have worked.
For example:
X x;

This causes an error if, for example, there is an aggregate function called X in the current package
even if there is an event type called X in the root namespace. You can use a . prefix on the name
to force it to be looked up from the root namespace, in which case the fully qualified name must
be used.

Annotations
A program can contain predefined annotations before specific language elements. For detailed
information, see “Adding predefined annotations” on page 52.

718 Developing Apama Applications 10.11.2

41 Lexical Elements

42 Limits

EPL enforces the limits described in the following table.

ValueEPL Limit

–263 (–9223372036854775808)Lowest integer

263 – 1 (9223372036854775807)Highest integer

64 bits (about 18 decimal digits)Integer precision

63 bitsMaximum integer left shift

63 bitsMaximum integer right shift

–1.7976931348623157 x10308Lowest negative floating point value

–2.2250738585072014 x 10–308Highest negative nonzero floating point
value

2.2250738585072014 x 10–308Lowest positive nonzero floating point value

1.7976931348623157 x 10308Highest positive floating point value

About 15 decimal digitsFloating point precision

–9.999999999999999 * 10384Lowest negative decimal floatingpoint value

–10-398Highest negative nonzero decimal floating
point value

10-398Lowest positive nonzero decimal floating
point value

9.999999999999999 * 10384Highest positive decimal floatingpoint value

Exactly 16 decimal digitsDecimal precision

Limited by available memoryMaximum identifier length

Limited by available memoryMaximum number of entries in a sequence

Developing Apama Applications 10.11.2 719

ValueEPL Limit

Limited by available memoryMaximumnumber of entries in a dictionary

Limited by available memoryMaximum number of characters in a string

Limited by available memory, typically many tens
of thousands

Maximum number of active listeners

Limited by available memoryMaximum number of active monitors

216 (65536)Maximum number of fields in an event

216 (65536)Maximum number of actions in an event

32Maximum indexed fields in an event

The correlator stops if it runs out of memoryMemory address space available to EPL
runtime

Limited by available memoryMaximum number of active stream queries

Limited by available memoryMaximum stream window size

720 Developing Apama Applications 10.11.2

42 Limits

A EPL Naming Conventions

It is recommended that you use the following naming conventions in EPL. These conventions
closely follow Java naming conventions. Using these conventions makes it easier to collaborate
and makes it faster for Software AG Global Support personnel to follow your code.

Notes and ExamplesConventionItem

Names often contain standard abbreviations, such as IAF for
Integration Adapter Framework. Names such as iafInterface

Do not always use
all capitals

Acronyms

for an attribute or IafInterface for a monitor are easier to read
than iAFInterface and IAFInterface.

Actions should be verbs, in mixed case with the first letter
lowercase, and the first letter of each internal word capitalized.
For example:

lowerCamelCaseActions

handleQuery();
startDaemonProcess();
quit();

Channel names should start with an EPL package name
(lowercase), optionally followed by an UpperCamelCase noun.

package.
UpperCamelCase

Channels

Qualifying channel names with a package is important because
channel names form a global namespace that is shared by all
applications running in a correlator. For example:
com.mycompany.AllTransactions

Identifiers for constants should be all uppercase with words
separated by underscores. For example:

ALL_CAPITALSConstants

constant integer MAX_SIZE;
constant string DEFAULT_HOST;

Context names should be nouns, initial capital, in mixed case
with the first letter of each internal word capitalized. Context

UpperCamelCaseContexts

names should be simple and should describe the work being
done in the context. Use whole words. Avoid acronyms and
abbreviations unless the abbreviation ismuchmorewidely used
than the long form, such as URL or IAF. For example:

Developing Apama Applications 10.11.2 721

Notes and ExamplesConventionItem
context("Calculation");
context("Inventory", true);

Custom aggregate functions should be in mixed case with the
first letter lowercase, and the first letter of each internal word
capitalized.

lowerCamelCaseCustom
aggregate
functions

aggregate bounded myCustomAggregate()
returns integer { aggregateBody }

Event names should have an initial capital, andmixed casewith
the first letter of each internal word capitalized. Event names

UpperCamelCaseEvents

should be simple and descriptive. Use whole words. Avoid
acronyms and abbreviations unless the abbreviation is much
more widely used than the long form, such as URL or IAF. For
example:
event Tick
event SubscriptionConfiguration
event IafEvent

Monitor names should be nouns, initial capital, in mixed case
with the first letter of each internal word capitalized. Monitor

UpperCamelCaseMonitors

names should be simple and descriptive. Use whole words.
Avoid acronyms and abbreviations unless the abbreviation is
much more widely used than the long form, such as URL or
IAF. For example:
monitor SubscriptionManager
monitor IafMonitorService

The prefix of a unique package name is always written in
all-lowercase ASCII letters and should preferably be one of the

lowercasePackages

top-level domain names (com, edu, gov, mil, net, org) or one of
the two-letter codes identifying countries as specified in ISO
3166-1 alpha-2.

