
Building and Using Apama Dashboards

Version 10.11.2

January 2022

This document applies to Apama 10.11.2 and to all subsequent releases.

Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 2013-2022 Software AG, Darmstadt, Germany and/or Software AG USA, Inc., Reston, VA, USA, and/or its subsidiaries
and/or its affiliates and/or their licensors.

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or
Software AGUSA Inc. and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product namesmentioned
herein may be trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
https://softwareag.com/licenses/.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product
documentation, located at https://softwareag.com/licenses/ and/or in the root installation directory of the licensed product(s).

This software may include portions of third-party products. For third-party copyright notices, license terms, additional rights or
restrictions, please refer to "License Texts, Copyright Notices and Disclaimers of Third Party Products". For certain specific third-party
license restrictions, please refer to section E of the Legal Notices available under "License Terms and Conditions for Use of Software
AG Products / Copyright and Trademark Notices of Software AG Products". These documents are part of the product documentation,
located at https://softwareag.com/licenses/ and/or in the root installation directory of the licensed product(s).

Document ID: PAM-DAS-10112-20220131

https://www.softwareag.com/licenses/default.html
https://www.softwareag.com/licenses/default.html
https://www.softwareag.com/licenses/default.html

Table of Contents

About this Guide..9
Documentation roadmap..10
Online Information and Support...11
Data Protection...12

I Building Dashboard Clients..13
1 Introduction to Building Dashboard Clients...15

Web client requirements...16
About dashboards...16
Starting the Dashboard Builder...17
Scenario instance ownership..19
Using the tutorial application..19

2 Using Dashboard Builder...21
Dashboard Builder layout..22
Specifying data sources...28
Setting the background properties..29
About resize modes...30
Working with objects...33
Setting Builder options..36
Setting dashboard options..37
Command-line options for the Dashboard Builder..41
Restrictions...45

3 Attaching Dashboards to Correlator Data...47
Dashboard data tables...48
Scenario instance ownership..52
Creating a data attachment..52
Using table objects...64
Using pie and bar charts...74
Using trend charts...77
Using stock charts..95
Localizing dashboard labels...110
Localizing dashboard messages..114

4 Using Dashboard Functions...115
Using built-in functions..116
Creating custom functions...118

5 Defining Dashboard Commands..129
Defining commands..130
Using dashboard variables in commands..131
Defining commands for creating an instance..132
Defining commands for editing an instance..133
Supporting deletion of an instance...134
Supporting deletion of all instances..135
Defining commands for creating a query instance...135
Defining commands for editing a query instance...135
Supporting deletion of a query instance..136

Building and Using Apama Dashboards 10.11.2 iii

Supporting deletion of all instances of a query...136
Using popup dialogs for commands..137
Command options...138
Associating a command with keystrokes...138
Defining multiple commands..139
Creating custom commands...140
Apama set substitution command..143

6 Reusing Dashboard Components...145
Using Object Grids...146
Using Composite objects...150
Using Composite Grids...157
Using include files...162
Working with multiple display panels...164

7 Sending Events to Correlators...199
Using the Define Apama Command dialog..200
Send event authorization..203

8 Using XML Data..205
XML data format..206
Defining an XML data source..208
Attaching objects to XML data...209

9 Using SQL Data...213
SQL system requirements and setup..214
Attaching visualization objects to SQL data..214
Defining SQL commands..219
Specifying application options..221
Setting up SQL database connections...225
Setting SQL data source options..227

II Dashboard Property Reference for Graphs, Tables and Trends...229
10 Introduction to Dashboard Properties...231

Objects for complex-data visualization..232
About the Object Properties window...232
Editing property values..232
Copying and pasting property values..232

11 Graph Objects...235
Bar graphs...236
Google map...272
Heat map...280
HTML5 Bar graph..300
Legend...304
Pie graph...315
HTML5 Pie graph..330
Radar graph..331
XY graph...358

12 Table Objects...391
Standard tables...392
Rotated tables...417
HTML5 tables...429

13 Trend Objects..435

iv Building and Using Apama Dashboards 10.11.2

Table of Contents

Sparkline charts..436
Stock charts...456
Trend graphs...482

14 Drill-Down Specification..521
Using the Drill Down Properties dialog...522
Activating drill downs..524
About drilldown displays opened in Dashboard Builder...524

III Dashboard Function Reference...527
15 Introduction to Dashboard Functions..529

Working with functions..530
16 Scalar Functions...533

Add..535
Average..535
Boolean Expression..535
Concatenate..536
Correlator Time Format..536
Date Add...537
Date Ceiling..537
Date Compare..538
Date Difference...538
Date Floor..539
Date Format..539
Date Now..540
Delta...540
Divide..540
Duration..541
Evaluate Expression As Double...541
Evaluate Expression As String...542
Format Number...542
Get Substitution...543
Init Local Variable..543
isWindowsOS...543
Max..543
Min...544
Modulo..544
Multiply...544
Percent...545
Quick Set Sub...545
Replace All..545
Replace Value...546
Set Substitution..546
Set Substitutions By Lookup..547
Subtract..547
Validate Substitutions...547

17 Tabular Functions..549
Add All Rows Or Columns..552
Add Columns...553
Average All Rows Or Columns...554

Building and Using Apama Dashboards 10.11.2 v

Table of Contents

Average Columns..555
Baseline Over Time..556
Buffer Table Rows..558
Combine..559
Concatenate Columns...560
Convert Columns...561
Copy...562
Count...562
Count By Bands..563
Count Unique Values..563
Count Unique Values By Time...564
Create Selector List..565
Delta And Rate Rows..566
Delta Rows..566
Distinct Values..567
Divide Columns...568
Ensure Columns...569
Ensure Timestamp Column...569
Evaluate Expression By Row..569
Filter And Extract Matches...572
Filter By Pattern...573
Filter By Row..573
Filter By Time Range...574
First Table Rows...574
Format Table Columns..575
Get data server connection status..575
Group By Time...576
Group By Time and Unique Values..577
Group by Unique Values..578
Join...582
Join Outer..583
Last Table Rows..584
Mark Time Gaps..585
Max All Rows or Columns...586
Max Columns...587
Min All Rows or Columns..588
Min Columns..588
Modulo Columns...589
Multiply Columns...590
Percent Columns..591
Pivot On Unique Values..592
Reference...594
Rename Columns...594
Select Column...595
Set Column Type..595
Sort Table...596
Split String..596
String to Table...597
Subtotal By Time..598
Subtotal By Unique Values...599

vi Building and Using Apama Dashboards 10.11.2

Table of Contents

Subtract Columns..599
Table Contains Values...600

18 Expression Syntax in Dashboard Functions..601
Operators in dashboard function expressions...602
Arithmetic functions in dashboard function expressions..602
String functions in dashboard function expressions..605

IV Dashboard Deployment..609
19 Dashboard Deployment Concepts..611

Deployment options..612
Data server and display server..613
Process architecture...614
Builders and administrators...616

20 Generating Dashboards..617
Starting the wizard..618
Using the wizard..619
Using the titlebar/toolbar..619
Using the Introduction form..620
Using the Main, Create, Edit, and Details Forms..620
Using the layout configuration forms...621

21 Preparing Dashboards for Deployment...623
Dashboard feature checklist...624
Changing correlator definitions for deployment..625
Choosing among deployment types...625
Using the Deployment Configuration editor..627
Generating a deployment package from the command line...631
Sharing information with the Dashboard Administrator..632

22 Deploying Dashboards...633
Generating the dashboard .war file...634
Installing a dashboard .war file...634
Inside a dashboard .war file...635
Additional steps for display server deployments...635

23 Managing the dashboard data server and display server...637
Prerequisites...638
Starting and stopping the data server or display server..638
Command-line options for the data server and display server......................................639
Rotating the log files of the data server and display server..645
Controlling the update frequency...646
Configuring Trend-Data Caching..647
Managing Connect and Disconnect Notification..650
Working with multiple data servers...651
Managing and stopping the data server and display server...655

24 Administering Dashboard Security..659
Administering authentication..660
Authentication for local and application server deployments..660
Administering authorization...664
Securing communications..671
Example: Implementing LoginModule..671

Building and Using Apama Dashboards 10.11.2 vii

Table of Contents

V Using the Dashboard Viewer...677
25 Concepts Underlying Dashboards..679

About Dashboards...680
Starting the Dashboard Viewer..681
DataView item ownership..681

26 Using the Dashboard Viewer...683
Opening and viewing dashboards..684
The Dashboard Viewer menu bar...685
Resizing the Dashboard Viewer..686
Working with Dashboard Objects...687

27 Startup Options for the Dashboard Viewer...689
28 Time Zone ID Values...695

viii Building and Using Apama Dashboards 10.11.2

Table of Contents

About this Guide

■ Documentation roadmap .. 10

■ Online Information and Support ... 11

■ Data Protection ... 12

Building and Using Apama Dashboards 10.11.2 9

Building and Using Apama Dashboards describes how to build and use an Apama dashboard, which
provides the ability to view and interact with DataViews. An Apama project typically uses one
ormore dashboards,which are created in theDashboard Builder. TheDashboardViewer provides
the ability to use dashboards created in the Dashboard Builder. Dashboards can also be deployed
as simple web pages. Deployed dashboards connect to one or more correlators by means of a
dashboard data server or display server.

Note:
This documentation refers to using the dashboard components provided with Apama. If you
are usingMashZoneNextGen instead to visualize your data fromApama, refer to theMashZone
NextGen documentation.

Documentation roadmap

Apama provides documentation in the following formats:

HTML (available from both the documentation website and the doc folder of the Apama
installation)

PDF (available from the documentation website)

Eclipse help (accessible from Software AG Designer)

You can access the HTML documentation on your machine after Apama has been installed:

Windows. Select Start > All Programs > Software AG > Tools > Apama n.n > Apama
Documentation n.n. Note that Software AG is the default group name that can be changed
during the installation.

UNIX. Display the index.html file, which is in the doc/apama-onlinehelp directory of your
Apama installation directory.

The following guides are available:

DescriptionTitle

Describes new features and changes introducedwith the current
Apama release as well as earlier releases.

Release Notes

Summarizes all important installation information and is
intended for use with other Software AG installation guides
such as Using Software AG Installer.

Installing Apama

Provides a high-level overviewofApama, describes theApama
architecture, discussesApama concepts and introduces Software
AG Designer, which is the main development tool for Apama.

Introduction to Apama

Explains how to develop Apama applications in Software AG
Designer, which is an Eclipse-based integrated development
environment.

Using Apama with Software AG
Designer

10 Building and Using Apama Dashboards 10.11.2

DescriptionTitle

Describes the different technologies for developing Apama
applications: EPL monitors, Apama queries, and Java. You can

Developing Apama Applications

use one or several of these technologies to implement a single
Apama application. In addition, there are C++ and Java APIs
for developing components that plug in to a correlator. You can
use these components from EPL.

Describes how to connect Apama applications to any event data
source, database, messaging infrastructure, or application.

Connecting Apama Applications to
External Components

Describes how to build and use an Apama dashboard, which
provides the ability to view and interact with DataViews. An

Building and Using Apama
Dashboards

Apama project typically uses one or more dashboards, which
are created in the Dashboard Builder. The Dashboard Viewer
provides the ability to use dashboards created in theDashboard
Builder. Dashboards can also be deployed as simpleweb pages.
Deployed dashboards connect to one or more correlators by
means of a dashboard data server or display server.

Describes how to deploy components with Software AG
Command Central, how to deploy and manage queries, and

Deploying and Managing Apama
Applications

how to deploy Apama applications using Docker and
Kubernetes. It also provides information for improvingApama
application performance by using multiple correlators, for
managing and monitoring Apama components over REST
(Representational State Transfer), and for using correlator
utilities and configuration files.

In addition to the above guides, Apama also provides the following API reference information:

API Reference for EPL (ApamaDoc)

API Reference for Java (Javadoc)

API Reference for C++ (Doxygen)

API Reference for .NET

API Reference for Python

API Reference for Component Management REST APIs

Online Information and Support

Product Documentation

You can find the product documentation on our documentation website at https://
documentation.softwareag.com.

Building and Using Apama Dashboards 10.11.2 11

https://documentation.softwareag.com/
https://documentation.softwareag.com/

In addition, you can also access the cloudproduct documentation via https://www.softwareag.cloud.
Navigate to the desired product and then, depending on your solution, go to “Developer Center”,
“User Center” or “Documentation”.

Product Training

You can find helpful product training material on our Learning Portal at https://
knowledge.softwareag.com.

Tech Community

You can collaborate with Software AG experts on our Tech Community website at https://
techcommunity.softwareag.com. From here you can, for example:

Browse through our vast knowledge base.

Ask questions and find answers in our discussion forums.

Get the latest Software AG news and announcements.

Explore our communities.

Go to our public GitHub andDocker repositories at https://github.com/softwareag and https://
hub.docker.com/publishers/softwareag and discover additional Software AG resources.

Product Support

Support for Software AG products is provided to licensed customers via our Empower Portal at
https://empower.softwareag.com. Many services on this portal require that you have an account.
If you do not yet have one, you can request it at https://empower.softwareag.com/register. Once
you have an account, you can, for example:

Download products, updates and fixes.

Search the Knowledge Center for technical information and tips.

Subscribe to early warnings and critical alerts.

Open and update support incidents.

Add product feature requests.

Data Protection

SoftwareAGproducts provide functionalitywith respect to processing of personal data according
to the EU General Data Protection Regulation (GDPR). Where applicable, appropriate steps are
documented in the respective administration documentation.

12 Building and Using Apama Dashboards 10.11.2

https://www.softwareag.cloud/
https://knowledge.softwareag.com/
https://knowledge.softwareag.com/
https://techcommunity.softwareag.com/
https://techcommunity.softwareag.com/
https://github.com/softwareag/
https://hub.docker.com/publishers/softwareag/
https://hub.docker.com/publishers/softwareag/
https://empower.softwareag.com/
https://empower.softwareag.com/register/

I Building Dashboard Clients

1 Introduction to Building Dashboard Clients .. 15

2 Using Dashboard Builder ... 21

3 Attaching Dashboards to Correlator Data .. 47

4 Using Dashboard Functions ... 115

5 Defining Dashboard Commands .. 129

6 Reusing Dashboard Components .. 145

7 Sending Events to Correlators ... 199

8 Using XML Data ... 205

9 Using SQL Data ... 213

Building and Using Apama Dashboards 10.11.2 13

14 Building and Using Apama Dashboards 10.11.2

I Building Dashboard Clients

1 Introduction to Building Dashboard Clients

■ Web client requirements ... 16

■ About dashboards .. 16

■ Starting the Dashboard Builder .. 17

■ Scenario instance ownership ... 19

■ Using the tutorial application .. 19

Building and Using Apama Dashboards 10.11.2 15

This chapter introduces dashboards and the Dashboard Builder. It also describes how to run the
tutorial application that is a companion to "Building Dashboard Clients".

Web client requirements
Web clients can access Apama dashboards through their web browser. No Apama installation is
required for web clients but they must satisfy the following requirements:

A supportedweb browser version. See the Supported Platformsdocument for the current Apama
version. This is available from the followingweb page: http://documentation.softwareag.com/
apama/index.htm.

Your browser must have cookies enabled for web pages served from the host where you are
running your application server.

If you have a pop-up blocker, be sure to set it to allow pop-ups for web pages served from the
host where you are running your application server.

About dashboards
Dashboards provide the ability to view and interact with Apama applications that expose their
state using DataViews. For more information about using DataViews to make application data
available to clients, see "Making Application Data Available to Clients" in Developing Apama
Applications. Dashboards contain charts and other objects that dynamically visualize the values of
DataView fields. Dashboards can also contain control objects for creating, editing, and deleting
DataView items.

An Apama project typically uses of one or more dashboards. Each dashboard defines a single
display, or view, of information. Dashboards are created in the Dashboard Builder or with the
DashboardGenerationWizard in SoftwareAGDesigner (see “GeneratingDashboards” onpage 617).
Each dashboard is stored in a separate .rtv file. All .rtv files for a given project are stored in a
single directory. This directory also contains a .dashboard file, which records various dashboard
parameters, including the file that is to be used as the dashboard project's main dashboard.

The contents of a dashboard, the charts displayed and the data shown, is determined when the
dashboard is created in the Builder. The Dashboard Viewer provides the ability to use dashboards
created in the Builder. Dashboards can also be deployed as simple web pages.

Deployed dashboards connect to one or more correlators via a dashboard data server or display
server. As the DataView item's fields are updated, update events are sent to all connected
dashboards. When a dashboard receives an update event, it updates its display in real time to
show the behaviour of the DataViews. User interactions with the dashboard, such as creating an
instance, result in control events being sent via the data server or display server to the correlator.

Dashboard Builder communicates with running correlators so that you can see at design time
what a dashboardwill look likewhendeployed.Unlike a deployed dashboard, the Builder connects
directly to the correlators it communicates with. The following diagram illustrates the design
environment for dashboards:

16 Building and Using Apama Dashboards 10.11.2

1 Introduction to Building Dashboard Clients

http://documentation.softwareag.com/apama/index.htm
http://documentation.softwareag.com/apama/index.htm

In order to use Dashboard Builder to create a dashboard for a DataView, you need to start a
correlator and inject the DataView into it. You should use a development correlator to initially
develop dashboards, not a deployed correlator acting on live data.

Dashboard Builder does not support creating dashboards forDataViews that have not been injected
into a correlator.

Starting the Dashboard Builder
You can start the Dashboard Builder from the Windows Start menu, from Software AG Designer,
or from the command line.

Starting Builder from the Windows Start menu

The simplest way to start the Dashboard Builder is from the Windows Start menu.

Select All Programs > Software AG > Tools > Apama n.n > Apama Dashboard Builder
n.n.

When you start the Builder this way, the Builder's current directory is the dashboards directory in
your Apama installation's work directory.

Starting Builder from Software AG Designer
You can use Software AG Designer to open a specified file in the Builder.

Do one of the following:

Building and Using Apama Dashboards 10.11.2 17

1 Introduction to Building Dashboard Clients

Double-click a dashboard file in the navigation pane.

Right-click a dashboard file in the navigation pane, and select Open With > Apama
Dashboard Builder.

Select File > Open File.... In the Open File dialog, navigate to a dashboard file or enter a
pathname, and then click OK.

When you start the Builder this way, the Builder's current directory is the directory that contains
the opened file.

Specifying Dashboard Builder options

You can specify the options that will be used when an Apama project opens Dashboard Builder.
The options correspond to the command line arguments available when you manually start the
Dashboard Builder executable. These options are described in “Command-line options for the
Dashboard Builder” on page 41.

1. In the Project Explorer, right-click the project and select Properties from the pop-up menu.
(You can also select Project > Properties from the menu bar.)

The Properties dialog is displayed.

2. In the left panel, expand Apama and select Dashboard Properties.

3. In the Dashboard Properties panel on the right, select the Dashboard Builder Options tab.

4. On the Dashboard Builder Options tab, in the Dashboard command line arguments field,
specify the desired options. Multiple options should be entered on a single line.

5. Click OK.

Starting Builder from the command line
Dashboard Builder can be started by running the dashboard_builder executable located in the bin
directory of yourApama installation. Thismethod of starting the Builder allows you to pass startup
options on the command line. The Builder startup options are detailed in “Command-line options
for the Dashboard Builder” on page 41.

To run the Builder from the command line

Do one of the following:

Use an Apama Command Prompt or use the apama_envwrapper as described inDeploying
andManaging ApamaApplications in the topic "Setting up the environment using theApama
Command Prompt".

Set your current directory to the Apama bin directory.

18 Building and Using Apama Dashboards 10.11.2

1 Introduction to Building Dashboard Clients

Scenario instance ownership
Scenario instances in a correlator include an attribute identifying the owner of the instance. When
an instance is created through a dashboard (example, for a query), the current user ID is specified
as the owner of the instance. For DataViews, the owner is provided by the EPL that sends the
DataViewAddItem event.

By default, you are only allowed to see and operate on those scenario instances that you own, that
is, the current user ID must match the owner attribute of the instance. There is one exception to
this default: if the owner is specified as "*", all users have access by default.

Using the tutorial application
This guide contains numerous examples that are bundled as a tutorialwith yourApama installation.
Use this tutorial in the Dashboard Builder while you read this guide. Many sections in this guide
instruct you to create or modify dashboards. This “learning by doing” approach is the philosophy
behind this guide.

The Dashboard Builder connects to one or more correlators to discover the DataViews that the
correlators have loaded. Information about these DataViews is then made available for use in the
design of the dashboard.

Follow these steps to run the tutorial:

1. In Software AG Designer, go to Apama's Workbench perspective, and select File > Import.

2. In the Import dialog, expand General, select Existing Projects into Workspace and click
Next.

3. Next to the Select root directory field, click the Browse button, navigate to the samples
directory in your Apama installation directory, select the dashboard_studio folder. Click OK.

4. Make sure the Dashboard Tutorial project is selected.

5. Select Copy projects into workspace and click Finish.

6. In the Workbench Project View, select and display the Dashboard Tutorial project.

7. Click the Start button.

Software AG Designer injects the necessary EPL into the correlator. The instances running in the
correlator provide event data that is displayed in the dashboard. After a few moments, the
Dashboard Builder appears. The tutorial is configured to automatically open the tutorial main
page, which is defined in the file tutorial-main.rtv in
samples\dashboard_studio\tutorial\dashboards under your Apama installation directory.

Building and Using Apama Dashboards 10.11.2 19

1 Introduction to Building Dashboard Clients

Double-clicking a topic displayed on the tutorial main page displays a page providing an example
of the topic. The tutorial uses the tutorial DataView located in the monitors folder in the tutorial
directory. This is a very simple DataView designed for with this guide.

Instances of the DataView are created by specifying values for the input variables Instrument and
Clip Size. The DataView uses a simulated market feed to drive changes in the price of the
instrument. The DataView tracks the Velocity of the Price and issues a simulated trade every
second based on the Velocity being positive or negative. On each trade the number of shares
specified as the Clip Size are bought or sold.

The DataView has six variables.

Instrument: The name of the instrument being traded

Clip Size: The number of shared to trade on each order

Price: The current price of the instrument

Velocity: The current velocity on the instrument's price

Shares: The number of shares currently held of the instrument

Position: The total position in the instrument.

Dashboard Builder provides a large set of objects with a wide range of configurable properties.
This variety enables you to create visually rich and flexible dashboards which best meet the needs
of your applications and users. This guide does not detail every object and every property. Rather,
it presents the most commonly used objects and how they are used.

The information presented in this guide enables you to create dashboards for your DataView. You
should experiment with the objects and properties not presented in this guide to gain even greater
flexibility in your dashboard design.

Do not save your changes to the tutorial as changes might make it impossible to use it as a tutorial
in subsequent sections of this guide. If you have saved it by mistake, you can restore it from your
distribution by re-running the installer.

20 Building and Using Apama Dashboards 10.11.2

1 Introduction to Building Dashboard Clients

2 Using Dashboard Builder

■ Dashboard Builder layout ... 22

■ Specifying data sources ... 28

■ Setting the background properties ... 29

■ About resize modes .. 30

■ Working with objects .. 33

■ Setting Builder options ... 36

■ Setting dashboard options .. 37

■ Command-line options for the Dashboard Builder .. 41

■ Restrictions ... 45

Building and Using Apama Dashboards 10.11.2 21

This chapter illustrates how to use the Dashboard Builder's interactive functionality. The previous
chapter introduced the concepts underlying Apama dashboards. Subsequent chapters detail how
to build dashboards.

Dashboard Builder layout
This section describes each of the panels available in the Dashboard Builder and how to use them
effectively.

The menubar

DescriptionCommandMenu

Operations for opening, saving, and closing dashboards.File

Create a new dashboard.New

Open an existing dashboard file by browsing.Open

Save the dashboard file.Save

Save the dashboard to a specific file, possibly different towhere
it has been saved before.

Save As

Display theBackground Properties dialog for setting the size
and background color or image for the dashboard.

Background
Properties

Print the current contents of the dashboard.Print

Exit Dashboard Builder.Exit

Operations for editing and manipulating dashboard objectsEdit

Displays the Object Palette if not currently displayed.Add

Displays theObject Properties panel if not currently displayed.Object
Properties

Un-does the last Builder operation (that has not been undone
already).

Undo

Re-does the last undone operation (that has not yet been
re-done).

Redo

Copy the currently selected object into the copy buffer.Copy

Paste the object in the copy buffer onto the dashboard.Paste

Paste the data attachments of the object in the copy buffer onto
the selected object. Only properties common to both objects
will be pasted onto the selected object.

Paste Data
Attachments

22 Building and Using Apama Dashboards 10.11.2

2 Using Dashboard Builder

DescriptionCommandMenu

Paste static properties only; do not include those properties
that are attached to data.

Paste Static
Properties

Paste all properties, that is, those that are attached to data as
well as static properties.

Paste All
Properties

Align the specified feature of the currently selected objects. For
example, Align | Top aligns the tops of all currently selected

Align

objects with one another. The object that was selected first
among all the currently selected objects does notmove; all other
objects are aligned with the first-selected object. Top, Bottom,
and Center Horizontal arrange the objects horizontally, one
next to the other. Left, Right, and Center Vertical arrange the
objects vertically, one above the other.

Distribute the currently selected objects so that they are spaced
evenly, either horizontally or vertically, between the

Distribute

first-selected object and the last-selected one. The first and last
objects do not move.

Move the selected object in back of or in front of all other
dashboard objects.

Order

Select all objects on the current dashboard.Select All

Delete the selected object.Delete

Operations for zooming in and out on the dashboard.View

Zoom in on a location in the dashboard. This will switch the
pointer to zoom mode as indicated by the pointer changing to

Zoom In

a crosshair . In this mode you can click an area of the
dashboard to zoom in on it; displaying it in greater detail.
Right-click to exit zoom mode.

Zoom out on a location in the dashboard. This will switch the
pointer to zoom mode as indicated by the pointer changing to

Zoom Out

a crosshair . In this mode you can click an area of the
dashboard to zoom out on it; displaying it in lesser detail.
Right-click to exit zoom mode.

Zoom in on an area in the dashboard. This will switch the
pointer to zoom mode as indicated by the pointer changing to

Zoom Rect

a crosshair . In this mode you can click and drag to select an
area of the dashboard to zoom in on. Right click to exit zoom
mode.

Building and Using Apama Dashboards 10.11.2 23

2 Using Dashboard Builder

DescriptionCommandMenu

Pan the dashboard to show areas not currently displayed. This
will switch the pointer to zoommode as indicated by the pointer

Pan

changing to the pan pointer . In this mode you can click and
drag the dashboard to reveal areas not displayed. Right-click
to exit pan mode. It is not possible to pan if 100% of the
dashboard is visible.

Make the entire dashboard visible.100%

Operations for defining dashboard options and changing
preferences.

Tools

Displays the Application Options dialog for defining data
sources and setting other runtime options for deployed
dashboards.

Options...

Displays the Builder Options dialog for setting Dashboard
Builder, such as grid characteristics. When snap-to-grid is

Builder
Options...

enabled, object can be positioned only along grid lines, which
facilitates object alignment and distribution.

Displays theFunctionspanel for definingdashboard functions.Functions

Displays theVariables panel for defining dashboard variables.Variables

Displays the Include Filesdialog for including dashboard files
in the current dashboard.

Include Files

Displays the Object List panel, which lists the name, class
name, and position of each object on the current dashboard.

Object List

Preview the current dashboard, so you can test interactive
functionality such text entry. Save your changes to enable this
item.

Preview Window

Pause the automatic update of the dashboard.Whennot paused,
the dashboard automatically updates as data changes; when

Pause Display

paused, the dashboard does not. When paused, clicking on the
dashboard causes it to update.

Reset window size and panels to their default configuration.Reset Window
Layout

Information about Apama and Dashboard Builder.Help

Opens theApamadocumentation to the Introduction inBuilding
Dashboard Clients.

Help Contents

Displays a list of the Builder options that you can supply at the
command line.

Command Line
Options

24 Building and Using Apama Dashboards 10.11.2

2 Using Dashboard Builder

DescriptionCommandMenu

Displays information about this version of the Dashboard
Builder.

About

The toolbar
The toolbar contains a number of icons that correspond to commonly used operations. Note that
all the operations accessible from the toolbar are also available on the menu bar. The operations
are:

DescriptionButton

Create a new dashboard file.

Open an existing dashboard file.

Save the current dashboard file.

Preview the current dashboard. Save your changes to enable this tool.

Copy the selected object to the copy buffer.

Paste the object in the copy buffer onto the dashboard.

Paste the data attachment properties.

Paste the static properties.

Paste all properties.

Delete.

Undo.

Redo.

Show or hide grid.

Enable or disable snap to grid.

Select by extent.

Building and Using Apama Dashboards 10.11.2 25

2 Using Dashboard Builder

DescriptionButton

Zoom in on the dashboard.

Zoom out on the dashboard.

Display the Object Palette.

Display the Object Properties panel.

Display the Application Options dialog.

The canvas
The canvas is where you lay out the objects for a dashboard. Objects can be added to the canvas,
moved, and resized. As objects are attached to data sources, the objects will update in real time
to reflect changes in the data. This allows you to see how the objectswill appearwhen the dashboard
is deployed.

The Object Palette
The Object Palette presents all object types that may be added to a dashboard. It is organized into
separate tabs for different categories of objects.

The Object Properties panel
The Object Properties panel displays the properties and their values for the selected object on the
canvas. If no object is selected, the properties panel is empty. The set of properties displayed
depends on the type of object selected.

26 Building and Using Apama Dashboards 10.11.2

2 Using Dashboard Builder

The type of object is identified following the Object Class Name label at the top of the properties
panel; in this case the type is obj_text01.

To edit a property, click the property value. Some properties allow you to type in a value, some
provide a drop down list of choices, and some present a “…” button for displaying a dialog for
setting the property value.

Right-click a property name to display a menu for the property, for example:

Building and Using Apama Dashboards 10.11.2 27

2 Using Dashboard Builder

Property values can be copied and pasted onto other properties. Properties can also be attached
to data sources as detailed in subsequent chapters.

Properties are color coded as follows:

Blue indicates a static property that cannot be attached to data.

Green indicates a property that has been attached to data.

Black indicates a property that may be attached to data.

Specifying data sources
Dashboard Builder supports building dashboards that display data for DataViews in a correlator
as well as data from a properly formatted XML file.

To use a correlator or an XML file, you need to make it a known data source to the Dashboard
Builder. The topics below detail how to define data sources in the Builder.

See also “Using SQL Data” on page 213 for information on JDBC data sources.

Specifying correlators
You must specify the correlator in which the scenario is running before you create a dashboard.

To create a dashboard for a scenario in the Dashboard Builder

1. From the Tools menu select Options.

2. In the tab list on the left of Applications Options dialog select Apama.

The Correlator subtab displays the correlators known to the Builder. Initially only the default
correlator for the localhost will be known. For each correlator the following fields are specified

Logical name – The name that will be used to refer to the correlator. This name cannot be
changed once a correlator has been added.

Host – The host of the correlator.

Note:
Non-ASCII characters are not allowed in host names.

Port – The port of the correlator.

Raw channel – Option to use the raw channel for communication with the correlator. By
default the data channel is used.

3. Select the entry for localhost and click the Edit button.

The Correlator Properties dialog allows you to specify the properties of a correlator.

28 Building and Using Apama Dashboards 10.11.2

2 Using Dashboard Builder

4. Click Cancel to close the Correlator Properties dialog.

If you are using the tutorial dashboard, do not change the properties of the default correlator
unless you have loaded the tutorial DataView in a correlator running on a different host or on
a different port.

5. Use the Add button to add a new correlator and the Delete button to delete the selected
correlator.

Specifying XML data sources
Dashboard Builder enables you to augment your dashboard by using XML data files as a data
source in addition to Apama DataView. The properties of dashboard objects can be attached to
data elements in XML files. See “Using XML Data” on page 205, for details on using XML data
sources.

Activating data source specifications

To activate data source specifications

In the Application Options dialog, click the OK or Apply to make any changes active for the
current invocation of the Builder. This does not save them for future invocations.

Saving data source specifications

To save data source specifications

Click the Save button to save options settings including data source definitions as detailed in
section “Saving options” on page 40.

Setting the background properties
Background properties control the size, color, and an optional background image for a dashboard.

To set background properties

1. Select Background Properties from the File menu in the menu bar.

The Background Properties dialog appears.

2. Set the fields Model Width and Model Height to specify the size of the dashboard. If the
dashboard is made smaller than its current size, and the resize mode is crop (see below), one
or more objects may no longer be visible.

Building and Using Apama Dashboards 10.11.2 29

2 Using Dashboard Builder

3. Click on Model Properties.

The Object Properties panel displays additional properties for the dashboard background.

Use resizeHeightMin and resizeWidthMin to set the minimum display size. For web-based
dashboards, scrollbars are presentwhen the size is below theminimum. In Viewer, dashboards
cannot be resized below the minimum.

4. To use an image as the background for a dashboard, check the Use Background Image check
box, and either type in the relative path name to a .gif, .jpg, or .png image file or select an
image file from the Image Name drop down list.

The drop down list includes Image files that are located either in the same directory as the
dashboard or in a subdirectory of the dashboard's directory.

Note:
If an image is used as the background for a dashboard, the dashboard is resized to the
dimensions of the image, and the Model Width and Model Height fields are disabled.

5. To set a non-default resize mode, select an item from the Resize Mode drop down list. Resize
modes are explained in “About resize modes” on page 30.

6. To set a non-default number of grid rows (which is used in Layout resize mode when an
object's dock property is set to Fill), enter a value greater than 1 in the Dock Fill Rows field.
See “About resize modes” on page 30 for detailed information.

7. To set a non-default number of grid columns (which is used in Layout mode when an object's
dock property is set to Fill), enter a value greater than 0 in the Dock Fill Columns field. See
“About resize modes” on page 30 for detailed information.

About resize modes
The Dashboard facility supports three window resize modes:

Layout:When awindow in thismode is resized, the display is resized to fit the available space.
The objects in the display are laid out according to their anchor and dock properties (see below).
The window is not forced to maintain its aspect ratio. Objects that are not docked or anchored
move relative to their offset from the top left corner of the display. For example, if the object
is centered on the display, the object moves 50% of the resize amount. If the object is centered
at 3/4 of the display, it moves 75% of the resize amount.

Scale: This is the default for the Dashboard Builder and Dashboard Viewer, as well as for all
web-deployed dashboards. When a window in this mode is resized, the display and all of the
objects in it are scaled to fit the available space. The window is forced to maintain its aspect
ratio.

Crop: This is the default for display server deployments. When a window in this mode is
resized, the display stays the same size. If the window is bigger than the display, empty space

30 Building and Using Apama Dashboards 10.11.2

2 Using Dashboard Builder

appears around the display. If the window is smaller than the display, scrollbars appear. The
window is not forced to maintain its aspect ratio.

All three resize modes support zooming the display (right-click and select Zoom In, Zoom Out,
or Zoom Rect). In both Layout and Scale modes, if the window is resized while the display is
zoomed, the resize further zooms the display.

In the Dashboard Builder, the window resize modes are only applied to drill downwindows. The
main window of the Dashboard Builder is always in crop mode.

You can set the window resize mode for each dashboard in the Background Properties dialog.
If set to Default, the application level resize mode (see below) is used. Otherwise, the specified
resize mode is used for that display. It is recommended that you set the resize mode on a
per-dashboard basis, by using the Background Properties dialog.

The application levelwindow resizemode can be set in theGeneral tab of the Application Options
dialog or on the command line with the option -apama.resizeModemode, wheremode is layout,
scale, or crop.

If Default is selected, the default window resize mode is used. The default is Crop for display
server (thin client) deployments, and Scale for local (Dashboard Viewer) deployments, as well
as for Dashboard Builder.

If thewindow resizemode is changed in theApplication Optionsdialog in theDashboard Builder,
the new value is only applied to new windows that are opened. Windows that are already open
do not change modes.

Two newproperties have been added to theObject group of all objects in order to support Layout
mode:

dock: Select None (default), Top, Left, Bottom, Right, or Fill.

When the dock property on an object is set to one of the sides (Top, Bottom, Left, or Right),
it is moved to the specified side of the display and stretched to fill that side of the display. If
the size of the display changes, the docked objects stretch to fill the available space. For example,
if the dock property is set to Top, the object is moved to the top of the display and the width
of the object changes to fill the width of the display. If the display is then made wider, either
by changing the Background Properties on the display or by resizing the window in Layout
mode, the width of the object changes to match the new width of the display.

Multiple objects can be docked to the same side of the display. In this case, the first object is
docked against the side of the display, the next object is docked against the edge of the first
object, and so on.

When a display hasmultiple side-docked objects, the object order controls how the dock layout
is applied. The layout is applied to the object list from back to front. For example, if the first
object in a display is docked to the top, and the second object is docked to the left, the first
object fills the entire width of the display, and the second object fills the left side of the display
from the bottom of the first object to the bottom of the display.

When the dock property on an object is set to Fill, it fills the available space left in the display
after all of the side-docked objects have been positioned. When multiple objects in a display

Building and Using Apama Dashboards 10.11.2 31

2 Using Dashboard Builder

have the dock property set to Fill, those objects are laid out in a grid in the available space. By
default, the grid has one row and as many columns as objects. You can change the grid rows
and columns in the Background Properties dialog. If both are set to 0, the default is used. If
both the rows and columns are specified, the row value is used and the number of columns is
calculated based on the number of objects. If the rowvalue is 0 and the columnvalue is specified,
the number of rows is calculated based on the number of objects. The objects are laid out left
to right, top to bottom according to the order of the objects in the display. The objects with the
dock property set to Fill are always laid out after all of the other docked objects.

Once an object is docked, there are some limitations on how you can modify that object in the
Dashboard Builder. You cannot move a docked object by dragging or changing objX and objY
in the property sheet. Side-docked objects can only be resized toward the center of the display
(for example, if the object is docked to the top of the display, it can only be resized to be taller).
Fill-docked objects cannot be resized at all. You cannot resize any docked objects using the
objWidth or objHeight properties in the property sheet. You must drag on the valid resize
handle to resize it. It is not moved by Align or Distribute. Objects can be aligned against a
docked object, but the docked object is not moved to align against another object. Docked
objects are ignored by Distribute.

Note that when an object is docked, the properties objX, objY, objWidth, and objHeightmay
change. For example, suppose that you instantiate a General object from the palette, and the
properties of the object are as follows: objX:250, objY:250, objWidth:64, and objHeight:48.When
you set the dock property to Top, the properties are modified as follows: objX:368, objY:520,
objWidth:736, and objHeight:48 (no change). If you then change the dock property to Left, the
objWidth isn't changed, but the objHeight changes so that the object fills the entire height and
width of the display. When you change the dock setting to None, these properties stay the
same.

Only objects that support the objWidth and objHeight properties have the dock property.

anchor: Select zero or more of Top, Left, Bottom, and Right.

The anchor property is only applied when the display is resized either by changing the
Background Properties on the display or by resizing thewindow inLayoutmode. The anchor
property anchors the specified side of the object to the same side of the display. When the
display resizes, the number of pixels between the specified side of the object and that side of
the display remains constant. If an object is anchored on opposite sides (that is, both Top and
Bottom or both Left and Right), the object is stretched to fill the available space.

Only objects that support the objWidth and objHeightproperties support anchoring on opposite
sides. If an object has the dock property set, the anchor property is ignored.

The composite object supports both dock and opposing anchor sides, but does not behave like
other objects if the property resizeMode is set to Size to Display. In this case, the composite size
is controlled by the size of the display that it contains, so any changes to the width or height of
the object result in the compositemoving, not resizing. The composite object should not be docked
if resizeMode is set to Layout.

32 Building and Using Apama Dashboards 10.11.2

2 Using Dashboard Builder

About resize modes and display server deployments
The behavior of thin client, display server deployments differs from the description above in the
following cases:

When the initial display is opened in the thin client, the browser frame is not resized to match the
display size as it is, for example, in the Dashboard Viewer.

In cropmode, the display appears in its full size, and if the browser frame is larger than the display,
unused space appears below and to the right of the display. In addition, if the browser frame is
smaller than the display, scrollbars appear.

In layout and scale modes, the display briefly appears in its default size, and then resizes to fit the
browser frame size. This may also occur if another tab is opened in the browser, the browser is
resized, and then the browser tab that contains the thin client is re-opened.

In layout and scale modes, after the browser frame is resized, table objects revert to their original
states. For example, if the user clicks on a column header in a table in order to sort the column,
after a resize the table reverts to its default sort. Similarly, if the user scrolls in a table or resizes
the legend, after a resize the scrollbars and legends revert to their initial position and size.

In scale mode, there is unused space in the browser frame. This is because the display uses the
largest four-by-three rectangular area of the frame, to ensure equal scaling in both dimensions.
The unused area has the same color as the display background, but does not have a gradient fill.

About resize modes and composite objects

A new property, resizeMode, has been added to the Composite category of the composite object.
When set to Size to Display (the default), the size of the composite is determined by the size of
the display that it contains, and the composite cannot be resized. If set to Layout, the composite
can be resized and the objects in the composite display are laid out according to their anchor and
dock properties.

If resizeMode is set to Layout, the dock and anchor properties may be set on the composite so that
it resizes during a window resize if the window resize mode is also set to Layout. If the window
resize mode for the display containing the composite is set to Scale, the composite object does a
scale instead of a layout.

Note that the dock and anchor properties should not be setup to stretch the composite object if the
resizeMode is Size to Display. This causes the object to toggle back and forth between stretched
and not stretched when the window is resized in Layout mode.

Working with objects
This section details how to lay out a dashboard by adding objects to the canvas and setting their
position and size.