Subsequent components of the package name vary according
to an organization's own internal naming conventions. Such
conventions might specify that certain directory name
components be division, department, project, machine, or login
names. For example:
com.apamax.accounting

Query names should be nouns, initial capital, inmixed casewith
the first letter of each internal word capitalized. Query names

UpperCamelCaseQueries

should be descriptive. Use whole words. Avoid acronyms and
abbreviations unless the abbreviation ismuchmorewidely used
than the long form, such as URL or IAF. For example:

722 Developing Apama Applications 10.11.2

A EPL Naming Conventions

Notes and ExamplesConventionItem
query FaultyWithdrawalLocations
query CloseInTimeButDistantTransactions

Variables and parameters should have initial lowercase. This is
left to your discretion, but lowercase is preferable. Internalwords
start with capital letters.

lowerCamelCaseVariables

Variable names should be short yet meaningful. The choice of
a variable name should be mnemonic: that is, designed to
indicate to the casual observer the intent of its use. One-character
variable names should be avoided except for temporary,
throwaway, variables. Common names for temporary variables
are i, j, k, m, and n for integers.
integer i;
float myPrice;
MyEvent myEvent;

Developing Apama Applications 10.11.2 723

A EPL Naming Conventions

724 Developing Apama Applications 10.11.2

A EPL Naming Conventions

B Testing Apama Applications Using PySys

Developing a comprehensive suite of automated tests is an essential aspect of building reliable
applications in any language. So that you can easily create tests for your Apama applications,
Apama distributes an open-source automated system-testing framework called PySys.

PySys is an easy-to-use cross-platform framework for writing and orchestrating tests in which a
test case consists of a simple Python file that specifies the required logic for starting processes,
waiting for the expected events and log messages, and validating the results.

PySys provides a comprehensive library of utility methods to make writing these tests really easy,
and has powerful features such as concurrent test-case execution, automatic cleanup of processes
and files, collection of code-coverage information, memory monitoring, and reporting of
performance statistics. It also provides a pluggable framework for recording test results with
built-in support for the widely used Apache Ant JUnit XML output format that is supported by
most continuous integration servers.

Apama includes PySys itself, as well as some helper classes for starting Apama processes such as
the correlator from PySys. Apama also provides a template that we recommend using to create
your project configuration file.

To get started with PySys, proceed as follows:

1. Open the Apama Command Prompt (or on Unix, use source bin/apama_env; see also "Setting
up the environment using the Apama Command Prompt" in Deploying and Managing Apama
Applications).

2. Go to the directory containing your application, create a subdirectory for the tests and change
to it.

3. Use the following command to create a default pysysproject.xml configuration file in this
directory, using the Apama template:
pysys makeproject --template=apama

4. Create your first test:
pysys make MyApplication_001

5. Edit the MyApplication_001/pysystest.py file, specifying a title describing what the test will
do, and optionally starting to implement the “execute” and “validate” logic for your new test.

6. Run your first test:

Developing Apama Applications 10.11.2 725

pysys run

A set of sample PySys testcases for Apama can be found in the samples/pysys directory of your
Apama installation.

Reference documentation for PySys and the Apama helper classes for PySys can be found in the
API Reference for Python. This is located in the doc/pydoc directory of your Apama installation.

See "Using EPL code coverage with PySys tests" inDeploying and Managing Apama Applications for
information on how to enable EPL code coverage reporting for PySys.