Building and Using Apama Dashboards 10.11.2 33

2 Using Dashboard Builder

Adding objects to a dashboard

To add an object to a dashboard

1. Select the object type that you want to add by clicking on it in the Object Palette.

2. Click on the canvas to add the object.

You can add more objects of the same type by clicking again on the canvas—you don't need to
select the same object type again. When you select an object from the Object Palette and then
position the cursor over the canvas, the cursor changes to a crosshairs pointer. The appearance of
the crosshairs pointer indicates that Builder is in add mode, and clicking will add an object to the
canvas. You can adjust the position and size of the object after you have added it.

Selecting an object
Click an object on the canvas to select it. The selected object is indicated by a rectanglewith handles.

The properties of the selected object are displayed in the Object Properties panel. Actions such as
delete operate on the selected object.

To select multiple objects hold down the Shift key while clicking on the objects.

Note:
The Object Properties panel will display the properties of the last selected object.

Resizing objects
To resize a selected object, drag a handle of the selection rectangle.

34 Building and Using Apama Dashboards 10.11.2

2 Using Dashboard Builder

You can also set the size of an object by editing the objWidth and objHeight properties.

Moving objects
To move a selected object, drag the interior of the selection rectangle.

You can also set the position of an object by editing the objX and objY properties.

The dashboard canvas uses a Cartesian coordinate system, with the origin (0, 0) in the bottom left
corner of the dashboard. The objX and objY properties are relative to the origin.

The objX and objY properties identify the position of the center of an object. An object positioned
at (0, 0) will extend off the left and bottom of the canvas.

Copy and pasting objects
To copy an object, right-click it to display the object popup menu.

Building and Using Apama Dashboards 10.11.2 35

2 Using Dashboard Builder

When you select Copy, Dashboard Builder places the object into the copy buffer. If the object is
already selected, you can also press Ctrl-C or select Copy from the Edit menu in the menu bar.

OnceDashboard Builder has placed an object into the copy buffer, you can add a copy of the object
to the canvas by selecting Paste from the popup menu (or the Edit menu in the menu bar) or by
pressing Ctrl-V, and then clicking on the canvas. Note that when you select Paste or pressCtrl-V,
the cursor to changes to the + pointer.

To copymultiple objects, select each while holding down the Shift key and then select Copy from
amenu or pressCtrl-C. When you perform a paste, Dashboard Builder adds a copy of each object
to the canvas.

Deleting objects

To delete an object, right-click the object and then select Delete from the popup menu. You can
also click it to select it, and then press the Delete key or select the Delete option from the Edit
menu in the menu bar. If multiple objects are selected, each will be deleted.

Setting Builder options
To specify Builder options, select Builder Options from the Tools menu.

TheGeneral tab allows you to specify the size of the list for history and recently openeddashboards,
keyboard settings to move objects on the canvas, and set the style of the objects on the palette.

You can select the Palette Objects Style using the radio buttons: Flat and Classic.

Flat. The flat style features awhite background, no gradient fills or 3D effects, and fewer visible
edges and borders around objects. It is intended to provide a simpler and cleaner look.

Classic. The classic style features a gray background with gradient fills and other 3D effects.

TheGrid tab allows you to specify properties of the grid that aids layout of the visualization objects
on the Builder canvas.

36 Building and Using Apama Dashboards 10.11.2

2 Using Dashboard Builder

The values set in this dialog are automatically restored on application startup and saved on
application exit.

Setting dashboard options
You can specify dashboard options (user preferences as well as data source definitions) with the
Applications Options dialog, described in this section, or with options to the Dashboard Viewer
executable (see “Using the Dashboard Viewer” on page 683).

To display theApplicationOptions dialog, selectOptions from the Toolsmenu. TheApplications
Options dialog box appears.

Setting options in the General tab group

To set options in the General tab group

Select General in the tab group pane (on the left of the dialog).

The General tab group appears.

Setting options in the General tab

1. In theUpdate Period field, enter the rate, inmilliseconds, at which the dashboardwill refresh.
Setting this option to a larger number will reduce the CPU use by the dashboard but at the
expense of reducing the frequency with which the dashboard updates.

2. In the Enable Data field, check to enable data updates. When data is not enabled, incoming
data is ignored.

3. Check the Redraw After Data Update check box to specify data-driven redraws.

Data from an asynchronous data source can arrive at any time between update periods. This
means there could be a delay between the time an asynchronous data source receives a data
update and when the display showing this data is updated. If selected, displays containing
data from asynchronous data sources that have changed since the last update will be redrawn
at the rate specified in the Max Data Redraw Rate field. Displays where no data has changed
will only be redrawn on the update. If not selected, displays are only redrawn based on the
update period.

4. In theMax Data Redraw Ratefield, enter themaximumdata redraw ratewhendata is updated.
The default is 500 milliseconds.

5. In the Confirm Commands field, set the confirm policy for all command strings. Overrides
confirm policies set on individual objects.

Building and Using Apama Dashboards 10.11.2 37

2 Using Dashboard Builder

6. Check the Drill Down Windows Always on Top check box if you want windows displayed
as the result of drilldowns to always be on top of their parent window.

7. Check the Enable Antialiasing check box to smooth graphics displayed in the dashboard.

8. Check theSingle-Click for Drill Down Commands to perform drill downswith a single click;
not a double-click.

9. In the Maximum Displays in Composite Object Cache field, enter the display caching for
composite objects.

Setting options in the Substitutions tab

TheSubstitutions tab specifies settings that allows substitutions to be added, changed, or deleted.

Setting options in the data server tab

If you are an advanced user, the Data Server tab allows you to associate a logical name with the
data server at a given host and port. Advanced users can then use the logical names to specify the
data server to use for a given attachment or command. (TheAttach to Apama andDefine Apama
Command dialogs include a Data Server field that can be set to a server's logical name.)

The logical names defined in this tab are used by default for live dashboards viewed with Builder
as well as for deployed dashboards. They can be overridden with the --namedDataServer option
to the builder, viewer, or server executables. See “Working with multiple data servers” on page 60
for more information.

Follow these steps to define data server logical names:

1. Select Options from the Tools menu.

The Applications Options dialog box displays.

2. Select the Data Server tab in the General tab group.

3. Click the Add button to add a definition to the list.

The Named Server Configuration dialog appears.

4. Fill in the dialog fields:

Name: Logical name of your choosing

Host: Host of the data server whose logical name you are defining

Port: Port of the data server whose logical name you are defining

To edit or delete a logical-name definition, select the definition in the Application Options
dialog and click the Edit or Delete button.

38 Building and Using Apama Dashboards 10.11.2

2 Using Dashboard Builder

Setting options in the Custom Colors tab

TheCustom Colors tab allows you to specify custom colors that you can use to set object property
values. (You set color-valued object properties with the Color Chooser window, which has a
Standard Colors tab and a Custom Colors tab.) Both standard and custom colors are
pre-populated when Apama is installed, but you can supplement or modify the custom colors
with the Custom Colors tab of the Application Options dialog.

1. Select Options from the Tools menu.

The Applications Options dialog box is displayed.

2. Select the Custom Colors tab.

3. Click the Add button to add a custom color to the list.

The Select Color dialog appears.

4. To specify a color, select one of the following tabs:

Swatches: Standard Java color palette. Mouse over any swatch to view the RGB values
for that color

HSV: Select color choice by hue, saturation, value, and transparency

HSL: Select color choice by hue, saturation, lightness, and transparency

HSB: Color selection by hue, saturation and brightness

RGB: Color selection by red, green and blue intensity

CMYK: Select color by cyan, magenta, yellow, and black intensity well as alpha level

To delete a color, click the Delete button.

Note:
If an object property is defined by a custom color and you delete that color, the color setting for
that object property will revert to white.

Apama stores custom colors according to Color Index numbers, not RGB values. Therefore if an
object property is defined by a custom color and you change the Color Index number, the color
setting for that object property will revert to white. Color Index numbers must be greater than
5000.

To edit a color definition, in the Color fields click the ... button of a selected color to edit that color
definition with the Select Color dialog.

Object limitations: Some objects (for example, the bar graph legend, pie wedges and legend, and
some control objects) cache their colors and therefore do not updatewhen a custom color definition
changes. To see the color change for these objects, restart Builder or reload the display.

Building and Using Apama Dashboards 10.11.2 39

2 Using Dashboard Builder

Setting options in the Apama tab group

The Apama tab allows you to define correlators and specify data management options. For
information on the Correlators sub tab, see “Specifying correlators” on page 28.

For information on the Data sub tab, see “Specifying data sources” on page 28.

Setting options in the SQL tab group

The SQL tab group has a single tab, SQL, which allows you to add or remove databases for use
in Dashboard Builder and set a default database .

For more information on setting SQL options, see “Specifying application options” on page 221.

Setting options in the XML tab group

The XML tab group has a single tab, The XML tab, which allows XML data files to be defined as
data sources for use in Dashboard Builder.

These options are detailed in “Using XML Data” on page 205.

Saving options

Clicking the OK or Apply button saves options for future use.

Dashboard Builder saves options to the file OPTIONS.ini. If Builderwas startedwith a --optionsFile
argument, the options are saved to the specified location. Otherwise, if the Builder current directory
is your project's dashboards directory or the dashboards directory in your Apama installation's
work directory, the options and are saved there. Otherwise, clicking OK brings up a dialog that
allows you to specify the location to which to save the options.

Dashboard Builder saves custom colors to the file COLORS.ini. If the Builder current directory is
your project's dashboards directory or the dashboards directory in your Apama installation's work
directory, the colors (if modified) are saved there. Otherwise, clicking OK brings up a dialog that
allows you to specify the location to which to save the custom colors.

If Builder was started without a --optionsFile argument, it uses the options file in its current
directory, if present. Otherwise, it uses the options file in the dashboards directory in your Apama
installation's work directory. In addition, Builder uses the colors file in its current directory, if
present. Otherwise, it uses the colors file in the dashboards directory in your Apama installation's
work directory, if present. Otherwise it uses the colors file in the lib directory of your Apama
installation (which contains your Apama installation's initial set of custom colors).

40 Building and Using Apama Dashboards 10.11.2

2 Using Dashboard Builder

Command-line options for the Dashboard Builder
The Dashboard Builder supports options that can be specified on the start-up command line to
override the default values used by the builder. The executable for the Dashboard Builder is
dashboard_builder, which can be found in the bin directory of the Apama installation.

Synopsis

To pass start-up options to the Dashboard Builder, run the following command:
dashboard_builder [options] [rtv-file-path]

If you specify the full pathname of an rtv file, the builder will open it.

When you run this command with the -h option, the usage message for this command is shown.

Options

The dashboard_builder executable takes the following options:

DescriptionOption

Sets the host and port for a specified logical data server name.
This overrides the host and port specified by the Dashboard

-B logical-name:host:port |
--namedServer
logical-name:host:port Builder for the given server logical name. This option can occur

multiple times in a single command. See “Working with
multiple data servers” on page 60 for more information.

Sets the correlator host and port for a specified logical correlator
name. bool is one of true and false, and specifies whether to

-c logical-name:host:port:bool
| --correlator
logical-name:host:port:bool use the raw channel for communication. This overrides the

host, port, and raw-channel setting specified by theDashboard
Builder for the given correlator logical name. See “Changing
correlator definitions for deployment” on page 625. This option
can occur multiple times in a single command. For example:
-c default:localhost:15903:false
-c work1:somehost:19999:true

These options set the host and port for the logical names
default and work1.

Start with the dashboard found in the specified directory.-D directory | --dashboard
directory

Specifies whether to purge all trend data when a DataView
item is edited. bool is one of true and false. If this option is

-E bool | --purgeOnEdit bool

not specified, all trend data is purged when an instance is
edited. In most cases, this is the desired mode of operation.

Building and Using Apama Dashboards 10.11.2 41

2 Using Dashboard Builder

DescriptionOption

Exclude instanceswhich are not owned by the user. This option
applies to all dashboard processes. Default is false for
Dashboard Builder and true for the other dashboard processes.

-F arg | --filterInstance arg

Exception: when the Dashboard Viewer is connecting to a
dashboard server, the default is true and cannot be overridden.

Full pathname of the file in which to record logging. If this
option is not specified, the options in the log4j properties file

-f file | --logfile file

are used. See also "Text internationalization in the logs" in
Deploying and Managing Apama Applications.

Trend configuration file for controlling trend-data caching.-G file | --trendConfigFile file

Emit usage information and then exit.-h | --help

Full pathname of the JAAS initialization file to be used by the
data server. If not specified, the data server uses the file
JAAS.ini in the lib directory of your Apama installation.

-J file | --jaasFile file

XML data source file. If file contains static data, append :0 to
the file name. This signals Apama to read the file only once.

-L file | --xmlSource file

Correlator-connect mode. mode is one of always and asNeeded.
If always is specified all correlators are connected to at startup.

-m mode | --connectMode mode

If asNeeded is specified, the data server connects to correlators
as needed. If this option is not specified, the data server
connects to correlators as needed.

Set the component name for identification in the correlator.
The default name is Dashboard Builder: username.

-N name | --name name

Do not display splash screen in startup.-n | --noSplash

Use the specified OPTIONS.ini file at startup.-O file | --optionsFile file

Maximumnumber of decimal places to use in numerical values
displayed by dashboards. Specify values between 0 and 10, or

-P n | --maxPrecision n

-1 to disable truncation of decimal places. A typical value for
n is 2 or 4, which eliminates long floating point values (for
example, 2.2584435234). Truncation is disabled by default.

Configures SQL Data Source access. options has the following
form:

-q options | --sql options

[retry:ms | fail:n | db:name | noinfo |
nopererr | quote]

retry: Specify the interval (inmilliseconds) to retry connecting
to a database after an attempt to connect fails. Default is -1,
which disables this feature.

42 Building and Using Apama Dashboards 10.11.2

2 Using Dashboard Builder

DescriptionOption

fail: Specify the number of consecutive failed SQL queries
after which to close this database connection and attempt to
reconnect. Default is -1, which disables this feature.

db: Specify the logical name of the database as specified in the
builder's SQL options.

nopererr: SQL errors with the word “permission” in themwill
not be printed to the console. This is helpful if you have selected
the Use Client Credentials option for a database. In this case,
if your login does not allow access for some data in their
display, you will not see any errors.

quote: Encloses all table and column names specified in the
Attach to SQLData dialog in quoteswhen an SQLquery is run.
This is useful when attaching to databases that support quoted
case-sensitive table and column names. If a case-sensitive table
or column name is used in the Filter field, or you are entering
an advanced query in the SQL Query field, they must be
entered in quotes, even if the -sqlquote option is specified.

Specifieswhether to purge all DataViewdatawhen an instance
or item is removed. bool is one of true and false. If this option

-R bool | --purgeOnRemove bool

is not specified, all DataView data is purged when an instance
or item is removed.

Specifies a value to substitute for a given dashboard variable.
This can be used to parameterize a dashboard at startup. This

-S variable:value | --sub
variable:value

option can occur multiple times in a single command. For
example:
-S $foo:hello -S $bar:can't -S $tom:"my oh my"
-S $jerry:"\"yikes\""

If the value contains a space, enclose the value in double quotes.
If the value contains a double quote, you must escape it by
using a backslash character (\).

Maximum depth for trend data, that is, the maximum number
of events in trend tables. If this option is not specified, the

-T depth | --maxTrend depth

maximum trend depth is 1000.Note that the higher you set this
value, themorememory the data server requires, and themore
time it requires in order to display trend and stock charts.

Text for the title bar of the Dashboard Builder main window.-t value | --title value

Data update rate in milliseconds. This is the rate at which the
data server pushes new data to deployed dashboards in order

-u rate | --updateRate rate

to inform them of new events received from the correlator. rate
should be no lower than 250. If the Dashboard Viewer is

Building and Using Apama Dashboards 10.11.2 43

2 Using Dashboard Builder

DescriptionOption

utilizing too much CPU, you can lower the update rate by
specifying a higher value. If this option is not specified, an
update rate of 500 milliseconds is used.

Emit program name and version number and then exit.-V | --version

Logging verbosity. level is one of FATAL, ERROR, WARN, INFO,
DEBUG, and TRACE. If this option is not specified, the options in
the log4j properties file will be used.

-v level | --loglevel level

Bydefault, theDashboardBuilderwill display awarning dialog
when the connection to a correlator is lost. Specify false to
disable the display of this dialog.

-w bool | --disconnectWarning
bool

Full pathname of the JAAS initialization file to be used by the
data server. If not specified, the data server uses the file
EXTENSIONS.ini in the libdirectory of yourApama installation.

-X file | --extensionFile file

Add an index for the specified SQL-based instance table with
the specified compound key. table-name is the name of a

-x table-name:key-list |
--queryIndex
table-name:key-list DataView. key-list is a comma-separated list of variable names

or field names. If the specified DataView exists in multiple
correlators that are connected to the dashboard server, the index
is added to each corresponding data table. Example:
--queryIndex Products_Table:prod_id,vend_id

You can only add one index per table, but you can specify this
option multiple times in a single command line in order to
index multiple tables.

Make SQL-based instance tables available as data tables for
visualization attachments. See “Attaching Dashboards to
Correlator Data” on page 47.

-Y | --enhancedQuery

Default time zone for interpreting and displaying dates. zone
is either a Java time zone ID or a custom ID such as GMT-8:00.

-z zone | --timezone zone

Unrecognized IDs are treated as GMT. See “Time Zone ID
Values” on page 695 for the complete listing of permissible
values for zone.

Set DataView exclusion filters. This option can occur multiple
times in a single command.

--exclusionFilter val

Set DataView inclusion filters. This option can occur multiple
times in a single command.

--inclusionFilter val

44 Building and Using Apama Dashboards 10.11.2

2 Using Dashboard Builder

Restrictions
This section lists the known restrictions of using dashboards.

The substitution names should not contain any of the following characters:

Colon (:), pipe (|), period (.), comma (,), semi-colon (;), equals (=), brackets (< >, (), { }, []),
quotation marks (' "), ampersand (&), slashes (/ \)

When a function is attached to the enabledFlag property of a check box, the DashboardViewer
executes the actionCommand first and then evaluates the function. In the thin client, however,
the function is evaluated first, and when the function returns 0, the actionCommand attached to
the check box is never executed.

The workaround for this issue is to add two check boxes, one stacked above the other, in
z-order.

The lower has objName = checkbox_enabled, enabledFlag = true, label = "Checkbox",
actionCommand = "system browseUrl ...", and sets $foold = 1.

The upper has objName = checkbox_disabled, enabledFlag = false, label = "",
actionCommand = "system browseUrl ...", and visFlag is attached to $foold.

So when the display is opened and $foold = "", then checkbox_disabled is invisible, and the
user can click on checkbox_enabled to execute the command and set $foold = 1. That makes
checkbox_disabled visible, which obscures checkbox_enabled so the user cannot click on it
afterwards.

Building and Using Apama Dashboards 10.11.2 45

2 Using Dashboard Builder

46 Building and Using Apama Dashboards 10.11.2

2 Using Dashboard Builder

3 Attaching Dashboards to Correlator Data

■ Dashboard data tables ... 48

■ Scenario instance ownership ... 52

■ Creating a data attachment .. 52

■ Using table objects ... 64

■ Using pie and bar charts .. 74

■ Using trend charts .. 77

■ Using stock charts .. 95

■ Localizing dashboard labels ... 110

■ Localizing dashboard messages .. 114

Building and Using Apama Dashboards 10.11.2 47

A key feature of Dashboard Builder is the ability to attach visualization objects such as tables and
charts to live correlator data. This feature enables dashboards to display correlator activity in real
time.

You can attach visualization objects to correlator data (for example, DataView data). For more
information, see "Making Application Data Available to Clients" inDeveloping Apama Applications.

This chapter describes the data that is available for attachment, and it describes the most common
objects that can be attached to the data. The examples focus on a sample trading DataView (see
“Using the tutorial application” on page 19). Dashboard Builder provides many objects that can
be included in a dashboard. This chapter does not detail each one for both DataView data, but
upon completion of this chapter you should be comfortable with using any Dashboard Builder
object with a DataView.

Dashboard data tables
To create dashboards, you should have an understanding of howApamamanages correlator data
and makes it available for attachment to the object properties.

Apama makes DataView data available to dashboards as tabular data. Multiple data tables may
be necessary for a dashboard. Any data tablemay havemultiple objects in the dashboard attached
to it. The relationship between dashboard objects and data tables is illustrated in the following
diagram.

When a DataView field changes, the correlator generates an update event with details of the
change. When this event is received by a dashboard, the dashboard updates one or more data
tables and the changes are reflected in all attached objects.

Different data tables are used for each DataView. Data tables are not created until the first
attachment requiring the data table is made. In the Dashboard Builder this happens when the
attachment is defined. For a deployed dashboard, this happens when the dashboard is launched
or loaded.

48 Building and Using Apama Dashboards 10.11.2

3 Attaching Dashboards to Correlator Data

Once created, a data table exists for the life of the Builder process or deployed-dashboard session,
although it may be purged of data if the corresponding DataView definition is deleted from the
correlator or if the DataView item is deleted.

Apama filters the DataView items a user can see. Only those instances that the user is authorized
for will be added to the user's data tables. By default, these are the DataView instances created
with the same "owner" as the current user. See “Administering Dashboard Security” on page 659
for more information on dashboard authorization.

Query instance table
A query instance table contains values of all input parameters for instances of an Apama query.
The columns of this table correspond to the input parameters of the query. Several additional
columns are added to each row of the table to facilitate dashboard specific table filtering.

Correlator status table
A single correlator status table contains status information about each correlator being used by a
dashboard. It is useful when you want to display status information about correlator connections
in a dashboard.

The following table illustrates the contents of the correlator status table.

statusporthostlogical name

connected15903localhostdefault

connected15903linux23production

Here two correlators are in use and each is connected.

Data server status table
A single data server status table contains status information for the data server being used by a
dashboard. It is usefulwhen youwant to display status information about the data server connection
in a dashboard.

The table below illustrates the contents of the data server status table.

ConfigReceiveTimeReceiveCountConnectionStringStatusName

<data server
version>

Dec 31, 1969
6:00...

0localhost:3278no
connection

__default

(This type of table differs from the others in that it cannot be attached to a propertywith theAttach
to Apama dialog—see “Creating a data attachment” on page 52. To attach a property to a data
server status table, attach the property to function data—see “Using Dashboard Functions” on
page 115—and specify a function of type Get data server Connection Status.)

Building and Using Apama Dashboards 10.11.2 49

3 Attaching Dashboards to Correlator Data

DataView item table
ADataView itemdata table contains the current values of all fields for all items of a singleDataView
definition. A separate item table exists for each DataView definition. Within a DataView item
table, a row exists for each item associated with a specified DataView definition. The columns of
the table correspond to the fields of the DataView.

DataView trend table
ADataView trend data table contains the values of the fields of a single DataView item. A separate
data table is used for each item associated with a DataView definition. Each row in the table
contains the value of the fields as reported in aDataView-itemupdate event. Each row also contains
a timestamp indicating when the update occurred.

DataView OHLC table
ADataViewOHLC table is contains Open, High, Low, and Close values for a DataView item field
as calculated for a specified time interval. As a dashboard or dashboard server receives update
events for a DataView item it will calculate the Open, High, Low, and Close values for the field
and add a row to an OHLC table at each time interval. The calculated values added will be for the
preceding time interval.

OHLC tables allow dashboards to automatically create data suitable for display in a Candlestick
or OHLC chart for any DataView-item field and time interval. When you create an attachment to
an OHLC table you specify the field and time interval desired. An example would be selecting a
Price field and a time interval of 5 seconds.

A separate OHLC table is used for each DataView item and each field and interval pair. If for the
Price field you wanted OHLC data at both 5 and 30 second intervals; two OHLC tables would be
created for each DataView item.

SQL-based instance table
An SQL-based data table is a special data table designed to ease implementation of complex
filtering and improve performance for dashboards that must handle a large number of DataView
items. It contains the current values of all fields for all items of a single DataView definition.

A separate table exists for each DataView definition. Within a table, a row exists for each item of
the DataView definition. The columns of the table correspond to the fields of the DataView.

See “Using SQL-based instance tables” on page 58 for more information on using SQL-based
instance tables.

When you specify a data attachment, this kind of table is available only if you started Builder with
the -Y or --enhancedQuery command-line option.

Important:

50 Building and Using Apama Dashboards 10.11.2

3 Attaching Dashboards to Correlator Data

When SQL-based data tables are in use for deployed dashboards, authorization for DataView
items does not use scenario authorities (see “Administering Dashboard Security” on page 659).
By default, all users have access to all instances or items. Authorization must be built into
attachment queries. See “Using SQL-based instance tables” on page 58 for more information.

Definition Extra Params table
A definition extra params table contains the metadata for the extraParamsmember of the selected
Definition (DataView or Query). The table has two static columns: key and value. An entry in
extraParams is considered a metadata entry if its key name starts with the Metadata: prefix. Each
metadata entry in the extraParamsmember will appear as a row in this table.

For example, a DataView definition may have extraParam like this:
com.apama.dataview.DataViewAddDefinition
add := new com.apama.dataview.DataViewAddDefinition;

add.dvName := "RecipeDV";
add.dvDisplayName := "Recipe";
add.fieldNames := ["name","ingredients","category","difficulty"];
add.fieldTypes := ["string","string","string","integer"];
add.keyFields := ["name"];
add.extraParams := {

"Metadata:author":"John Doe",
"Metadata:copyrightDate":"October 15, 2015",
"Metadata:contact":"jdoe@kitchen.com",
"phone":"234-123-9988",
"age":"30"};

In the above example, only the first 3 extraParams entries are metadata entries. Therefore, the
Definition extra params table will show:

valuekey

John Doeauthor

October 15, 2015copyrightDate

jdoe@kitchen.comcontact

Setting data options
Dashboard Builder provides several options for managing the data stored in data tables.

To set data options

1. Select Options item in the Tools menu.

The Application Options dialog appears.

2. Select the Apama tab and the Data sub tab to see the data options.

Building and Using Apama Dashboards 10.11.2 51

3 Attaching Dashboards to Correlator Data

3. Check thePurge instance on edit check box to purge all trend andOHLCdata for aDataView
item whenever an input variable or field is modified. When an input variable of a field of a
DataView item is modified, it may invalidate all previous trend and OHLC data.

4. Check thePurge instance data on remove to purge all data for aDataViewwhen it is removed
from a correlator.

5. Check the Maximum decimal precision and specify a maximum number of decimal places
to be displayed for any numeric data in a dashboard.

6. Check theMaximum rows per trend table to set themaximumnumber of rows for each trend
and OHLC table. The higher the value, the more data that will be available for charting and
the greater the memory utilization.

Scenario instance ownership
Scenario instances in a correlator include an attribute identifying the owner of the instance. When
an instance is created through a dashboard (example, for a query), the current user ID is specified
as the owner of the instance. For DataViews, the owner is provided by the EPL that sends the
DataViewAddItem event.

By default, you are only allowed to see and operate on those scenario instances that you own, that
is, the current user IDmust match the apama.owner attribute of the instance or item. There are two
exceptions to this default:

If the owner is specified as "*", all users have access by default.

SQL query attachments provide access for all users to all instances and items. For more
information about SQL query attachments, see “Using SQL-based instance tables” on page 58.

Creating a data attachment
Attachments can be used to provide data for a chart or table. They can also be used to set other
properties of objects such as labels, colors, and thresholds. Any non-static object property can be
attached to Apama data.

The value of a property, for a given visualization object, can be a single numeric or string value,
a sequence of values, or a table of values. The value of an object property can specify a set of
characteristics of the object, such as the following:

Numerical contents of all the cells in a table

Height and label of all the bars in a bar graph

X coordinate and Y coordinate of all the plotted points in an XY Graph

For example, the value of the valueTable property for a basic bar graph is a table that has one
row for each bar in the graph. The first column in each rowprovides the label for the corresponding
bar, and the second column in the row provides the height of the corresponding bar.

52 Building and Using Apama Dashboards 10.11.2

3 Attaching Dashboards to Correlator Data

Using the Attach to Apama dialog

To attach an object property to Apama data

1. Right-click the property in the property panel.

A popup menu appears.

2. In the displayed popup menu pick Attach to Data > Apama.

This displays the Attach to Apama dialog.

This dialog allows you to specify the portion of a data table that is to be used as the object
property's value. This portion is itself a table consisting of some or all of the rows and columns
of the original data table. The dialog, in effect, allows you to specify a query against a specified
data table. At any given time, the result of this query serves as the value of the object property
being attached.

3. In the Attach to field select the type of Apama data table needed:

DataView

DataView trend table

DataView OHLC table

DataView constraint table

Query instance table

Correlator status table

Definition Extra Params table

To attach a property to an SQL-based data table, see “Using SQL-based instance tables” on
page 58.

To attach a property to a data server status table, attach the property to function data—see
“Using Dashboard Functions” on page 115—and specify a function of type Get Data Server
Connection Status.

4. In the For field, if theAttach to field specifies a DataView trend or OHLC table, selectHistory
and new events, New events only, or History only. This specifies whether to attach new or
historical data to this property.

5. In theCorrelator field enter the correlatorwhere the DataView is loaded. This field is disabled
if the Attach to field specifies a correlator status table.

6. In the DataView field, enter the DataView definition to attach to. This field is disabled if the
Attach to field specifies a correlator status table.

Building and Using Apama Dashboards 10.11.2 53

3 Attaching Dashboards to Correlator Data

7. In the Timestamp variable field, for trend table and OHLC table attachments, identify a
DataView field, or apama.timestamp to use as the timestamp for rows in the data table.

8. In the Display variables field enter the data table columns (which are DataView fields) to
include in the portion of the table to be used as object property value.

9. Check the Filter check box to enable the filter fields (listed below). Filters allow you to specify
the data table rows to include in the value of the attached property. You do this by specifying
a condition thatmust be satisfied by a data table row in order for it to be included. The condition
specifies a data table column, a value, and a comparison relation (for example, equals, less
than, or member of). The condition is satisfied by a given row if and only if the value of the
specified column for the row bears the specified relation to the specified value. Enter the filter
field values:

a. By variable—Specifies the data table column (which is a DataView field) to filter against.

b. Comparison operator field — Specifies one of the following comparisons. To compare
numeric or text values, use equals, not equals, greater than, greater than or equals,
less than, or less than or equals. Use member of to compare a column value with a list
of numeric or text values. Use starts with, ends with, or contains to compare text values
only.

c. Value — Specifies the value to compare with values of the specified column. For Member
of comparisons, specify a single value or a semi-colon-separated list of values. Do not use
spaces. A single value is considered to be a list with a single member. Escape quotes in
values (that use \' instead of ').

See “Filtering data” on page 55 for more information.

10. Using time interval — For OHLC table attachments specifies the time interval to be used in
calculating OHLC values.

11. Data Server—For advanced users, specifies the logical name of the data server that youwant
to serve the data associated with this attachment. You define data server logical names with
the Application Options dialog (select Tools Options). See “Working with multiple data
servers” on page 60 for more information.

In this documentation, some of the Attach to Apama dialogs are shown without the Data
Server field, which has been added in a later release.

Selecting display variables or fields
Individual display variables or fields can be selected directly in the Attach to Apama dialog.

To select multiple display variables or fields

1. Click “…” next to the Display variables field.

54 Building and Using Apama Dashboards 10.11.2

3 Attaching Dashboards to Correlator Data

This displays the Select Columns dialog.

2. Select and order multiple display variables or fields using the buttons provided.

Displaying attached data

To view the data that is currently attached to a given property

1. Right-click the property name.

A popup menu appears.

2. Select Display Data from the popup menu.

A dialog appears that contains a table and the following checkboxes:

Show Column Types: Provides the option of displaying data-table column types.

Insert New Rows: Controls whether new data is added to the table as new rows instead
of replacing the old rows.

Scroll Columns: Controls whether a scrollbar is provided when needed to prevent
truncation of column contents.

Filtering data

The Attach to Apama dialog allows you to define a filter, which specifies a condition on rows of
a data table. Only rows that satisfy the condition are included in the table that serves as the value
of the attached property. See “Using the Attach to Apama dialog” on page 53 for details on
specifying filter conditions.

Filters are used frequently in dashboards.Most frequently they are used to select a single DataView
item for which dashboard objects are to display

Note:
When you create an attachment to an instance or item table, constraint table, or correlator status
table, the filter identifies the rows in the table you want to use. When you create an attachment
to a trend or OHLC table, the filter identifies the table to use.

Attaching to constraint data

When you attach a property to data from a constraint table, you use the Attach to Apama dialog
to specify a single cell of the constraint table (the dialog requires you to specify a single column
for Display Variables and to filter on the value of the Parameter column). The contents of this
cell is used as the property's value. Use this kind of attachment to set constraints on controls, such
as the maximum value on a slider.

Building and Using Apama Dashboards 10.11.2 55

3 Attaching Dashboards to Correlator Data

About timestamps
When creating a stock or trend chart data attachment, you must identify the variable or field to
use as the timestamp. You can use either a DataView field or apama.timestamp. When a variable
or field changes, the correlator generates an Update event with the new value. The timestamp in
the Update event will be used by the dashboard as the time that the change occurred and used to
chart the value.

The default timestamp is apama.timestamp. It corresponds to the timestamp the correlator adds to
an Update event when the event is generated. This timestamp is suitable in most cases and is
always available.

If youwant greater control over the value of timestamps, specify aDataViewfield as the timestamp.
Within your DataView, you will need to set the value of the timestamp variable or field when
changing the value of any other variable or field. Do this if you want use timestamps from an
external event feed such as market data.

Only number variables can be used as timestamps. Timestamps need to be in UTC format where
the value represents the number of seconds since the epoch, January 1, 1970. The TimeFormatPlugin
can be used to convert string values to UTC format.

Using dashboard variables in attachments

The value of all fields in the Attach to Apama dialog, other than Attach to and For, can be set to
dashboard substitution variables. This allows you to dynamically configure an attachment when
a dashboard is displayed. For example you could set theDisplay variables field to the substitution
variable $displayVariables (where $displayVariables value equals a semicolon separated list of
DataView fields).

To create a substitution variable

1. Select Tools | Variables to display the Variables panel (if the panel is not showing).

2. In the Name field enter a name that starts with "$". Names of substitution variables start with
"$" by convention. Names of variables that are not substitution variables (see below) do not
start with "$".

3. In the Initial Value, optionally supply an initial value.

4. Check the Use as substitution checkbox.

5. In the Data Type field, ensure that this set to Scalar, the default.

56 Building and Using Apama Dashboards 10.11.2

3 Attaching Dashboards to Correlator Data

The Initial Value field allows static specification of substitution values at development time. You
can also allow dashboard users to set the value of a given substitution at runtime by attaching the
varToSet property of a control object (such as a text field) to the given substitution.

Dashboard Builder provides a number of predefined substitutions—see “About drilldown and
$instanceId” on page 57 and “About other predefined substitution variables” on page 58.

Dashboard variables in attachments only take effectwhen the dashboard is displayed. Subsequent
changes to the variable will not change the attachment unless the dashboard is redisplayed.

About non-substitution variables

In addition to using dashboard variables as field values in the Attach to Apama dialog, you can
specify a dashboard variable as the value of an object property. If you use a variable in this way,
you can increase dashboard efficiency by clearing the selection Use as substitution field for the
variable in the Variables panel, provided you do not use the variable in any of the following:

Attach to Apama field

Define Apama Command field (see “Defining commands” on page 130)

-S command-line option

Substitution variables must have a scalar value, but non-substitution variables can have tabular
values if you set the Data Type to Table.

Uncheck the Public checkbox only if you do notwant to expose the variable as a property in a
Composite object — see “Using Composite objects” on page 150.

About drilldown and $instanceId
When you create a dashboard with Dashboard Builder, you will frequently need to pass context
information that identifies a DataView item to display or operate on. Consider, for example, a
dashboardwith a table containing one row for each instance of a given instance. In order to display
detailed information about an instance when the end user selects its corresponding row in the
table, you need to pass the identity of the selected instance to the visualization objects that will
display the details.

You can pass such information from one object to another by doing both the following:

Specify that a substitution variable be set to a specified value in response to a specified end-user
action on one object.

Use that substitution variable in the data attachment for the other object.

In many cases you can simplify this procedure by using the predefined substitution variable
$instanceId. This variable is automatically set to the value of apama.instanceId for the table row
that is currently selected. If multiple rows are selected, $instanceId is set to multiple values.

For more information and examples, see “Performing drilldowns on tables” on page 67 and
“Specifying drill-down column substitutions” on page 69.

Building and Using Apama Dashboards 10.11.2 57

3 Attaching Dashboards to Correlator Data

Note:
In caseswhere the end user can select rows ofmultiple tables at once, youmust use user-defined
variables instead of $instanceId to pass the required information. If rows from multiple tables
are selected, $instanceId is set according to only one of the tables.

You will find yourself using $instanceId frequently in attachment filters and instance operations.
You will see many uses of $instanceId in subsequent sections of this guide.

About other predefined substitution variables
In addition to $instanceId (see “About drilldown and $instanceId” on page 57), Dashboard Builder
defines the following substitution variables:

$apama_lang: by default, this variable is set to what Java reports as the locale in the Locale
object as derived from the host system's locale. You can allow end users to set this to their
required locale, and use it to localize dashboard labels. See “Localizing dashboard labels” on
page 110.

$apama_roles: Principles: returned by the login module.

$apama_server_host: hostname of themachine running the data server or display server; empty
for Builder and Viewer with a direct connection to a Correlator.

$apama_server_port: port used by the data server or display server on the hostmachine; empty
for Builder and Viewer with a direct connection to a correlator.

$apama_timestamp: by default, this variable is set to the value of apama.timestamp of the instance
that is currently selected. See “About timestamps” on page 56.

$apama_user: current user, set at login.

$celldata: by default, this variable is set to the value of the cell that is currently selected.

$colName: by default, this variable is set to the name of the column of the currently-selected
cell.

Using SQL-based instance tables
SQL-based instance tables support the use of an SQLquery for the specification of a data attachment.
(See “SQL-based instance table” on page 50 for a description of the contents of this type of table.)
By using these tables, you can simplify your implementation of complex filtering, and improve
performance for dashboards that must handle a large number of DataView items. In particular,
SQL-based instance tables have the following potential advantages over other types of data tables
(which require you to use the standard fields of the Attach to Apama dialog):

Filtering is optimizable. You can specify indexes which Apama can use to join data tables and
filter data attachmentsmore efficiently. This candramatically improve performance, particularly
for large data tables (that is, tables with thousands of rows or more).

58 Building and Using Apama Dashboards 10.11.2

3 Attaching Dashboards to Correlator Data

A single attachment specification can refer to multiple tables, including tables from multiple
correlators. This can simplify implementation, which would otherwise require attaching
properties to dashboard functions whose arguments are attached to data tables.

Arbitrarily complex filtering and data aggregation is supported, since any read-only SQL
select statement can be used. This can simplify implementation, which would otherwise
require complex chains of dashboard functions.

Important:
When SQL-based data tables are in use for deployed dashboards, authorization for DataView
items does not use scenario authorities (see “Administering authentication” on page 660). By
default, all users have access to all instances or items. Authorizationmust be built into attachment
queries.

To attach an object property to Apama data by using an SQL-based instance table

1. Ensure that Builder has been started with the -Y or --enhancedQuery command-line option.

2. Right-click the property in the property panel.

A popup menu appears.

3. In the displayed popup menu pick Attach to Data > Apama.

The Attach to Apama dialog appears.

4. In the Attach to field select Instance table query.

This changes the Attach to Apama dialog, so that there is a single remaining field, SQL
Statement.

5. Enter an SQL query into the text box.

Any read-only select statement is allowed, with the following restrictions andmodifications:

You must designate tables with table names of the form correlator-name.DataView-ID.

You can designate valueswith predefined or user-defined dashboard substitution variables
(for example, $apama_user or $instanceId).

You must enclose table names and column names in quotes.

You must enclose strings in single quotes.

As you construct your query, you can right-click to get suggestions for table names, column
names, or substitution variables.

Note:
Errors in the SQL query are logged in the dashboard log file.

Building and Using Apama Dashboards 10.11.2 59

3 Attaching Dashboards to Correlator Data

Following is an example of a query that you can use to specify a data attachment. It specifies a
three-way join, that is, a join involving three different data tables:
SELECT "prod_name", "vend_name", "prod_price", "quantity"
FROM "Correlator2.DV_OrderItems_Table", "Correlator1.DV_Products_Table",

"Correlator1.Scenario_Vendors_Table"
WHERE "Correlator1.DV_Products_Table"."vend_id" =

"Correlator1.Scenario_Vendors_Table"."vend_id"
AND "Correlator2.DV_OrderItems_Table"."prod_id" =

"Correlator1.DV_Products_Table"."prod_id"
AND "Correlator2.DV_OrderItems_Table"."order_num" = 20007

Below is a query that filters out instances that are not owned by the current dashboard user. The
example assumes that there is a DataView field, owner, whose value is the instance owner.
SELECT "prod_id", "prod_price"
FROM "Correlator1.Scenario_Vendors_Table"
WHERE "Correlator1.Scenario_Vendors_Table"."owner" = '$apama_user'

To specify indexes into an SQL-based data table, use the --queryIndex option on the command
line when you do any of the following:

Start the data server or display server

Start the Dashboard Builder with a direct connection to the correlator

Start the Dashboard Viewer with a direct connection to the correlator

This option has the form
--queryIndex table-name:key-list

table-name is the name of a DataView. key-list is a comma-separated list of variable names or
field names. Here is an example:
--queryIndex DV_Products_Table:prod_id,vend_id

You can only add one index per table, but you can specify this option multiple times in a single
command line in order to indexmultiple tables. Deployed dashboards that use SQL-based instance
tables must be connected to a data server or display server that is started with the -Y or
--enhancedQuery command-line option. For deployed dashboards that use Viewer connected
directly to a correlator, Viewer must be started with the -Y or --enhancedQuery command-line
option.

Working with multiple data servers
Deployed dashboards have a unique associated default data server or display server. Forweb-based
deployments, this default is specified in the Startup and Server section of the Deployment
Configuration Editor. For Viewer deployments, it is specified upon Viewer startup. By default,
the data-handling involved in attachments and commands is handled by the default server, but
advanced users can associate non-default data servers with specific attachments and commands.
This provides additional scalability by allowing loads to be distributed among multiple servers.
This is particularly useful for display server deployments. By deploying one or more data servers
behind a display server, the labor of display building can be separated from the labor of data

60 Building and Using Apama Dashboards 10.11.2

3 Attaching Dashboards to Correlator Data

handling. The display server can be dedicated to building displays, while the overhead of data
handling is offloaded to data servers.

Apama supports the following multiserver configurations:

Builder with multiple data servers. See “Builder with multiple data servers” on page 61.

Viewer with multiple data servers. See “Viewer with multiple data servers” on page 62.

Display server (thin client) deployment with multiple data servers. See “Display server
deployments with multiple data servers” on page 63.

The Attach to Apama and Define ... Command dialogs (except Define System Command)
include a Data server field that can be set to a data server's logical name. To associate a logical
name with the data server at a given host and port, use the Data server tab in the General tab
group of the Application Options dialog (select Tools Options in Builder).

For display server (thin client) deployments, youmust use the option --namedServerModewhenever
you start named data servers. See “Display server deployments with multiple data servers” on
page 63.

The logical data server names specified in the Builder's Application Options dialog are recorded
in the file OPTIONS.ini, and the deploymentwizard incorporates this information into deployments.
You can override these logical name definitions with the --namedServer name:host:port option to
the Builder, Viewer, data server or display server executable. Below is an example. This is a
sequence of command-line options which should appear on a single line as part of the command
to start the executable:

--namedServer Server1:ProductionHost_A:3278 --namedServer Server2:ProductionHost_B:4278
--namedServer Server3:ProductionHost_C:5278

Here Server1, Server2 and Server3 are the server logical names.

Builder with multiple data servers

Builder maintains connections with the data servers named in attachments and commands. Note
that it connects directly to the correlator (dotted lines in the figure below) in order to populate
dialogs with metadata. In this illustration, correlator event data is handled by the data servers.

Building and Using Apama Dashboards 10.11.2 61

3 Attaching Dashboards to Correlator Data

You can override the logical server names specified in the Application Options dialog with the
--namedServer name:host:port option to the Builder executable. Below is an example. This is a
sequence of command-line options which should appear on a single line as part of the command
to start the executable:

--namedServer Server1:ProductionHost_A:3278 --namedServer Server2:ProductionHost_B:4278
--namedServer Server3:ProductionHost_C:5278

Here Server1, Server2 and Server3 are the server logical names.

Viewer with multiple data servers

Viewer maintains connections with the data servers named in attachments and commands of
opened dashboards.

62 Building and Using Apama Dashboards 10.11.2

3 Attaching Dashboards to Correlator Data

In the data server Login dialog (which appears upon Viewer startup), end users enter the host
and port of the default data server (or accept the default field values). If all attachments and
commands use named data servers, end users can check the Only using named data server
connections check box and omit specification of a default server.

The logical data server names specified in the Builder's Application Options dialog are recorded
in the deployment package. You can override these logical name definitionswith the --namedServer
name:host:port option to the Viewer executable. Below is an example. This is a sequence of
command-line options which should appear on a single line as part of the command to start the
executable:

--namedServer Server1:ProductionHost_A:3278 --namedServer Server2:ProductionHost_B:4278
--namedServer Server3:ProductionHost_C:5278

Here Server1, Server2 and Server3 are the server logical names.

Display server deployments with multiple data servers

The display server maintains connections with the data servers named in attachments and
commands of its client dashboards.

Building and Using Apama Dashboards 10.11.2 63

3 Attaching Dashboards to Correlator Data

Important:
In a display server deployment, each named data server must be started with the
--namedServerMode option.

The logical data server names specified in the Builder's Application Options dialog are recorded
in the file OPTIONS.ini, which is used by the Deployment Wizard to define deployment logical
names. You can override these logical name definitions with the --namedServer name:host:port
option to the display server executable. Below is an example. This is a sequence of command-line
options which should appear on a single line as part of the command to start the executable:

--namedServer Server1:ProductionHost_A:3278 --namedServer Server2:ProductionHost_B:4278
--namedServer Server3:ProductionHost_C:5278

Here Server1, Server2 and Server3 are the server logical names.

Using table objects
Table visualizations provide a way to present the contents of data tables in a direct manner. You
can present summary information be attaching a table's valueTable property to an entire data
table, or you can present a specified subset of data table rows and columns by using the filter fields
of the Attach to Apama dialog.

Attach the valueTableproperty to aDataView item table in order to create an instance summary
table.

Attach the property to a correlator status table in order to display information about each of
the correlators that a DataView connects to.

64 Building and Using Apama Dashboards 10.11.2

3 Attaching Dashboards to Correlator Data

Attach the property to a trend or OHLC tables in order to create a tabular display of all the
changes to a variable or OHLC values over time.

Double-click Summary Table on the tutorial main page to see a table object.

Table objects support typical table operations such as sorting and column ordering:

Double-click the header of a column to sort by the column's values. In the table shown above,
users can double-click the Price column to sort the entries by price.

Click a column header and drag it to reorder columns.

Sorting large tables can impact dashboardperformance, particularly for display server deployments.
Clear the property showSortIconFlag to disable sorting.

Detailed reference information on tables is provided in “Table Objects” on page 391.

Creating an instance summary table
Table objects are often attached to an instance table to provide a summary view of the instances.

To create a summary table for an instance, you add a table object to a dashboard and attach its
valueTable property to an instance table. When you define the attachment, you can select the
variables to be displayed; these will be the columns of the table. You can also specify a filter to
show only a subset of instances.

Note that, by default, users are authorized to view only those dashboards that they created.
Regardless of filter settings, users will not be able to see instances they did not create.

To create a instance summary table, create a new dashboard and perform the following steps

1. From the Tables tab in the Object Palette, select the Table object and add it to the dashboard
canvas.

2. In the Object Properties panel, double-click the valueTable property.

The Attach to Apama dialog appears. Attach the table object's valueTable property to an
instance table.

3. Select the autoResizeFlag property and enable it by clicking the check box in the Property
Value column.

4. Resize the table such that all columns are visible. (You resize the table by selecting it and
dragging the handles.)

The table now displays all the input and output variables of all instances of the specified
instance, as well as the special fields Dashboard Builder adds, including apama.timestamp
which indicates the time the instance last changed.

Often, you will not want to display all the variables or the special fields in a summary table.
The steps that follow show how to specify the variables to be displayed.

Building and Using Apama Dashboards 10.11.2 65

3 Attaching Dashboards to Correlator Data

5. Double-click the valueTable property to display the Attach to Apama dialog.

By default the display variables field is set to the wildcard “*” indicating that all the variables
are to be displayed. Next to the field is a button labeled “…” that provides access to the Select
Columns dialog.

6. Click on the “…” button to display the Select Columns dialog.

7. In the Select Columns dialog select and order the columns.

8. Click OK in the Select Columns dialog and OK in the Attach to Apama dialog.

The table object will now display only those columns you selected.

By default a table will display a maximum of 100 rows. If a dashboard needs to show more
than 100 instances, change the value of the maxNumberOfRows property. The maximum value
for this property is 131072.

By default a table is unsorted. If you want a table to have a default sort order, set the
sortColumnName property to the name of the variable to sort by, such as Price.

Filtering rows of an instance summary table
You can limit the set of instances displayed in an instance summary table by specifying a filter
when you define the attachment. This is useful when you only want to display those instances
with a shared characteristic, such as the exchange they are trading on.

To modify a data attachment with filter information

1. Select the table that you want to modify. For example, double-click Summary Table on the
tutorial main page, and then select the table object.

2. In the Object Properties panel, double-click the valueTable property.

3. In the Attach to Apama dialog, do the following:

a. Check the Filter checkbox.

b. Specify a variable in the By variable field.

c. Specify a value or values in the Value field. Specify multiple values as a
semi-colon-separated list. Do not use spaces.

d. If you specify multiple values, select Member of in the field above the Value field. (This
field specifies a comparison relation. It default to Equals.)

66 Building and Using Apama Dashboards 10.11.2

3 Attaching Dashboards to Correlator Data

This selects instanceswhose value for the specified variable bears the specified comparison
relation to the specified value. Here is an example:

This example filters the table's contents to display only the instance for which the value of
the variable Instrument equals APMA.

Performing drilldowns on tables
Frequently you will want to display the DataView summary information in a table and provide
the ability to drill down on a single instance or item in order to display detailed information about
it. Table objects support drilldowns on a selected row and the passing of substitutions containing
the values of one or more variables or fields of the selected instance.

Double-click Table Drilldown in the tutorial main page.

A drilldown has been specified for this table in such a way that the label object updates to show
the value of the Price variable of the selected instance. As Price changes, both the table and label
update.

To specify a drilldown as in the example above

1. Add a table to a dashboard and attach its valueTable property to an instance table as in the
previous sample.

2. From the Labels tab in the Object Palette, select the second label object and add it to the
dashboard canvas.

3. Select the label object on the dashboard and in the Object Properties panel double-click the
valueString property to display the Attach to Apama dialog.

Define the attachment by specifying the Display variables and Filter fields, for example as
follows.

Building and Using Apama Dashboards 10.11.2 67

3 Attaching Dashboards to Correlator Data

4. Click OK in the Attach to Apama dialog.

5. Double-click a row in the table. The label object will update to show the value of Price for the
selected instance.

The drilldown properties on the table, bar chart, and pie chart objects are preset for the most
common usage paradigm where a drilldown on one will redisplay the current dashboard but
with new substitution values. This paradigm fits the case where both the instance summary
and instance detail data are displayed in a single dashboard window. You can modify the
drillDownTarget property on these objects to use a non-default drill-down paradigm, such as
displaying detailed information about the selected instance in a separate window. For more
information, see “Drill-Down Specification” on page 521.

In the example above, the label object's data attachment selects the row in the instance table
where apama.instanceId equals $instanceId. This is the most common filter used when
performing drilldowns. The drilldown on the table object is defined by default to set the
dashboard substitution variable $instanceId to the value of apama.instanceId for the selected
instance. This allows the dashboard that is displayed in response to the drilldown to know
which instance it should display data for.

“Specifying drill-down column substitutions” on page 69 describes how to override this default
setting.

68 Building and Using Apama Dashboards 10.11.2

3 Attaching Dashboards to Correlator Data

Specifying drill-down column substitutions
The substitutions set when performing a drilldown on a table object are defined by the
drillDownColumnSubs property. Here is an example that sets a table column to a dashboard
substitution variable, and then attaches a label to the variable.

1. Select the table object and double-click the drillDownColumnSubs property.

The Drill Down Column Substitutions dialog appears.

This dialog allows you to set a substitution variable to the value of a column in the table. By
default, table objects are defined to set several substitutions, including $instanceId and
$timestamp. These are set to the values apama.instanceId and apama.timestamp. In addition,
substitutions are inherited by drilldown targets. That is, if a parent object sets a substitution
variable for a child (the drilldown target of the parent), then that variable is set the same way
for any grandchildren (drilldown targets of the child). You can override these or add additional
substitutions with the DrillDown Column Substitutions dialog.

2. For the Velocity column, set the substitution string field as follows.

3. Click the OK button to close the dialog.

The substitution variable $velocitywill now be set when performing a drilldown on the table.

4. Select Variables from the Tools menu to display the Variables dialog.

Add the substitution variable $velocity.

Building and Using Apama Dashboards 10.11.2 69

3 Attaching Dashboards to Correlator Data

You must add the $velocity substitution variable to the list of local variables, because the
drilldown on the table is defined to redisplay the current dashboard. Defining the variable
makes it available within the dashboard. If the drilldown displays a different dashboard, the
variable must be in that dashboard's list of local variables.

5. Select the label object previously added to the dashboard.

6. In theObject Properties panel, right-click the valueString property and selectAttach to Data
| VARIABLE.

This will display the Attach to Local Variable Data dialog.

7. Select $velocity in the dialog and click OK.

The label is now attached to $velocity.When youdouble-click a row in the table, the dashboard
performs the drilldown and sets $velocity to the current value of Velocity of the selected
instance. The dashboard updates the label object to show this value.

Note that when a visualization object is attached directly to Apama, it updates whenever the
correspondingDataViewfield changes; butwhen it is attached to a dashboard substitution variable,
it does not.

70 Building and Using Apama Dashboards 10.11.2

3 Attaching Dashboards to Correlator Data

If you want a dashboard's visualization objects to update as DataView fields change, attach them
directly to Apama using $instanceId in the filter.

If you do not want the objects to update, that is, if you want only the values at the time drilldown
was performed, define a drill down substitution to set a substitution variable to the current value,
and then use that substitution in the dashboard drilled down to.

Hiding table columns
When you define drilldown substitutions on a table object, only those variables selected as the
display variables in the table's data attachment are available for setting substitution values. In the
previous example, if the Velocity variable was not selected as a display variable for the table, then
it would not have been available as a column in the Drill Down Column Substitutions dialog.

If you have aDataViewfield that youwant to use to set a substitutionwhen performing a drilldown
on a table but do not want to appear as a column in the table, include it as a display variable when
defining the attachment and set the columnsToHide property to prevent it from being displayed.
To hide multiple variables specify them as a semicolon-separated list.

The columnsToHide property is preset to hide the apama.instanceId column. Apama transparently
forces apama.instanceId to be included as a display variable on all table objects. This is so that
you perform a drilldown, $instanceId can be set to the ID of the selected instance. You should
always hide the apama.instanceId column.

Using pre-set substitution variables for drill down
There are some hidden variables that are always set when you perform a drilldown. These are
useful if you want to know which column or cell was selected to perform the drilldown:

$celldata: Set to the value of the cell selected.

$colName: Set to the name of the column of the cell.

You can use these variables, for example, as parameters to functions or commands whose action
you want to vary based on the column or cell value selected.

Formatting table data
The table object allows formatting attributes to be specified for each column in a table. Double-click
Formatted Table in the tutorial main page.

Here formatting has been specified for the Shares, Price, and Position columns. The Price and
Position columns include a currency indicator and the Position column is presenting negative
positions inside parenthesis. Apama dashboards provide wide variety of formats, and you can
specify custom formats as well.

To specify formatting information, double-click the columnFormat property and use the Column
Format Properties dialog:

Building and Using Apama Dashboards 10.11.2 71

3 Attaching Dashboards to Correlator Data

To format a column, select the column in the Column Name field and either select, or type, a
format string in the Column Format field.

Specify column formats using a format string appropriate for use with the Java class
java.text.DecimalFormat, or with the following shorthand: $ for US dollar money values, $$ for
US dollar money values with additional formatting, () for non-money values, formatted similar
to money, or # for positive or negative whole values.

Colorizing table rows and cells
The table object allows the color attributes of rows and cells to be set based on the value of a
DataView field. Double-click Colored Table on the tutorial main page. The table shows a typical
use for setting color attributes.

Here the Position cell is shownwith green text if the position is positive and red text if it is negative.
Colorizing a table can make it much easier to identify values of interest. Colorizing attributes are
specified by setting the filterProperties property.

To set the filterProperties property

1. Double-click the filterProperties property.

The Filter Properties dialog appears.

2. Double-click a filter to edit it or click the Add button to add a new filter.

The Condition fields allow you to specify the condition which must be matched for the action
to take affect. The Action field allows you to set the font or background color or hide a row.
Hiding a row is useful if you do not want the row to appear based on some attribute of the
instance. The Target field allows you to apply the action to single cell, row, or column.

A common use of table colorization is to provide a visual indication of the DataView items which
have ended or failed. For example youmay want to set the font color to gray for those which have
ended and red for those which have failed.

To do this you must include apama.instanceStatus as a display variable in the table's data
attachment and, typically, in the list of columnsToHide. The filter properties for the table can then
be used to set the font color based on the value of apama.instanceStatuswith the following two
filters. The following illustrations show how the Edit Filter dialog can be used for this purpose.

72 Building and Using Apama Dashboards 10.11.2

3 Attaching Dashboards to Correlator Data

Setting column headers
By default the header for each column is the name of the DataView field it shows.

To change column headers by setting the columnDisplayNames property

1. Select a table object in the Object Properties panel.

2. Double-click the columnDisplayNames property.

The Column Display Name Properties dialog appears.

The header for the Instrument column is set to Stock Symbol.

3. Enter the desired column names in the dialog. If you want the header to span multiple lines
include \n in the display name such as “Stock\nSymbol”.

Using rotated tables
Rotated tables rotate the data in the data table they are attached to such that rows become columns
and columns become rows.

To create a rotated table

1. From the Tables tab in the Object Palette, select the Rotated Table object and add it to the
dashboard canvas.

2. Attach the table object's valueTable property to instance data just as youwould for other kinds
of tables (see, for example, “Creating an instance summary table” on page 65).

Building and Using Apama Dashboards 10.11.2 73

3 Attaching Dashboards to Correlator Data

Here the rotated table is attached to an instance table, and the filter is set to select only the
instance where Instrument equals APMA. Without a filter, all instances appear as columns.

Using pie and bar charts
Pie and bar charts can be used in dashboards as an alternative to table objects for showing the
DataView summary data. The charts are similar in their configuration and behavior. The following
illustration shows a typical bar chart:

The following illustration shows a typical pie graph.

74 Building and Using Apama Dashboards 10.11.2

3 Attaching Dashboards to Correlator Data

Both the bar and pie charts shown above display the value of Position for each instance. The bar
chart provides an indication of negative values but the pie chart does not. Each chart supports
drill downs similar to those supported by table objects.

Detailed reference information on graphs, including pie and bar charts, is provided in “Graph
Objects” on page 235.

Creating a summary pie or bar chart
To create a summary pie or bar chart for a DataView, you add an instance of the object to a
dashboard and attach its valueTable property to a DataView instance table. When you define the
attachment, you can select the variable to be charted as well as the label to be used for the data in
the chart legend. As with table objects, when you define the data attachment, you can also supply
a filter that specifies the subset of the instances that are charted.

Note that users can view only those DataView items that they created. Regardless of filter settings,
users will not be able to see instances they did not create.

To see a sample bar chart, double-click Bar Chart on the tutorial main page.

To create a summary bar chart, create a new dashboard and perform the following steps

1. From the Graphs tab in the object palette, select the Bar Graph object and add it to the
dashboard canvas.

2. With the graph object selected, double-click the valueTable property in theObject Properties
panel, and attach the graph to a DataView.

3. Click OK.

The bar chart will now chart the value of Position for each instance of the DataView.

In this example the display variables were set to Instrument and Position. Instrument is a string
variable and was included to provide a meaningful label for each bar in the chart legend.

For both bar and pie charts, you can pick a DataView string variable to use as the label in the
legend. Do not pick a number variable as it will be interpreted as the value to chart.

Ifmultiple number variables are selected for display, the behavior is controlled by the rowSeriesFlag
property.

Using series and non-series bar charts
Data in bar charts can be displayed as both series and non-series data. This is determined by the
rowSeriesFlag property.

If the rowSeriesFlag property is enabled, one group of barswill be shown for each numeric column
in the data attachment. Within the group for each numeric column, there will be a bar for each
row in that column. Column names will be used for the x-axis labels. If your data attachment has

Building and Using Apama Dashboards 10.11.2 75

3 Attaching Dashboards to Correlator Data

a label column and the rowLabelVisFlag is selected, data from this column will be used in the
legend. If your data attachment does not have a label column, select the rowNameVisFlag checkbox
to use row names in the legend. By default, the label column is the first non-numeric text column
in your data. Specify a column name in the labelColumnName property to set the label column to a
specific column.

If the rowSeriesFlag property is not enabled, one group of bars will be shown for each row in your
data attachment. Within the group for each row, there will be a bar for each column in that row.
Column names will appear in the legend. If your data attachment has a label column and the
rowLabelVisFlag is selected, data from this columnwill appear on the x-axis. If your data attachment
does not have a label column, select the rowNameVisFlag checkbox to use row names on the x-axis.
By default, the label column is the first non-numeric text column in your data. Specify a column
name in the labelColumnName property to set the label column to a specific column.

1. Create a new dashboard, select the Graphs tab in the Object Palette, and add a Bar Graph
object to the dashboard canvas.

By default the rowSeriesFlag property is enabled and the chart appears as follows.

2. With the graph object selected, in the Object Properties panel, select the rowSeriesFlag
property and disable it.

3. Select the xAxisFlag property and enable it.

The chart will now appear as follows.

Performing drilldowns on pie and bar charts
Drilldowns on pie charts are defined by setting the same properties you set on table objects in
order to perform a drilldown: drill down target and drillDownColumnSubs.

76 Building and Using Apama Dashboards 10.11.2

3 Attaching Dashboards to Correlator Data

Using trend charts
Trend charts are present in Trends and Trends HTML5 tabs of the object palette. The trend charts
in the Trends HTML5 tab provide a pure HTML implementation of a trend chart. The HTML
version of a trend chart provides an interactive and high performance trend chart in an HTML5
compatible browser.

Trend charts provide the ability to view changes in a DataView field over time. The following
illustration shows a typical trend chart:

In this sample, a single trend line is displayed to show the value of the Price variable of an instance
of the tutorial DataView.

A trend chart can display up to ten trace lines allowing you to compare changes in up to ten
DataView fields. Useful examples of trend charts might show the changes in price for two stocks
or the movement of a single stock price relative to a market average.

The traces in a trend chart can be shown as lines or as individual data points.

1. Open the file tutorial-trend.rtv by selecting Trend Chart on the tutorial main page.

2. Select the trend chart and in the Object Properties panel select the property trace1MarkStyle
and change its value to 1.

3. Select the property trace1LineStyle and change its value to 0.

The trace line in the trend chart will now be displayed as a series of points.

The data values displayed are the same; only the presentation has changed.

Detailed reference information on trend charts is provided in “Trend graphs” on page 482.

Building and Using Apama Dashboards 10.11.2 77

3 Attaching Dashboards to Correlator Data

Creating a trend chart
To create a trend chart, you add it to a dashboard and set its traceCount property to the number
of trace lines you want to display. This will cause a set of properties to be added to the property
panel for each trace; trace1 through traceN. Following are the properties for trace1.

Each trace will have a traceNValue and traceNValueTable property. These define the data
attachment for the traces. The traceNValue property is used to attach the trace to new data (data
received after the time of attachment). The traceNValueTable property is used to attach the trace
to historical data (data received before the time of attachment).

When attaching a trace to an instance variable, youmust specify a filter that identifies the instance
the trace will show data for. The filter to identify the instance will typically match on $instanceId
although other filters can also be used.

The Trend Drilldown tutorial sample demonstrates how to use a trend chart where the instance
charted is determined by the selection in an instance summary table.

To recreate this sample, create a new dashboard and perform the following steps

1. From the Tables tab in the Object Palette, select the Table object and add it to the dashboard
canvas.

2. With the table object selected, in the Object Properties panel, double-click the valueTable
property and attach it to Apama by specifying the information shown below in the DataView
and Display variables fields. Do not apply a filter.

78 Building and Using Apama Dashboards 10.11.2

3 Attaching Dashboards to Correlator Data

3. From the Trends tab in the Object Palette, select the Single Variable Trend object and add it
to the dashboard canvas.

4. With the trend object selected, in the Object Properties panel, double-click the trend chart
object's trace1ValueTable property and attach it to the trend table for the tutorial DataView
by specifying values in the fields as shown below.

Here the Price variable is selected for the trace. TheDataView item chartedwill be the selected
instance as indicated by the variable $instanceId.

Building and Using Apama Dashboards 10.11.2 79

3 Attaching Dashboards to Correlator Data

5. With the trend object selected, in the Object Properties panel, double-click the trend chart
object's trace1Value property and attach it to the trend table for the tutorial DataView by
specifying values in the fields as shown below.

Here the Price variable is selected for the trace. TheDataView item chartedwill be the selected
instance as indicated by the variable $instanceId.

80 Building and Using Apama Dashboards 10.11.2

3 Attaching Dashboards to Correlator Data

6. Select the trend object's scrollbarMode property and change its value to As Needed. This will
add a scrollbar to the chart allowing you to scroll back in time to view earlier values.

7. Select a DataView item in the table by double-clicking on it. The chart will now begin charting
the Price variable of the selected DataView item.

If you have not previously displayed a sample containing a trend chart, no previous values
for Pricewill be displayed. Apama does not collect data in a DataView trend table until the
first attachment to an instance of the table is made.

Charting multiple variables
Trend charts are able to show up to 10 trace lines. This is useful for comparing changes in the
values of multiple variables or fields. The following illustration shows the multiple variable trend
chart from the Multiple Trend Lines tutorial sample.

Building and Using Apama Dashboards 10.11.2 81

3 Attaching Dashboards to Correlator Data

Here the trend chart displays the Velocity of the stock price of two instances of the tutorial
DataView; one where the Instrument is ORCL and the second where the Instrument is MSFT.

To recreate this sample, create a new dashboard and perform the following steps

1. From the Trends tab in the object palette, select the Multiple Variable Trend object and add
it to the dashboard canvas.

The multiple and single variable trend objects are virtually the same. The only difference is
that in the multiple variable trend object the traceCount property is set to 2. If you need to
display more than two trace lines you can select either object and set the traceCount property
to the number of traces needed.

2. With the trend object selected, in the Object Properties panel, double-click the trend object's
trace1ValueTable property and attach it to Apama by specifying the following information:

82 Building and Using Apama Dashboards 10.11.2

3 Attaching Dashboards to Correlator Data

3. With the trend object selected, in the Object Properties panel, double-click the trend object's
trace1Value property and attach it to Apama by specifying the following information:

Building and Using Apama Dashboards 10.11.2 83

3 Attaching Dashboards to Correlator Data

4. Attach the trace2ValueTable property to Apama by specifying the following information:

84 Building and Using Apama Dashboards 10.11.2

3 Attaching Dashboards to Correlator Data

The trend chart will now chart the Velocity variable of the instances of the tutorial DataView
which match the filters where Instrument equals ORCL and MSFT.

5. Attach the trace2Value property to Apama by specifying the following information:

Building and Using Apama Dashboards 10.11.2 85

3 Attaching Dashboards to Correlator Data

The trend chart will now chart the Velocity variable of the instances of the tutorial DataView
which match the filters where Instrument equals ORCL and MSFT.

When displaying multiple traces, it is often useful to display them as filled regions. To specify
this, select the traceFillStyle property and change its value to Transparent Gradient. The
following illustration shows an example of a trend chart with filled regions.

86 Building and Using Apama Dashboards 10.11.2

3 Attaching Dashboards to Correlator Data

Adding thresholds
Often you will want to know when the value of a DataView field is outside a specified range. For
example youmaywant to knowwhen the price of a stock is above or below some threshold. Trend
charts enable you to display thresholds and show when variables cross them. The following
illustration from the Trend Thresholds tutorial sample shows a typical example.

Here the Velocity of an instance of the tutorial is being charted and high and low thresholds of
.01 and -.01 are being displayed.

Trend charts support four thresholds that are specified with the properties; valueHighAlarm,
valueLowAlarm, valueHighWarning, and valueLowWarning. These properties can be set to fixed values
or attached to DataView fields. Each threshold has a set of properties for configuring it. Following
are the properties for the valueHighAlarm property.

To recreate this sample create a new dashboard and perform the following steps

1. From the Trends tab in the Object Palette, select the Threshold Trend object and add it to the
dashboard canvas.

2. With the threshold trend object selected, in the Object Properties panel, select the
trace1ValueTable property and attach it to Apama by specifying the following information:

Building and Using Apama Dashboards 10.11.2 87

3 Attaching Dashboards to Correlator Data

3. With the threshold trend object selected, in the Object Properties panel, select the
trace1ValueValue property and attach it to Apama by specifying the following information:

88 Building and Using Apama Dashboards 10.11.2

3 Attaching Dashboards to Correlator Data

The trace line will now show the Velocity of the instance of the tutorial DataView where
Instrument equals ORCL.

4. Select the valueHighAlarm property and change its value to 0.01.

5. Select the valueLowAlarm property and change its value to -0.01.

Thresholds will now be displayed.

Configuring trend-data caching
By default, dashboard servers (data servers and display servers) collect trend data for all numeric
output variables of DataViews running in their associated correlators. This data is cached in
preparation for the possibility that it will be displayed as historical data in a trend chart when a
dashboard starts up. Without the cache, trend charts would initially be empty, with new data
points displaying as time elapses.

Advanced users can override the default caching behavior on a given server, and control caching
in order to reduce memory consumption on that server, or in order to cache variables that are not
cached by default, such as non-numeric variables.

For more information, see “Configuring Trend-Data Caching” on page 647.

Building and Using Apama Dashboards 10.11.2 89

3 Attaching Dashboards to Correlator Data

Rendering trend charts in HTML5
A dashboard trend graph object can be rendered by using HTML5, which provides added
functionalities to the chart object without requiring a Flash Player or other browser plug-in. Select
the webChartFlag option to enable this feature. Note: this feature only applies to display server
dashboard deployment.

The webChartFlag option appears in the list of properties for trend graphs (obj_trendgraph02).

When webChartFlag is checked, the HTML5 rendering of the trend graph object appears in place
of the swing trend graph in the display server of an HTML5 compatible browser.

Requirements

A browser that supports HTML5 is required. Browsers that do not support HTML5 will display
the swing trend chart regardless of the value of the webChartFlag property.

Properties

A trend chart rendered inHTML5 supports themajor properties available in trend graphs.However
several minor properties are not supported or have limited support in HTML5-rendered trend
charts, as follows:

Not supported. Except for the bgColor property,
none of the background style properties are

Background styles

supported. This includes the properties whose
names begin with bg, traceBg, and border.

Gradient fill is not supported, so none of the
properties named *GradientStyle, *GradientMode,
or *GradientFlag are supported.

Gradients

Not supported. These default to 6 and No Scale.
The markers for each trace can be configured with
the traceNMarkStyle/Color properties.

markDefaultSize
markScale

The markers for traceN can be enabled by setting
traceNMarkStyle > 0 but the shape of the markers

traceNMarkStyle

(for example, circle, square, triangle) is selected
automatically.

Supported types are Line and Bar. Event type is not
supported.

traceNType

Not supported. The legend (if visible) is sized
automatically.

legendWidthPercent
legendValueMinSpace

Not configurable. The scroll and zoom features are
always enabled and the scrollbar size is fixed.

scrollbarMode/Size
zoomEnabledFlag

90 Building and Using Apama Dashboards 10.11.2

3 Attaching Dashboards to Correlator Data

Supported values are None and Transparent. All
other values (Solid, Gradient, Transparent
Gradient) are converted to Transparent

traceFillStyle

Not supported. The number of ticks on the x & y
axis are selected automatically according to the size
of the chart.

x/yAxisMajor/MinorDivisions

Not configurable. The y axis position is always
outer-left.

yAxisPostion

Not configurable, always true.yAxisAutoScaleVisTracesOnlyFlag

Not configurable. The x and y axes are always
visible with a thickness of 1 and 2 pixels,
respectively.

x/yAxisFlag x/yAxisThickness

Not supported. Trace groups are supported but
banding within groups is not.

traceGroupNBandedFlag

AnHTML5-rendered trend chart supports one alert
threshold per chart. If more than one alert threshold

alert properties (valueHighAlarm*,
valueLowAlarm*, valueHighWarning*,
valueLowWarning*) is enabled,HTML5 renderingwill not be used.Also,

the alert TraceColor is used only if the
traceFillStyle is None. For any other
traceFillStyle the alert TraceColor is ignored. The
alert TraceStyle, Mark, and MarkColor are ignored.
The alarmGlowFlag is not supported.

The properties marked as not supported or not configurable in the table above will not appear in
the dashboard builder's property sheet when a trend graph object is selected and webChartFlag is
checked. In some cases, if the properties listed above have been configured on a trend graph
instance, then the webChartFlag property will automatically be set to false and hidden in the
property sheet, because HTML5 rendering does not support those features. This occurs if any
traceGroupNBandedFlag is checked, if more than one alarm threshold is enabled, or if the
alarmGlowFlag is checked.

Rendering a trend chart in HTML5 supports two additional properties that are visible in the
property sheet only if webChartFlag is checked:

If this property is set to a trace number (a value
between 1 and the traceCount value) the

webChartNavigatorTrace

HTML5-rendered trend chart will display a "time
navigator" at the bottom of the chart, just below the
x (time) axis. The navigator plots the data for the
indicated trace, and highlights the time range that is
currently visible in the chart. The highlighted section
can be resized or dragged to perform a time zoom or
scroll. The navigator is intended to show the user the
entire data set and let the user zoom/pan to the time

Building and Using Apama Dashboards 10.11.2 91

3 Attaching Dashboards to Correlator Data

range of interest. By default webChartNavigatorTrace
= 0 so the navigator is disabled.

If this property is checked the chart will compute the
y axis scale according to the min and max y values of

yAxisAutoScaleVisDataOnlyFlag

the visible data points only. Thismeans that the y axis
scale may change as the user changes the visible time
range by scrolling or zooming. By default the property
is unchecked and the y axis is scaled according to the
y values of all of the data points, visible or not. This
matches the behavior of the trend graphs. Dashboard
builder does not allow the webChartFlag property to
be attached to data. This is by design, since the flag's
value is expected to be constant.

Behavior

In addition to the properties listed above, there are some behavioral differences between an
HTML5-rendered trend chart and a swing trend graph. These are described below:

Legend

The legend does not show trace point data (y) values. Data values are only shown in the
mouseover tooltips (if cursorFlag = 1). The cursor always snaps to the nearest data point, it
does not show interpolated values between data points. Trace labels longer than 200 pixels
are wrapped in the legend, and labels longer than 150 pixels are clipped in the tooltip.

Y axis autoscaling

Given the same y data values, an HTML5-rendered trend chart may choose a different value
range for the y axes in autoscale mode as compared to swing trend graphs. This is because
somewhat different algorithms are used.

Reset button

If the user changes the chart's visible time range, via the scrollbar or navigator or by dragging
the cursor to perform a zoom, then a button labeled Reset will appear in the upper left corner
of the plot area. A click on this button will reset the time axis to its original settings. The chart
will also resume shifting to show the newest trace points, unless the timeRangeBegin/End
properties are set.

Data point grouping

Rendering a trend chart in HTML5makes use of a feature known as data grouping to enhance
performance when a trace has many data points. With data grouping, the chart plots a single
point using the average y value in cases where otherwise multiple points would be plotted on
the same x pixel coordinate.

When data grouping is in effect, the chart's tooltipwill display a start time and end time (rather
than the usual single time value) to indicate the time range of the averaged data points, for
example: 05-Mar 12:35:00 ~ 05-Mar 12:45:00.

92 Building and Using Apama Dashboards 10.11.2

3 Attaching Dashboards to Correlator Data

Notes: The data point grouping feature is enabled automatically and is not configurable. Also
data grouping is performed independently of (and possibly in addition to) any data condensing
or compaction that has already been applied by the historian. Also the maxPointsPerTrace
property (3200 in the test1 display) is applied to the raw data, before any data grouping is
applied.

The legendTimeFormat property is used to format the date/time strings in the tooltip. If that
property is blank then the timeFormat property is used instead. If the string contains a newline
it is replaced with a space character to avoid making the tooltip overly tall.

timeShift

Rendering a trend chart in HTML5 does not attempt to keep the tick marks on the time axis
aligned on even multiples of the timeShift value, in the case where timeShift > 1.

Also, even if webCharFlag is set on all instances, the swing trend graph will still be used if a
display is opened in Internet Explorer 8 or older, or if certain properties not supported by an
HTML5-rendered trend chart (as listed above) are configured on a specific trend graph. To
disable rendering trend charts in HTML5 globally, regardless of the webChartFlag value on
individual objects, specify the
--apama.extendedArgs "-nohtml5"

argument on the display server command line.

Known issues and limitations

Consider the following when you use HTML5-rendered trend charts:

After zooming or scrolling, the time axis labels may briefly be misaligned or overlap. They
should be drawn correctly on the next refresh.

The chart's tooltipmay overlap theReset buttonmaking it difficult to click the button.Moving
the mouse a bit will correct this problem.

HTML5 rendering will display all timestamps using the local time zone. This may cause user
confusion if the display server is in a different time zone.

Performance is affected by the number of traces, trace points, use of trace line shadows, trace
line thickness, trace markers, trace fill, and other properties. Performance is also affected by
the browser and version, and the CPU speed of the client host system.

If any of the chart's graphical properties are changedwhile the chart is displayed (for example
the traceFillStyle property is toggled by means of a checkbox control) the chart is rebuilt in
the thin client, which in turn resets the chart's time range (as though the Reset button was
clicked).

Scrolling: If the mouse is moved below the bottom of the chart while dragging the scrollbar,
the scrollingwill stop. This is unlike the behavior of other objects, whichwill continue to scroll
until the mouse button is released.

Building and Using Apama Dashboards 10.11.2 93

3 Attaching Dashboards to Correlator Data

Drilldown from trace points: If traceFillStyle is not None (that is, trace fill is enabled) and
multiple traces share the same Y axis, then it is not possible to click on a point belonging to
traceN if the fill area of a higher numbered trace is drawn over that point.

When yAxisLogFlag = 1 and the chart has multiple y axes and traces, some y axis labels may
appear rather than numeric values. This is rare.

Since HTML5-rendered trend charts do not support legendWidthPercent, the width of each
chart's legend will vary according to the trace labels. This makes it difficult to create multiple
trend chart instances on the same display whose time axes are all the same length, even if the
charts all have the same width. (A single chart in stripchart mode may be more appropriate
in those cases).

On a touch interface, a swipe will scroll the chart left or right. To move the cursor without
scrolling, tap the location to which you want the cursor to move.

On a touch interface, a pinch-open gesture in the plot area, scrollbar, or navigator will zoom
the chart's range in to the pinched range. A pinch-close gesture will zoom out to the pinched
range. The pinch-close operation may be difficult to use. A tap on the Reset button gives a
better zoom-out experience.

Hidden properties when webChartFlag is selected

Following is the list of obj_trendgraph02 properties that are hiddenwhen webChartFlag is checked:

borderPixels

labelMinTabWidth

legendWidthPercent

legendBgGradientMode

legendBgGradientColor2

legendValueMinSpace

markDefaultSize

markScaleMode

outlineColor

scrollbarMode

scrollbarSize

zoomEnabledFlag

timeRangeOfHistory

traceBgColor

traceBgGradientMode

94 Building and Using Apama Dashboards 10.11.2

3 Attaching Dashboards to Correlator Data

traceBgGradientColor2

traceBgImage

yAxisAutoScaleVisTracesOnlyFlag

yAxisFormat

yAxisFlag

yAxisPosition

yAxisValueLabels

yAxisMajor/MinorDivisions

xAxisFlag

xAxisMajorDivisions

For each traceN, the following properties are hidden:

traceNValueAlarmStatus

traceNValueAlarmStatusTable

traceNValueHistoryFlag

traceGroupNBandedFlag

traceNYAxisGridVisFlag

traceNYAxisMinLabelWidth

traceNYAxisValueLabels

traceNYAxisVisFlag

traceNYAxisAutoScaleMode

traceNYAxisValueMin

traceNYAxisValueMax

Using stock charts
Stock charts provide the ability to view the Open, High, Low, and Close values (OHLC) for a
DataView field such as stock price over set time intervals. The intervals may be small such as 5
seconds if being used for intra-day trading or larger for longer time periods such as hours, days,
or weeks. The following illustration is from the Stock Chart tutorial sample.

Building and Using Apama Dashboards 10.11.2 95

3 Attaching Dashboards to Correlator Data

In this example, the OHLC values are shown as a candlestick chart where each “stick” represents
a 5 second interval. The stock chart supports others display formats such as OHLC, line, and bar.

1. Open the file tutorial-stock-chart.rtv by double-clicking Stock Chart on the tutorial main
page.

2. Select the stock chart object and in the Object Properties panel, select the priceTraceType
property and change its value to OHLC.

The data displayed is the same as that displayed in the previous illustration where
priceTraceTypewas set to Candlestick. Only the presentation has changed.

Although named “stock chart” you are not limited to using it for stock data. You can chart Open,
High, Low, and Close values for any DataView field. Other financial and non financial data can
often benefit from being visualized as a stock chart.

Detailed reference information on stock charts is provided in “Stock charts” on page 456.

Using OHLC values
The OHLC values for a stock chart can be provided by attaching the stock chart to one of the
following:

OHLC table

DataView trend table

DataView instance table

96 Building and Using Apama Dashboards 10.11.2

3 Attaching Dashboards to Correlator Data

The simplest is to attach the chart to a DataView OHLC table. This is specified when creating the
attachment in the Attach to Apama dialog.

When attaching to a DataView OHLC table, you need only specify the DataView variable you
want to chart OHLC values for and a time interval. Apama will then automatically calculate the
OHLC values. No modifications are required to your DataView. The following section uses the
Stock Chart tutorial sample.

1. Select the stock chart object in the tutorial-stock-chart.rtv file.

2. In the Object Properties panel, double-click the priceTraceHistoryTable property to display
the attachment settings for the stock chart.

3. In the Object Properties panel, double-click the priceTraceCurrentTable property to display
the attachment settings for the stock chart.