726 Developing Apama Applications 10.11.2

B Testing Apama Applications Using PySys

	Table of Contents
	About this Guide
	Documentation ​roadmap
	Online ​Information ​and ​Support
	Data ​Protection

	I Developing ​Apama ​Applications ​in ​EPL
	1 Getting ​Started ​with ​Apama ​EPL
	Introduction ​to ​Apama ​Event ​Processing ​Language
	How ​EPL ​applications ​compare ​to ​applications ​in ​other ​languages
	About ​dynamic ​compilation ​in ​the ​correlator
	About ​the ​Apama ​development ​environment ​in Software ​AG ​Designer
	Terminology
	Defining ​event ​types
	Working ​with ​events

	2 Defining ​Monitors
	About ​monitor ​contents
	Example ​of ​a ​simple ​monitor
	Spawning ​monitor ​instances
	Communication ​among ​monitor ​instances
	About ​service ​monitors
	Adding ​predefined ​annotations
	Subscribing ​to ​channels
	Adding ​service ​monitor ​bundles ​to ​your ​project
	Utilities ​for ​operating ​on ​monitors

	3 Defining ​Queries
	Introduction ​to ​queries
	Format ​of ​query ​definitions
	Defining ​metadata ​in ​a ​query
	Partitioning ​queries
	Defining ​query ​input
	Finding ​and ​acting ​on ​event ​patterns
	Implementing ​parameterized ​queries
	Restrictions ​in ​queries
	Best ​practices ​for ​defining ​queries
	Testing ​query ​execution
	Communication ​between ​monitors ​and ​queries

	4 Defining ​Event ​Listeners
	About ​event ​expressions ​and ​event ​templates
	Specifying ​the ​on ​statement
	Using ​a ​stream ​source ​template ​to ​find ​events ​of ​interest
	Defining ​event ​expressions ​with ​one ​event ​template
	Terminating ​and ​changing ​event ​listeners
	Specifying ​multiple ​event ​listeners
	Listening ​for ​events ​that ​do ​not ​match
	Specifying ​completion ​event ​listeners
	Improving ​performance ​by ​ignoring ​some ​fields ​in ​matching ​events
	Defining ​event ​listeners ​for ​patterns ​of ​events
	Specifying ​and/​or/​not ​logic ​in ​event ​listeners
	How ​the ​correlator ​executes ​event ​listeners
	Defining ​event ​listeners ​with ​temporal ​constraints
	Understanding ​time ​in ​the ​correlator
	Out ​of ​band ​connection ​notifications

	5 Working ​with ​Streams ​and ​Stream ​Queries
	Introduction ​to ​streams ​and ​stream ​networks
	Defining ​streams
	Using ​output ​from ​streams
	Defining ​stream ​queries
	Defining ​custom ​aggregate ​functions
	Working ​with ​lots ​that ​contain ​multiple ​items
	Stream ​network ​lifetime
	Using ​dynamic ​expressions ​in ​stream ​queries
	Troubleshooting ​and ​stream ​query ​coding ​guidelines

	6 Defining ​What ​Happens ​When ​Matching ​Events ​Are ​Found
	Using ​variables
	Defining ​actions
	Defining ​static ​actions
	Getting ​the ​current ​time
	Generating ​events
	Handling ​the ​any ​type
	Handling ​any ​values ​of ​different ​types ​with ​the ​switch ​statement
	Assigning ​values
	Defining ​conditional ​logic ​with ​the ​if ​statement
	Defining ​conditional ​logic ​with ​the ​ifpresent ​statement
	Defining ​loops
	Exception ​handling
	Logging ​and ​printing
	Sample ​financial ​application

	7 Implementing ​Parallel ​Processing
	Introduction ​to ​contexts
	Creating ​contexts
	How ​many ​contexts ​can ​you ​create?
	Using ​channels ​to ​communicate ​between ​contexts
	Obtaining ​context ​references
	Spawning ​to ​contexts
	Channels ​and ​contexts
	Sending ​an ​event ​to ​a ​channel
	Sending ​an ​event ​to ​a ​particular ​context
	Sending ​an ​event ​to ​a ​sequence ​of ​contexts
	Common ​use ​cases ​for ​contexts
	Samples ​for ​implementing ​contexts
	Contexts ​and ​correlator ​determinism
	How ​contexts ​affect ​other ​parts ​of ​your ​Apama ​application

	8 Using ​Correlator ​Persistence
	Description ​of ​state ​that ​can ​be ​persistent
	When ​persistence ​is ​useful
	When ​non-​persistent ​monitors ​are ​useful
	How ​the ​correlator ​persists ​state
	Enabling ​correlator ​persistence
	How ​the ​correlator ​recovers ​state
	Designing ​applications ​for ​persistence-​enabled ​correlators
	Upgrading ​monitors ​in ​a ​persistence-​enabled ​correlator
	Sample ​code ​for ​persistence ​applications
	Requesting ​snapshots ​from ​EPL
	Developing ​persistence ​applications
	Backing ​up ​the ​persistence ​database ​while ​the ​correlator ​is running
	Using ​EPL ​plug-​ins ​when ​persistence ​is ​enabled
	Using ​the ​MemoryStore ​when ​persistence ​is ​enabled
	Comparison ​of ​correlator ​persistence ​with ​other ​persistence mechanisms
	Restrictions ​on ​correlator ​persistence