Here the attachment is made to the DataView OHLC table of the tutorial DataView and the Price
variable is being displayed. This is the variable for which OHLC values will be calculated and
displayed. The event timestamp, apama.timestamp, is the timestamp used to determine the time
of events. The time interval is set to 5 seconds resulting in an OHLC value being charted every 5
seconds where each represents the preceding 5 seconds. The filter is set to match the DataView
instance where the variable Instrument equals APMA.

When attaching to a DataView OHLC table, you must specify the time interval so that Apama
knows what interval to use to calculate OHLC values.

You must also specify a filter. As with trend charts a stock chart displays the value of one variable
of a single instance over time. If a filter matches more than one instance, the first found will be
displayed.

The second way to provide OHLC data for a stock chart is to attach it to a DataView trend table.
Do this when you want control of the calculation of OHLC values in a DataView. This requires
that the DataView have the variables for open, high, low, and close. When attaching a stock chart
to a DataView trend data you must specify for the display variables the individual open, high,
low, and close variables of the DataView.

Building and Using Apama Dashboards 10.11.2 97

3 Attaching Dashboards to Correlator Data

98 Building and Using Apama Dashboards 10.11.2

3 Attaching Dashboards to Correlator Data

In this illustration, the attachment is made to the DataView trend table of the OHLC DataView.
The DataView variables open, high, low, and close are used to provide the OHLC values. Notice
that the Using time interval field is disabled. This is because the DataView is calculating the
OHLC values; not the dashboard or dashboard server.

The names of the DataView variables do not matter. However, they must be specified in the order
open, high, low, and close. Only number variables can be used. String variablesmust be converted
to numbers for use in stock charts.

The third way to provide OHLC data for a stock chart is to attach it to a instance table. This is
similar to attaching to aDataView trend table. In that, theDataViewhas control over the calculation
of the OHLC values. It differs in that OHLC data for only one instance that is maintained in
memory. This is valuable when you want to minimize memory use. However, it results in the
chart being reset, cleared of all data, whenever OHLCvalues for a different instance are displayed.

Use the priceTraceHistoryTablewhen attaching a stock chart to an instance table. Attaching the
priceTraceCurrentTable property to a instance table will result in only the latest data value being
displayed.

Building and Using Apama Dashboards 10.11.2 99

3 Attaching Dashboards to Correlator Data

In this illustration, the attachment is made to the instance table of the OHLC DataView. The
DataView variables open, high, low, and close are used to provide the OHLC values. If you do
not enable the Timestamp variable field for instance table attachments, you need to specify the
timestamp as the first entry in the Display variables field; here apama.timestamp is being used.

Note:
Unless you have severe memory constraints or are displaying OHLC values for only a single
instance, you should attach the priceTraceHistoryTable property to either a DataView OHLC
table or a DataView trend table, as this provides the best usage experience for the dashboard
user.

Creating a stock chart
To create a stock chart, you add it to a dashboard and attach its priceTraceHistoryTable property
toOHLCdata for an instance. The filter to identify the instancewill typicallymatch on $instanceId
although other filters could also be used.

The Stock Chart Drilldown tutorial sample demonstrates how to use a stock chart where the
instance charted is determined by the selection in an instance summary table.

To recreate this sample create a new dashboard and perform the following steps

100 Building and Using Apama Dashboards 10.11.2

3 Attaching Dashboards to Correlator Data

1. From the Table tab in the Object Palette, select the Table object and add it to the dashboard
canvas.

2. With the table object selected, in the Object Properties panel double-click the table object's
valueTable property and attach it to Apama and select the tutorial DataView. Select the display
variables shown in the example and do not apply a filter. The information should be specified
as follows:

3. From the Trends tab in the Object Palette, select the Stock Chart object and add it to the
dashboard Canvas.

4. With the stock chart selected, in the Object Properties panel, double-click the
priceTraceHistoryTable property. Attach it to the OHLC table for the tutorial DataView and
specify the rest of the information as shown in the following illustration.Here the Price variable
will be charted over 5 second intervals. The instance charted will be the selected instance as
indicated by the variable $instanceId

Building and Using Apama Dashboards 10.11.2 101

3 Attaching Dashboards to Correlator Data

5. With the stock chart selected, in the Object Properties panel, double-click the
priceTraceCurrentTable property. Attach it to the OHLC table for the tutorial DataView and
specify the rest of the information as shown in the following illustration.Here the Price variable
will be charted over 5 second intervals. The instance charted will be the selected instance as
indicated by the variable $instanceId.

102 Building and Using Apama Dashboards 10.11.2

3 Attaching Dashboards to Correlator Data

6. Select the timeRange property and set its value to 60.0. This will set the chart's time axis such
that 60 seconds of datawill be visible. If you set the value too high youmay encounter problems
where the “sticks” of the chart are close and overlap.

7. Select the scrollbarMode property and change its value to As Needed. This will add a scrollbar
to the chart allowing you to scroll back in time to view earlier values.

8. Select an instance in the table by double-clicking on it. The chart will now begin chartingOHLC
values for the Price variable of the selected instance.

If you have not previously displayed a sample containing a stock chart, values in the chart will
not appear for ten seconds. Apama does not collect data in an instance OHLC table until the first
attachment to an instance of the table is made.

Adding overlays
Stock charts support up to nine overlays. An overlay is much like a trace in a trend chart. Overlays
can be used to compare the displayed OHLC values against other variables or fields such as other
stock prices, overall activity on the stock index, or to show periodic events such as stock splits and
earnings announcements.

Building and Using Apama Dashboards 10.11.2 103

3 Attaching Dashboards to Correlator Data

Here the overlay is showing the velocity of the stock price. Notice that multiple scales are shown
on the Y axis; the outer scale corresponds to the stock price and the inner scale the velocity.

1. Open the file tutorial-stock-overlay.rtv by selecting Stock Chart Overlays on the tutorial
main page.

2. Select the stock chart and in the Object Properties panel, select the property overlay1Type and
change its value to Bar.

The overlay values are now displayed as discrete bars and not as a single line.

If you set overlay1Type to Event, event markers will be placed on the chart at the occurrence of
each event. This allows you to easily identifywhen key events occurred. The following illustration
demonstrates this.

The character displayed in event markers is the first letter of the corresponding overlayNLabel
property.

When using overlays to display event markers, the event markers should be relatively sparse.
Displaying high numbers of event markers will cause them to overlap and limit their usefulness.

To add overlays to a stock chart, set the overlayCount property to the number of overlays to be
displayed. This will cause a set of properties to be added to the property panel for each overlay;
overlay1 through overlayN. Following are the properties for overlay 1.

104 Building and Using Apama Dashboards 10.11.2

3 Attaching Dashboards to Correlator Data

Whenyou attach an overlay to aDataViewOHLC table or aDataView trend table, use the properties
OverlaynCurrentTable and OverlaynHistoryTable.

Use only the OverlaynCurrentTable property when attaching the overlay to an instance table.
Attaching to an instance table requires less memory but the resulting overlay may be missing one
ormore data points. This can occur if the dashboard is running on a heavily loaded system. Unless
you have severe memory restrictions, you should not attach overlays to an instance table. Better
results can be achieved by attaching to aDataView trend table. Thiswill guarantee that the overlay
contains all data points.

Recreating the Stock Chart Overlay sample

To recreate the Stock Chart Overlay sample

1. Open the file tutorial-stock-chart.rtv by selecting Stock Chart on the tutorial main page.

2. Select the stock chart and in the Object Properties panel, select the property overlayCount and
change its value to 1. This will cause the overlay1 properties to be added to the property panel.

3. Double-click the overlay1HistoryTable property and attach it to a DataView OHLC table by
specifying the following information.

Building and Using Apama Dashboards 10.11.2 105

3 Attaching Dashboards to Correlator Data

The overlay is now attached to Velocity property of the instance where the Instrument equals
APMA; this is the same filter used for the priceTraceHistoryTable attachment.

4. Double-click the overlay1CurrentTable property and attach it to a DataView OHLC table by
specifying the following information.

106 Building and Using Apama Dashboards 10.11.2

3 Attaching Dashboards to Correlator Data

The overlay is now attached to Velocity property of the instance where the Instrument equals
APMA; this is the same filter used for the priceTraceHistoryTable attachment.

5. Select the overlayCount property in the property panel and change its value to 2. This will
cause the overlay2 properties to be added to the property panel.

6. Double-click the overlay2HistoryTable property and attach it to a DataView trend table by
specifying the following information:

Building and Using Apama Dashboards 10.11.2 107

3 Attaching Dashboards to Correlator Data

7. Double-click the overlay2CurrentTable property and attach it to a DataView trend table by
specifying the following information:

108 Building and Using Apama Dashboards 10.11.2

3 Attaching Dashboards to Correlator Data

The stock chart now contains two overlays; one showing the velocity of the stock price and the
second showing the current position in that instrument. The following illustration shows how this
looks in the sample.

Overlays can be hidden by tuning off the overlayNVisFlag property. This is for use when building
dashboards where you will have input controls such as checkboxes which will allow the user to
hide or show different overlays.

Building and Using Apama Dashboards 10.11.2 109

3 Attaching Dashboards to Correlator Data

Generating OHLC values
If you generate OHLC values, you should also use a DataView field as the timestamp. If you use
apama.timestamp, you need to design theDataView to generate update events onlywhen theOHLC
values change. Your dashboard will add an OHLC data point to a Stock Chart for every Update
event it receives. If a DataView, for example, generates Update events in response to other variables
changing and apama.timestamp is being used as the timestamp, then spurious OHLC data points
will be added to the chart. If the chart were displaying a candlestick this would manifest itself as
extra “sticks” appearing in the chart.

If you use a DataView field as the timestamp, data points will only be added to the chart when
timestamp and/or OHLC values have changed.

Furthermore, the update of the OHLC values must occur as a whole; that is each Update event
must contain the updated value of each of the Open, High, Low, and Close variables. If the update
of each variable were to generate a separate Update event, you would also have spurious data
points in the chart. This is because your dashboard has noway of knowing if the unchanged values
are correct or not.

To update the OHLC variables in a single update event, your DataView needs to set the value of
each in the scope of a single rule. For example:

Here local variables _open, _high, _low, and _close are used throughout to calculate the OHLC
values.Within this rule, the output variables open, high, low, and close are being set to these values
such that a single Update event contains the updated value of each.

If you use a DataView field as the timestamp, data points will only be added to the chart when
timestamp and/or OHLC values have changed.

Furthermore, the update of the OHLC values must occur as a whole; that is each Update event
must contain the updated value of each of the Open, High, Low, and Close variables. If the update
of each variable were to generate a separate Update event, you would also have spurious data
points in the chart. This is because your dashboard has noway of knowing if the unchanged values
are correct or not.

To update the OHLC variables in a single update event, your DataView needs to set the value of
each in the scope of a single rule.

Localizing dashboard labels
You can localize dashboard labels by attaching XMLdata (filtered based on the end-user-specified
value of a dashboard variable) to the object properties that specify the labels. For a complete
localization example, select Localization on the Dashboard Builder Tutorial main page.

To localize dashboard labels

1. Create an XML dataset with a tabular data element. (See “Using XML Data” on page 205.)
Create a column for supported locales, as well as a column for each label. Create a row for

110 Building and Using Apama Dashboards 10.11.2

3 Attaching Dashboards to Correlator Data

each locale. In each row, put a specific locale and the text for each label localized for that specific
locale. Here is an example from the Builder tutorial:

<?xml version="1.0" encoding="UTF-8"?>
<dataset xmlns="www.sl.com" version="1.0">
<table key="labels">
<tc name="Locale"/>
<tc name="Confirmation message"/>
<tc name="Press button"/>
<tc name="Are you sure"/>
<tc name="Numeric input"/>
<tc name="Datetime input"/>
<tc name="Numeric display"/>
<tc name="Datetime display"/>
<tr name="English">
<td>en_US</td>
<td>Confirmation message:</td>
<td>Press button</td>
<td>Are you sure?</td>
<td>Numeric input:</td>
<td>Date time input:</td>
<td>Numeric display:</td>
<td>Date time display:</td>
</tr>
<tr name="French">
<td>fr_FR</td>
<td>Message de confirmation:</td>
<td>Bouton-poussoir</td>
<td>Etes-vous sûr?</td>
<td>Entrée numérique:</td>
<td>Entrée date-heure:</td>
<td>Affichage numérique:</td>
<td>Affichage date-heure:</td>
</tr>
<tr name="Spanish">
<td>es_ES</td>
<td>Mensaje de confirmación:</td>
<td>Botón</td>
<td>¿Estás seguro?</td>
<td>Entrada numérica:</td>
<td>Entrada de la fecha y hora:</td>
<td>Exhibición numérica:</td>
<td>Exhibición de la fecha y hora:</td>
</tr>
<tr name="Chinese">
<td>zh_TW</td>

 <td>確認信息 :</td>
 <td>按鈕</td>
 <td>你肯定嗎？</td>
 <td>數字輸入:</td>
 <td>日期-時間的輸入:</td>
 <td>數字顯示:</td>
 <td>日期-時間的顯示:</td>
</tr>

</table>
</dataset>

Building and Using Apama Dashboards 10.11.2 111

3 Attaching Dashboards to Correlator Data

This file defines labels Press button, Are you sure?, and so forth, for the languages English,
French, Spanish, and Chinese. The first column Locale defines the locale, or language, of the
corresponding row.

2. For each object property that specifies a label, attach the property to the column that corresponds
to that label, filtered to select the row for which the value in the locale column is the value of
a dashboard variable that specifies the locale desired for the end user. You can use the
predefined variable $apama_lang for this purpose. Here is an example:

3. Provide away for end users to set the relevant variable (for example, the predefined dashboard
variable $apama_lang) to their desired locale. Oneway to do this is to include, on your top-level
dashboards, a combo box (from the Controls tab). Attach the selectedValue and varToSet
properties of the combo box to $apama_lang, and attach the listValues property to the locale
column of your XML data element. Here is an example:

112 Building and Using Apama Dashboards 10.11.2

3 Attaching Dashboards to Correlator Data

The dashboard substitution $apama_lang is automatically defined for dashboards. Use ISO 639
language codes as values of this variable. This is the same locale string used within Java. See
the Java documentation for the java.util.Locale class for more information on locales within
Java. Here are some sample locale values:

For dashboards in Builder and Viewer connected directly to the Correlator, the default value
for $apama_lang is what Java reports as the locale in the Locale object as derived from the host
system's locale.

LocaleLocale Name

zh_CNLocale.CHINA

zhLocale.CHINESE

zh_CNLocale.SIMPLIFIED_CHINESE

zh_TWLocale.TRADITIONAL_CHINESE

zh_CNLocale.PRC

zh_TWLocale.TAIWAN

enLocale.ENGLISH

en_GBLocale.UK

en_USLocale.US

fr_FRLocale.FRANCE

frLocale.FRENCH

Building and Using Apama Dashboards 10.11.2 113

3 Attaching Dashboards to Correlator Data

For deployed dashboards, the value of $apama_lang is set based on the locale of the host on
which the dashboard display server or data server is running. A single dashboard server cannot
serve dashboards to users in different languages. Note that number and date formatting
performed by the dashboard server are always controlled by the system locale.

Note:
Numeric formats (1,000.00 versus 1.000,00) are controlled by the system locale. You cannot
change this by setting $apama_lang. The only way to override it, other than changing your
system locale, is through Java system properties. Date/time formats are also controlled by
the system locale.

Localizing dashboard messages
For thin-client (display server) deployments, you can localize the text displayed in popupmenus,
login windows, status windows, and various error messages.

To localize dashboard messages

1. Extract the file rtvdisplay_strings.properties from the WEB-INF/classes/gmsjsp directory
of the rtvdisplay.war file in your deployment package. Copy it to a new file with the desired
locale suffix (for example, rtvdisplay_strings_ja.properties for Japanese).

2. Edit the new file so that it contains the localized text.

3. Pack the edited file into rtvdisplay.war, in WEB-INF/classes/gmsjsp.

The locale setting of your application server is used to determine which properties file to load.
If the application server does not have the desired locale setting for the thin client, edit the
original file (rtvdisplay_strings.properties) and pack it into the .war file.

114 Building and Using Apama Dashboards 10.11.2

3 Attaching Dashboards to Correlator Data

4 Using Dashboard Functions

■ Using built-in functions ... 116

■ Creating custom functions .. 118

Building and Using Apama Dashboards 10.11.2 115

You can use Dashboard functions in order to perform calculations, filtering, formatting and other
operations on correlator data. Scalar functions can be used when operating on a single variable of
a single instance. Tabular functions can be used when operating on a table of correlator data.
Where all correlator data is stored in dashboards or dashboard servers as tables, they are compatible
with all tabular functions.

Using built-in functions
Following is an example of using a built-in function.

To use a built-in function

1. Open the file tutorial-function-sum.rtv by selecting Data Functions on the tutorial main
page.

Here the value in the label at the bottom of the dashboard is the sum of the Position variables
of each instance. To recreate this sample follow the following steps.

2. Open the file tutorial-summary-table.rtv by selecting Summary Table on the tutorial main
page.

3. From the Tools menu, select the Functions item to display the Functions panel.

4. Click the Add button to display the Edit Function dialog.

5. Set the Function Name field to PositionTotal and the Function Type field to Add All Rows
Or Columns.

For information on all built-in functions, see .

6. Right-click the Table field in the Edit Function dialog and attach it to Apama by specifying
the information shown in the dialog shown below.

116 Building and Using Apama Dashboards 10.11.2

4 Using Dashboard Functions

Here the attachment specifies that the Position column for the tutorial DataView is to be used.
The Sum function will produce the sum of the values in all the cells of a given column; in this
case the sum of the cells in the Position column for all instances.

7. Click OK in the Edit Function dialog and close the Functions dialog.

The function PositionTotal has now been defined and object properties can be attached to it.

8. From the Labels tab in the Object Palette, select the second label object and add it to the
dashboard canvas.

9. Select the label object and in the Object Property panel right click the valueString property
and select Attach to Data | Function to display the Attach to Function Data dialog.

10. From the Function Name drop down list, select the PositionTotal function as follows:

The label object is now attached to the PositionTotal function and will display the sum of the
Position variable for all instances.

Building and Using Apama Dashboards 10.11.2 117

4 Using Dashboard Functions

For more information on the Functions panel and the Edit Function dialog, see “Introduction to
Dashboard Functions” on page 529.

Dashboard Builder provides many functions for operating on data. These can be used to operate
on an instance data to produce scalar results such as a sum. They can also be used to produce
tabular results which can be displayed as tables or charts. It is also possible to chain functions
where one function takes as its input value the output of another function. For more information,
see the Dashboard Function Reference in Developing Apama Applications.

Apama also gives you the ability to define custom dashboard functions, as described in the next
section.

Creating custom functions

To provide a library of functions

1. Develop an implementation of com.apama.dashboard.function.IFunctionLibrary. See
“Developing a custom-function library” on page 118.

2. Install your implementation. See “Installing a custom-function library” on page 120.

Developing a custom-function library
A sample implementation of IFunctionLibrary is included below in “Sample IFunctionLibrary
implementation” on page 120.

Your implementation of IFunctionLibrarymust implement the following methods:

getFunctionDescriptors: Creates a function descriptor for each function that the library
supports; returns a list of com.apama.dashboard.function.IFunctionDescriptors. Thismethod
is called once at data server or display server startup. See “Implementing
getFunctionDescriptors” on page 118.

evaluateFunction: Returns the result of executing a specified functionwith specified arguments.
See “Implementing evaluateFunction” on page 119.

When you compile your implementation, ensure that ap-dashboard-client.jar is on your class
path. This jar file is in the lib directory of your Apama installation.

Implementing getFunctionDescriptors

To create a function descriptor, use the factory class
com.apama.dashboard.function.FunctionDescritporFactory. Call createFunctionDescriptor,
passing arguments that specify the following:

The function name that will be used by the Dashboard Builder and by the implementation of
evaluateFunction

The argument names that will be used by the Dashboard Builder

118 Building and Using Apama Dashboards 10.11.2

4 Using Dashboard Functions

The argument names that will be used by the implementation of evaluateFunction

The return type of the function (String, Double, Integer, or
com.apama.dashboard.data.ITabularData)

The names of the returned columns, for functions that return table data

A text description of the function

Note:
When you create a dashboard custom function you must specify prefixes for parameters
according to the parameter type. A prefix must be s_arg for a String parameter, t_arg for a
Table parameter or i_arg for an Integer parameter, for example, s_arg1, s_arg2. You can see
sample code that shows this in the getFunctionDescriptors() definition near the beginning of
“Sample IFunctionLibrary implementation” on page 120.

Implementing evaluateFunction

Implement this method to evaluate a specified function with specified actual arguments. The
function is specified with the function name. The arguments are specified with an instance of
com.apama.dashboard.data.IVariableData.

For functions that return table data, use the factory class
com.apama.dashboard.data.TabularDataFactory to create an instance of ITabularData.

When you compile your implementation, ensure that ap-dashboard-client.jar is on your class
path. This jar file is in the lib directory of your Apama installation.

Your implementation of evaluateFunction can set or retrieve substitution values, if necessary, by
using the following methods of DashboardManager and IDashboardContext:

DashoardManager.getFunctionDashboardContext: This static method takes as argument an
instance of IVariableData and returns an instance of IDashboardContext. Pass the instance of
IVariableData that is passed into evaluateFunction.

IDashboardContext.getSubstitutionValue: Gets the value of a substitutionwith a given name.

IDashboardContext.setSubstitution: Sets the value of a substitution with a given name.

IDashboardContext.setSubstitutions: Sets the values of substitutions, where the substitutions
and values are specified with String vectors.

Each set method has a boolean argument, triggerUpdate, which controls whether objects attached
to the substitution are updated. If it is false, they are not. If the substitutions are only used as
command parameters or in drilldowns, you can improve performance by specifying false.

Here is an example:
IDashboardContext ctxt =
DashboardManager.getFunctionDashboardContext(v);
String val1 = ctxt.getSubstitutionValue("$subst1");
...
ctxt.setSubstitution("$subst2", "val2", false);

Building and Using Apama Dashboards 10.11.2 119

4 Using Dashboard Functions

Installing a custom-function library
To install your function library for a given data server or display server, do both of the following:

Include a line in the data server or display server's EXTENSIONS.ini file that specifies the fully
qualified name of your IFunctionLibrary implementation. The line must have the following
form:
function fully-qualified-classname

create a jar file that contains your IFunctionLibrary implementation, and either add it to
APAMA_DASHBOARD_CLASSPATH (changes to this environment variable are picked up by dashboard
processes only at process startup) or add it to the list of External Dependencies in your
project'sDashboard Properties. (In Software AGDesigner, right-click your project and select
Properties, expandApama, selectDashboard Properties, activate theExternal Dependencies
tab, and click theAdd External button). You can also use the --dashboardExtraJars command
line argument to specify this jar file.

A data server or display server's EXTENSIONS.INI is, by default, located in the lib directory of its
Apama installation. You can specify a data server or display server's EXTENSIONS.ini file at startup
by using the -X or --extensionFile option.

The EXTENSIONS.ini specifies the function library to use. This file identifies all the user supplied
extension classes (including command libraries and scenario authorities). Here is a sample
EXTENSIONS.ini:
function com.apama.dashboard.sample.SampleFunctionLibrary
command com.apama.dashboard.sample.SampleCommandLibrary
scenarioAuthority com.apama.dashboard.sample.SampleScenarioAuthority

This file installs a function library, a command library, and a scenario authority.

Sample IFunctionLibrary implementation
Below is a sample implementation of IFunctionLibrary, which you can find under
samples\dashboard_studio\tutorial\src:
package com.apama.dashboard.sample;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
import java.util.StringTokenizer;
import java.util.Vector;
import java.util.regex.Pattern;
import com.apama.dashboard.data.ITabularData;
import com.apama.dashboard.data.IVariableData;
import com.apama.dashboard.data.TabularDataFactory;
import com.apama.dashboard.data.internal.TabularData;
import com.apama.dashboard.function.FunctionDescriptorFactory;
import com.apama.dashboard.function.IFunctionDescriptor;
import com.apama.dashboard.function.IFunctionLibrary;
/**
* SampleFunctionLibrary is an example of a custom function library for

120 Building and Using Apama Dashboards 10.11.2

4 Using Dashboard Functions

* Dashboard Studio. Custom functions allow you to extend Dashboard Studio
* by the addition of custom functions to process data for use as data
* attachments.
* <p>
* SampleFunctionLibrary implements the functions:
*
* String to Table: Parses an encoded string to produce tabular
* data.
*
*
* $Copyright(c) 2013 Software AG, Darmstadt, Germany and/or its licensors$
*/

public class SampleFunctionLibrary implements IFunctionLibrary {
private final static String FUN_STRINGTOTABLE = "String to Table";
// Column naming modes
enum ColMode {

AUTO, STRING, STATIC;
};
/**
* Get the list of function descriptors for the functions implemented
* by this function library. Each command descriptor identifies one
* function.
*/

public Vector<IFunctionDescriptor> getFunctionDescriptors() {
Vector<IFunctionDescriptor> v = new Vector<IFunctionDescriptor> ();
IFunctionDescriptor fd = FunctionDescriptorFactory.createFunctionDescriptor(

FUN_STRINGTOTABLE,
new String[] { "String", "Row Delimiter", "Column Delimiter",

"Column Name Mode","Column Names",
"Allow Empty Rows/Columns"},

new String[]
{ "s_arg1", "s_arg2", "s_arg3", "s_arg4", "s_arg5", "s_arg6"},

IFunctionDescriptor.RETURN_TYPE_TABLE,
null,
"This function produces a table from the specified string by using " +
"the specified row and column delimiters to tokenize the string. If " +
"the table is to contain only 1 column, do not specify a value for " +
"Column Delimiter. " +
"Column names are determined by the \"Column Name Mode\".
Specify one of: \n" +
" - AUTO : Names generated as col0, col1, col2, ...\n" +
" - STATIC : Names defined in \"Column Names\", comma seperated\n" +
" - STRING : Names defined in first row of \"String\"\n\n" +
"Use \"Allow Empty Rows/Columns\" to create empty rows/columns for all
delimiters\n"
+ " - false (default) : empty tokens will be skipped\n" +
" - true : empty tokens will result in empty rows/columns\n");

v.add(fd);
return v;

}
/**
* Evaluate a function.
*
* @param command Function to evaluate.
* @param parameters Parameters to function.
*/

public Object evaluateFunction(String function, IVariableData parameters) {
if (function.equals(FUN_STRINGTOTABLE)) {

return stringToTable(parameters);
} else {

Building and Using Apama Dashboards 10.11.2 121

4 Using Dashboard Functions

return null;
}

}
/**
* Generate a table from the string parameter passed to function.
*
* @param parameters Parameters to function.
* @return Tabular data
*/

private ITabularData stringToTable (IVariableData parameters) {
// See if "Allow Empty Fields" is used. If not, then return value of
// stringToTableOld() which preserves old behavior
// This is needed so as not to break any old StringToTable behavior
String allowEmptyCells = parameters.getStringVar("s_arg6");

if (allowEmptyCells == null ||
allowEmptyCells.equals("") ||
allowEmptyCells.equalsIgnoreCase("false") ||
allowEmptyCells.equals("0") ||
allowEmptyCells.equalsIgnoreCase("no")) {
return stringToTableOld(parameters);

}
// Function arguments
String inString = parameters.getStringVar("s_arg1");
String unquoteRowDelim = parameters.getStringVar("s_arg2");
String unquoteColDelim = parameters.getStringVar("s_arg3");
String colModeS = parameters.getStringVar("s_arg4");
String colNames = parameters.getStringVar("s_arg5");
String colDelim = unquoteColDelim;
String rowDelim = unquoteRowDelim;
// Check required values
if (inString == null || inString.equals(""))

return null;

// StringTokenizer will do the right thing
if ((unquoteColDelim == null) || (unquoteColDelim.length() == 0)) {

unquoteColDelim = "";
}

// The delimiters are treated as a list of chars as delimiters
// Do this by adding a | between chars
char[] rowDelimChars = unquoteRowDelim.toCharArray();
char[] colDelimChars = unquoteColDelim.toCharArray();
StringBuffer rowDelimSB = new StringBuffer();
StringBuffer colDelimSB = new StringBuffer();

// default any regular expression special chars so we can escape them.
final String metaChars = "^[^\\[\\]\\^\\+\\|\\?\\\\()\\{\\}\\.<>/;*%$]*$";

if (rowDelimChars.length > 0) {
for (char c : rowDelimChars) {
// escape any special char
if (!Pattern.matches(metaChars, String.valueOf(c))) {

rowDelimSB.append("\\");
}
rowDelimSB.append(c);
rowDelimSB.append("|");

}
// remove last '|'
rowDelimSB.setLength(rowDelimSB.length()-1);

122 Building and Using Apama Dashboards 10.11.2

4 Using Dashboard Functions

}
if (colDelimChars.length > 0) {

for (char c : colDelimChars) {
// escape any special char
if (!Pattern.matches(metaChars, String.valueOf(c))) {
colDelimSB.append("\\");

}
colDelimSB.append(c);
colDelimSB.append("|");

}
// remove last '|'
colDelimSB.setLength(colDelimSB.length()-1);

}
// get the actual, escaped, delimiter regular expressions
rowDelim = rowDelimSB.toString();
colDelim = colDelimSB.toString();

// How are the columns to be named
ColMode colMode = ColMode.AUTO;
if ((colModeS != null) && (colModeS.length() > 0)) {

try {
colMode = ColMode.valueOf(colModeS.trim().toUpperCase());

} catch (IllegalArgumentException e) {
// bogus column mode is specified, default to AUTO
colMode = ColMode.AUTO;

}
}
// The number of splitted strings in the first row is the number of
// columns in table
int colCount = 0;
String[] rows;

// if no rowDelim, whole string is treated as a row
if (rowDelim.equals("")) {

rows = new String[] {inString};
} else {

rows = inString.split(rowDelim, Integer.MAX_VALUE);
}

// if inString is empty, no row is needed
if (inString.equals("")) {

rows = new String[0];
}

// we do have some rows...
if (rows.length > 0) {

// if no column delimiter, whole row is one column
if (colDelim.equals("")) {

colCount = 1;
} else {

// use col delimiter to split it
colCount = rows[0].split(colDelim, Integer.MAX_VALUE).length;

}
}

// Initialize table and add columns
ITabularData table = TabularDataFactory.createTabularData();
String[] columnNames = null;
switch (colMode) {
case AUTO:

Building and Using Apama Dashboards 10.11.2 123

4 Using Dashboard Functions

for (int i=0; i<colCount; i++) {
table.addColumn("col" + i,TabularData.COL_TYPE_STRING);

}
break;

case STRING:
// Make sure this is at least one row
if (rows.length > 0) {
// 1st row is the colNames
// we do have some rows...
// if no column delimiter, whole row is one column, which will be the
// col name
if (colDelim.equals("")) {

columnNames = new String[] {rows[0]};
table.addColumn(columnNames[0], TabularData.COL_TYPE_STRING);

// the 1st row IS
// the name

} else {
// use col delimiter to split it

columnNames = rows[0].split(colDelim, Integer.MAX_VALUE);
int n = 0;
if (columnNames != null) {
for (String colName : columnNames) {

table.addColumn(
(colName.equals("")) ? "col" + n : colName,

TabularData.COL_TYPE_STRING);
n++;

}
}

}

// since we've used 1st row as column names, remove it from the array
List<String> rowList = new ArrayList<String>(Arrays.asList(rows));
rowList = rowList.subList(1, rows.length);
rows = new String[rows.length-1];
rows = rowList.toArray(rows);

}

break;
case STATIC:

// get static column from argument
columnNames = colNames.split(",", Integer.MAX_VALUE);

// Figure out the correct number of columns
int maxCol = 0;

// if column delimiter is empty, then there is only one column, regardless
if (unquoteColDelim.equals("")) {
maxCol = 1;

} else {
// If there isn't any row data, just use all columnNames
maxCol =

(rows.length > 0 && !rows[0].equals("")) ?
colCount : columnNames.length;

}

// add column names based on the colNames argument
int i = 0;
if (columnNames != null) {
for (; i < columnNames.length && i < maxCol; i++) {

String colName = columnNames[i];

124 Building and Using Apama Dashboards 10.11.2

4 Using Dashboard Functions

table.addColumn(
(colName.equals("") ? "col" + i : colName),
TabularData.COL_TYPE_STRING);

}
}

// if static col names is shorter, fill up with default column names
for (; i < maxCol; i++) {

table.addColumn("col" + i,TabularData.COL_TYPE_STRING);
}

colCount = maxCol;
break;

}

// parse string and adding rows to table
for (int row = 0; row < rows.length; row++) {

table.addRow("row" + row);
boolean noColDelimiter = colDelim.equals("");
if (colCount == 1) {

table.setCellValue(rows[row], row, 0);
} else {

String[] cols;

// if no col delimiter, whole row is one column, no need to split
if (noColDelimiter) {
cols = new String[] {rows[row]};

} else {
// do need to split it
cols = rows[row].split(colDelim, Integer.MAX_VALUE);

if (cols != null) {
for (int col = 0; col < colCount && col < cols.length; col++) {

table.setCellValue(cols[col], row, col);
}

}
}

}
}

return table;
}

/**
* This is the old StringToTable implementation which uses StringTokenizer,
* which will by default ignore consecutive delimiters
* @param parameters
* @return
*/

private ITabularData stringToTableOld (IVariableData parameters) {
// Function arguments
String inString = parameters.getStringVar("s_arg1");
String rowDelim = parameters.getStringVar("s_arg2");
String colDelim = parameters.getStringVar("s_arg3");
String colModeS = parameters.getStringVar("s_arg4");
String colNames = parameters.getStringVar("s_arg5");
// Check required values
if ((inString == null) || (inString.length() == 0) ||

(rowDelim == null) || (rowDelim.length() == 0)) {
return null;

Building and Using Apama Dashboards 10.11.2 125

4 Using Dashboard Functions

}

// StringTokenizer will do the right thing
if ((colDelim == null) || (colDelim.length() == 0)) {

colDelim = "";
}

// Map special delimiter strings to their internal value
// rowDelim = delimValue (rowDelim);
// colDelim = delimValue (colDelim);

// How are the columns to be named
ColMode colMode = ColMode.AUTO;
if ((colModeS != null) && (colModeS.length() > 0)) {

try {
colMode = ColMode.valueOf(colModeS.trim().toUpperCase());

} catch (IllegalArgumentException e) {
// bogus column mode is specified, default to AUTO
colMode = ColMode.AUTO;

}
}
// The number of tokens in the first row is the number of columns in table
int colCount = 1;
StringTokenizer st = new StringTokenizer (inString,rowDelim);
if ((st.hasMoreTokens())) {

colCount = new StringTokenizer(st.nextToken(),colDelim).countTokens();
}
// Tokenizer for iterating through rows in string
StringTokenizer rowSt = new StringTokenizer (inString,rowDelim);

// Initialize table and add columns
ITabularData table = TabularDataFactory.createTabularData();
switch (colMode) {
case AUTO:

for (int i=0; i<colCount; i++) {
table.addColumn("col" + i,TabularData.COL_TYPE_STRING);

}
break;

case STRING:
st = new StringTokenizer (rowSt.nextToken(),colDelim);
for (int i=0; i<colCount; i++) {
table.addColumn(st.nextToken(),TabularData.COL_TYPE_STRING);

}
break;

case STATIC:
st = new StringTokenizer (colNames,",");
for (int i=0; i<colCount; i++) {
if (st.hasMoreTokens()) {

table.addColumn(st.nextToken(),TabularData.COL_TYPE_STRING);
} else {

table.addColumn("col" + i,TabularData.COL_TYPE_STRING);
}

}
break;

}

// Parse string adding rows to table
int row = 0;
while (rowSt.hasMoreTokens()) {

table.addRow("row" + row);

126 Building and Using Apama Dashboards 10.11.2

4 Using Dashboard Functions

if (colCount == 1) {
table.setCellValue(rowSt.nextToken(), row, 0);

} else {
int col = 0;
StringTokenizer colSt = new StringTokenizer
(rowSt.nextToken(), colDelim);
while (colSt.hasMoreTokens() && (col < colCount)) {
table.setCellValue(colSt.nextToken(), row, col++);

}
}
row++;

}

return table;
}

}

Building and Using Apama Dashboards 10.11.2 127

4 Using Dashboard Functions

128 Building and Using Apama Dashboards 10.11.2

4 Using Dashboard Functions

5 Defining Dashboard Commands

■ Defining commands .. 130

■ Using dashboard variables in commands ... 131

■ Defining commands for creating an instance ... 132

■ Defining commands for editing an instance ... 133

■ Supporting deletion of an instance ... 134

■ Supporting deletion of all instances ... 135

■ Defining commands for creating a query instance ... 135

■ Defining commands for editing a query instance ... 135

■ Supporting deletion of a query instance ... 136

■ Supporting deletion of all instances of a query .. 136

■ Using popup dialogs for commands ... 137

■ Command options .. 138

■ Associating a command with keystrokes .. 138

■ Defining multiple commands .. 139

■ Creating custom commands ... 140

■ Apama set substitution command .. 143

Building and Using Apama Dashboards 10.11.2 129

To have full control over their instances, your dashboards need to provide the ability to create,
edit, and delete the instances. Dashboard Builder allows you to integrate these operations with
dashboards.

The sections listed below provide general information about commands, and detail the how to
integrate commands into a dashboard to create, edit, and delete the instances. They also include
sections on compound commands and custom commands. The command for sending events to
correlators is covered in a separate chapter (see “Defining Send-event Commands” on page 199),
as is defining SQL commands (see “Using SQL Data” on page 213).

Defining commands
A command is defined by associating it with an action property of a dashboard object such as a
push button. When the action is triggered, in this case, when the button is pressed, the command
is performed.

For control objects such as push buttons, commands are defined by setting the actionCommand
property. For other objects such as labels and charts, the commands are defined by setting the
command property.

To see how this works

1. Create a new dashboard.

2. From the Controls tab in the Object Palette, select the Push Button object and add it to the
dashboard canvas.

3. With the push button object selected, in theObject Properties panel, right-click the actionCommand
property and select Define Command > Apama from the popup menu.

This displays the Define Apama Command dialog.

4. To define a command, select a command type and specify values for the remaining fields.

The fields vary based on the command being defined. The common set of fields is as follows.

Command —The command to be performed when the action is triggered. The command
selected will hide or show many of the other fields.

Correlator — The correlator where the command is to be run. If creating a new instance,
this is the correlator where the instance will be created.

Data server —Advanced users can specify the logical name of the data server to serve
the data for the command execution. For more information, see “Working with multiple
data servers” on page 60.

In this documentation, some of the Define Apama Command dialogs are shown without the
Data server field, which was added in a later release.

The fields in the Parameters section are specific to the specified instance.

130 Building and Using Apama Dashboards 10.11.2

5 Defining Dashboard Commands

Note:
When executing commands in display server deployed dashboards, warning and error
dialogs are not displayed to warn of error conditions that occur.

Using dashboard variables in commands
The value of all fields in the Define Apama Command dialog, with the exception of the Command
field, can be set to dashboard variables. This allows you to dynamically configure the command
or set its parameters at run time.

For example, you will typically set the field Instance to the dashboard variable $instanceId. The
instanceId field identifies the instance the command is to affect, and the variable $instanceId
gets set to the unique id of the dashboard's currently-selected instance. If you then trigger a scenario
command, the command will affect the instance identified by $instanceId, which is the instance
selected on the dashboard.

Understanding dashboard variables is essential to being able to add scenario commands to a
dashboard.Most commands take parameters that you need to supply values for and inmost cases
you'll want to prompt the user for the values.

To create an instance of the tutorial, the event apamax.dashboard_tutorial.AddUpdateInstrument
(defined in tutorial.mon) needs to be sent. This event requires DataView values for the Instrument
and Clip Size variables to be specified. To enable the user to do this, the dashboard needs to
include input fields where the values can be specified. These values then need to be used as
parameters to the command. This is done through the use of dashboard variables.

To get the value a user has entered in an input field, you need to associate the input field with a
dashboard variable so that the variable is updated when the user enters a value in the field. This
is done by setting the varToSet property of the input field.

To review the process

1. Create a new dashboard.

2. From the Controls tab in the Object Palette, select the first text field object and add it to the
dashboard canvas.

3. From the Labels tab in the Object Palette, select the second label object and add it to the
dashboard canvas.

You will now associate the text field with a variable so that when its value changes the label
object updates to show the value.

4. Add the dashboard variable $value by selecting Variables from the Tools menu and adding
it in the Variables panel.

5. Ensure that Use As Substitution is checked. Be sure to click the Add button to add it the list
of variables.

Building and Using Apama Dashboards 10.11.2 131

5 Defining Dashboard Commands

Note:
Several substitution variables are automatically created when you create a dashboard.

6. Select the label object and in the Object Properties panel, right click the valueString property
and select Attach to Data > Variable.

7. Select $value and click OK.

The label object will contain no text; it is attached to the $value variable which has not been
set.

8. Select the text field object and in the Object Properties panel, attach its varToSet property to
the dashboard variable $value.

9. Select the executeOnLostFocusFlag property and enable it.

The text field is now bound to $value. When text is entered into the field $valuewill change
and the label object will update to show the new value. You are now ready to test this.

Control objects such as text fields and push buttons are not enabled in the Builder canvas. To
test these objects, you need to save the dashboard and then select Tools | Preview Window....

10. Type text into the text field object in the preview window, and press Enter. The label object
will update to show the text that was entered.

Binding control objects to dashboard variables makes the values available for use not only as
property attachments but also as parameters to commands. For fields in the Define Apama
Commanddialog, you can either hard code a value by typing it in or select a dashboard substitution
variable, such as $value, to use as the value. The latter will be the most common case as control
objects such as text fields will typically be used to get the value for command parameters.