	9 Common ​EPL ​Patterns ​in ​Monitors
	Contrasting ​using ​a ​dictionary ​with ​spawning
	Factory ​pattern
	Using ​quit() ​to ​terminate ​event ​listeners
	Combining ​the ​dictionary ​and ​factory ​patterns
	Testing ​uniqueness
	Reference ​counting
	Inline ​request-​response ​pattern
	Writing ​echo ​monitors ​for ​debugging
	Versioning ​and ​upgrading ​monitors

	10 Using ​EPL ​Plug-​ins
	Overhead ​of ​using ​plug-​ins
	When ​to ​use ​plug-​ins
	When ​not ​to ​use ​plug-​ins
	Using ​the ​TimeFormat ​Event ​Library
	Using ​the ​MemoryStore
	Using ​the ​distributed ​MemoryStore
	Using ​the ​Management ​interface
	Using ​the ​JSON ​plug-​in
	Using ​MATLAB® ​products ​in ​an ​application
	Using ​the ​R ​plug-​in
	Interfacing ​with ​user-​defined ​EPL ​plug-​ins
	About ​the ​chunk ​type

	11 Making ​Application ​Data ​Available ​to ​Clients
	Adding ​the ​DataView ​Service ​bundle ​to ​your ​project
	Creating ​DataView ​definitions
	Deleting ​DataView ​definitions
	Creating ​DataView ​items
	Deleting ​DataView ​items
	Updating ​DataView ​items
	Looking ​up ​field ​positions
	Using ​multiple ​correlators

	12 Testing ​and ​Tuning ​EPL ​monitors
	Optimizing ​EPL ​programs
	Best ​practices ​for ​writing ​EPL
	Structure ​of ​a ​basic ​test ​framework
	Using ​event ​files
	Handling ​runtime ​errors
	Capturing ​test ​output
	Avoiding ​listeners ​and ​monitor ​instances ​that ​never ​terminate
	Handling ​slow ​or ​blocked ​receivers
	Diagnosing ​infinite ​loops ​in ​the ​correlator
	Tuning ​contexts

	13 Generating ​Documentation ​for ​Your ​EPL ​Code
	Code ​constructs ​that ​are ​documented
	Steps ​for ​using ​ApamaDoc
	Inserting ​ApamaDoc ​comments
	Inserting ​ApamaDoc ​tags
	Inserting ​ApamaDoc ​references
	Inserting ​EPL ​source ​code ​examples
	Generating ​ApamaDoc ​from ​the ​command ​line
	Generating ​ApamaDoc ​from ​an ​Ant ​script

	II Developing ​Apama ​Applications ​in ​Java
	14 Overview ​of ​Apama ​JMon ​Applications
	Introducing ​JMon ​API ​concepts
	About ​event ​types
	About ​monitors
	About ​event ​listeners ​and ​match ​listeners
	Description ​of ​the ​flow ​of ​execution ​in ​JMon ​applications
	Parallel ​processing ​in ​JMon ​applications
	Identifying ​external ​events
	Optimizing ​event ​types
	Logging ​in ​JMon ​applications
	Using ​EPL ​keywords ​as ​identifiers ​in ​JMon ​applications

	15 Defining ​Event ​Expressions
	About ​event ​templates
	Specifying ​parameter ​constraints ​in ​event ​templates
	Obtaining ​matching ​events
	Emitting, ​routing, ​and ​enqueuing ​events
	Specifying ​temporal ​sequencing
	Defining ​advanced ​event ​expressions
	Optimizing ​event ​expressions
	Validation ​of ​event ​expressions

	16 Concept ​of ​Time ​in ​the ​Correlator
	Getting ​the ​current ​time
	About ​timers ​and ​their ​trigger ​times

	17 Developing ​and ​Deploying ​JMon ​Applications
	Steps ​for ​developing ​JMon ​applications ​in Software ​AG ​Designer
	Java ​prerequisites ​for ​using ​Apama's ​JMon ​API
	Steps ​for ​developing ​JMon ​applications ​manually
	Deploying ​JMon ​applications
	Removing ​JMon ​applications ​from ​the ​correlator
	Creating ​deployment ​descriptor ​files
	Package ​names ​and ​namespaces ​in ​JMon ​applications
	Sample ​JMon ​applications

	III Developing ​EPL ​Plug-​ins
	18 Introduction ​to ​EPL ​Plug-​ins
	19 Providing ​an ​EPL ​Event ​Wrapper ​for ​a ​Plug-​in
	20 Writing ​EPL ​Plug-​ins ​in ​C++
	Creating ​a ​plug-​in ​using ​C++
	Using ​plug-​ins ​written ​in ​C++

	21 Writing ​EPL ​Plug-​ins ​in ​Java
	Creating ​a ​plug-​in ​using ​Java
	Using ​EPL ​plug-​ins ​written ​in ​Java
	Sample ​plug-​ins ​in ​Java

	22 Writing ​EPL ​Plug-​ins ​in ​Python
	Creating ​a ​plug-​in ​using ​Python
	Using ​Python ​plug-​ins
	Installing ​Python ​modules
	Sample ​plug-​ins ​written ​in ​Python

	IV Protecting ​Personal ​Data ​in ​Apama ​Applications
	23 Introduction
	24 Where ​personal ​data ​is ​held ​within ​the ​Apama ​platform
	25 Documenting ​personal ​data ​flows ​within ​an ​Apama ​application
	26 Handling ​personal ​data ​in ​the ​"in-​memory" ​state ​of ​the ​correlator
	27 Handling ​personal ​data ​"at ​rest" ​in ​the ​correlator ​persistence ​and ​JMS ​datastores
	28 Handling ​personal ​data ​"in ​motion" ​from ​dashboards
	29 Handling ​personal ​data ​"at ​rest" ​in ​log ​files
	Example ​log ​messages ​containing ​personal ​data
	Protecting ​and ​erasing ​data ​from ​Apama ​log ​files
	Recommended ​log ​levels
	Recommendations ​for ​logging ​by ​Apama ​application ​code

	30 Handling ​personal ​data ​"at ​rest" ​in ​the ​correlator ​input ​log ​file
	31 Handling ​personal ​data ​"at ​rest" ​in ​containerization ​environments

	V EPL ​Reference
	32 Introduction
	Hello ​World ​example

	33 Types
	Primitive ​and ​string ​types
	Reference ​types
	Default ​values ​for ​types
	Type ​properties ​summary
	Timestamps, ​dates, ​and ​times
	Type ​methods ​and ​instance ​methods
	Type ​conversion
	Comparable ​types
	Cloneable ​types
	Potentially ​cyclic ​types
	Support ​for ​IEEE ​754 ​special ​values

	34 Events ​and ​Event ​Listeners
	Event ​definitions
	Event ​templates
	Event ​listener ​definitions
	Event ​lifecycle
	Event ​listener ​lifecycle
	Event ​processing ​order ​for ​monitors
	Event ​processing ​order ​for ​queries
	Event ​expressions
	Event ​channels

	35 Monitors
	Monitor ​lifecycle
	Monitor ​files
	Packages
	The ​using ​declaration
	Monitor ​declarations
	The ​import ​declaration
	Monitor ​actions
	Contexts
	Plug-​ins
	Garbage ​collection

	36 Queries
	Query ​lifetime
	Query ​definition
	Metadata ​section
	Parameters ​section
	Inputs ​section
	Query ​input ​definition
	Find ​statement

	37 Aggregate ​Functions
	Built-​in ​aggregate ​functions
	Custom ​aggregates

	38 Statements
	Simple ​statements
	Compound ​statements
	Transfer ​of ​control ​statements

	39 Expressions
	Introduction ​to ​expressions
	Using ​an ​expression ​as ​a ​statement
	Primary ​expressions
	Bitwise ​logical ​operators
	Logical ​operators
	Shift ​operators
	Comparison ​operators
	Additive ​operators
	Multiplicative ​operators
	Unary ​additive ​operators
	Expression ​operators
	Expression ​operator ​precedence
	Postfix ​expressions
	Stream ​queries
	Stream ​source ​templates

	40 Variables
	Variable ​declarations
	Variable ​scope
	Provided ​variables
	Specifying ​named ​constant ​values

	41 Lexical ​Elements
	Program ​text
	Comments
	White ​space
	Line ​terminators
	Symbols
	Identifiers
	Keywords
	Operators
	Separators
	Literals
	Names
	Annotations

	42 Limits

	A EPL ​Naming ​Conventions
	B Testing ​Apama ​Applications ​Using ​PySys