Defining commands for creating an instance
To add the Create function to a dashboard, you need to add control objects such as text fields and
check boxes to the dashboard to prompt the user for the values of input variables. You need to
then create dashboard variables to hold the values of the control objects and the objects bound to
the variables through their varToSet property.

You next need to add a control object, such as a push button, to the dashboard to perform the
command. In theDefineApamaCommanddialog, select the commandCreate DataView instance
and use the dashboard variables as the values for the variables.

To define commands for creating a DataView instance

1. Open the file tutorial-create.rtv by selecting Create Instance in the tutorial main page.

2. Double-click the object labeled Test to display the dashboard in a new window such that the
control objects are enabled.

132 Building and Using Apama Dashboards 10.11.2

5 Defining Dashboard Commands

This dashboard displays a summary table of all instances of the tutorial DataView and a form
for creating new instances.

3. In the form enter APPL for the Instrument and 100 for the Clip Size and click theCreate button.
This will create a new instance.

This dashboard has the dashboard variables $instrument and $clipSize defined. The text
fields are bound to these such that the variables are set when text is entered in the fields. The
actionCommand property for the Create button is set to perform the Create command and use
the value of the variables as command parameters.

4. Select the Create button and in the properties panel double-click the actionCommand property.

If the test window appears, you need to first close it so that you can select Create button in
the Dashboard Builder main window.

Here the command is defined to create an instance of the tutorial DataViewon the default correlator.
You can see that the values for the input variables Instrument and Clip Size are set to the value
of the dashboard variables $instrument and $clipSize.

When creating an instance, you must specify a value for each of the input variables. If you do not,
you will receive an error when you try to perform the command.

Defining commands for editing an instance
Adding the Edit function to a dashboard is similar to you adding the Create function. You need
to add control objects such as text fields and check boxes to the dashboard to prompt the user for
the values of DataView input variables. Then you need to create dashboard variables to hold the
values of the control objects and the objects bound to the variables via their varToSet property.

You next need to add a control object, such as a push button to the dashboard to perform the
command.

The differences are that when defining the command in the Define Apama Command dialog, you
need to identify which instance to edit. You also need to identify which variables are to be edited.
Unlike the Create command, a subset of variables can be changed with the Edit command. Users
cannot edit the variables that have been declared immutable.

To define commands for editing an instance

1. Open the file tutorial-edit.rtv by selecting Edit Instance in the tutorial main page.

2. Double-click the object labeled Test to display the dashboard in a new window such that the
control objects are enabled.

This dashboard displays a summary table of all instances of the tutorial and a form for editing
them.

Building and Using Apama Dashboards 10.11.2 133

5 Defining Dashboard Commands

3. Double-click the APMA row in the table. Thiswill cause the instance forAPMA to become selected
and its input variables to be displayed in the form.

4. In the form, change the Clip Size to 200 and press the Edit button. The value of Clip Size
will change for APMA in the table indicating the instances has been edited.

As in theCreate sample, this dashboard has the dashboard variables $instrument and $clipSize
defined. The text fields are bound to these such that the variables are set when text is entered
in the fields. The actionCommandproperty for theEdit button is set to perform the Edit command
and use the value of the variables as command parameters.

5. Select the Edit button and in the Object Properties panel, double-click the actionCommand
property.

Here the command is defined to edit the instance of the tutorial whose instance id equals
$instanceId. You can see that the values for the input variables Instrument and Clip Size are set
to the value of the dashboard variables $instrument and $clipSize.

The checkbox next to each variable field is used to specify that the variable is to be edited. When
performing an Edit you do not need to specify values for all the variables; only those you want
to change.

The Filter fields are used to identify the instance to be edited. In this sample $instanceId is set
when you select a row in the table to the apama.instanceId of the selected instance.

The properties of table and other objects inDashboard Builder are pre-configured to set $instanceId
when a drilldown is performed.However, you can use dashboard variables other than $instanceId
to hold the apama.instanceId of an instance.

Supporting deletion of an instance
To delete an instance, you have to add a control object, such as a push button and set its action to
perform delete operation.

To define commands for deleting an instance

1. Open the file tutorial-delete.rtv by selecting Delete Instance in the tutorial main page.

2. Double-click the object labeled Test to display the dashboard in a new window such that the
control objects are enabled.

This dashboard displays a summary table of all instances of the tutorial and a Delete button
for deleting the selected instance.

3. Double-click the APMA row in the table. This will cause the instance for APMA to become
selected and its Instrument name displayed in the form above the Delete button.

134 Building and Using Apama Dashboards 10.11.2

5 Defining Dashboard Commands

4. ClickDelete. Thiswill delete theAPMA instance as indicated by theAPMArowbeing removed
from the table.

As with Edit, when performing a Delete you need to identify the instance to be deleted.

5. Select the Delete button and in the Object Properties panel, double-click the actionCommand
property.

Here the command is defined to delete the instance of the tutorial whose instance id equals
$instanceId.

Supporting deletion of all instances
For a dashboard, you may want to provide an option to delete all instances. This can be done by
including a control object and setting its action command as follows.

Deleting all instanceswill only delete those instances towhich the user has delete access. By default,
these are the instances created by the user.

Defining commands for creating a query instance
Use the commandCreate query instance to create a new instance of a particular query. For more
information, see “Defining commands for creating an instance” on page 132.

Note:
In the case of non-parameterized queries, you cannot edit or delete the single instance of a query
that is createdwhen the query is injected. Also, you cannot create new instances of these queries.
Due to these restrictions, non-parameterized queries are not exposed in the Query field of the
Define Apama Command dialog.

To define commands for creating a query instance

1. In Define Apama Command dialog, select the command Create query instance.

2. In the Query field, select the query to use for this command.

3. Provide any input parameters for the create command in the Parameters section.

Defining commands for editing a query instance
Use the Edit query instance command to edit a query instance by changing its input parameters
(if any). This command will be performed on a selected (filtered by $instanceId) query instance.
For more information, see “Defining commands for editing an instance” on page 133.

Note:

Building and Using Apama Dashboards 10.11.2 135

5 Defining Dashboard Commands

In the case of non-parameterized queries, you cannot edit or delete the single instance of a query
that is createdwhen the query is injected. Also, you cannot create new instances of these queries.
Due to these restrictions, non-parameterized queries are not exposed in the Query field of the
Define Apama Command dialog.

To define commands for editing a query instance

1. In Define Apama Command dialog, select the command Edit query instance.

2. In the Query field, select the query to use for this command.

3. Edit any input parameters in the Parameters section.

Supporting deletion of a query instance
Use the Delete query instance command to delete a particular query instance. This command
deletes a selected (filtered by $instanceId) query instance. You have to add a control object, such
as a push button and set its action to perform the delete operation. See “Supporting deletion of
an instance” on page 134 for more information.

Note:
In the case of non-parameterized queries, you cannot edit or delete the single instance of a query
that is createdwhen the query is injected. Also, you cannot create new instances of these queries.
Due to these restrictions, non-parameterized queries are not exposed in the Query field of the
Define Apama Command dialog.

To define commands for deleting a query instance

1. In Define Apama Command dialog, select the command Delete query instance.

2. In the Query field, select the query to use for this command.

3. Select the filtering criteria.

Supporting deletion of all instances of a query
For a dashboard you may want to provide an option to delete all instances of a query. This can be
performed by including a control object and setting its action command as Delete all instances
of a query in the Define Apama Command dialog. Deleting all instances of a query will only
delete those instances towhich the user has delete access. By default, these are the instances created
by the user.

Note:
In the case of non-parameterized queries, you cannot edit or delete the single instance of a query
that is createdwhen the query is injected. Also, you cannot create new instances of these queries.

136 Building and Using Apama Dashboards 10.11.2

5 Defining Dashboard Commands

Due to these restrictions, non-parameterized queries are not exposed in the Query field of the
Define Apama Command dialog.

Using popup dialogs for commands
For the Create and Edit commands youmight not want to integrate the input fields with the main
dashboard. They might, for example, occupy space that is better used for display information
about running DataViews. An alternative is to place the input fields in separate dialog windows.
In this case, the main dashboard contains Create and Edit buttons. Clicking them displays the
appropriate dialogs where users enter the parameters for the command in the input fields and
then click the OK button to perform the command. You can set up popup dialogs like this in
Dashboard Builder.

To use popup dialogs for commands

1. Open tutorial-create-popup.rtv by selectingCreate Instance Popup from the tutorialmain
page.

2. Double-click the Test label to display the dashboard in a new window such that the control
objects are enabled.

Here the dashboard contains a Create button but no fields for setting the input variables.

3. Click on the Create button. This will display a dialog window with the fields for creating an
instance.

This dialog is really just another dashboard, in this case tutorial-create-form.rtv. TheCreate
buttondisplays this dialog byperforming adrilldownanddisplaying tutorial-create-form.rtv
in a new window.

4. Select the Create button object and double-click the actionCommand property in the Object
Properties panel.

The command is defined to perform the Drill Down or Set Substitution system command.

5. Click on the Edit Drill Down Target button.

The drilldown is set to display tutorial-create-form.rtv in a new window.

The dashboard for the popup dialog was created in Dashboard Builder.

6. Open the file tutorial-create-form.rtv.

You can now select objects in the form and examine their properties in the property panel. The
settings are very similar to those in the previous create instance example. The dashboard
contains the variables $instrument and $clipSizewhich are bound to the text fields. The
actionCommand property on the OK button is defined to perform the create operation using the
values of these variables.

Building and Using Apama Dashboards 10.11.2 137

5 Defining Dashboard Commands

What is different is that when OK is pressed, the command will be performed and the dialog
windowclosed. The option to close thewindow is set in the closeWindowOnSuccessproperty.

7. In the Builder window, select the OK button object.

8. Here the closeWindowOnSuccess property is enabled. If this property is enabled, the
dashboard closes the window that performed the command if the command completes
successfully. If the command generates an error, the window will not be closed.

9. TheCancel button also has a command associatedwith it. To see this, select theCancel button
object and in the Object Properties panel, double-click the actionCommand property.

Command options
The Object Properties pane provides some properties that control some command options:

commandCloseWindowOnSuccess—If enabled, the dashboardwill close the window that
performed the command if the command completes successfully. If the command generates
an error the window will not be closed.

commandConfirm—If enabled, the dashboardwill display a confirmationmessage (specified
by the commandConfirmText property) before performing the command. It is recommended
that this be enabled for delete commands.

commandConfirmText — If commandConfirm is enabled, the dashboard will display the
value of this property as a confirmation message.

Associating a command with keystrokes
This chapter's previous examples define commands that are to be invoked by the dashboard users
via mouse actions. You can also define commands that are to be invoked by dashboard users via
keystrokes.

You do this by adding a HotKey object to the Builder canvas.

Note:
Thin client, display server deployments do not support this feature. With such deployments,
users cannot use keystrokes to invoke builder-defined commands. In addition, the HotKey is
not supported inside of composite objects.

The HotKey object is located in the Controls tab of the object palette:

When you add a HotKey object to the Builder canvas, it does not appear on the end user's
dashboard. But as dashboard builder, you set HotKey properties in order to associate keystrokes
with a command:

hotKey property: Specify the keystrokes that you want dashboard users to use in order to
invoke the command. The value of this property is a text string whose format is described
below.

138 Building and Using Apama Dashboards 10.11.2

5 Defining Dashboard Commands

command property: Specify the command to be invoked. Do this as described in this chapter,
above.

The hotKey property valuemust be a text string that consists of a sequence of keystroke-designators.
A simple keystroke designator is one of the following:

Function key designator: F1, F2, F3, ..., or F12.

digit or letter: a, b, c, ..., z, 0, 1, 2, ..., or 9.

You can also form a keystroke designator by adding one of the following prefixes to a simple
keystroke designator:

SHIFT+

CTRL+

ALT+

CTRL+SHIFT+

ALT+SHIFT+

CTRL+ALT+

CTRL+ALT+SHIFT+

So for example, the keystroke that results from holding down the control and the shift key and
striking the F1-function key is designated as follows
CTRL+SHIFT+F1

And the keystroke that result fromholding down the shift key and striking the letter f is designated
as follows:

SHIFT+f

For the dashboard user, when focus is on the dashboard, the specified key sequence triggers
execution of the command.

Defining multiple commands
You can associate multiple commands with an action by using the Define Multiple Commands
dialog.

To define multiple commands

1. Right-click command property and select Define Command > MULTIPLE.

2. In theDefine Multiple Commands dialog, chooseAPAMA in theNew Command combo box,
and then click the Add button to add an Apama command.

Building and Using Apama Dashboards 10.11.2 139

5 Defining Dashboard Commands

Important:
The commands are launched in an arbitrary order, and are run asynchronously; there is no
guarantee that one command will finish before the next one in the sequence starts.

See “Apama set substitution command” on page 143.

Creating custom commands

To provide a data server or display server with a library of custom commands

1. Develop an implementation of com.apama.dashboard.function.ICommandLibrary. See
“Developing a custom-command library” on page 140.

2. Install your implementation. See “Installing a Custom-Command Library” on page 141.

Developing a custom-command library
A sample implementation of ICommandLibrary is included below in “Sample ICommandLibrary
implementation” on page 141.

You can find a sample implementation of ICommandLibrary in the following file:
samples\tutorial\src\com\apama
\dashboard\sample\SampleCommandLibrary.java

Your implementation of ICommandLibrarymust implement the following methods:

getCommandDescriptors: Creates a command descriptor for each function that the library
supports; returns a list of com.apama.dashboard.command.ICommandDescriptors. This method
is called once at data server or display server startup.

invokeCommand: Performs the commandwith the specified name, using the specified arguments.

When you compile your implementation, ensure that ap-dashboard-client.jar is on your class
path. This jar file is in the lib directory of your Apama installation.

Your implementation of invokeCommand can set or retrieve substitution values, if necessary, by
using the following methods of com.apama.dashboard.DashboardManager and
com.apama.dashboard.IDashboardContext:

DashoardManager.getCommandDashboardContext: This static method returns an instance of
IDashboardContext.

IDashboardContext.getSubstitutionValue: Gets the value of a substitutionwith a given name.

IDashboardContext.setSubstitution: Sets the value of a substitution with a given name.

IDashboardContext.setSubstitutions: Sets the values of substitutions, where the substitutions
and values are specified with String vectors.

140 Building and Using Apama Dashboards 10.11.2

5 Defining Dashboard Commands

Each set method has a boolean argument, triggerUpdate, which controls whether objects attached
to the substitution are updated. If it is false, they are not. If the substitutions are only used as
command parameters or in drilldowns, you can improve performance by specifying false.

Following is an example:
import com.apama.dashboard.DashboardManager;
import com.apama.dashboard.IDashboardContext;
...
IDashboardContext ctxt =

DashboardManager.getCommandDashboardContext();
String val1 = ctxt.getSubstitutionValue("$subst1");
...
ctxt.setSubstitution("$subst2", "val2", false);

Installing a Custom-Command Library

To install your function library for a given data server or display server

1. Include a line in the data server or display server's EXTENSIONS.ini file that specifies the fully
qualified name of your ICommandLibrary implementation. The line must have the following
form:
command fully-qualified-classname

2. Create a jar file that contains your ICommandLibrary implementation, and either add it to
APAMA_DASHBOARD_CLASSPATH (changes to this environment variable are picked up by dashboard
processes only at process startup) or add it to the list of External Dependencies in your
project'sDashboard Properties. (In Software AGDesigner, right-click your project and select
Properties, expandApama, selectDashboard Properties, activate theExternal Dependencies
tab, and click theAdd External button). You can also use the --dashboardExtraJars command
line argument to specify this jar file.

A data server or display server's EXTENSIONS.INI is, by default, located in the lib directory of its
Apama installation. You can specify a data server or display server's EXTENSIONS.ini file at startup
by using the -X or --extensionFile option — see Deploying and Managing Apama Applications.

The EXTENSIONS.ini specifies the function library to use. This file identifies all the user supplied
extension classes (including function libraries and scenario authorities). Here is a sample
EXTENSIONS.ini:
function com.apama.dashboard.sample.SampleFunctionLibrary
command com.apama.dashboard.sample.SampleCommandLibrary
scenarioAuthority com.apama.dashboard.sample.SampleScenarioAuthority

This file installs a function library, a command library, and a scenario authority.

Sample ICommandLibrary implementation
Below is a sample implementation of ICommandLibrary, which you can find under
samples\dashboard_studio\tutorial\src:

Building and Using Apama Dashboards 10.11.2 141

5 Defining Dashboard Commands

package com.apama.dashboard.sample;
import java.util.ArrayList;
import java.util.List;
import javax.swing.BorderFactory;
import javax.swing.JFrame;
import javax.swing.JLabel;
import com.apama.dashboard.command.CommandDescriptorFactory;
import com.apama.dashboard.command.ICommandDescriptor;
import com.apama.dashboard.command.ICommandLibrary;
/**
* SampleCommandLibrary is an example of a custom command library for
* Dashboard Builder. Custom commands allow you to extend Dashboard Builder
* to run custom code in response to a user action such as a clicking on
* a button.
* <p>
* SampleCommandLibrary implements the commands:
*
* Show Message: Displays a message window showing the arguments
* passed to the command.
*
*
* $Copyright(c) 2013 Software AG, Darmstadt, Germany and/or its licensors$
*
*/
public class SampleCommandLibrary implements ICommandLibrary {
private final static String CMD_ECHO = "Show Message";
/**
* Get the list of command descriptors for the commands implemented
* by this command library. Each command descriptor identifies one
* command.
*/

public List<ICommandDescriptor> getCommandDescriptors() {
List<ICommandDescriptor> v = new ArrayList<ICommandDescriptor> ();
v.add(CommandDescriptorFactory.createCommandDescriptor(CMD_ECHO));
// Add additional command descriptors here.
return v;

}
/**
* Run a command.
*
* @param command Command to run.
* @param parameters Parameters to command.
*/

public boolean invokeCommand(String command, Object parameters) {
if (command.equals(CMD_ECHO)) {

//Create and set up the window.
JFrame frame = new JFrame("Message");
frame.setDefaultCloseOperation(JFrame.DISPOSE_ON_CLOSE);
//Add the ubiquitous "Hello World" label.
JLabel label = new JLabel(parameters.toString());
label.setBorder(BorderFactory.createEmptyBorder(30,100,30,100));
frame.getContentPane().add(label);
frame.setLocation(100,100);
//Display the window.
frame.pack();
frame.setVisible(true);

} else {
// Add additional command handlers here.

}
return true;

142 Building and Using Apama Dashboards 10.11.2

5 Defining Dashboard Commands

}
}

Apama set substitution command
Use the Apama set substitution command to set substitution values without using the Drill Down
or Set Substitution system command.

To set substitution values

1. Right-click the command property and select System.

2. In theCommand Type combobox of theDefine System Commanddialog, selectRun Custom
Command.

3. In the Command Name: field, type Apama_SetSub1.0.

4. In the Command Value: field, type a string in the following format:
Sub=Value[;Sub=Value...]

For example, to set $MySub1 to value1 and $MySub2 to value2, enter the following command
value:
MySub1=value1;MySub2=value2

Remember to remove the $ from the substitution name.

Building and Using Apama Dashboards 10.11.2 143

5 Defining Dashboard Commands

144 Building and Using Apama Dashboards 10.11.2

5 Defining Dashboard Commands

6 Reusing Dashboard Components

■ Using Object Grids ... 146

■ Using Composite objects .. 150

■ Using Composite Grids .. 157

■ Using include files .. 162

■ Working with multiple display panels .. 164

Building and Using Apama Dashboards 10.11.2 145

As the number and complexity of your dashboards grow, you need the ability to modularize
dashboard components into manageable and reusable sets. This allows you to efficiently develop
and maintain your dashboards.

This chapter describes the features ofDashboardBuilder that allowyou to create reusable dashboard
components and expand beyond the Table object for the rich display of tabular data.

Using Object Grids
The Object Grid allows you to display tabular data using one or more other object types to show
the values of DataView fields. An Object Grid is, as the name implies, a grid of objects. Following
is an example of an object grid from the Object Grid tutorial sample:

Here the grid is using one of the label object types in order to display the Instrument and Price
variables of the tutorial DataView instances. The label object used provides a graphical indication
of the price as well. There is one instance of the label object for DataView field. If a new instance
is created, an entry for it would automatically be added to the object grid.

Most objects that appear in the object palette can be displayed in the object grid. Exceptions include
tables, some graphs and some general objects. More than one object can be used to visualize each
row in the tabular data.

The grid above uses three objects to display the Instrument, Price, and Shares variables of the
DataView items.

Object grids provide one alternative to table objects for visualizing tabular data. They are simple
to use but provide limited control over the layout of the objects:

Objects within a grid are each given the same space as the largest object in the grid.

Objects within a grid are positioned using a flow layout; positioning objects in the top-left
corner of the grid and progressing to the right and bottom.

The following illustrates the layout behavior of the object grid:

146 Building and Using Apama Dashboards 10.11.2

6 Reusing Dashboard Components

This is the same object grid as in the previous illustration. The only change is that it was resized
to be slightly narrower which caused the flow layout of objects to change.

If precise control over the layout of objects is required use the Composite or Composite Grid
objects.

Configuring Object Grids

The Object Grid is in the Composite tab of the object palette.

The Object Grid is initialized to display the same sample data as the Table object. The sample data
contains seven rows so there are seven instances of the object in the grid.

After adding an Object Grid to your dashboard, you need to attach its valueTable property to the
tabular data that you want to display. It can be attached to any tabular data source, including the
following:

Apama DataViews

Dashboard functions that produce tabular data

Tabular XML data

The iconProperties property is used to select and configure the objects that are displayed in the
grid.With the grid object selected, in the Object Properties panel, double-click the iconProperties
property to display the Icon Properties dialog.

By default the Object Grid is configured to display a single object for each row in its tabular data.
The Icon Class Name field is where you select the type of object that you want to display in the
grid:

Building and Using Apama Dashboards 10.11.2 147

6 Reusing Dashboard Components

The properties listed correspond to the properties of the object type selected. Properties in the
Icon Properties dialog can have their value set in one of three ways. How a property is being set
is indicated in the Map column of the property list:

Default: The property will take the default value. If the default value changes in a future
version of Dashboard Builder, the property will take the new default.

Value: The property has a user-supplied value. This value will be the same for all instances
of the object displayed in the grid.

Column: The property value comes from the tabular data that the grid object is attached to.
Each instance of the object in the grid corresponds to one row in the tabular data. Binding a
property to a column causes each instance of the object to use the value of that column in the
corresponding row in the tabular data.

If you click in the Map column for a property, the Builder displays a list that you can use to select
how the property value is set.

If you select Value, the value for the property is entered in the Property Value column. If you
select Column, clicking in the Property Value column will display a list of all the columns in the
tabular data.

When you bind a property to a column in the tabular data, each instance of the object displayed
in the grid has that property bound to the value of that column in the corresponding row in the
tabular data.

To display multiple objects for each data row, enable the Allow multiple icon types check box at
the bottom of the Icon Properties dialog.

When enabled, the dialog will change to allow you to add multiple objects for display in the grid.

148 Building and Using Apama Dashboards 10.11.2

6 Reusing Dashboard Components

Use Add Icon and Delete Icon buttons to add and remove objects from the grid.

Recreating the Object Grid sample
The Dashboard Builder tutorial includes an example of the Object Grid, which you can view by
double-clicking Object Grid on the tutorial main page. This displays the file
tutorial-object-grid.rtv.

To recreate this sample, create a new dashboard and perform the following steps

1. Add anObjectGrid to the dashboard and attach its valueTableproperty to the tutorial DataView
as follows.

Building and Using Apama Dashboards 10.11.2 149

6 Reusing Dashboard Components

The grid object will update and display as follows:

Unless you have separately created or deleted instances of the tutorial DataView, the grid will
display three instances of the object. The objects do not show any values from the tutorial
DataView because none of their properties have been bound to it in the Icon Properties dialog.

2. Select the grid object anddouble-click the iconPropertiesproperty to display the IconProperties
dialog. In the dialog select obj_label14 as the Icon Class Name.

3. In the Icon Properties dialog click in the Map column of the value property and select the
type Column. Click in the Property Value column and select Price.

This sets the value property of each instance of the object to the value of the Price variable in
the corresponding instance of the tutorial DataView.

4. Similarly for the label property, set the Map column to Column and select Instrument as the
value.

The dashboard should now appear similar to the Object Grid tutorial.

Using Composite objects
The Composite object allows you to display an rtv file as an object within another rtv file. This is
a powerful capabilitywhich allows a complexdashboard to be subdivided intomultiple components

150 Building and Using Apama Dashboards 10.11.2

6 Reusing Dashboard Components

that can be independently developed and reused inmultiple dashboards. The following illustration
shows an example of a bid and ask depth display:

This can be created and saved in an rtv file and with the Composite object be used in one or more
other dashboards.

Here the bid and ask display is shown in a Composite object combined with other objects to form
a complete dashboard.

Note:
TheHotKey (see “Associating a commandwith keystrokes” on page 138) is not supported inside
of composite objects.

Creating files to display in composite objects
While the Composite object can display any rtv file, reusable rtv files are typically parameterized.
When you select the rtv for display in a Composite object, the Composite object will expose as
properties all the variables defined in the rtv file. These variables are the parameters to the file,
and can be set as needed for each use of the file.

As a simple illustration consider an rtv file with a single label object, where you want the text of
the label, its color, and its font to be configurable whenever the file is used in a Composite object.

Building and Using Apama Dashboards 10.11.2 151

6 Reusing Dashboard Components

To do this, define variables in the rtv file for each of these properties, such as the following:

labelText

labelColor

labelFont

In the properties panel, attach the label, labelTextColor, and labelTextFont properties of the
label object to these variables.

When you use these variables in a Composite object, you'll be able to set values for each in order
to configure the appearance of the label.

When you edit properties of a Composite object, the property panel attempts to display the
appropriate editor based on the name of the variable. Therefore, when you name variables for
fonts and colors, end them with Font or Color, for example labelColor.

Variables that will be used for tabular data must have the data type Table.

When you define a variable, if you do not want to expose it as a property in a Composite object,
uncheck the Public attribute of the variable in the Variables panel.

Note:
Substitutions defined in an rtv file are not exposed as properties when the file is used in a
Composite object. Variables that you want exposed as properties cannot be defined as
substitutions, hence they can't start with a $.

Note:
Variable names cannot conflict with the names of properties of the Composite object; variables
whose names conflict with Composite-object property nameswill not be exposed as properties.
For example, you cannot have a variable label in a file displayed in a composite. The name
conflicts with the label property of the Composite object.

152 Building and Using Apama Dashboards 10.11.2

6 Reusing Dashboard Components

Configuring Composite objects

The Composite object is in the Composite tab of the object palette.

The Composite object is initialized to display one row of the same sample data as the Table object.
The rtv file displayed contains three objects to show the city and unit statistics.

After adding a Composite object to a dashboard you need to specify the rtv file to display. The
rtvName property is used to select the file.

Note:
This rtv file must not itself contain any composite objects. You cannot nest composite objects.

When you select a file, the Composite object is redrawn in order to display the contents of the file.

Note that the Composite object is resized to the size specified in the file being displayed. When
you create the file, set its Background Properties to the desired size and color.

The property panel for the Composite object will update to show as properties all the variables
defined in the selected file.

Here the labelColor, labelFont, and labelText variables are exposed as properties. Setting these
you can change the appearance of the Composite object:

Building and Using Apama Dashboards 10.11.2 153

6 Reusing Dashboard Components

Here the labelColor is set to red, the labelFont to SanSerif Bold and the labelText to the string
Test.

Composite object properties that expose variables do not need to be set to static values. You can
attach them to anydata source, including aDataView.When so attached, a property's corresponding
variable changes whenever the attached data changes. Properties in the rtv file that are attached
to the exposed variables will update in turn. The following dashboard illustrates this:

This dashboard consists of a table object showing all instances of the tutorial DataView and a
Composite object containing a single label. This Composite object shows the current price of
whatever instrument is selected in the table. Whenever the price changes the composite object
updates to show the current price.

As in previous examples, the rtv file that is displayed in the composite has the variable labelText,
which is exposed as a property on the Composite object. The label in the file is attached to labelText
such that it will show its value. Rather than supplying a static value for the corresponding property
labelText in the Composite object, this dashboard has labelText attached to the selected instance
of the tutorial DataView.

By attaching the property to the DataView and filtering by $instanceId, the labelText property
will updatewhenever the value of the attachment changes.When the labelText property changes,
it will change the value of the corresponding variable in the rtv file displayed in the composite
which will in turn be reflected in the label.

Using substitutions with Composite objects
The Composite object supports the setting of substitutions on the file displayed in the composite.
It has a single substitutions property where the name and value of one or more substitutions can
be specified.

154 Building and Using Apama Dashboards 10.11.2

6 Reusing Dashboard Components

Substitutions are specified as a string with the following syntax:
$subname:subvalue $subname2:subvalue2 …

If a substitution value contains a single quote character, it must be escaped using a backslash.
$subname:/'Quoted Value/'

If a substitution value contains a space, the entire value must be enclosed in single quotes. Do
not escape these single quotes.
$subname:'Value with Spaces'

The substitution names should not contain any of the following characters:

Colon (:), pipe (|), period (.), comma (,), semi-colon (;), equals (=), brackets (< >, (), { }, []),
quotation marks (' "), ampersand (&), slashes (/ \)

Note:
Substitutions and variables in a Composite object are scoped to the object. If a dashboard contains
a Composite object, and both the dashboard and the Composite object have the substitution
$mySub defined, changes to the value of one will not affect the other. The Composite object
will have its own value as will the dashboard.

When you use a Composite object to display detailed information on a selected DataView item,
it is often easiest to set the substitution $instanceId on the composite. Setting $instanceId allows
you to define in the rtv file displayed in the composite attachments and commands which filter
on $instanceId as you normally would in other dashboards.

For this use case, the simplest way to set $instanceId as a substitution on a composite is to attach
the substitutions property of the composite object to the apama.substitutions variable of the
selected instance.

The value of apama.substitutions is a string formatted for use as the value of the substitutions
property. An example of the value for an instance of the tutorial DataView is the following:
$instanceId:default.tutorial.21

This results in the substitution $instanceId being set to default.tutorial.21 in the rtv file
displayed in the composite. Attachments and commands filtering on $instanceId would be tied
to this instance.

Note:
If the file displayed in a Composite object has buttons or other objects which run Apama
commands to edit or delete an instance, you need a substitution set to the ID of the instance.

Building and Using Apama Dashboards 10.11.2 155

6 Reusing Dashboard Components

This substitution can be used as the filter on the command to identify the instance that the
command operates on. The standard substitution to use is $instanceId.

Note:
Variables cannot be used in filters on attachments or commands. You cannot define a variable
instanceId, use it in the filter, and set the value as a property on a composite object.

Composite object interactivity
TheComposite object has the command and drillDownTarget properties. These operate aswith other
objects, allowing you to define commands and drilldowns that are run when the object is clicked
on.

If the file displayed in the composite contains objects with their command or drillDownTarget
properties set, these will take precedence over those defined on the Composite object.

The following illustration is of a Composite object displaying an rtv file with one label object:

The label object Command A is defined to run some command, command A, and the command
property of the composite is set to run a different command, command B. Clicking on the label
object will run command A, since the command property in the rtv file overrides that of the
composite. Clicking on the dark blue background of the composite will run command B.

Composite object sample
The Dashboard Builder tutorial includes an example of the Composite object.

Open the file tutorial-composite-simple.rtv by selecting Composite Simple on the tutorial
main page.

This dashboard displays a composite object with its rtvName property set to the file
tutorial-composite-detail-simple.

Open the file tutorial-composite-detail-simple.rtv in the Dashboard Builder.

156 Building and Using Apama Dashboards 10.11.2

6 Reusing Dashboard Components

Examine the label, labelTextColor, and labelTextFontproperties to see that they are attached
to variables.

From the Tools menu, select Variables to see that the variables labelText, labelColor, and
labelFont are defined as public variables. These variables are set as properties on theComposite
object.

Recreating the Composite object sample

To recreate this sample, create a new dashboard and perform the following steps

1. Add a Composite object to the dashboard and set its rtvName property to
tutorial-composite-detail-simple. The list of properties in the property panel for the
Composite object will update.

2. Set the labelColor to red, the labelFont to Sans Serif Bold, and the labelText to Test.

The dashboard should now appear similar to the Composite Simple tutorial. Experiment with
adding new variables to tutorial-composite-detail-simple.rtv and attach object properties
to these. In the Composite object, experiment with attaching properties and substitutions to
the tutorial DataView.

Using Composite Grids
The Composite Grid object combines the capabilities of the Composite and Object Grid objects to
provide a powerful and flexible means to display multiple DataView items.

Building and Using Apama Dashboards 10.11.2 157

6 Reusing Dashboard Components

Above, a Composite Grid is used to display the instances of the tutorial DataView. The rtv file
displayed in the grid contains a set of objects to display the details of a single instance of the tutorial
DataView.

The objects are attached to the tutorial DataViewfiltering on $instanceId to select a single instance.
The Composite Grid object is configured to pass each instance a unique value of $instanceId such
that there is one row in the grid for each instance.

Note:
The Composite Grid object is really just an Object Grid with the Icon Class Name in its
iconProperties set to obj_composite. The Composite Grid has all the behaviors of the Object
Grid and Composite objects.

Configuring Composite Grids

The Composite Grid is in the Composite tab of the object palette.

The Composite Grid is initialized to display the same sample data as the Table object. The sample
data contains seven rows so there are seven instances of the object in the grid. For each row of
data the Composite Grid displays an rtv file containing several objects to show the city and unit
statistics.

After adding an Object Grid to your dashboard you need to attach its valueTable property to the
tabular data to display. See the Object Grid section for details.

The iconProperties property is used to configure the Composite object displayed in the grid.With
the grid object selected, in the Object Properties panel, double-click the iconProperties property
to display the Icon Properties dialog.

158 Building and Using Apama Dashboards 10.11.2

6 Reusing Dashboard Components

Notice that Icon Class Name is set to obj_composite.

Within the Icon Properties dialog, set the rtvName property to the name of the rtv file to display
in the Composite. The list of properties will update to show as properties all the public variables
in the selected rtv file.

Note:
If the list of properties does not update, close the Icon Properties dialog and redisplay it.

The properties of the Composite object can now be configured in the Icon Properties dialog as
needed.

The substitutions property is preset to the value of apama.substitutions.

The effect of this is to set the substitution $instanceId uniquely for each instance of the Composite
object displayed in the grid. Each instance will have $instanceId set to a unique item of DataView
that the Composite Grid is attached to.

Building and Using Apama Dashboards 10.11.2 159

6 Reusing Dashboard Components

Composite Grid sample
The Dashboard Builder tutorial includes an example of the Composite Grid object.

Open the file tutorial-composite-grid.rtv by selectingComposite Grid on the tutorial main
page.

This dashboard displays in a grid a composite object with its rtvName property set to the file
tutorial-composite-grid-detail.rtv.

Open the file tutorial-composite-grid-detail.rtv in the Dashboard Builder.

Examine the label and value properties of the objects to see that they are attached to the tutorial
DataViewfiltering on $instanceId. RangeDynamic objects are used to showShares,Position,
and Velocity. These objects are configured to change color to show if the value is positive,
negative, or zero.

Recreating the Composite Grid sample

To recreate this sample, create a new dashboard and perform the following steps

1. Add a Composite Grid object to the dashboard.

2. With the Composite Grid selected, in theObject Properties panel select the valueTable property
and attach it to the tutorial DataView as follows:

160 Building and Using Apama Dashboards 10.11.2

6 Reusing Dashboard Components

The Composite Grid will be similar to the following:

Unless you have created or deleted instances of the tutorial DataView, there will be three
instances of the Composite object in the grid. They do not show any data because the sample
rtv file is not attached to the data of the tutorial DataView.

3. With the Composite Grid selected, double-click the iconProperties property in the Object
Properties panel. This will display the Icon Properties dialog.

Building and Using Apama Dashboards 10.11.2 161

6 Reusing Dashboard Components

In the Icon Properties dialog set the rtvName property to tutorial-composite-grid-detail.
Close the Icon Properties dialog.

The dashboard should now appear similar to the Composite Grid tutorial.

Using include files
The Dashboard Builder include file feature provides a way to partition dashboard development
and to reuse content in multiple dashboards. It allows you to include in a dashboard the objects,
functions, and variables of another rtv file. Unlike the Composite object, the included file is not
in an object; rather, the contents of the included file are added to the dashboard.

A common use of include files is for navigation controls and status bars that are part of multiple
dashboards. These objects could be defined in the rtv file statusbar.rtv. The file statusbar.rtv
could then be included in another dashboard.

To include an rtv file in a dashboard, select IncludeFiles in the Tools menu. This will display the
Include Files dialog.

The Add and Remove buttons are used to add and remove included rtv files. More than one rtv
file can be included, and the included files can themselves include other files. However, a file will
only be included once.

All the objects, functions, and variables that are defined in an included file become part of the
dashboard. Within the Dashboard Builder these are, with one exception, read-only. They appear,
can be copied, and can be used in attachments, but they cannot be modified. To modify included
elements, open the file containing them in the Dashboard Builder.

The exception is for the initial value of an included variable.Within a dashboard, you can override
the initial value of included variables. Consider, for example, an included file that contains a label
that is attached to the variable headerTitle. When you include this file in a dashboard, the value
of the variable headerTitle can be set to the title of the dashboard.

Note:
If objects from an included display file have the same value for the objName property as objects
in the current display, or other included displays, this may cause links to attach to the wrong
object. To avoid this overlap, assign a unique value to the objName property of objects in files
that you intend to include in other displays.

The background properties such as Model Width, Model Height, and bgColor of included files
are ignored.

Substitutions such as $instanceIdmay be used in attachments in included files. Substitutions and
variables in included files are scoped to the including dashboard. Runtime changes to their values
will be reflected in included objects and functions. An attachment in an included file filtering on
$instanceId will update whenever $instanceId changes in the dashboard.

Include File sample
The Dashboard Builder tutorial includes an example of Include Files.

162 Building and Using Apama Dashboards 10.11.2

6 Reusing Dashboard Components

Open the file tutorial-include-sub.rtv by selecting Include File Subs on the tutorial main
page.

This dashboard uses a status bar defined in an included file. The status bar contains an indicator
of correlator connectivity and objects to show the instrument, price, and other variables of the
selected instance of the tutorial DataView.

Open the file tutorial-include-sub-background.rtv in the Dashboard Builder.

Examine the attachments of the value and label properties of the objects. Notice that they are
attached to the tutorial DataView andfiltering on $instanceId. No values are displayed because
$instanceId does not have a value. It is set in the dashboard that includes this file.

Recreating the Include File sample

To recreate the Include File sample, create a new dashboard and perform the following steps

1. Add a Table object to the dashboard and attach its valueTable property to the tutorial DataView
as follows:

2. Select Include Files from the Tools menu and add tutorial-include-sub.background.rtv.

Building and Using Apama Dashboards 10.11.2 163

6 Reusing Dashboard Components

The dashboard should now appear similar to the Include File tutorial. Double-click a row in the
table to see values displayed in the included status bar.

Working with multiple display panels
It is possible to deploy several displays arranged in separate panels in a single window. Multiple
panels are useful when you want to view multiple displays from a top level entry point or if you
need to include a navigation panel. To define a window with multiple display panels, create an
XML file, a panels-configuration file, that specifies a panel layout for a deployed dashboard.

You can supply the location of the panels-configuration file to the Deployment Configuration
Editor (see “Using theDeployment Configuration editor” on page 627) or to theDashboardViewer
executable by using the -C or --panelConfig option (see “Startup Options for the Dashboard
Viewer” on page 689).

The name of a panels-configuration file must have the .ini extension. By default, the Display
Viewer looks for the PANELS.ini file in the current directory. If a panels-configuration file is not
found in the current directory, the display server andDisplay Viewer look for it in the lib directory
of your Apama installation directory.

About the format of the panels-configuration file
The panels-configuration file is in XML, and must start with the following:
<?xml version="1.0" ?>
<panels xmlns="www.sl.com" version="1.0">

The panels-configuration file must end with the following:
</panels>

In this release, a new set of tags are allowed in the panels-configuration file. These tags are different
from the tags that were allowed in previous releases. Previously allowed tags are still allowed.
However, new tags and old tags cannot be in the same panels-configuration file.

For information about the new tags, see “Using new tags to configure the panels in a window” on
page 164.

For information about the old tags, see “Using old tags to configure the panels in a window” on
page 188.

Using new tags to configure the panels in a window
When using the new tags each panels-configuration file must contain exactly one rtvLayout tag.
The rtvLayout tag encloses the tags that define themultiple displays. Each child tag of the rtvLayout
tag must specify the region attribute with a value of north, south, east, west, or center. This
determines the location of each panel in the display.

Typically, an rtvLayout tag contains one of the following combinations:

164 Building and Using Apama Dashboards 10.11.2

6 Reusing Dashboard Components

A main rtvDisplayPanel tag whose region attribute is set to center.

An rtvAccordionPanel tag or an rtvTreePanel tag whose region attribute is set to west or east.

Possibly other secondary rtvDisplayPanel tags with other region attribute values.

A main rtvTabbedDisplayPanel tag whose region attribute is set to center.

Possibly other secondary rtvDisplayPanel tags with other region attribute values.

An rtvLayout tag can contain the following attribute:

dividers - Set to true if you want a divider to be drawn between child panels. The default is
false.

As a child of the rtvLayout element, you can specify one or more rtvDisplayPanel elements. An
rtvDisplayPanel element creates a panel. The display inside the panel is specified by the following
rtvDisplayPanel attributes:

display - Specify the location of this CardPanel if it is in a BorderPanel. Valid values are west,
east, center, north, and south

name - Specify the Window Name previously specified in the Drill Down Properties dialog.
If you are using tabbed panels and you do not specify a name, it is constructed by using the
display name and substitutions to make it easy to drill down between tabs. In this case, when
you drill down from a tab by using the CurrentWindow option and the specified display with
the specified substitutions is already loaded in another tab, the Display Viewer switches to
that tab.

region - Specify the position of the panel as west, east, center, north, or south.

subs - Specify initial substitutions for this panel. Substitutions are optional and must use the
following syntax:
$subname:subvalue $subname2:subvalue2

If a substitution value contains a single quote you must escape it by using a forward slash, for
example:
$filter:Plant=/'Dallas/'

If a substitution value contains a space it must be enclosed in single quotes. Do not escape
these single quotes. Following is a correct example:
$subname:subvalue $subname2:'sub value 2'

A substitution string cannot contain the following characters:
: | . tab space , ; = < > ' " & / \ { } [] ()

Substitutions that you set in Application Options apply to all displays.

Following is an example of; an rtvDisplayPanel element:
<rtvDisplayPanel region="north" name="title_panel" display="title.rtv"
</rtvDisplayPanel>

Building and Using Apama Dashboards 10.11.2 165

6 Reusing Dashboard Components

Configuring panels with accordion controls

As a child of the rtvLayout element, you can specify one or more rtvAccordionPanel elements. An
rtvAccordionPanel element creates a panel that contains an accordion control for display navigation.
The accordion control assumes there is a panel in the center region that was created with the
rtvDisplayPanel element. The accordion control sends its navigation commands to this center
panel.

The contents of a panel created with the rtvAccordionPanel element cannot be more than two
levels deep, not including the root node. If you require deeper nesting create a panel with the
rtvTreePanel element.

Use the following attributes to specify the location of an accordion control panel:

region - Specify the position of the panel as west, east, center, north, or south. The default is
center.

width - Specify the width of the panel in pixels. The default is 125.

Configuring static tree navigation panels

As a child of the rtvLayout element, you can specify one or more rtvTreePanel elements. An
rtvTreePanel element creates a panel that contains a static navigation tree. The navigation tree
assumes there is a panel in the center region that was created with the rtvDisplayPanel element.
The static navigation tree sends its navigation commands to this center panel.

There are twoways to create a tree-driven,multi-panel application: the static tree navigation panel
and the tree control. Use a static tree navigation panel when you know the specific sources that
are to populate the tree and they remain constant for the life of the application. For example, if
you know all the displays that compose your application and the static representation of a tree
will be used only for navigating those displays the static tree navigation panel is suitable, as well
as easier to configure.

Use the tree control when the number of tree nodes, leaves, labels, or icons changes during the
lifetime of the application. Data can be provided that will change the nodes and leaves of the tree
and also change the label and icon representation on the tree with dynamic data. See “Using tree
controls in panel displays” on page 169.

Use the following attributes to specify the location of a static tree navigation panel:

region - Specify the position of the panel as west, east, center, north, or south. The default is
center.

width - Specify the width of the panel in pixels. The default is 125.

Configuring tabbed navigation panels

As a child of the rtvLayout element, you can specify one ormore rtvTabbedDisplayPanel elements.
An rtvTabbedDisplayPanel element creates a panel with tabs for navigation. The display inside
the panel is specified by the following rtvTabbedDisplayPanel attributes:

166 Building and Using Apama Dashboards 10.11.2

6 Reusing Dashboard Components

tabs - Specify the name of a tab definition file. This XMLfile should describe the tabs youwant
in the panel. See “Using tab definition files” on page 167.

display - Specify the name of the display (.rtv) file to load into the panel.

subs - Specify initial substitutions for this panel. Substitutions are optional and must use the
following syntax:
$subname:subvalue $subname2:subvalue2

If a substitution value contains a single quote you must escape it by using a forward slash, for
example:
$filter:Plant=/'Dallas/'

If a substitution value contains a space it must be enclosed in single quotes. Do not escape
these single quotes. Following is a correct example:
$subname:subvalue $subname2:'sub value 2'

A substitution string cannot contain the following characters:
: | . tab space , ; = < > ' " & / \ { } [] ()

Substitutions that you set in Application Options apply to all displays.

region - Specify the position of the panel as west, east, center, north, or south.

placement - Specify top or bottom to indicate where you want the tabs to appear in the panel.

Following is an example of; an rtvDisplayPanel element:
<rtvDisplayPanel region="north" name="title_panel" display="title.rtv"
</rtvDisplayPanel>

Using tab definition files

When you specify an rtvTabbedDisplayPanel element in a panels configuration file, you must set
the element's tabs attribute to the name of the tab definition file that defines the tabs you want in
the panel.

The tab definition file must start with the following:
<?xml version="1.0" ?>
<navtree>

The tab definition file must end with the following:
</navtree>

For example:
<?xml version="1.0" ?>
<navtree>
<node label="Bar Chart" display="disp1.rtv"/>
<node label="History Graph" display="disp2.rtv" subs="$v1:xyz"/>

</navtree>

Building and Using Apama Dashboards 10.11.2 167

6 Reusing Dashboard Components

Inside the navtree element, you can define one or more node elements. Each node element adds a
tab to the panel. You can specify the following attributes for each node element:

display - Specify the name of the display (.rtv) file.

label - Specify the label for this tab in the panel.

subs - Specify substitutions to apply to this tab. Substitutions are optional and must use the
following syntax:
$subname:subvalue $subname2:subvalue2

If a substitution value contains a single quote you must escape it by using a forward slash, for
example:
$filter:Plant=/'Dallas/'

If a substitution value contains a space it must be enclosed in single quotes. Do not escape
these single quotes. Following is a correct example:
$subname:subvalue $subname2:'sub value 2'

A substitution string cannot contain the following characters:
: | . tab space , ; = < > ' " & / \ { } [] ()

Examples of configuration files for multiple panels

The following PANELS.ini file uses the new tags and creates a title panel at the top, an accordion
panel on the left, and amain display in the center. There are draggable dividers between all panels.
<?xml version="1.0" ?>
<panels xmlns="www.sl.com" version="1.0">
<rtvLayout title="Accordion Example" dividers="true">

<rtvDisplayPanel region="north" name="title_panel"
display="title.rtv"/>

<rtvAccordionPanel region="west" width="200" navdata="navtree.xml"/>
<rtvDisplayPanel region="center" name="main_panel"

display="chart_main.rtv"/>
</rtvLayout>
</panels>

The next PANELS.INI file creates a tabbed display panel at the top and a title panel at the bottom.
<?xml version="1.0" ?>

<panels xmlns="www.sl.com" version="1.0">

<rtvLayout title="Tab Example">

<rtvTabbedDisplayPanel region="center" tabs="navtabs.xml"
display="stock_chart"/>

<rtvDisplayPanel region="south" name="title_panel" display="title.rtv"/>

</rtvLayout>

168 Building and Using Apama Dashboards 10.11.2

6 Reusing Dashboard Components

</panels>

Using tree controls in panel displays
The tree control (class name: obj_c1tree) lets you create a rich and compact visual presentation
of hierarchical data. This control is most often used in a multi-panel application for display
navigation. The control tree can also be used in any application where hierarchical data is most
effectively displayed using expandable/collapsible tree nodes.

There are two methods for creating a tree-driven multi-panel application:

Static tree navigation panel — Use a static tree navigation panel when you know the specific
sources that will populate the tree and they remain constant for the life of the application. For
example, if you know all the displays that compose your application and the static
representation of a treewill be used only for navigating those displays, the static tree navigation
panel is suitable (and is easier to configure). To configure the static tree navigation panel, add
the tree using the rtvTreePanel tag to the PANELS.ini file. For details about configuring the
tree, see “Configuring static tree navigation panels” on page 166.

Tree control — Use the tree control method if the number of nodes or leaves, labels or icons
of the tree change during the lifetime of the application. Data can be provided that will change
the nodes and leaves of the tree and also change the labels, and icon representations on the
tree with dynamic data.

When using the tree control to construct an application with multiple panels one panel displays
a .rtv file that has instanced the tree control and the other contains the displays which are drilled
down to by selecting items on the tree.

The following illustrates a two-panel application inwhich the tree control in the left panel updates
the display in the right panel:

Building and Using Apama Dashboards 10.11.2 169

6 Reusing Dashboard Components

You can optionally configure tree control icons, using images of your choice, to visually indicate
the type of elements in the tree, for example, Production or Sales, whether the element is in a
critical state, and to also propagate the status of priority elements to the top of the tree. See
“Configuring tree control icons” on page 175.

Creating tree controls

The input of tabular data determines the content of the tree control, as well as the appearance of
each object in the tree. As with other controls, to configure a drill-down, set substitutions, or run
a command when a user clicks a tree node, use the actionCommand property. As with other
table-driven objects, the drillDownColumnSubs property can be configured to set substitutions to
column values from the row in the table (attached to the valueTable property) that corresponds
to the selected tree node.

After you attach your tabular data to the tree control valueTable property, specify the table format
for the tree in the valueTableFormat property. The table format is determined by the format of the
table you attach to the valueTable property. There are two table format options, each with their
own requirements:

Row-leaf: This format is intended for use when the valueTable property is attached to a table
and all leaves in the tree are at the same depth. For example, where the tree control is attached
to an instance table. The nodeIndexColumnNamesproperty specifies the columns from the instance
table that will appear in the hierarchy in the tree control.

Row-node: If the row-leaf format is not suitable for your data, use the row-node format. Your
data tablemust also contain a row for each node in the tree, including the top-level node (rather
than just the leaf nodes, as with the row-leaf format), as well as a column for the node and a
column for the parent node. The row-node format allows each leaf of the tree to have a different
depth.

The default table format is row-leaf. The following are examples of the row-leaf and row-node
table formats, which both produce the tree in the image that follows. Here is a row-leaf table:

PIDApp Name

1000App0

1004App0

1008App0

1001App1

1005App1

Here is a row-node table:

ParentNode

app0

170 Building and Using Apama Dashboards 10.11.2

6 Reusing Dashboard Components

ParentNode

app01000

app01004

app01008

app1

app11001

app11005

Here is the tree control that both these tables produce:

After you configure the tree table format, you can optionally configure the tree control icons. See
“Configuring tree control icons” on page 175.

Creating row-leaf format control trees

In the row-leaf table format, there is one row in the table for each leaf node in the tree. A leaf node
is added to the tree for each row in the table attached to the valueTable property. The path to a
leaf node (that is, the ancestor nodes of the leaf) is determined by the values in each of the table
columns specified by the nodeIndexColumnNamesproperty.When the valueTableproperty is attached
to the instance table, the tree's nodeIndexColumnNames property is typically set to the same columns
that are specified in the Display variables field of the Attach to Apama dialog.

To illustrate how to create a tree using the row-leaf format, consider a table that has two columns,
App Name and PID, and the following rows:

PIDApp Name

1000app0

1004app0

1008app0

1001app1

Building and Using Apama Dashboards 10.11.2 171

6 Reusing Dashboard Components

PIDApp Name

1005app1

Set tree control properties as follows:

Attach the tree control object's valueTable property to Apama as you would attach any table
object. In the Attach to Apama dialog, in the DisplayVariables field, select the variables App
Name and PID.

Set the valueTableFormat property to the Row-Leaf format.

Set the nodeIndexColumnNames property to App Name;PID.

The following image illustrates the structure of the tree. There are two nodes labeled app0 and
app1. Node app0 has three child nodes labeled 1000, 1004, 1008. Node app1 has two child nodes,
labeled 1001 and 1005.

Supposewe add another column, AgentName, by selecting that variable from theDisplay Variables
field of the Attach to Apama dialog. The table has the following rows:

PIDApp NameAgentName

1000App0Agent1

1004App0Agent1

1008App0Agent1

1001App1Agent1

1005App1Agent1

1000App0Agent2

1004App0Agent2

1001App1Agent2

We also update the tree control nodeIndexColumnNames property to AgentName;App Name;PID.

172 Building and Using Apama Dashboards 10.11.2

6 Reusing Dashboard Components

The following figure illustrates the new structure of the tree. The tree now has two top-level nodes
labeled Agent1 and Agent2, each with two child nodes, app0 and app1.

As illustrated above, the label string for a node at depth N is taken from the Nth column in the
nodeIndexColumnNames property. Therefore, the labels for the top-level nodes come from the first
column in the nodeIndexColumnNames property (AgentName), the labels for the second-level nodes
come from the second column in nodeIndexColumnNames property (App Name), and so forth.

To specify node labels from a different set of valueTable columns, use the nodeLabelColumnNames
property. Enter a semicolon-separated list of columnnames in the nodeLabelColumnNamesproperty,
one for each level in the tree, where the Nth column name in the list contains the labels for tree
nodes at depth N.

To modify tree control icons or configure tree control icon behavior, see “Configuring tree control
icons” on page 175.

Creating row-node format tree controls

In the row-node format tree control, there is one row in the table for each node in the tree, including
the top-level node rather than just one row for each of the leaf nodes as with the row-leaf format.

There are two columns in the table that help define the tree structure:

One of the table columns contains a node ID string and is identified by the nodeIdColumnName
property. By default, the node ID string is used as the node label in the tree. The node ID string
must be unique among all nodes with the same parent. Or, if the uniqueNodeIdFlag property
is checked, each node ID string must be unique in the entire tree.

Another table column contains the ID of the parent node, which is identified by the
parentIdColumnName property.

To create the same tree as the row-leaf format example in the previous topic, a table representation
of the tree control using the row-node format would be as follows:

Building and Using Apama Dashboards 10.11.2 173

6 Reusing Dashboard Components

ParentNode

<blank>app0

app01000

app01004

app01008

<blank>app1

app11001

app11005

The <blank> entries represent an empty string, which indicates that nodes app0 and app1 have no
parent, making them top-level nodes in the tree.

Set the tree control properties as follows:

valueTable property to attach to the table that contains the data to be displayed

valueTableFormat property to the Row-Node format

nodeIdColumnName property to Node

parentIdColumnName property to Parent

The result is a tree structure with two top-level nodes labeled app0 and app1. Node app0 has three
child nodes labeled 1000, 1004, 1008. Node app1 has two child nodes, labeled 1001 and 1005.

To add another tree level for the AgentName, as in the Row-Leaf format example in the previous
topic, modify the table as follows:

ParentNode

<blank>Agent1

Agent1app0

app01000

app01004

app01008

<blank>Agent2

Agent2app0

app01000

app01004

174 Building and Using Apama Dashboards 10.11.2

6 Reusing Dashboard Components

ParentNode

Agent2app1

app11001

app11005

Also, uncheck the uniqueNodeIdFlag property to allow for node IDs that are not unique, such as
the app0 and 1000 nodes in the example, which are used in multiple tree levels. Because some of
the rows are also identical, the order of the table rows is important. For example, this row appears
twice in the table: 1000 app0. In each case the 1000 app0 row comes after a unique parent row: first
under app0 Agent1 and then under app0 Agent2. The tree uses this information to determine where
to place the node for 1000 in each case.

The tree now has two top-level nodes labeled Agent1 and Agent2, each with two child nodes, app0
and app1.

By default, the node ID string is used as the node label in the tree. If a different column in the table
must provide the label, specify the name of that column in the nodeLabelColumnName property.

In the row-node format, each branch of the tree can have a different depth, while in the row-leaf
format all branches typically have the same depth, which is the number of columns specified in
the nodeIndexColumnNames property.

To modify tree control icons or configure tree control icon behavior, see “Configuring tree control
icons” on page 175.

Configuring tree control icons

You can optionally configure tree control icons, using images of your choice, to visually indicate
the type of elements in the tree, for example, Production or Sales, whether the element is in a
critical state, and to also propagate the status of priority elements to the top of the tree.

The use of one or both of the following icons is optional. Each node in the tree control can display
these two configurable icons:

Type icon — Use the type icon to assign static images to nodes that indicate either the type of
element it contains, or its level in the tree. By default, a folder image is used for all non-leaf
nodes, and a document image is used for all leaf nodes.

For example, if you have groups of elements based on geographic location, you could assign
an icon for the country, state and city (for example, US, California, San Francisco). Or, if you
have groups of elements based on their function, you could assign an icon for each function
(Purchases, Operations, Sales, and so forth). You can also assign images for each depth in the
tree for a visual indication of where you are while navigating within the tree.

Status icon — Use the status icon to assign images that are used when an element in the tree
has a specified value. You can also configure the status in order of priority so that the most
critical status is propagated up the tree first. By default, there is no status icon.

Building and Using Apama Dashboards 10.11.2 175

6 Reusing Dashboard Components

If a node has a type icon and a status icon, the type icon always appears to the left of the status
icon.

Attaching a tree control icon to data

For convenience, both the type icon and the status icon can be attached to data. The type icon and
status icon have different data table requirements. Typically, an attachment to a static XML file
containing the appropriate tables is used. The following describes the data table format
requirements:

Type icon — To attach the type icon to data, use the nodeTypeProperties property. The data
attachment must be a two-column table. Typically, a static XML file containing the table is
used. The first columnmust contain string values of _node (for non-leaf nodes), _leaf (for leaf
nodes), numeric values for depth, or string values that match the node labels, or the values
from the column in valueTable specified by the nodeTypeColumnName property. The second
column must be the path to the .png, .gif, or .jpg image. The default assignments are _node,
rtvTreeNode16.png and _leaf, rtvTreeLeaf16.png. The column names are not important.

Status icon — To attach the status icon to data, use the nodeStatusProperties property. The
data attachment must be a three-column table. Typically, a static XML file containing the table
is used. The first column must contain string values that match values from the column in
valueTable specified by the nodeStatusColumnName property. The second column must be the
path to the .png, .gif, or .jpg image. The third columnmust contain the non-negative integer
priority value.

A static XML file is read once each time you run Dashboard Viewer. If you specify (or modify) an
XML source using the Application Options dialog, you may specify whether that XML source is
static. For details, see Creating XML Sources.

Configuring tree control type icons

Type icons indicate the type of node in the tree. The type icon for each node is determined either
by the value of a column in the valueTable property, or by the node position in the tree. By default,
the type icon appears to the left of the node label.

This section describes how to configure type icons using the Node Properties dialog. You can
also configure type icons by attaching the nodeTypeProperties property to data.

To configure the type icon, use the nodeTypeProperties property to define a two-column table of

data. Select the nodeTypeProperties property in the property sheet, then click the button to
open the Node Properties dialog.

In the Node Properties dialog, the Node Depth or Type column lists the available nodes. The
first two rows, non-leaf node and leaf node, indicate the default settings: non-leaf nodes in the
tree use a folder image and leaf nodes use a document image. To change the default setting, click

the button in the Image column for the node and choose an icon from the Select Image
dialog.

176 Building and Using Apama Dashboards 10.11.2

6 Reusing Dashboard Components

The next five rows, numbered 0 - 4, represent the node depth or level, zero (0) being the root node.
The Image column lists the icons being used for each node. By default, the Image column for all
of those rows is <blank>, indicating that the non-leaf node and leaf node icon assignments are
used. Icon assignments override non-leaf node and leaf node assignments.

You can also assign an image icon based on node level. Such an icon provides a visual indication
of where you are while navigating in the tree. To assign an image to a specific node level in the

tree, click the button for one of the rows numbered 0 - 4 in the Image column and choose an
icon from the Select Image dialog. Repeat for each node level.

You can assign an image icon based on node labels you create that describe the nodes as a group.

For example, suppose the Node Depth or Type column contains the string Davies with the
image selected.

This means that all nodes whose label matches the Davies string display the image in the
tree.

To assign an image to a specific node type in the tree, assign a column name in the
nodeTypeColumnNameproperty. Select thenodeTypePropertiesproperty in the property sheet,
then click on the button to open the Node Properties dialog. Click New to add a custom row to
the table. A drop-down list of values for the column assigned to the nodeTypeColumnName
property appears in the Node Depth or Type column. Select a column name from the drop-down
list. Click the button in the Image column and choose an icon (to use for all nodes that have that
column name in the valueTable row that corresponds to the node) from the Select Image dialog.

You can also type a string in the Node Depth or Type column and the Image column.

To not use an icon, in the Node Properties dialog, select the icon in the Image column, then click
Clear.

Note that the root node is invisible if the rootNodeLabel property is blank.

Configuring tree control status icons

Status icons indicate the current state of a node. You can configure the status icon to propagate
the status of a child node up the tree to its ancestors. The status icon shown for an ancestor node
corresponds to the current highest status priority among all of its descendants.

The status icon for a node is determined by the discrete value of a specified column in the
valueTable property. The values can be strings or numbers. The comparison is done for an exact
match. If the current status value for a tree node does not match any of the values you specify in
the nodeStatusProperties property, no status icon is displayed for that node.

By default, the status icon appears on the left of the node label. The value, Left or Right, is specified
in the nodeStatusIconPos property. If a node has both a type icon and a status icon, the type icon
always appears to the left of the status icon. By default, no status icons appear in the tree.

Building and Using Apama Dashboards 10.11.2 177

6 Reusing Dashboard Components

This section describes how to configure status icons using the Node Properties dialog. You can
also configure status icons by attaching the nodeStatusProperties property to data. For details
about that, see “Attaching a tree control icon to data” on page 176.

To configure status icons, specify the status table column name in the nodeStatusColumnName
property, then use the nodeStatusProperties property to define a three-column table of data and
configure icon behavior. The nodeStatusProperties property is visible only if the
nodeStatusColumnName property is non-blank.

Select the nodeStatusProperties property in the property sheet, then click the button to open
the Node Properties dialog.

In the Node Properties dialog, to map an image to a node status, click New, then click in the
Status Value column. A drop-down list appears containing all values in the node status column
of the valueTableproperty (which you previously specified in the nodeStatusColumnNameproperty).
Select a value from the drop-down list.

Click the button in the Image column for the node and choose an icon from the Select Image
dialog. This icon is used as the status icon for all nodes that match the value selected in the Status
column.

Click the button in the Priority column for the node and assign an integer value: 0, 1, 2, 3, 4,
5, or a higher number. There is no upper limit on the number. The largest number is the highest
priority and is propagated up the tree first. A value of zero (0) is not propagated. You might want
to assign a value of zero to multiple nodes so that they do not propagate up the tree. A non-zero
value can be assigned only once.

For example, suppose the nodeStatusColumnName property is set to the Application Status table
column of the valueTable property. You could define the mapping for the nodeStatusProperties
property as follows:

PriorityImageStatus Value

2Blocked

1Running

The values in theApplication Status column of each row in the valueTable property is compared
to the two values listed in the Status Value column (Blocked and Running). If the Application

Status value in one of the rows is Blocked, the status icon is displayed as the status icon for
that row. If there is no match, for example, the Application Status value in one of the rows is

unknown, no status icon is displayed in the tree node for that row. Because the status icon is

assigned the highest priority, the status icon is always propagated up the tree first. If none of

the rows has a Blocked status, the status icon is propagated up the tree.

178 Building and Using Apama Dashboards 10.11.2

6 Reusing Dashboard Components

For example, in the following illustration, the priority status of a single node, app3/1003, is
propagated up to its parent, app3, and also to the top-level ancestor, Agent1.

Specifying tree control properties

There are a number of properties that you can specify for a tree control.

Specifying tree control background properties

The bgColor property determines the color of the tree control background. Select the bgColor

property and click the button. Choose a color from the palette to set the background color of
the tree control.

Specifying tree control data display properties

The following properties specify how data is displayed in the tree control.

nodeIdColumnName

This property is available when the valueTableFormat is Row-Node. With the Row-Node
format there are two table columns that define the tree structure: the nodeIdColumnName
property and the parentIdColumnName property.

The nodeIdColumnName property specifies the table column containing the node ID string.
The node ID string must be unique among all nodes with the same parent. Or, if the

Building and Using Apama Dashboards 10.11.2 179

6 Reusing Dashboard Components

uniqueNodeIdFlag property is checked, each node ID stringmust be unique in the entire tree.
By default, the node ID string is used as the node label in the tree.

nodeIndexColumnNames

This property is available when the valueTableFormat is Row-Leaf. It specifies the path to a
leaf node, that is, the ancestor nodes of the leaf.

When the valueTable property is attached to the current table of an instance the
nodeIndexColumnNames property is typically set to the same columns that are specified in the
Display variables field of the Attach to Apama dialog used to set the valueTable property.

Enter a semicolon-separated list of column names, where the Nth column name in the list
contains the labels for tree nodes at depth N. The labels for top-level nodes are defined by the
first column in the nodeIndexColumnNames property, the labels for the second-level nodes
are defined by the second column, and so forth. For example:

AgentName;App Name;PID

The labels for the top-level nodes are defined by the AgentName column, the labels for the
second-level nodes are defined by the App Name column, and labels for the third-level nodes
are defined by the PID column.

To specify node labels from a different set of valueTable columns, use the
nodeLabelColumnNames property.

nodeLabelColumnName

This property is available when the valueTableFormat is Row-Node. By default, the node ID
string is used as the node label in the tree. Use thenodeLabelColumnName property to specify
a different valueTable column to provide the label.

nodeLabelColumnNames

This property is available when the valueTableFormat is Row-Leaf. Use the
nodeLabelColumnNamesproperty to specify a different set of valueTable columns to provide
node labels. Enter a semicolon-separated list of column names, one for each level in the tree,
where the Nth column name in the list contains the labels for tree nodes at depth N.

nodeStatusColumnName

This property applies to the status icon. It specifies the name of the valueTable column
containing node status values. The column specified populates the Node Properties dialog
Status Value column, in which you map node status values to image icons. The icons are
displayed for any node whose value matches the value selected.

nodeTypeColumnName

This property applies to the type icon. It specifies the name of the valueTable column containing
values to use formapping icon images to node types in the tree. The column specified populates
the list of available values in the Node Properties dialog Node Depth or Type column, in
which you map node types to image icons. The icons are displayed for any node whose value
matches the value selected.

180 Building and Using Apama Dashboards 10.11.2

6 Reusing Dashboard Components

parentIdColumnName

This property is available when the valueTableFormat is Row-Node. With the Row-Node
format there are two table columns that define the tree structure: the parentIdColumnName
property and the nodeIdColumnName property.

The parentIdColumnName property specifies the table column containing the parent node
ID.

uniqueNodeIdFlag

This property is available when the valueTableFormat is Row-Node.

When enabled, this property specifies that each node ID string must be unique in the entire
tree.When disabled, it specifies that each node ID stringmust be unique among all nodeswith
the same parent.

valueColumnName

Specifies the name of the column whose value is assigned to the $value variable when a node
in the tree is selected. If not specified, the label string of the selected node is assigned to the
$value variable. The $value variable is the only substitution that can be used in the Display
Name field of a drill-down command.

valueTable

Attach your tabular input data to this property. There are two valueTable format options,
each with their own requirements: Row-Leaf and Row-Node.

As with other table-driven objects, the drillDownColumnSubs property can be configured to
set substitutions to column values from the row in the valueTable that corresponds to the
selected tree node.

valueTableFormat

Specifies the format of the valueTable: Row-Leaf or Row-Node.

varToSet

Allows you to update the attached variable with the value from the control.

Specifying tree control interaction properties

The following properties specify interactions in the tree control.

actionCommand

Use the actionCommand property to assign a command to the tree. You can configure the
tree to open a drill-down display, set substitutions, or run a command in response to a user
click on a tree node.

The actionCommand property can reference the value from the tree by using the keyword
$value. When the command is run, the variable attached to the varToSet property is updated
with the selected node data.

Building and Using Apama Dashboards 10.11.2 181

6 Reusing Dashboard Components

The drillDownColumnSubs property can be configured to set substitutions to column values
from the row in the valueTable that corresponds to the selected tree node.

If the execOnLeafOnlyFlag property is checked, the tree actionCommand property runs
only when a leaf node is clicked (a click on a non-leaf node expands only the node). If
unchecked, the tree actionCommand property runs on all nodes, not just the leaf.

commandCloseWindowOnSuccess

If selected, the window that initiates a system command will automatically close when the
system command is run successfully. This property only applies to system commands.

With data source commands, the window is closed whether or not the command is run
successfully.

For multiple commands, this property is applied to each command individually. Therefore, if
the first command in the multiple command sequence succeeds, the windowwill close before
the rest of the commands are run.

The commandCloseWindowOnSuccess property is not supported in the display server.

commandConfirm

If selected, the command confirmation dialog is enabled. Use the commandConfirmText
property towrite your own text for the confirmation dialog, otherwise text from the command
property will be used.

For multiple commands, if you confirm the execution then all individual commands will be
run in sequence with no further confirmation. If the you cancel the execution, none of the
commands in the sequence will be run.

commandConfirmText

Enter command confirmation text directly in the Property Value field or select the button
to open the Edit commandConfirmText dialog. If commandConfirmText is not specified,
then text from the command property will be used.

drillDownColumnSubs

Use the drillDownColumnSubs property to set substitutions to column values from the row
in the valueTable that corresponds to the selected tree node.

Select the button to open the Drill Down Column Substitutions dialog to customize
which substitutions are passed into drill-down displays.

enabledFlag

If unchecked, the tree nodes are the color gray and do not respond to user input.

execOnLeafOnlyFlag

If checked, the tree actionCommand is run only for leaf nodes, and a click on a non-leaf node
only expands the node. Also, the mouseover tooltip only appears for leaf nodes.

182 Building and Using Apama Dashboards 10.11.2

6 Reusing Dashboard Components

If unchecked, the tree actionCommand property runs on all nodes, and themouseover tooltip
appears for all nodes.

mouseOverFlag

Specifies whether a tooltip appears when the cursor is positioned over a node. The tooltip
shows the node path (the node label preceded by the labels of all of its ancestors), the node
status (if the nodeStatusColumnName property is specified), and its value (if the
valueColumnName property is specified).

tabIndex

Use the tabIndex property to define the order in which the tree receives focuswhen navigated
from your keyboard. Initial focus is given to the object with the smallest tabIndex value, from
there the tabbing order proceeds in ascending order. Ifmultiple objects share the same tabIndex
value, initial focus and tabbing order are determined by the alpha-numeric order of the table
names. Tables with a tabIndex value of 0 are last in the tabbing order.

The tabIndex property does not apply to tables in the display server, nor to objects that are
disabled, invisible, or have a value of less than 0.

Specifying tree control label properties

The following properties specify the appearance of tree control labels.

labelTextColor

This property sets the color of label text. Click the button and choose a color from the
palette.

labelTextFont

This property sets the font of label text. Select the font from the drop-down menu.

labelTextSize

This property sets the height of the label in pixels.

Specifying tree control node structure properties

The following properties specify the node structure in the tree control.

nodeStatusIconPos

Specify the status icon position in the tree: Left or Right. By default, the status icon appears
on the left of the node label. If a node has both a type icon and a status icon, the type icon
always appears to the left of the status icon. By default, no status icons appear in the tree.

nodeStatusProperties

This property specifies the status icon for a node. By default, no status icon is displayed.

Building and Using Apama Dashboards 10.11.2 183

6 Reusing Dashboard Components

Click the button to open the Node Properties dialog and map images to values, and set
the status priority order for propagation up the tree.

ThenodeStatusPropertiesproperty is visible only if thenodeStatusColumnNameproperty
is non-blank.

You can also use the nodeStatusProperties property to attach a status icon to data. The data
attachment must be a three-column table. Typically, a static XML file containing the table is
used. The first column must contain string values that match values from the column in the
valueTable specified by the nodeStatusColumnName property. The second column must
be the path to the .png, .gif, or .jpg image. The third column must contain the non-negative
integer priority value.

A static XML file is read once each time you run Dashboard Viewer. If you specify (or modify)
an XML source using the Application Options dialog, you may specify whether that XML
source is static.

nodeTypeProperties

This property specifies the type icon for a node. By default, non-leaf nodes in the tree use a
folder image and leaf nodes use a document image.

Click the button to open the Node Properties dialog to map images to nodes. Mapping
can be based on the node depth in the tree or the type of node.

You can also use the nodeTypeProperties property to attach a type icon to data. The data
attachment must be a two-column table. Typically, a static XML file containing the table is
used. The first columnmust contain string values of _node (for non-leaf nodes), _leaf (for leaf
nodes), numeric values for depth, or string values that match the node labels, or the values
from the column in the valueTable specified by the nodeTypeColumnName property. The
second columnmust be the path to the .png, .gif, or .jpg image. The default assignments are
_node, rtvTreeNode16.png and _leaf, rtvTreeLeaf16.png. The column names are not
important.

The logic for determining which type icon is used is as follows.

If the nodeTypeColumnName property specifies column C, and the value of C in the
valueTable row that corresponds to N is V, and there is a row in nodeTypeProperties that
assigns value V to image I1, then I1 is used as the type icon for N. Otherwise:

If the label of node N is XYZ, and there is a row in the nodeTypeProperties property that
assigns value XYZ to image I2, then I2 is used. Otherwise,

If the depth of node N is D, and there is a row in the nodeTypeProperties property that
assigns depth D to image I3, I3 is used. Otherwise,

If N is a leaf, and the leaf node image is I4, I4 is used. If I4 is blank no type icon appears.
Otherwise,

If the non-leaf node image is I5, I5 is used. If I5 is blank no type icon appears.

184 Building and Using Apama Dashboards 10.11.2

6 Reusing Dashboard Components

A static XML file is read once each time you run Dashboard Viewer. If you specify (or modify)
an XML source using the Application Options dialog, you may specify whether that XML
source is static.

rootNodeLabel

Specify whether the tree root node is visible. By default, this property is blank and the root
node is not visible.

Specifying tree control object layout properties

The following properties specify the layout in the tree control.

anchor

Specifies where to anchor an object in the display. If an object has the dock property set, the
anchor property will be ignored.

The anchor property is only applied when the dimensions of the display are modified, either
by editing Background Properties or resizing the window in Layout mode.

Select None, or one or more the following options:

None - Object not anchored. This is the default.

Top - Anchor top of object at top of display.

Left - Anchor left side of object at left of display.

Bottom - Anchor bottom of object at bottom of display.

Right - Anchor right side of object at right of display.

When a display is resized the number of pixels between an anchored object and the specified
location remain constant. If an object is anchored on opposite sides (that is, top and bottom or
left and right), the object will be stretched to fill the available space. If the Resize Mode is set
toScale and an object is anchored on opposite sides, then the object will bemoved rather than
stretched to fill the available space.

dock

Specifies the docking location of an object in the display. An object should not be docked if
the Resize Mode is set to Scale.

Select from the following options:

None - Object is not docked. This is the default.

Top- Dock object at top of display.

Left - Dock object at left of display.

Bottom - Dock object at bottom of display.

Right - Dock object at right of display.

Building and Using Apama Dashboards 10.11.2 185

6 Reusing Dashboard Components

Fill - Dock object in available space remaining in the display after all docked objects are
positioned.

If the dimensions of the display are modified, either by editing Background Properties or
resizing the window in Layout mode, the properties (objX, objY, objWidth and objHeight)
of docked objects will automatically adapt to match the new size of the display.

When multiple objects are docked to the same side of the display, the first object is docked
against the side of the display, the next object is docked against the edge of the first object, and
so on.

When objects are docked to multiple sides of the display, the order in which objects were
added to the display controls docking position. For example, suppose the first object added
to the display is docked at the top and the second object is docked at the left. Consequently,
the first object will fill the entire width of the display and the second object will fill the left side
of the display from the bottom of the first object to the bottom of the display.

Objects in a display that have the dock property set to Fill, are laid out across a grid in the
available space remaining after all docked objects are positioned. By default, the grid has one
row and as many columns as there are objects in the display. You can modify the grid in the
Background Properties dialog.

Once an object is docked, there are some limitations on how that object can be modified.

Docked objects cannot be dragged or repositioned using objX and objY properties.

Docked objects cannot be resized using the objWidth or objHeight properties. To resize
you must drag on the resize handle.

Docked objects can only be resized toward the center of the display. For example, if an
object is docked at the top, only its height can be increased by dragging down toward the
center of the display.

Docked objects set to Fill cannot be resized.

Docked objects cannot be moved using Align. Non-docked objects can be aligned against
a docked object, but a docked object will not move to align against another object.

Docked objects are ignored by Distribute.

objHeight

This property is read-only. It shows the height in pixels of the object, which is set by the height
of the tree display.

objName

Name given to facilitate object management by means of the Object List dialog. Select Tools
> Object List.

objWidth

This property is read-only. It shows the width in pixels of the object, which is set by the width
of the tree display.

186 Building and Using Apama Dashboards 10.11.2

6 Reusing Dashboard Components

objX

Sets the x position of the object.

objY

Sets the y position of the object.

visFlag

Sets the visibility of the object.

Descriptions of unique tree control property behavior

The following describes properties that behave uniquely with the tree control.

valueColumnName - This property specifies the name of the column whose value should be
assigned to the $value variable when a node in the tree is clicked. If not specified, the label
string of the selected node is assigned to $value. Note that $value is the only substitution that
can be used in the Display Name field of a drill-down command.

mouseOverFlag - If this property is checked, a tooltip appears when the cursor is positioned
over a leaf node. The tooltip shows the node path (the node label preceded by the labels of all
of its ancestors), the node status (if the nodeStatusColumnName property is specified), and
its value (if the valueColumnName property is specified).

execOnLeafOnlyFlag - If this property is checked, the tree actionCommand property runs
only when a leaf node is clicked (a click on a non-leaf node expands only the node). If
unchecked, the tree actionCommand property runs on all nodes, not just the leaf.

rootNodeLabel - This property specifies the tree root node (of which there is only one). By
default, this property is blank and the root node is not visible.

Tree control limitations

In the Display Viewer, mouseover text is displayed only if the tree has focus.

In the Thin Client:

The tree node appearance, such as spacing and fonts, might vary slightly as compared to the
Display Viewer, and also may vary slightly between different browsers.

A tree node cannot expand/collapse by double-clicking it. The +/- icon must be clicked.

In Internet Explorer, nodes expand/collapse even if the tree enabledFlagproperty is unchecked.
(However, the tree actionCommand cannot be invoked).

InMozilla Firefox, the horizontal scrollbar might appear and disappear after eachmouse click
in the tree.

Building and Using Apama Dashboards 10.11.2 187

6 Reusing Dashboard Components

Using old tags to configure the panels in a window
The tags described in this topic are deprecated. They will be removed in a future release. You
should change to the new tags. See “Using new tags to configure the panels in a window” on
page 164.

Whenusing the old tags in the panels-configurationfile the following tags are supported. Remember
that you cannot mix old tags and new tags in the same panels-configuration file.

DescriptionTag

A border panel allows you to specify a central display and place up
to four other displays to the north, south, east orwest. Border panels

BorderPanel

are implemented as javax.swing.JPanels with a BorderLayoutAdd
a JPanelwith a border layout to the main window. See “Using
border panels” on page 188.

A card panel allows you to stack displays so that they are all active,
but only one is showing. This is usefulwhen you have a trend graph

CardPanel

that needs to maintain data when it is not being displayed. Card
panels are implemented as javax.swing.JPanelwith a CardLayout.
Display server deployments do not support card panels. Add a
JPanelwith a card layout to the main window. See “Using card
panels” on page 190.

A grid panel allows you to arrange your panels in tabs. Add a JPanel
with a grid layout to the main window. See “Using grid panels” on
page 190.

GridPanel

A tabbed panel allows you to arrange your panels in tabs. Add a
JTabbedPane to the main window. See “Using tabs panels” on
page 191.

TabbedPanel

A tree panel can be used inside a border panel to display a tree that
is used to navigate displays in one of the border panel regions. Add

RTViewNavTreePanel

a JPanel containing a JTree into a BorderPanel. This requires use of
the CardPanel. See “Using the RTViewNavTreePanel tag” on
page 195.

Add a panel containing the specified display into a BorderPanel,
CardPanel, TabbedPanel, or GridPanel. See “Using the RTViewPanel
tag” on page 195.

RTViewPanel

Using border panels

The tags described in this topic are deprecated. They will be removed in a future release. You
should change to the new tags. See “Using new tags to configure the panels in a window” on
page 164.

188 Building and Using Apama Dashboards 10.11.2

6 Reusing Dashboard Components

Use the BorderPanel tag to add a border panel to themainwindow. This tag supports the following
attribute:

DescriptionAttribute

Set the minimum width for a BorderPanel, in pixels. The
default value is 300. The minimum height is determined

minWidth

by the minWidth and the overall aspect ratio of the panels
contained in the BorderPanel. The minWidth attribute can
be used to prevent the Dashboard Viewer from being
resized so small that the displays in the BorderPanel are
unreadable.

Use RTViewPanel or RTViewNavTreePanel subelement to specify .rtv files for the center, north,
south, east, and west panels.

Here is an example:
<?xml version="1.0" ?>
<panels xmlns="www.sl.com" version="1.0">
<BorderPanel title="Test of Border Panels">
<RTViewPanel region="north" name="north_panel" display="long_panel"

subs="$title:'North Panel'"/>
<RTViewPanel region="center" name="center_panel" display="small_panel"

subs="$title:'Center Panel'"/>
<RTViewPanel region="west" name="west_panel" display="small_panel"

subs="$title:'West Panel'"/>
<RTViewPanel region="east" name="east_panel" display="small_panel"

subs="$title:'East Panel'"/>
<RTViewPanel region="south" name="south_panel" display="long_panel"

subs="$title:'South Panel'"/>
</BorderPanel>
</panels>

When you create displays for use in border panels, the height and width of each display must be
set in relation to the other displays. Displays in thewest, east and centermust all be equal in height.
The width of the display in the north and south, must equal the combined width of the displays
in the west, east and center. You will need to increase the width of the display in the north and
south by the border width for each border that divides the west, center and east panels. To set the
height andwidth of a display in the Dashboard Builder, select File |Background Properties and
set the Model Width and Model Height. If you are using a background image for your display,
create the image so that the height and width of the image are one pixel larger than the size you
want the display to be.

The following shows dimensions of display (.rtv) files set to fit accurately in multiple display
panels:

Model HeightModel WidthDisplay LocationDisplay Name

240320centersmall_panel.rtv

240320eastsmall_panel.rtv

Building and Using Apama Dashboards 10.11.2 189

6 Reusing Dashboard Components

Model HeightModel WidthDisplay LocationDisplay Name

240320westsmall_panel.rtv

120962northlong_panel.rtv

120962southlong_panel.rtv

Using card panels

The tags described in this topic are deprecated. They will be removed in a future release. You
should change to the new tags. See “Using new tags to configure the panels in a window” on
page 164.

With card layout, you use the CardPanel element to specify a main panel and subordinate panels.
Display server deployments do not support card layout.

The CardPanel tag supports the following attribute:

DescriptionAttribute

Set the location of this CardPanel if it is in a BorderPanel.
Valid values are west, east, center, north, and south.

region

Here is an example:
<?xml version="1.0" ?>
<panels xmlns="www.sl.com" version="1.0">
<CardPanel>
<RtViewPanel title=" Main Panels " name="main" display="main_panel"/>

<!-- The following three panels will always be kept in memory -->
<RtViewPanel title="Panel 101" display="med_panel" subs="$title:101">
<RtViewPanel title="Panel 102" display="med_panel" subs="$title:102">
<RtViewPanel title="Panel 103" display="med_panel" subs="$title:103">

<!-- All other displays will be loaded on demand -->
</CardPanel>
</panels>

When you create displays for use in card panels, the height and width of each display must be the
same. To set the height andwidth of a display in the Dashboard Builder, select File |Background
Properties and set the Model Width and Model Height. If you are using a background image for
your display, create the image so that the height and width of the image are one pixel larger than
the size you want the display to be.

Using grid panels

The tags described in this topic are deprecated. They will be removed in a future release. You
should change to the new tags. See “Using new tags to configure the panels in a window” on
page 164.

Use the GridPanel tag to arrange panels into a specified number of rows and columns. Display
server deployments do not support grid layout.

190 Building and Using Apama Dashboards 10.11.2

6 Reusing Dashboard Components

This tag supports the following attributes:

DescriptionAttribute

Sets the number of columns in the grid. If the number
of columns is not specified, it will be calculated based

columns

on the number of RTViewPanels and the specified
number of rows.

Sets the number of rows in the grid. If the number of
rows is not specified, it will be calculated based on

rows

the number of RTViewPanels and the specified number
of columns.

Here is an example:
<?xml version="1.0" ?>
<panels xmlns="www.sl.com" version="1.0">
<GridPanel title="Test of Grid Panels" rows="0" columns="3">
<RTViewPanel name="detail1" display="small_panel" subs="$title:'101'"/>
<RTViewPanel name="detail2" display="small_panel" subs="$title:'102'"/>
<RTViewPanel name="detail3" display="small_panel" subs="$title:'103'"/>
<RTViewPanel name="detail4" display="small_panel" subs="$title:'201'"/>
<RTViewPanel name="detail5" display="small_panel" subs="$title:'202'"/>
<RTViewPanel name="detail6" display="small_panel" subs="$title:'203'"/>

</GridPanel>
</panels>

When you create displays for use in grid panels, the height and width of each display must be the
same. To set the height andwidth of a display in the Dashboard Builder, select File >Background
Properties and set the Model Width and Model Height. If you are using a background image for
your display, create the image so that the height and width of the image are one pixel larger than
the size you want the display to be.

Using tabs panels

The tags described in this topic are deprecated. They will be removed in a future release. You
should change to the new tags. See “Using new tags to configure the panels in a window” on
page 164.

Use the TabbedPanel tag to arrange .rtv files into a tabbed panel. This tag supports the following
attributes:

DescriptionAttribute

Set the position of the tab. Valid arguments are left, right,
top, and bottom.

placement

Note:
This argument is ignored by the data server. Tabs are
always in the top position.

Building and Using Apama Dashboards 10.11.2 191

6 Reusing Dashboard Components

DescriptionAttribute

Set to false so that only one display at a time is loaded.preload

Here is an example:
<?xml version="1.0" ?>
<panels xmlns="www.sl.com" version="1.0">
<TabbedPanel title="Test of Tabbed Panels" placement="top">
<RTViewPanel title="Main Panel" display="main_panel"/>
<RTViewPanel title="Panel 101" display="med_panel" subs="$title:101"/>
<RTViewPanel title="Panel 102" display="med_panel" subs="$title:102"/>
<RTViewPanel title="Panel 103" display="med_panel" subs="$title:103"/>
<RTViewPanel title="Panel 201" display="med_panel" subs="$title:201"/>
<RTViewPanel title="Panel 202" display="med_panel" subs="$title:202"/>
<RTViewPanel title="Panel 203" display="med_panel" subs="$title:203"/>

</TabbedPanel>
</panels>

When you create displays for use in tabbed panels, the height and width of each display must be
the same. To set the height and width of a display in the Dashboard Builder, select File |
Background Properties and set theModel Width andModel Height. If you are using a background
image for your display, create the image so that the height and width of the image are one pixel
larger than the size you want the display to be.

By default, the displays for all tabs are loaded at startup and are never unloaded. You can set to
false the preload attribute on the TabbedPanel tag in order to change this behavior so that only
the display for the first tab is loaded at startup and the display for a tab is unloadedwhen the user
selects another tab. In other words, if preload is false, only one display at a time is loaded in a
tabbed panel.

Following is an example:
<?xml version="1.0" ?>
<panels xmlns="www.sl.com" version="1.0">
<TabbedPanel title="Test of Tabbed Panel" placement="top" preload="false">
<RtViewPanel title="Table Overview" display="overview"/>
<RtViewPanel title="Production Table" display="production_table"/>
<RtViewPanel title="System Table" display="system_table"/> </TabbedPanel>

</panels>

Using tree panels

The tags described in this topic are deprecated. They will be removed in a future release. You
should change to the new tags. See “Using new tags to configure the panels in a window” on
page 164.

With tree panels, you define the contents of a tree-structured navigation pane by specifying an
xml file (navtree.xml in this example) as the value of the navtreedata attribute in an
RTViewNavTreePanel element:
<?xml version="1.0" ?>
<panels xmlns="www.sl.com" version="1.0">
<BorderPanel>

192 Building and Using Apama Dashboards 10.11.2

6 Reusing Dashboard Components

<RTViewPanel region="north" name="title_panel" display="title_panel"/>
<CardPanel region="center">

<RtViewPanel title=" Overview " name="main" display="main_panel"/>
</CardPanel>
<RtViewNavTreePanel region="west" width="192" height="480"

lineStyle="Angled" navtreedata="navtree.xml">
</RtViewNavTreePanel>

</BorderPanel>
</panels>

The file that you specify for the navtreedata attribute must be in XML, and must start with the
following:
<?xml version="1.0" ?>
<navtree xmlns="www.sl.com" version="1.0">

The navtreedata file must end with the following:
</navtree>

The following tags are supported:

DescriptionTag

Add a node to the navigation tree.node

Set the font used in the navigation tree.treefont

Set font and background color in the navigation tree.
Specify in hexadecimal RGB format: # rrggbb (for

treecolor

example, #00FFFF for cyan) or the following: black,
white, red, blue, green, yellow, cyan, magenta, gray,
lightGray, darkGray, orange, pink.

The node tag supports the following attributes:

DescriptionAttribute

Name of the display (.rtv) file.display

Label for this node in the navigation tree. Defaults to display
name if no label is set. Specify the font and color of the label

label

using HTML. For example, to draw a green label using a
50-point italic monospaced font:
label="<html><p style=
'font-family:monospaced;font-style:italic;
font-size:50;color:green'>

Your Label Goes Here"

HTML font settings specified here override treecolor and
treefont settings for this node.

Building and Using Apama Dashboards 10.11.2 193

6 Reusing Dashboard Components

DescriptionAttribute

If the attribute value is keepalive, the display is kept inmemory
the entire time the application is running.

mode

Substitutions to apply to the display. Substitutions are optional
and must use the following syntax:

subs

$subname:subvalue $subname2:subvalue2

If a substitution value contains a single quote, it must be
escaped using a / :
$filter:Plant=/'Dallas/'

If a substitution value contains a space, it must be enclosed in
single quotes. Do not escape these single quotes:
$subname:subvalue $subname2:'sub value 2'

A substitution string cannot contain any of the following
characters:

: | . tab space , = < > ' " & / \ { } [] ()

The treefont tag supports the following attributes:

DescriptionAttribute

Specifies the font family name.name

Can be set to plain, bold, italic, or bold italic.style

Font point size.size

The treecolor tag supports the following attributes:

DescriptionAttribute

Specifies the font color for tree labels.text

Specifies the background color for the tree and
non-selected tree labels.

background

Specifies the background color for a selected tree
label.

selection

Here is an example:
<?xml version="1.0" ?>
<navtree xmlns="www.sl.com" version="1.0">
<node label="Nav Tree Example">
<node label="Main Displays" display="main_panel">

194 Building and Using Apama Dashboards 10.11.2

6 Reusing Dashboard Components

<node label="100 Displays">
<node label="Panel 101" mode="keepalive" display="med_panel"

subs="$title:101">
</node>
<node label="Panel 102" mode="keepalive" display="med_panel"

subs="$title:102">
</node>
<node label="Panel 103" mode="keepalive" display="med_panel"

subs="$title:103">
</node>

</node>
<node label="200 Displays">

<node label="Panel 201" display="med_panel" subs="$title:201">
</node>
<node label="Panel 202" display="med_panel" subs="$title:202">
</node>
<node label="Panel 203" display="med_panel" subs="$title:203">
</node>

</node>
</node>

</node>
</navtree>

Nodes can be nested. You can only specify one top-level node.

Using the RTViewNavTreePanel tag

The tags described in this topic are deprecated. They will be removed in a future release. You
should change to the new tags. See “Using new tags to configure the panels in a window” on
page 164.

The RTViewNavTreePanel tag supports the following attributes:

DescriptionAttribute

Name of the navigation tree definition file. This XML
file must describe the elements of the tree.

navtreedata

Set the line style used in the navigation tree. Valid
values are Angled and Horizontal.

lineStyle

Set the location of this RTViewNavTreePanel if it is in a
BorderPanel. Valid values are west, east, center, north,
and south.

region

Set the initial height of the RTViewNavTreePanel.height

Set the initial width of the RTViewNavTreePanel.width

Using the RTViewPanel tag

The tags described in this topic are deprecated. They will be removed in a future release. You
should change to the new tags. See “Using new tags to configure the panels in a window” on
page 164.

Building and Using Apama Dashboards 10.11.2 195

6 Reusing Dashboard Components

The RTViewPanel tag supports the following attributes:

DescriptionAttribute

Name of display (.rtv) file to load into the panel.display

Corresponds to Window Name entered in the Drill
Down Properties dialog. When using tabbed panels,

name

if the name is not specified, a name is constructed
internally using the display name and substitutions
to make it easy to drill down between tabs. In this
case, when you drill down from a tab using the
Current Window option and the specifieddisplaywith
the specified substitutions is already loaded in
another tab, the Dashboard Viewer will switch to
that tab.

Set the location of this RTViewPanel if it is in a
BorderPanel. Valid values are west, east, center,
north, and south.

region

Control the visibility of scroll bars in the panel. The
permitted values are as-needed, never, and always.

scrollbars

The default value is as-needed. In some cases, setting
the scrollbars attribute to never on title or footer
panels can improve the resize behavior of the
Dashboard Viewer.

Specify initial substitutions for this panel.
Substitutions are optional andmust use the following
syntax:

subs

$subname:subvalue $subname2:subvalue2

If a substitution value contains a single quote, it must
be escaped using a / :
$filter:Plant=/'Dallas/'

If a substitution value contains a space, it must be
enclosed in single quotes. Do not escape these single
quotes:
$subname:subvalue $subname2:'sub value 2'

A substitution string cannot contain any of the
following characters:

: | . tab space , = < > ' " & / \ { } [] ()

Note:

196 Building and Using Apama Dashboards 10.11.2

6 Reusing Dashboard Components

DescriptionAttribute

Substitutions set in Application Options will
apply to all displays.

Tab Control object

The name of the object is obj_c1tabs. It appears on the Controls tab of the Builder's object palette.

The tab control has two fake tabs labeled A and B when it is drawn on the palette, and also when
the user places an instance on a display. The fake tabs are replacedwith the actual tabs by attaching
the tab control's valueTable property to a data table containing one row for each tab.

The size given to the control in the Builder determines the space available for tabs. The tabs are
drawn horizontallywith the first tab at the left edge of the control. If the control is not wide enough
to show all of the tabs, the tabs will wrap vertically. If the control is not tall enough to show all of
the tabs, some of the tabs may be clipped or invisible.

Changing the control's labelTextSize property will change the size of the tab label text, which
will also affect the size of the tabs.

The tab control is populated from a data table attached to its valueTable property, with one tab
created for each row in the table. The following tab control properties are used tomap the columns
of the data table to each tab:

DescriptionProperty

The value from this column is used as the tab label. If labelColumnName
does not specify a column in the valueTable or if it contains an empty

labelColumnName

string, then the tab for row N in the valueTablewill be labeled "Tab
N". The labelColumnName property appears in the Label category.

The value from this column is assigned to the variable (if any) attached
to the tab control's varToSet property when the corresponding tab is

valueColumnName

selected by the user. If valueColumnName does not specify a column in
the valueTable, then the tab's index (0 through N - 1, for a table with
N rows) is used as the tab value. The valueColumnName property
appears in the Data category.

The value from this column is used to load an icon image, shown to
the left of the tab's label. If imageColumnName does not specify a column

imageColumnName

in the valueTable, or if the column is empty, or if the image can't be
found, the tab will not contain an icon. An icon will affect the size of
the tab. The imageColumnName property appears in the Image category.

The value from this column is used as the tooltip for each tab. If
mouseOverColumnName does not specify a column in the valueTable, or

mouseOverColumnName

if the column is empty, the tab will not display a tooltip. The
mouseOverColumnName property appears in the Interaction category.

Building and Using Apama Dashboards 10.11.2 197

6 Reusing Dashboard Components

The tab control supports the drillDownColumnSubs property, which can be useful in cases where
the tab's command is a drilldown. As with other objects that support drillDownColumnSubs, it can
be used to set the values for substitutions and local variables from columns in the row of the
valueTable that corresponds to the selected tab.

The control's visFlag property can be used to toggle the control's visibility. Unlike the other control
objects, the tab control does not support the enabledFlag property. So it is always enabled. As on
other control objects, the predefined substitution named $value can be used in the control's
command. The value of the selected tab will be substituted for $valuewhen the command is run.
(See the valueColumnName property for a description of how a tab's value is determined). If a tab
control has a commanddefined and the commandConfirm property is checked, the userwill be asked
to confirm the command when a tab is clicked, but the clicked tab will become the selected tab
regardless of the user's response.

Limitations / Differences:

In the Thin client, the tab control is not supported in Internet Explorer version 8 or older, and
will not appear in displays opened in those versions.

The tab sizes and appearancemay differwhen viewed in the Builder/Viewer versus Thin client.

In the Thin client, the background color of the selected tab is brighter than the unselected tabs,
while in the Builder/Viewer the selected tab is darker than the other tabs. (This difference is
intentional, to conform with the standard appearance of tabs in Swing versus a Browser.)

198 Building and Using Apama Dashboards 10.11.2

6 Reusing Dashboard Components

7 Sending Events to Correlators

■ Using the Define Apama Command dialog .. 200

■ Send event authorization .. 203

Building and Using Apama Dashboards 10.11.2 199

Dashboard Builder supports the creation of Dashboard commands that send user-defined events.

Using the Define Apama Command dialog
You define a send-event command by associating it with the command, actionCommand, or
commandString property of a Dashboard object such as a button.

To make the association

1. Select the Dashboard object.

2. Right-click the actionCommand or commandString property in the Object Properties panel.

3. Select Define Command > Apama from the popup menu.

4. In the Define Apama Command dialog

a. Command. Select Send event from the command drop down list.

b. Correlator. The correlator where the command is to be run.

c. Package. The choices for the Package field include all the packages for the selected
correlator. Events that do not have a package are grouped under the package “default”.

d. Event. The choices for the Event field include all the events for the selected package.

e. Channel. Optionally, specify a channel on which to send the event. For example, orders.
If you do not specify a channel then the default channel is used.

Other dialog fields
The remaining fields shown are dependent on the event selected; one field is shown in the dialog
for each field in the event. As with other commands, the value of each event field can be attached
to a dashboard variable or set to a hard coded value.

Default values

It is not necessary to set each event field in order to send an event. Empty fields are set to default
values depending on field type. See also "Default values for types" inDevelopingApamaApplications.

Specifying values for reference types

You specify values for reference types (such as location, sequence, dictionary or event) by using
the format specified in theAPI Reference for EPL (ApamaDoc). For example, to specify extraParams
you can specify the value as follows:

200 Building and Using Apama Dashboards 10.11.2

7 Sending Events to Correlators

{"field1":"value1","field2":"value2"}

You can also use dashboard variables, or a single dashboard variable that contains the entire value,
for example:
$extraParams

where $extraParams equals {"field1":"value1","field2":"value2"}.

Event fields of type optional are empty by default. If you want to specify a value, make sure to
specify the value as shown in the following examples:

optional(123.45) for float values.

optional("hello world") for string values.

Updating event definitions in Builder
The Dashboard Builder retrieves the latest event definitions from each correlator at startup. If the
event definitions change, you can force them to be refreshed by using the Refresh Event
Definitions button at the bottom of the Define Apama Command dialog.

Note that the Refresh Event Definition button only updates the event definitions for the selected
correlator.

Example

The Weather demowhich can be accessed via Software AGDesigner's Welcome page (go to Help
> Welcome, and then clickDemosunder theApama heading) uses the followingdialogs to define
actions for the Add Location and Delete Location buttons:

Building and Using Apama Dashboards 10.11.2 201

7 Sending Events to Correlators

202 Building and Using Apama Dashboards 10.11.2

7 Sending Events to Correlators

Send event authorization
By default, any user is authorized to send any event. However you can create a custom event
authority that determines whether a given user is authorized to send a given event. An event
authority is a Java class that implements the canSendmethod of the interface
com.apama.dashboard.security.IEventAuthority:
boolean canSend (IUserCredentials credentials, Event event);

If canSend() returns true the user is allowed to send the event. If it returns false the user is not
allowed to send the event and the attempt to send the event is treated as a command failure.
Dashboard object property settings determine if this error is displayed to the user.

The event authority is specified in the EXTENSIONS.ini file in the lib directory of your Apama
installation. Here is a portion of EXTENSIONS.ini as shipped:
List of event authorities. An event authority is called to determine
if a user has rights to send an event to a correlator. Each must implement
the interface:
com.apama.dashboard.security.IEventAuthority
Multiple authorities can be specified. They will be called in the order
listed.
Format:
eventAuthority <classname>
NoOpEventAuthority - Allows all users to send events

Building and Using Apama Dashboards 10.11.2 203

7 Sending Events to Correlators

eventAuthority com.apama.dashboard.security.NoOpEventAuthority
DenyAllEventAuthority - Allows no users to send events
#eventAuthority com.apama.dashboard.security.DenyAllEventAuthority
eventAuthority <your_class_name_here>

Two event authorities are provided with your installation:

com.apama.dashboard.security.NoOpEventAuthority: Permits all users to send any event.

com.apama.dashboard.security.DenyAllEventAuthority: Denies all users rights to send any
event.

NoOpEventAuthority is the default event authority. Use a custom event authority when deploying
your Dashboards.

See Deploying and Managing Apama for more information on customizing authorization.

204 Building and Using Apama Dashboards 10.11.2

7 Sending Events to Correlators

8 Using XML Data

■ XML data format ... 206

■ Defining an XML data source ... 208

■ Attaching objects to XML data .. 209

Building and Using Apama Dashboards 10.11.2 205

Dashboard Builder enables you to augment your dashboard by using XML data files as a data
source in addition to Apama DataView. The properties of dashboard objects can be attached to
data elements in XML files. To be used as a data source, an XML file must follow the formatting
guidelines presented in this chapter.

XML files can be used to make a dashboard more generic by isolating label values, colors, and
similar attributes in a file which can be shared bymultiple dashboards. XML files can also be used
as an intermediary for bringing data from other sources into a dashboard.

XML data format
XML files used as data sources with Dashboard Builder must adhere to the formatting guidelines
detailed in this section.

XML data files must contain the dataset element. This element identifies the XML data as a
dashboard XML data file. The standard template for an XML data file is as follows:
<?xml version="1.0"?>
<dataset xmlns="www.sl.com" version="1.0">Data elements</dataset>

All XML data files must adhere to this template.

XML data files can contain both scalar and tabular data elements as discussed in the topics below.
XML data files can contain multiple scalar and tabular data elements.

Scalar data elements
Scalar data elements are single values such as a string or number. Scalar data elements are useful
for isolating common labels, colors, and similar items in XML resource files that can be shared by
multiple dashboard files.

A scalar element is defined in an XML data file with the data tag as follows:
<data key="element_name" value="element_value" />

The key attribute specifies the name of the data element. This name will be used when attaching
object properties to the data element. The value specifies the value for the element; both string
and number values can be specified for the value.

Following is an example of an XML data file containing scalar data elements:
<?xml version="1.0"?>
<dataset xmlns="www.sl.com" version="1.0">
<data key="status_label" value="Current Status:" />
<data key="status_complete" value="Completed" />
<data key="status_failed" value="Failed" />
<data key="load_factor" value="1.5" />
<data key="max_occurence" value="10000" />

</dataset>

Here, five different scalar data elements are defined. The first three, status_label, status_complete,
and status_failed, have string values. The last two, load_factor and max_occurence, have number
values.

206 Building and Using Apama Dashboards 10.11.2

8 Using XML Data

Tabular data elements
Tabular data elements contain multiple columns and rows of data. The value for each field can be
a string, integer, double, or boolean. Tabular data elements are useful for data sets containing
multiple item instances. Tabular data can be used to populate Table, Trend Chart, and other
dashboard objects.

Tabular elements are defined in a table tag that includes a set of tags that describe the data in the
table and tags for each row of data values. A tabular element is defined as follows:

<table key="production_table">
<tc name="column1"

type="string | double | int | boolean"
index="true | false"/>

<tc name="column2"
type="string | double | int | boolean"
index="true | false"/>

<tr name="ID0”>
<td>column1_value</td>
<td>column2_value</td>

</tr>
<tr name="ID1">

<td>column1_value</td>
<td>column2_value</td>

</tr>
</table>

The key attribute on the table tag specifies the name of the data table. This namewill be usedwhen
attaching object properties to the data element.

The tc tag defines a column in the table. For each column, you must specify a name, type, and
whether or not the column is to be used as index. Subsequent row definitions must contain values
for each column where the type of the value matches the type defined for the column. The index
field is reserved for future use.

The tr tag defines a single row of data. Each row must contain a td tag for each column in the
table. The td tags define the value for a column for a single row.

Following is an example XMLdata file containing a tabular data element named production_table:
<?xml version="1.0"?>
<dataset xmlns="www.sl.com" version="1.0">
<table key="production_table">
<tc name="Plant"

type="string"
index="true"/>

<tc name="Units in Production"
type="int"
index="false"/>

<tc name="Units Completed"
type="int"
index="false"/>

<tc name="Status"
type="string"
index="false"/>

<tc name="On Schedule"

Building and Using Apama Dashboards 10.11.2 207

8 Using XML Data

type="boolean"
index="false"/>

<tr name="PID 0">
<td>San Francisco</td>
<td>87</td>
<td>70</td>
<td>online</td>
<td>true</td>

</tr>
<tr name="PID 1">

<td>San Jose</td>
<td>75</td>
<td>63</td>
<td>online</td>
<td>false</td>

</tr>
</table>
</dataset>

Here, the table is defined as containing four columns; Plant, Units in Production, Units Completed,
and On Schedule. There are two rows in the table; one each for San Francisco and San Jose.

Defining an XML data source

To attach object properties to data elements in an XML data file, you need to first make the
XML data file known by adding it as a data source

1. Select Options... from the Tools menu. This will display the Application Options dialog.

2. In the Application Options dialog select XML in the left pane.

On this tab you can define the XML files to be used as data sources. The XML Source Prefix
field allows you to define a file path prefix that can be used to locate XML data files.

3. Set the XML Source Prefix field to the directory of the tutorial sample in your Apama
installation. By default this is:

%APAMA_HOME%\samples\dashboard_studio\tutorial\

Be sure to include the final backslash in the XML Source Prefix.

4. Click the Add button to define a new XML data source.

This will display the Edit XML Source dialog.

5. Define a new data source as follows and click the OK button.

208 Building and Using Apama Dashboards 10.11.2

8 Using XML Data

You have defined the XML data source named xml data. The data for this data source is in the file
tutorial-xml-data.xml located in the tutorial directory.

When defining an XML data source you specify:

XML Source Name — The name you will use to refer to the data source when defining data
attachments.

XML Source Path — The full path to the XML data file. If an XML source prefix is used, a
partial path only need be specified.

Use XML Source Prefix—If enabled, the XML source prefixwill be affixed to the XML source
path.

Static — If enabled Apama will read the file only once. If disabled, Apama will read the file
each time it is modified. Each time the file is read any attached objects will update to show the
latest data elements in the file.

Contains Substitutions — Enable this option if the XML source path contains substitution
variables. If enabled, Apama will not read the file until the substitutions have been defined.

To edit an existing XMLdata source, double-click it in the list of XML sources. You can also specify
an XML data source to use as the default when defining XML data attachments.

XML data source definitions are saved in OPTIONS.ini. To persist an XML data source definition
you must click Save in the Application Options dialog.

Attaching objects to XML data
After having defined an XML data source you can attach object properties to the data elements
within the XMLdata file. The steps for doing this are similar to defining attachments to the instance
data.

To attached object properties to the data elements within the XML data file

1. If you have not yet done so, define the XML data source xml data as detailed in the previous
section.

Building and Using Apama Dashboards 10.11.2 209

8 Using XML Data

2. Open the file tutorial-xml-data.rtv by selecting XML Data on the tutorial main page.

The table object in this dashboard is attached to the production_table data element in the file
tutorial-xml-data.xml.

3. Open the file tutorial-xml-data.xml in a text editor and examine it to see that there is a column
in the table for each column defined for production_table and that there is a row in the table
for each row defined.

4. Select the table object and double-click the valueTable property in the Object Properties panel.

Here the property is attached to the production_table data element for the XML data source
named xml data. The Columns and Filter fields can be used to select a subset of columns or
rows as is done for the instance data attachments.

5. With the table object still selected, right-click the label property and select XML from the
Attach to Data menu.

210 Building and Using Apama Dashboards 10.11.2

8 Using XML Data

6. If label is a scalar property, it must be attached to a scalar data element. Attach it to the data
element string_element as shown in the following:

Do not use the Data server field of the Attach to XML Data dialog.

The label of the table will change.

Building and Using Apama Dashboards 10.11.2 211

8 Using XML Data

212 Building and Using Apama Dashboards 10.11.2

8 Using XML Data

9 Using SQL Data

■ SQL system requirements and setup ... 214

■ Attaching visualization objects to SQL data ... 214

■ Defining SQL commands ... 219

■ Specifying application options .. 221

■ Setting up SQL database connections ... 225

■ Setting SQL data source options .. 227

Building and Using Apama Dashboards 10.11.2 213

The SQL data source provides access to JDBC enabled databases. The Attach to SQL Data dialog
makes it easy to browse, select data tables, filter information, and institute query policies with a
simple user interface. For those familiar with SQL, it is also possible to enter SQL commands to
specify database queries.

SQL system requirements and setup
The SQL data source requires a database with a JDBC driver. See “Setting up SQL database
connections” on page 225.

You must also modify your Dashboard Properties (select Properties from the Project menu in
Software AGDesigner). In order to use a direct JDBC connection to communicate with a database,
add your JDBC jar file to your Dashboard Properties.

Attaching visualization objects to SQL data
From the Object Properties window you can access the Attach to SQL Data dialog, which is used
to connect an object to your database using an SQL query. Once an object has been attached to
your database it can receive periodic or on-demand updates.

When an object property is attached to data, the Property Name and Value in the Object
Properties window will be displayed in green. This indicates that editing this value from the
Object Properties window is no longer possible.

To remove the data attachment and resume editing capabilities in the Object Properties window,
right-click the Property Name and select Detach from Data. You will recognize that an object
property has been detached from the database when the Property Name and Value are no longer
green.

214 Building and Using Apama Dashboards 10.11.2

9 Using SQL Data

Use the --sql quote command-line option to enclose all table and column names specified in the
Attach to SQL Data dialog in quotes when an SQL query is run. This is useful when attaching to
databases that support quoted case-sensitive table and column names.

Note:
If a case-sensitive table or columnname is used in theFilterfield, or you are entering an advanced
query in the SQL Query field, they must be entered in quotes even if the --sql quote option
is specified.

To connect an object to your database using an SQL query

1. Right-click the Property Name from the Object Properties window and select Attach to Data
> SQL.

The Attach to SQL Data dialog displays.

The Attach to SQL Data dialog provides drop down menus and an optional filter field that
allow you to specify information that will be used to create an SQL query for the selected
database. Alternatively, select the Enter SQL Query checkbox in order to enter an advanced
query.

2. From the Database Name drop down menu, select the name of database to query.

TheDatabase Name drop downmenu lists all available databases. TheDatabase Name field
automatically displays the name of the default database. If the item you require is not listed,
type your selection into the field.

Building and Using Apama Dashboards 10.11.2 215

9 Using SQL Data

ADatabase Repository file can be used to populate the initial values of drop down menus for
Table Name andColumn(s). See “Specifying application options” on page 221 for information
on how to create a Database Repository file. Otherwise, drop downmenus populate based on
databases added from theApplicationOptions dialog or those typed directly into theDatabase
Name field.

3. Check the Enter SQL Query checkbox in order to enter an advanced query.

If selected, the SQL Query text field, where you can enter your query, will replace the Table
Name, Column(s) and Filter fields.

Note:
This option is for advanced users; SQL syntax will not be validated or checked for errors

4. In the Table Name field, enter the name of table in database to query.

You can create a file to exclude tables from the Table Name drop down menu. See “Setting
up SQL database connections” on page 225 for details.

5. From the Column(s) pull down menu, select the columns in table to display.

A Database Repository file can be used to populate the initial values of drop down menus for
Table Name andColumn(s). See “Specifying application options” on page 221 for information
on how to create a Database Repository file.

6. In the Filter field, optionally, enter SQL filter to apply to query.

216 Building and Using Apama Dashboards 10.11.2

9 Using SQL Data

Uses standard SQL syntax.

7. From the Update Mode pull down menu, select one of the following:

Run Query Once: Select this if the data returned by this query is static. If selected, Apama
will run this query only once. This is the default setting.

Run Query Every Update Period: Select to run this query each update period. See
“Specifying application options” on page 221 for information on setting the update period.

Run Query Every Query Interval: Select to run this query once every Query Interval.

Run Query On Demand: Select to run this query each time a display that uses the query
is opened and each time a substitution string that appears in the query string has changed.

8. In the Query Interval (seconds) field, enter the time in seconds to control how often Apama
will run this query.

Note:
The query interval is evaluated during each update pass, so the amount of time elapsed
between queries may be longer than the value entered. For example, if the update period
is 2 seconds and the query interval is 5 seconds, the query will get run every six seconds.
This option is only available if the Update Mode is Run Query Every Query Interval.

9. In the Maximum Rows field, enter the maximum number of rows to return from this query.

Note:
On some objects an additional property may further reduce the number of data points
displayed. For example, the maxNumberOfRows property on the table or the maxPointsPerTrace
property on the trend graph.

10. Do not modify Data server field.

11. Click OK to apply the value and close the dialog.

You can also choose the following:

Apply: Applies values without closing the dialog.

Reset: Resets all fields to last values applied.

Clear: Clears all fields. Detaches object from database (once Apply or OK is selected).

Cancel: Closes the dialog with last values applied.

Note:
By default Apamawill attempt to communicate with your database using a connection that
is not password protected. If you are using a direct JDBC connection you will need to add
your database in Application Options | SQL.

Building and Using Apama Dashboards 10.11.2 217

9 Using SQL Data

Validation colors
Fields in the dialog change colors according to the information entered. These colors indicate
whether or not information is valid. Information entered into the dialog is validated against the
selected database or theDatabase Repository file. See “Specifying application options” on page 221
for information on how to create aDatabase Repository file.Note: Filters and advanced SQL queries
are not validated.

The following describes the significance of the Attach to SQL Data validation colors:

Blue: Unknown, that is, entry does not match any known database (or you have not attempted
a connection—see Note below).

Yellow: Offline, that is, not connected to database.

White: Valid.

Red: Invalid. Database is valid, but Table or Column(s) selected are not.

Note:
If a database is unknown, when you click OK or Apply Apama will attempt to communicate
with it using using the defined connection. If the validation response remains unknown, see
“SQL tab” on page 222 for information on how to add a database. If you are using a direct JDBC
connection you will need to add your database in Application Options.

Substitutions
Substitutions allow you to build open-ended displays inwhich data attachments depend on values
defined at the time the display is run. Generic names, such as $table1 and $table2, are used instead
of specific values. Laterwhen the display is running, these generic values are defined by the actual
names, such as production_table and system_table. In this way, a single display can be reused
to show data from a number of different databases.

Select table columns
From the Attach to SQL Data dialog you can specify which table columns to display and in what
order they will appear. In order to populate the listing of available columns, you must first select
a valid database and table.

To specify which table columns to display and in what order they will appear

1. Right-click the Property Name from the Object Properties window and select Attach to Data
> SQL.

The Attach to SQL Data dialog displays.

2. Click on the ellipses button in the Column(s) field (or right-click in the Column(s) field and
click Select Columns).

218 Building and Using Apama Dashboards 10.11.2

9 Using SQL Data

The Select Columns dialog displays, which contains a list of Available Columns that you
can add to your table.

3. To add a column, select an item from the Available Columns list and click Add button.

If the item you require is not listed, type your selection into the Enter Column Name field.

4. Click the Remove button to delete an item previously added to the Selected Columns list.

5. Control the order of columns in a table by arranging the items in the Selected Columns list
with the Move Up and Move Down buttons.

Validation colors indicate whether selected columns are valid. However, if even one column
selected is invalid theColumn(s) field in theAttach to SQL Data dialogwill register as an invalid
entry.

Note:
Invalid columns will not update.

Defining SQL commands
From the Object Properties window you can access the Define SQL Command dialog. This dialog
is used to assign SQL commands allowing you to issue commands from within a dashboard.

To assign SQL commands

1. Right-click the appropriate command property in the Object Properties window and select
Define Command > SQL.

The Define SQLCommand dialog displays, which provides a drop downmenuwith available
databases and a field to enter a SQL statement.

Building and Using Apama Dashboards 10.11.2 219

9 Using SQL Data

2. In the Database Name drop down menu, enter the name of database to query.

TheDatabase Name drop downmenu lists all available databases. TheDatabase Name field
automatically displays the name of the default database. If the item you require is not listed,
type your selection into the field. Drop downmenus populate based on databases added from
the Application Options dialog or those typed directly into the Database Name field.

3. In the SQL Command field, enter a SQL statement to run using standard SQL syntax.

Note:
This option is for advanced users, SQL syntax will not be validated or checked for errors.

4. In theQueriesfield, ifRun Affected Queries After Command is selected,Apama immediately
runs all queries, including static queries, that use the database tablemodified by the command.
This causes table changes to be displayed immediately, rather than waiting for the next
scheduled query update.

This option is only supported for update, insert, and delete operations in which the name of
the database table to be modified is specified explicitly. If a command performs another SQL
operation (such as running a stored procedure thatmodifies tables), the results of the operation
will not be displayed until the next scheduled update of each affected query. Display of the
modified data may be delayed for other reasons, for example, if the database does not commit
the results immediately and instead returns the old data on the next query.

5. Do not modify the Data Server field.

6. Click OK to apply the value and close the dialog.

You can also choose the following:

Apply: Applies values without closing the dialog.

220 Building and Using Apama Dashboards 10.11.2

9 Using SQL Data

Reset: Resets all fields to last values applied.

Clear: Clears all fields. Detaches object from assigned command (once Apply or OK is
selected).

Cancel: Closes the dialog with last values applied.

Validation colors

The Database Name field changes colors according to the information entered. These colors
indicate whether or not information is valid. Information entered into the dialog is validated
against the selecteddatabase or theDatabaseRepository file. See “Specifying application options” on
page 221 for information on how to create a Database Repository file.

Note:
The SQL Command field is not validated.

The following describes the significance of the Define SQL Command validation colors:

Blue: Unknown. Entry does not match any known database (or you have not attempted a
connection—See Note below).

Yellow: Offline. Not connected to specified database.

White: Valid. Database name is valid.

Note:
If a database is unknown, when you click OK or Apply Apama will attempt to communicate
with it using the defined connection. If the validation response remains unknown, see “SQL
tab” on page 222 for information on how to add a database. If you are using a direct JDBC
connection, you will need to add your database in Application Options.

Special values
When an actionCommand is run $value is replaced with the value from the control. This value
may be used in any field in the Define SQL Command dialog.

Note:
This value may only be used for Action Commands.

Specifying application options
To access the Application Options dialog, in the Builder select Tools > Options.

Options specified in the SQL tab can be saved in an initialization file (OPTIONS.ini). On startup,
the initialization file is read by the Builder, Viewer, display server, and data server to set initial
values. If no directory has been specified for your initialization files and OPTIONS.ini is not found
in the directory where you started the application, then Apama will search under lib in your
installation directory.

Building and Using Apama Dashboards 10.11.2 221

9 Using SQL Data

Note:
Options specified using command line arguments will override values set in initialization files.

SQL tab
This tab allows you to add or remove your databases and set the default database. In order for
Apama to communicate with your databases, you must set up a JDBC connection.

When you add a database to the list it will be highlighted in yellow indicating that it is not
connected. To attempt to connect to a database, click OK, Apply, or Save. If the background
remains yellow, then Apama was unable to make a connection to your database.

Note:
Databases that have been set up to Use Client Credentials will not connect unless you are
logged in and you have objects in your display that are using that connection.

Check your database connection and see “Setting up SQL database connections” on page 225 for
information on how to set up your driver correctly.

If the connection is successful, and the Get Tables and Columns from Database checkbox is
selected, Apama will use information from this database to populate drop down menus in the
Attach to Data dialog with available tables and columns. If a database repository is found,
information from your database will be merged with data from the repository file. If you deselect
theGetTables and Columns from Database checkboxApamawill no longer query your database
for this information, but the database repository will still be used to populate drop down menus.
Using a database repository to populate drop down menus makes it possible to specify which
tables and columns from your database will be listed in the Attach to Data dialog and gives you
the ability to build displays while databases are offline.

If you are using a direct JDBC connection you must click Save in order to record your options in
OPTIONS.ini. This will allow Apama to reconnect with your database the next time you run the
Builder or the Viewer.

Note:
Regardless of which tab you are currently working from in the Application Options dialog,
each time you click OK, Apply, or Save Apama will attempt to connect to all unconnected
databases, except those that have Use Client Credentials checked.

The Application Options dialog has the following fields and buttons:

Default Database: Name of database used as the default for data attachments. Select from
drop down menu to change default setting.

Add Database: Click to open the Add Database dialog. To edit, select a database from the list
and double-click. Databases that are updating objects in a current display cannot be renamed.

Adding a Database
The Add Database dialog has the following fields:

222 Building and Using Apama Dashboards 10.11.2

9 Using SQL Data

Database Name: The name to use when referencing this database connection in your data
attachments.

User Name: The user name to pass into this database when making a connection. This
parameter is optional.

Password:The password to pass into this databasewhenmaking a connection. This parameter
is optional.

Use Client Credentials: If selected, the user name and password from the Apama login will
be used instead of the User Name and Password entered in the Add Database dialog.
Connections to this database will only be made when you are running with login enabled and
a display is opened that accesses this database.

As a result, this connection will not be made when you click OK or Apply in the Application
Options dialog and will remain yellow. If you will be using the data server or the display
server with a database connection that has this option enabled, you must enable Use Client
Credentials for Database Login in these applications.

Table Types: Specify the types of tables to retrieve when querying the database for available
tables. Refer to your database manual for a list of valid table types. This parameter is optional.
Table types are entered as a comma delimited list, for example, TABLE, VIEW.

Run Queries Concurrently: If selected, each query on the connection is run on its own
execution thread. The default is disabled.Note: This option should be used with caution since
it may cause SQL errors when used with some database configurations and may degrade
performance due to additional database server overhead. See your database documentation
to see whether it supports concurrent queries on multiple threads.

JDBC Driver Class Name: The fully qualified name of the JDBC driver class to use when
connecting to this database. The path to this driver must be included in the RTV_USERPATH
environment variable.

JDBC Database URL: The full database URL to use when connecting to this database using
the specified JDBC driver. Consult your JDBC driver documentation if you do not know the
database URL syntax for your driver.

Remove Database: Select a database from the list and click Remove Database to delete.
Databases that are updating objects in a current display cannot be removed.

Suppress Permission Errors From Database: If selected, SQL errors with the word
"permission" in themwill not be printed to the console. This is helpful if you have selected the
Use Client Credentials option for a database. In this case, your login does not allow access
for some data in their display, you will not see any errors.

Get Tables and Columns from Database: If selected, information from your database will
automatically populate drop down menus in the Attach to Data dialog and you will be able
to select from available tables and columns in your database. Note: If a database repository is
found, information from your database will be merged with data from the repository file.

Save Database Repository: Click to save a file that records available tables and columns in
your database and applies values to drop down menus in the Attach to Data dialog.

Building and Using Apama Dashboards 10.11.2 223

9 Using SQL Data

Instead of using the Add Database dialog, it is possible enter this information manually into
OPTIONS.ini. See “Entering database information directory into OPTIONS.ini” on page 224.

Database repository

Click Save Database Repository to save a file that contains available information for tables and
columns in your database. Before saving a database repository, you must add the database or
databases from which the file will retain information.

Note:
If Apama does not make a connection with your database, then information from that database
cannot be saved to the database repository file.

Information stored in the database repository file will be used to populate the initial values of
drop down menus in the Attach to Data dialog. Note: The saved file will be named
sqlrepository.xml. If the name of the database repository file is changed, Apama will not be able
to locate the file. As a result, drop downmenus will populate based on databases added from the
Application Options dialog or those typed directly into the Attach to Data dialog.

When you click Save Database Repository, a confirmation dialog will appear to verify in which
directory you would like to save the database repository file. If you specified a directory for your
initialization files, all repository files will be saved to, and read from, that directory. If you select
the lib directory, the repository file will be available from any directory where you run Apama.
If you do not select the lib directory, the repository file will be saved in the directory where you
started the current session and will only be available when you run Apama from that particular
directory.

See “Setting up SQL database connections” on page 225 for details on editing an existing database
repository file.

Entering database information directory into OPTIONS.ini
To add an SQL database by entering information directly into OPTIONS.ini (instead of using the
Add Database dialog—see “Adding a Database” on page 222), add a line of text of the following
form:
sqldb databaseName username password jdbcUrl jdbcClassName tableTypes

useClientCredentials-boolean runQueriesConcurrently-boolean

You must supply all fields. Use “-” for fields that do not have a value.

Following is an example:
sqldb myDatabase - - - - - false false

In the example above, the databaseName is myDatabase, and both useClientCredentials and
runQueriesConcurrently are false. All other fields are not specified.

For JDBC databases jdbcUrl and jdbcClassNamemust be set.

See also “Generating encrypted passwords for SQL data sources” on page 225.

224 Building and Using Apama Dashboards 10.11.2

9 Using SQL Data

Generating encrypted passwords for SQL data sources

If you are adding an SQL data source by entering information directly into OPTIONS.ini (see
“Entering database information directory into OPTIONS.ini” on page 224), and you specify a
username and password, use the dashboard_management utility in order to generate an encrypted
version of the password. Use the encrypted version in the sqldb line of OPTIONS.ini.

Commands of the following form yield the encrypted string as output:
dashboard_management -e | --encryptString password

Following is an example:
dashboard_management -e sunshine

This yields the following output:
0134901351013440134901338013390134401335

Following is a sample sqldb line that includes the encrypted password shown above:
sqldb test2 username 0134901351013440134901338013390134401335 - - - true false

Setting up SQL database connections
Apama communicates with your database using a direct JDBC connection that requires some set
up before Apama can communicate with your database.

Once you have set up your database connection, youwill need to add your database in the Builder
from the Application Options dialog on the SQL tab (see “SQL tab” on page 222). Apama will
attempt to connect to your database. If Apama is unable to connect to your database, this means
that either the driver is not set up correctly or that you do not have permission to access the
database.

Note:
Databases that have been set up to Use Client Credentials will not connect unless you are
logged in and you have objects in your display that are using that connection.

If the connection is successful, and the Get Tables and Columns from Database checkbox is
selected in the Application Options dialog, Apama will use information from this database to
populate drop down menus in the Attach to Data dialog with available tables and columns. If a
Database Repository is found, information from your database will be merged with data from the
repository file. If you deselect the Get Tables and Columns from Database checkbox Apama
will no longer query your database for this information, but the Database Repository will still be
used to populate drop downmenus. Using a Database Repository to populate drop downmenus
makes it possible to specify which tables and columns from your database will be listed in the
Attach to Data dialog and gives you the ability to build displays while databases are offline.

Apama includes a JDBC database driver for the following Apama-certified databases:

Microsoft SQL Server

Building and Using Apama Dashboards 10.11.2 225

9 Using SQL Data

Oracle

These database drivers eliminate the need to install database-vendor-supplied drivers. The JDBC
drivers can be used with any Apama component.

For more information on the supplied database drivers, see the documentation available in the
following location:

apama_install_dir\doc\db_drivers\jdbc

Direct JDBC connection
In order for Apama to communicate with your database using a straight JDBC connection, you
must have a JDBC driver for your database.

Apama includes JDBCdatabase drivers that eliminate the need to install database-vendor-supplied
drivers. When you add a database to a dashboard you can specify the use of one of these Apama
drivers. To add a database to a dashboard, see “SQL tab” on page 222, which provides information
about the Add Database dialog. To use the Apama JDBC database driver for an added database,
enter values for JDBC Options in the Add Database dialog. Also, be sure to add the jar file that
contains the appropriate driver class to your Dashboard Properties (select Properties from the
Project menu in Software AG Designer).

To use the Apama JDBC driver, specify the following according to the type of SQL database you
want to add. In the URL, replace HOSTNAME, PORT and DATABASENAME or DATABASESIDwith the actual
values for the particular database you want to connect to.

MSSQL (eysqlserver.jar is in the apama_install_dir\lib folder)

URL: jdbc:sag:sqlserver://HOSTNAME::PORT;databaseName=DATABASENAME

Class name: com.apama.jdbc.sqlserver.SQLServerDriver

Oracle (eyoracle.jar in the apama_install_dir\lib folder)

URL: jdbc:sag:oracle://HOSTNAME::PORT;SID=DATABASESID

Class name: com.apama.jdbc.oracle.OracleDriver

JDBC drivers are available from most database vendors.

To make a non-Apama database driver available to Apama:

1. Locate the driver on your machine and add the jar that contains the driver class to your
Dashboard Properties (select Properties from the Project menu in Software AG Designer).

2. Add the path to the JDBC driver jar file to the APAMA_DASHBOARD_CLASSPATH environment
variable or to run the dashboard processeswith --dashboardExtraJars option. This is required
for the data server, display server or dashboard builder to be able to find and load the JDBC
driver class. You can add paths to multiple driver classes.

3. In the Add Database dialog, provide the database URL and the class name for your JDBC
driver. The database URL typically contains the protocol and sub-protocol strings for your

226 Building and Using Apama Dashboards 10.11.2

9 Using SQL Data

database as well as the path to the database and a list of properties. If you do not know the
syntax for your database URL, consult the documentation for your JDBC driver.

Setting SQL data source options
The Builder, Viewer, data server, and display server executables support the following
command-line option:
-q | --sql [retry:<ms> | fail:<n> | noinfo | nopererr | quote]

retry: Specify the interval (in milliseconds) to retry connecting to a database after an attempt
to connect fails. Default is -1, which disables this feature.

fail: Specify the number of consecutive failed SQL queries after which to close this database
connection and attempt to reconnect. Default is -1, which disables this feature.

noinfo: Query database for available tables and columns in your database. If a Database
Repository file is found, it is used to populate drop down menus in the Attach to SQL Data
dialog.

nopererr: SQL errors with the word permission in them will not be printed to the console.
This is helpful if you have selected the Use Client Credentials option for a database. In this
case, if your login does not allow access for some data in their display, you will not see any
errors.

quote: Encloses all table and column names specified in the Attach to SQL Data dialog in
quotes when an SQL query is run. This is useful when attaching to databases that support
quoted case-sensitive table and column names. Note: If a case-sensitive table or column name
is used in the Filter field, or you are entering an advanced query in the SQL Query field, they
must be entered in quotes, even if the -sqlquote option is specified.

Building and Using Apama Dashboards 10.11.2 227

9 Using SQL Data

228 Building and Using Apama Dashboards 10.11.2

9 Using SQL Data

II Dashboard Property Reference for Graphs,

Tables and Trends

10 Introduction to Dashboard Properties .. 231

11 Graph Objects .. 235

12 Table Objects .. 391

13 Trend Objects ... 435

14 Drill-Down Specification ... 521

Building and Using Apama Dashboards 10.11.2 229

230 Building and Using Apama Dashboards 10.11.2

II Dashboard Property Reference for Graphs, Tables and Trends

10 Introduction to Dashboard Properties

■ Objects for complex-data visualization ... 232

■ About the Object Properties window .. 232

■ Editing property values ... 232

■ Copying and pasting property values ... 232

Building and Using Apama Dashboards 10.11.2 231

Users of Dashboard Builder can incorporate a variety of visualization objects into Apama
dashboards, which allow end users to visualize and interact with Apama DataViews. This part
provides reference information on those objects intended for the visualization of complex data:
graphs, tables, and trend charts. Each visualization object is covered in a section that includes a
complete listing of the object's properties.

Objects for complex-data visualization
This document covers the visualization objects contained in the following tabs of the Dashboard
Builder Object Palette:

Graphs: Bar graphs, heatmaps, legends, pie graphs, radar graphs, and XY graphs. See “Graph
Objects” on page 235.

Tables: Standard tables and rotated tables. See “Table Objects” on page 391.

Trends: Sparkline charts, stock charts, and trend graphs. See “Trend Objects” on page 435.

There is also an appendix on the Drill Down Properties dialog, which sets a drill-down-related
property for all graph, table, and trend objects. See “Drill-Down Specification” on page 521.

About the Object Properties window
To open the Object Properties window, select Edit | Object Properties... or click the Object
Properties button on the toolbar. In the Object Properties window, you can view and edit the
property values of an object selected in the Builder canvas area.

Editing property values
Property names listed in the first column of the Object Properties panel cannot be changed.
Property values, listed in the second column, can be set to static values or attached to dynamic
data.

Blue text signifies that a property value is static and cannot be attached to a dynamic data source.

Green text signifies that a property value is currently attached to a dynamic data source and
therefore it is no longer possible to edit this value directly in the Object Properties panel. See
“Attaching Dashboards to Correlator Data” on page 47.

To remove a data attachment and restore the ability to edit property values directly in the Object
Properties panel, right-click on the property name and select Detach from Data from the popup
menu. An object property has been detached from the data source when the property name and
value are no longer green.

Copying and pasting property values
Copying and pasting makes it easy to transfer property values from one object to another.

232 Building and Using Apama Dashboards 10.11.2

10 Introduction to Dashboard Properties

There are two options for copying object properties:

Copy all properties: To copy all object properties, both static properties and data attachments,
select an object and click the copy button on the toolbar.

Copy single property: To copy an individual property from the Object Properties window,
right-click on the property name and select Copy. To copy a property from the Edit Function
dialog, right-click in a text field and select Copy.

There are four options for pasting object properties:

Paste data attachments: To paste only data attachments, select one or more objects and click
on the paste data attachments button on the toolbar or use the keyboard shortcutCtrl+Shift+V.

Note:
Only properties common to both objects are pasted onto the selected object or objects.

Paste static properties: To paste only the static properties, select one or more objects and click
on the paste static properties button on the toolbar.

Note:
Only properties common to both objects are pasted onto the selected object or objects.

Paste all properties: To paste all properties, select one or more objects and click on the paste
all properties button on the toolbar. This pastes all static properties as well as all data
attachments.

Note:
Only properties common to both objects are pasted onto the selected object or objects.

Paste single property: To paste an individual property into the Object Properties window,
right-click on the property name and select Paste. The Paste option is enabled only if the
copied attribute can be set on the selected property (data attachments, for example, cannot be
pasted onto static properties). To paste a property in the Edit Function dialog, right-click in
a text field and select Paste.

Building and Using Apama Dashboards 10.11.2 233

10 Introduction to Dashboard Properties

234 Building and Using Apama Dashboards 10.11.2

10 Introduction to Dashboard Properties

11 Graph Objects

■ Bar graphs .. 236

■ Google map .. 272

■ Heat map .. 280

■ HTML5 Bar graph ... 300

■ Legend ... 304

■ Pie graph .. 315

■ HTML5 Pie graph ... 330

■ Radar graph ... 331

■ XY graph .. 358

Building and Using Apama Dashboards 10.11.2 235

This chapter describes the visualization objects in theGraphs tab of the Dashboard BuilderObject
Palette.

Bar graphs
Bar graphs visualize tabular data that has one ormore numerical columns. Typically, the visualized
data also has one non-numerical column, whose values are used as graph labels that uniquely
identify each row.

A bar graph can visualize data in either of two ways:

Row series visualization: One group of bars is shown for each numeric column in the data
attachment. Within each group, there is a bar for each row in the data attachment.

Column series visualization: one group of bars is shown for each row in your data attachment.
Within each group, there is a bar for each numeric column in the data attachment.

Use the valueTable property to attach data to a bar graph. Use the rowSeriesFlag property to
specify row series or column series visualization.

You can attach additional data to a bar graph by using the traceValueTable property. Data attached
to this property is visualized with plotted points, or trace markers, rather than bars.

A bar graph can visualize trace data in either of two ways:

Row series visualization: One group of trace markers is shown for each numeric column in
the data attachment.Within each group, there is a marker for each row in the data attachment.

Column series visualization: one group of trace markers is shown for each row in your data
attachment. Within each group, there is a marker for each numeric column in the data
attachment

The points within a group are connected to one another by a polyline, or trace line.

The current section covers the following kinds of bar graphs:

Bar graph

3-D Stacked bar graph

Grouped bar graph with traces

236 Building and Using Apama Dashboards 10.11.2

11 Graph Objects

These visualization objects all share the same properties. They differ from one another only with
regard to their default values for these properties. When one of these objects is selected in the
Builder canvas, the Object Class Name that appears at the top of the Object Properties pane is
obj_bargraph.

The Object Properties panel organizes bar graph properties into the groups below.

Bar graph: Alert group
Properties in this group allow you to specify changes in the appearance of bars, trace lines, and
trace markers in response to changes in the status of plotted data elements. You can either specify
threshold values (see valueHighAlarm, valueHighWarning, valueLowAlarm, and
valueLowWarning) or attach a data table to traceValueAlarmStatusTable that indicates the status
of each element of the table that is attached to traceValueTable.

Alert group properties

This group includes the following properties:

“traceValueAlarmStatusTable” on page 238

“valueHighAlarm” on page 238

“valueHighAlarmColor” on page 239

“valueHighAlarmEnabledFlag” on page 239

“valueHighAlarmLineVisFlag” on page 239

“valueHighAlarmMarkColor” on page 239

“valueHighAlarmMarkStyle” on page 239

“valueHighWarning” on page 240

“valueHighWarningColor” on page 240

“valueHighWarningEnabledFlag” on page 240

“valueHighWarningLineVisFlag” on page 240

“valueHighWarningMarkColor” on page 240

“valueHighWarningMarkStyle” on page 240

“valueLowAlarm” on page 241

“valueLowAlarmColor” on page 241

“valueLowAlarmEnabledFlag” on page 241

“valueLowAlarmLineVisFlag” on page 241

“valueLowAlarmMarkColor” on page 241

Building and Using Apama Dashboards 10.11.2 237

11 Graph Objects

“valueLowAlarmMarkStyle” on page 242

“valueLowWarning” on page 242

“valueLowWarningColor” on page 242

“valueLowWarningEnabledFlag” on page 242

“valueLowWarningLineVisFlag” on page 242

“valueLowWarningMarkColor” on page 243

“valueLowWarningMarkStyle” on page 243

traceValueAlarmStatusTable

Attach an alarm table containing status indexes to this property in order to enable rule based alarm
statuses for trace markers. The table attached to traceValueAlarmStatusTablemust have the same
number of rows and columns as traceValueTable. For each data element in traceValueTable, the
status index at the corresponding position in traceValueAlarmStatusTable is used to set the alarm
status of the marker that represents the data element.

Following are the valid indexes are:

0: Use normal marker color and style. See “traceProperties” on page 268.

1: Use low alarm marker color and style. See “valueLowAlarmMarkColor” on page 241 and
“valueLowAlarmMarkStyle” on page 242.

2: Use low warning marker color and style. See “valueLowWarningMarkColor” on page 243
and “valueLowWarningMarkStyle” on page 243.

3: Use high warning marker color and style. See “valueHighWarningMarkColor” on page 240
and “valueHighWarningMarkStyle” on page 240.

4: Use high alarm marker color and style. See “valueHighAlarmMarkColor” on page 239 and
“valueHighAlarmMarkStyle” on page 239.

-1: Determine marker color and style by comparing the value to the enabled alarm thresholds

If no data is attached to traceValueAlarmStatusTable, the alarm status for a trace marker is
determined by comparing the marker's value to the enabled thresholds. See valueHighAlarm,
valueHighWarning, valueLowAlarm, and valueLowWarning.

This property is in the Alert property group.

valueHighAlarm

Specifies the threshold value used by valueHighAlarmLineVisFlag, valueHighAlarmMarkColor,
valueHighAlarmMarkStyle, and valueHighAlarmColor.

This property is in the Alert property group.

238 Building and Using Apama Dashboards 10.11.2

11 Graph Objects

valueHighAlarmColor

When the value of a bar or trace segment is greater than or equal to valueHighAlarm, its color
changes to the valueHighAlarmColor, provided valueHighAlarmEnabledFlag is selected.

This property is in the Alert property group.

valueHighAlarmEnabledFlag

Select to enable the high alarm threshold. See valueHighAlarm.

This property is in the Alert property group.

valueHighAlarmLineVisFlag

Select to display a dashed line at the high alarm threshold. The color of the line is set to
valueHighAlarmMarkColor. This line is displayed only if valueHighAlarmEnabledFlag is selected.

This property is in the Alert property group.

valueHighAlarmMarkColor

When a trace marker's value is greater than or equal to valueHighAlarm, the marker changes to
valueHighAlarmMarkColor and valueHighAlarmMarkStyle, provided valueHighAlarmEnabledFlag
is selected and no data is attached to traceValueAlarmStatusTable.

If data is attached to traceValueAlarmStatusTable, a marker changes to valueHighAlarmMarkColor
and valueHighAlarmMarkStyle when the marker's corresponding element in the attached alarm
status table is 4.

If data is attached to traceValueAlarmStatusTable, and the marker's corresponding element in the
attached alarm status table is -1, marker color and style behave as if no data were attached to
traceValueAlarmStatusTable.

This property is in the Alert property group.

valueHighAlarmMarkStyle

When a trace marker's value is greater than or equal to valueHighAlarm, the marker changes to
valueHighAlarmMarkColor and valueHighAlarmMarkStyle, providedvalueHighAlarmEnabledFlag
is selected and no data is attached to traceValueAlarmStatusTable.

If data is attached to traceValueAlarmStatusTable, amarker changes to valueHighAlarmMarkColor
and valueHighAlarmMarkStylewhen the marker's corresponding element in the attached alarm
status table is 4.

If data is attached to traceValueAlarmStatusTable, and the marker's corresponding element in the
attached alarm status table is -1, marker color and style behave as of no data were attached to
traceValueAlarmStatusTable.

This property is in the Alert property group.

Building and Using Apama Dashboards 10.11.2 239

11 Graph Objects

valueHighWarning

Specifies the threshold value used by valueHighWarningLineVisFlag,
valueHighWarningMarkColor, valueHighWarningMarkStyle, and valueHighWarningColor.

This property is in the Alert property group.

valueHighWarningColor

When the value of a bar or trace segment is greater than or equal to valueHighWarning but less
than valueHighAlarm, its color changes to valueHighWarningColor, provided
valueHighWarningEnabledFlag is selected.

This property is in the Alert property group.

valueHighWarningEnabledFlag

Select to enable the high warning threshold. See valueHighWarning.

This property is in the Alert property group.

valueHighWarningLineVisFlag

Select to display a dashed line at the high warning threshold. The color of the line is set to
valueHighWarningMarkColor. This line is displayed only if valueHighWarningEnabledFlag is
selected.

This property is in the Alert property group.

valueHighWarningMarkColor

When a trace marker's value is greater than or equal to valueHighWarning but less than
valueHighAlarm, the marker changes to valueHighWarningMarkColor and
valueHighWarningMarkStyle, provided valueHighWarningEnabledFlag is selected and no data
is attached to traceValueAlarmStatusTable.

If data is attached to traceValueAlarmStatusTable, amarker changes to valueHighWarningMarkColor
and valueHighWarningMarkStylewhen themarker's corresponding element in the attached alarm
status table is 3.

If data is attached to traceValueAlarmStatusTable, and the marker's corresponding element in the
attached alarm status table is -1, marker color and style behave as of no data were attached to
traceValueAlarmStatusTable.

This property is in the Alert property group.

valueHighWarningMarkStyle

When a trace marker's value is greater than or equal to valueHighWarning but less than
valueHighAlarm, the marker changes to valueHighWarningMarkColor and

240 Building and Using Apama Dashboards 10.11.2

11 Graph Objects

valueHighWarningMarkStyle, provided valueHighWarningEnabledFlag is selected and no data is
attached to traceValueAlarmStatusTable.

If data is attached to traceValueAlarmStatusTable, a marker changes to
valueHighWarningMarkColor and valueHighWarningMarkStylewhen themarker's corresponding
element in the attached alarm status table is 3.

If data is attached to traceValueAlarmStatusTable, and the marker's corresponding element in the
attached alarm status table is -1, marker color and style behave as of no data were attached to
traceValueAlarmStatusTable.

This property is in the Alert property group.

valueLowAlarm

Specifies the threshold value used by valueLowAlarmLineVisFlag, valueLowAlarmMarkColor,
valueLowAlarmMarkStyle, and valueLowAlarmColor.

This property is in the Alert property group.

valueLowAlarmColor

When the value of a bar or trace segment is less than or equal to valueLowAlarm, it's color changes
to valueLowAlarmColor, provided valueLowAlarmEnabledFlag is selected.

This property is in the Alert property group.

valueLowAlarmEnabledFlag

Select to enable the low alarm threshold. See valueLowAlarm.

This property is in the Alert property group.

valueLowAlarmLineVisFlag

Select to display a dashed line at the low alarm threshold. The color of the line is set to
valueLowAlarmMarkColor. This line is displayed only if valueLowAlarmEnabledFlag is selected.

This property is in the Alert property group.

valueLowAlarmMarkColor

When a trace marker's value is less than or equal to valueLowAlarm, the marker changes to
valueLowAlarmMarkColor and valueLowAlarmMarkStyle, provided valueLowAlarmEnabledFlag
is selected and no data is attached to traceValueAlarmStatusTable.

If data is attached to traceValueAlarmStatusTable, a marker changes to valueLowAlarmMarkColor
and valueLowAlarmMarkStyle when the marker's corresponding element in the attached alarm
status table is 1.

Building and Using Apama Dashboards 10.11.2 241

11 Graph Objects

If data is attached to traceValueAlarmStatusTable, and the marker's corresponding element in the
attached alarm status table is -1, marker color and style behave as of no data were attached to
traceValueAlarmStatusTable.

This property is in the Alert property group.

valueLowAlarmMarkStyle

When a trace marker's value is less than or equal to valueLowAlarm, the marker changes to
valueLowAlarmMarkColor and valueLowAlarmMarkStyle, provided valueLowAlarmEnabledFlag
is selected and no data is attached to traceValueAlarmStatusTable.

If data is attached to traceValueAlarmStatusTable, amarker changes to valueLowAlarmMarkColor
and valueLowAlarmMarkStylewhen the marker's corresponding element in the attached alarm
status table is 1.

If data is attached to traceValueAlarmStatusTable, and the marker's corresponding element in the
attached alarm status table is -1, marker color and style behave as of no data were attached to
traceValueAlarmStatusTable.

This property is in the Alert property group.

valueLowWarning

Specifies the threshold value used byvalueLowWarningLineVisFlag, valueLowWarningMarkColor,
valueLowWarningMarkStyle, and valueLowWarningColor.

This property is in the Alert property group.

valueLowWarningColor

When the value of a bar or trace segment is less than or equal to valueLowWarning but greater
than valueLowAlarm, it changes to valueLowWarningColor, provided
valueLowWarningEnabledFlag is selected.

This property is in the Alert property group.

valueLowWarningEnabledFlag

Select to enable the low warning threshold. See valueLowWarning.

This property is in the Alert property group.

valueLowWarningLineVisFlag

Select to display a dashed line at the low warning threshold. The color of the line is set to
valueLowWarningMarkColor. This line is displayed only if valueLowWarningEnabledFlag is
selected.

This property is in the Alert property group.

242 Building and Using Apama Dashboards 10.11.2

11 Graph Objects

valueLowWarningMarkColor

When a trace marker's value is less than or equal to valueLowWarning but greater than
valueLowAlarm, the marker changes to valueLowWarningMarkColor and
valueLowWarningMarkStyle, provided valueLowWarningEnabledFlag is selected and no data is
attached to traceValueAlarmStatusTable.

If data is attached to traceValueAlarmStatusTable, amarker changes to valueLowWarningMarkColor
and valueLowWarningMarkStylewhen themarker's corresponding element in the attached alarm
status table is 2.

If data is attached to traceValueAlarmStatusTable, and the marker's corresponding element in the
attached alarm status table is -1, marker color and style behave as of no data were attached to
traceValueAlarmStatusTable.

This property is in the Alert property group.

valueLowWarningMarkStyle

When a trace marker's value is less than or equal to valueLowWarning but greater than
valueLowAlarm, the marker changes to valueLowWarningMarkColor and
valueLowWarningMarkStyle, provided valueLowWarningEnabledFlag is selected and no data is
attached to traceValueAlarmStatusTable.

If data is attached to traceValueAlarmStatusTable, a marker changes to
valueLowWarningMarkColor and valueLowWarningMarkStylewhen the marker's corresponding
element in the attached alarm status table is 2.

If data is attached to traceValueAlarmStatusTable, and the marker's corresponding element in the
attached alarm status table is -1, marker color and style behave as of no data were attached to
traceValueAlarmStatusTable.

This property is in the Alert property group.

Bar graph: Background group
Properties in this group control the visibility and appearance of the portion of the graph that serves
as the background of both the plot area and legend.

Background group properties

The group contains the following properties:

“bgBorderColor” on page 244

“bgBorderFlag” on page 244

“bgColor” on page 244

“bgEdgeWidth” on page 244

Building and Using Apama Dashboards 10.11.2 243

11 Graph Objects

“bgGradientColor2” on page 244

“bgGradientMode” on page 244

“bgRaisedFlag” on page 245

“bgRoundness” on page 245

“bgShadowFlag” on page 245

“bgStyleFlag” on page 245

“bgVisFlag” on page 246

“borderPixels” on page 246

bgBorderColor

Sets the color of the border (see bgBorderFlag) of the background rectangle. Select the ... button
and choose a color from the palette. Close the Color Chooser window when you are done.

bgBorderFlag

Select to display a border around the background rectangle.

This property is in the Background property group.

bgColor

Sets the background color. Select the ... button and choose a color from the palette. Close theColor
Chooser window when you are done.

This property is in the Background property group.

bgEdgeWidth

Sets the width in pixels of the 3D edge on the background rectangle. This property is only used if
bgBorderFlag is selected.

This property is in the Background property group.

bgGradientColor2

Sets the color for the second color in the gradient. The default is white. The bgColor property sets
the first color in the gradient.

This property is in the Background property group.

bgGradientMode

Display a gradient in the background rectangle. Select from the following options:

244 Building and Using Apama Dashboards 10.11.2

11 Graph Objects

None: No gradient.

Diagonal Edge: Gradient is drawn at a 45 degree angle from the top left to the bottom right
corner of the object.

Diagonal Center: Gradient is drawn at a 45 degree angle from the center to the top left and
the bottom right corners of the object.

Horizontal Edge: Gradient is drawn horizontally from the top to the bottom of the object.

Horizontal Center: Gradient is drawn horizontally from the center to the top and bottom of
the object.

Vertical Edge: Gradient is drawn vertically from the left to the right of the object.

Vertical Center: Gradient is drawn vertically from the center to the left and right of the object.

This property is in the Background property group.

bgRaisedFlag

Reverses the direction of the gradient, as well as that of the 3D edge if the bgStyle selected is 3D
Rectangle.

This property is in the Background property group.

bgRoundness

Sets the arc length of the rounded corners. This property is only available if the bgStyle selected
is Round Rectangle.

The value of bgRoundness cannot exceed half the value of the objWidth or the objHeight. If
bgRoundness does exceed that value, half of objWidth or objHeight (whichever is smaller) will be
used instead. For example if objWidth is 100 and objHeight is 50, then the value of bgRoundness
cannot exceed 25. If it does, then half the value of objHeight (25) will be used instead. This property
is in the Background property group.

bgShadowFlag

Select to display a drop shadow on the background rectangle.

This property is in the Background property group.

bgStyleFlag

Choose one of the following three options from the drop down menu:

Rectangle: Select to display a background rectangle.

3D Rectangle: Select to display a 3D edge on the background rectangle. If selected, use
bgEdgeWidth to set the width of the 3D edge.

Building and Using Apama Dashboards 10.11.2 245

11 Graph Objects

Round Rectangle: Select to display a background rectangle with rounded edges. If selected,
use bgRoundness to set the arc length of the rounded corners.

This property is in the Background property group.

bgVisFlag

Select to display the background rectangle.

This property is in the Background property group.

borderPixels

Sets the width in pixels of the border between the chart and the edge of the background rectangle.

This property is in the Background property group.

Bar graph: Bar group
Properties in this group control the appearance of the graph's bars, including gradient style, color,
and fill style. The group also includes properties that control the visibility and appearance of the
text used to display bar values, including font, color, size, and position. You can also specify an
image to be displayed within each bar.

Bar group properties

This group contains the following properties:

“barGradientStyle” on page 246

“barImage” on page 247

“barProperties” on page 247

“barValueTextColor” on page 248

“barValueTextFont” on page 248

“barValueTextHeight” on page 248

“barValueTextPos” on page 249

“barValueVisFlag” on page 249

barGradientStyle

Select one of the following in order to set the gradient style of the bars:

None: Default setting.

Shaded: Display bars with a flat gradient

246 Building and Using Apama Dashboards 10.11.2

11 Graph Objects

Rounded: Display bars with a rounded gradient

This property is in the Bar property group.

barImage

Specifies an image (.gif, .jpg, or .png file) to display in each bar. Select the name of the image
file from the drop down menu, or enter the pathname of the file. The drop down menu contains
the names of image files located in the current directory (typically, the dashboards directory of
your project directory, under your Apama installation's work directory), as well as image files
located in the first level of subdirectories. If you enter a pathname, use an absolute pathname or
a pathname that is relative to the current directory.

Note:
If necessary, the image will be stretched to fit the bar size.

This property is in the Bar property group.

barProperties

Specifies the color and fill pattern for each bar in the graph. In the Object Properties window,
double-click on barProperties in the Property Name field to bring up the Bar Properties dialog.
In the Bar Properties dialog you can assign attributes to each bar in a bar graph.

The dialog contains three columns of fields:

Bar: There is one entry for each bar that is currently displaying data in the bar graph. The
Color and Fill Pattern columns list the current settings for each bar.

Color: Select the ellipsis button in the Color column and choose a color from the palette to set
the color of the bar. Close the Color Chooser window.

Building and Using Apama Dashboards 10.11.2 247

11 Graph Objects

Fill Pattern: Select the ellipsis button in the Fill Pattern column and choose a pattern from the
palette to set the fill pattern of the bar. Close the Fill Pattern window.

Note:
The fill patterns in your bar graph are ignored unless the barGradientStyle property is set to
None.

The dialog contains the following buttons:

Add Bar Property: Click to add a Bar Property entry. This does not add a bar to your graph,
it adds a bar entry so that you can set properties for bars that will display data that is not yet
available. This is useful if the data attachment is not available when you setup your bar graph,
or if the number of rows or columns returned by your data attachment varies.

Delete Bar Property: Removes the last bar property entry from the Bar Properties dialog.

OK: Applies values and closes the dialog.

Apply: Applies values without closing the dialog.

Reset: Resets all fields to last values applied.

Clear: Clears all fields. Detaches object from data source (once Apply or OK is selected).

Cancel: Closes the dialog with last values applied.

This property is in the Bar property group.

barValueTextColor

Sets the color of the text used to display bar values. This property is visible in the Builder's Object
Properties pane only if barValueVisFlag is selected.

To set the color, select the ... button and choose a color from the palette. Close the Color Chooser
window when you are done.

This property is in the Bar property group.

barValueTextFont

Sets the font of the text used to display bar values. This property is visible in the Builder's Object
Properties pane only if barValueVisFlag is selected. To set the font, select an item from the drop
down list.

This property is in the Bar property group.

barValueTextHeight

Sets the point size of the text used to display bar values. This property is visible in the Builder's
Object Properties pane only if barValueVisFlag is selected. To set the point size, enter a number
in the text field.

248 Building and Using Apama Dashboards 10.11.2

11 Graph Objects

This property is in the Bar property group.

barValueTextPos

Sets the position, relative to the bar, of the text used to display bar values. This property is visible
in the Builder'sObject Properties pane only if barValueVisFlag is selected. To set the text position,
choose an item from the drop down list. By default, digits after a decimal point are not displayed
on the labels.

This property is in the Bar property group.

barValueVisFlag

Select to display a value for each bar. Selecting this property causes the following properties to
appear in the Object Properties panel:

barValueTextColor

barValueTextFont

barValueTextHeight

barValueTextPos

This property is in the Bar property group.

Bar graph: Column group
This group contains one property, columnsToHide,which controlswhich data-attachment columns
are used for plotted data or labels.

columnsToHide

Specifies columns from the data attachment to exclude from being used for plotted data or labels.
Data from the labelColumnName column will be used for labels even if that column name is also
specified in the columnsToHide property. Columns specified in the columnsToHide property can
still be used in the drillDownColumnSubs property.

This property is in the Column property group.

Bar graph: Data group
Properties in this group control what data appears in the graph, and whether the data appears in
column series or row series form.

Data group properties

The group contains the following properties:

“rowSeriesFlag” on page 250

Building and Using Apama Dashboards 10.11.2 249

11 Graph Objects

“traceValueDivisor” on page 250

“traceValueTable” on page 251

“traceYAxisValueMax” on page 251

“traceYAxisValueMin” on page 251

“valueDivisor” on page 251

“valueTable” on page 252

“yValueMax” on page 252

“yValueMin” on page 253

rowSeriesFlag

This property controls how row and column data populate the graph:

If the rowSeriesFlag checkbox is selected, one group of bars is shown for each numeric column
in your data attachment.Within each group, there is a bar for each row in the data attachment.

If xAxisFlag is enabled, each group is labeledwith the name of the corresponding numeric column.

By default, each bar within a group has a different color. If rowLabelVisFlag is selected, the legend
indicates the mapping between each bar's color and the label-column value of the bar's
corresponding row (see labelColumnName). If both rowLabelVisFlag and rowNameVisFlag are
deselected, the legend indicates the mapping between each bar's color and an integer identifier
for the bar's corresponding row.

If the rowSeriesFlag checkbox is not selected, one group of bars is shown for each row in your
data attachment. Within each group, there is a bar for each numeric column in the data
attachment.

If both rowLabelVisFlag and xAxisFlag are enabled, each group is labeled with the label-column
value for the group's corresponding row (see labelColumnName). If rowLabelVisFlag is disabled
and xAxisFlag is enabled, each group is labeled with an integer identifier for the group's
corresponding row.

By default, each barwithin a group has a different color. The legend indicates themapping between
each bar's color and the name of the bar's corresponding numeric column.

This property is in the Data property group.

traceValueDivisor

Divides trace values by the number entered.

The default is 1.

This property is in the Data property group.

250 Building and Using Apama Dashboards 10.11.2

11 Graph Objects

traceValueTable

Attach your data to the traceValueTable property to add one or more traces to your bar graph.
Right-click on the property name in the Object Properties panel, and select a menu item under
Attach to Data. The attached data table should have one or more numerical columns. Typically,
the data attachment has one non-numerical column, whose values uniquely identify each row
(that is, no two rows of the table have the same value for the non-numerical column).

The property rowSeriesFlag controls how row and column data populate the graph:

If the rowSeriesFlag checkbox is selected, one trace line is shown for each row your data
attachment. Within each trace line, there is a mark for each numeric column in the data
attachment. The height of a given mark in a given trace line is proportional to the value of the
mark's corresponding numerical column for the trace line's corresponding row.

By default, each trace line has a different color. If rowLabelVisFlag is selected, the legend indicates
themapping between each line's color and the trace-label-columnvalue of the bar's corresponding
row (see traceLabelColumnName).

If the rowSeriesFlag checkbox is not selected, one trace line is shown for each numeric column
in your data attachment. Within each trace line, there is a mark for each row of the data
attachment. The height of a given mark in a given trace line is proportional to the value of the
trace line's corresponding numerical column for the mark's corresponding row.

By default, each trace line has a different color. The legend indicates the mapping between each
trace line's color and the name of the trace line's corresponding numeric column.

This property is in the Data property group.

traceYAxisValueMax

When traceYAxisFlag is selected, the traceYAxisValueMin and traceYAxisValueMax properties are
used to control the range of the trace y-axis if yAxisAutoScaleMode is set to Off or On-include
Min/Max.

This property is in the Data property group.

traceYAxisValueMin

When traceYAxisFlag is selected, the traceYAxisValueMin and traceYAxisValueMax properties
are used to control the range of the trace y-axis if yAxisAutoScaleMode is set toOff orOn-include
Min/Max.

This property is in the Data property group.

valueDivisor

Divides bar and y-axis values by the number entered.

The default is 1.

Building and Using Apama Dashboards 10.11.2 251

11 Graph Objects

This property is in the Data property group.

valueTable

Attach your data to the valueTable property. Right-click on the property name in the Object
Properties panel, and select a menu item under Attach to Data. The attached data table should
have one or more numerical columns. Typically, the data attachment has one non-numerical
column, whose values uniquely identify each row (that is, no two rows of the table have the same
value for the non-numerical column).

The property rowSeriesFlag controls how row and column data populate the graph:

If the rowSeriesFlag checkbox is selected, one group of bars is shown for each numeric column
in your data attachment.Within each group, there is a bar for each row in the data attachment.
The height of a given bar in a given group is proportional to the value of the group's
corresponding numerical column for the bar's corresponding row.

If xAxisFlag is enabled, each group is labeledwith the name of the corresponding numeric column.

By default, each bar within a group has a different color. If rowLabelVisFlag is selected, the legend
indicates the mapping between each bar's color and the label-column value of the bar's
corresponding row (see labelColumnName). If both rowLabelVisFlag and rowNameVisFlag are
deselected, the legend indicates the mapping between each bar's color and an integer identifier
for the bar's corresponding row.

If the rowSeriesFlag checkbox is not selected, one group of bars is shown for each row in your
data attachment. Within each group, there is a bar for each numeric column in the data
attachment. The height of a given bar in a given group is proportional to the value of the bar's
corresponding numerical column for the group's corresponding row.

If both rowLabelVisFlag and xAxisFlag are enabled, each group is labeled with the label-column
value for the group's corresponding row (see labelColumnName). If rowLabelVisFlag is disabled
and xAxisFlag is enabled, each group is labeled with an integer identifier for the group's
corresponding row.

By default, each barwithin a group has a different color. The legend indicates themapping between
each bar's color and the name of the bar's corresponding numeric column.

This property is in the Data property group.

yValueMax

The yValueMin and yValueMaxproperties control the range of the y-axis if the yAxisAutoScaleMode
is set to Off. In addition, if yAxisAutoScaleMode is set to On - Include Min/Max, the dashboard
calculates the smallest y-axis range that includes both yValueMin and yValueMax as well as all
plotted points.

This property is in the Data property group.

252 Building and Using Apama Dashboards 10.11.2

11 Graph Objects

yValueMin

The yValueMin and yValueMax properties control the range of the y-axis if the yAxisAutoScaleMode
is set to Off. In addition, if yAxisAutoScaleMode is set to On - Include Min/Max, the dashboard
calculates the smallest y-axis range that includes both yValueMin and yValueMax as well as all
plotted points.

This property is in the Data property group.

Bar graph: Data Format group
Properties on this group control the format of displayed bar values as well as numerical and date
labels.

Data Format group properties

The group includes the following properties:

“labelColumnFormat” on page 253

“traceYValueFormat” on page 253

“yValueFormat” on page 253

labelColumnFormat

Sets the format of numeric or date labels displayed on the x-axis, in the legend, and in tooltips.

Select or enter the format specification. Use syntax from the Java DecimalFormat class for numeric
labels, and syntax from the Java SimpleDateFormat class for date labels.

To enable tooltips, select the mouseOverFlag.

This property is in the Data Format property group.

traceYValueFormat

Sets the numeric format of bar values displayed in the legend and in tooltips.

Select or enter a format. Use syntax from the Java DecimalFormat class. To enable tooltips, select
the mouseOverFlag.

This property is in the Data Format property group.

yValueFormat

Sets the numeric format of bar values displayed on bars, in the legend and in tooltips

Select or enter a format. Use syntax from the Java DecimalFormat class. To enable tooltips, select
the mouseOverFlag.

Building and Using Apama Dashboards 10.11.2 253

11 Graph Objects

This property is in the Data Format property group.

Bar graph: Data Label group
Properties in this group control the labels that are used along the x-axis or in the legend.

Data Label group properties

The group contains the following properties:

“columnDisplayNames” on page 254

“labelColumnName” on page 254

“rowLabelVisFlag” on page 254

“rowNameVisFlag” on page 255

“traceLabelColumnName” on page 255

columnDisplayNames

Sets alternate display names for the columns of the data attached to valueTable. Column names
are displayed either along the x-axis or in the legend, depending on whether or not the
rowSeriesFlag is selected.

This property is in the Data Label property group.

labelColumnName

Sets the label column. By default, the label column is the first non-numeric text column in your
data attachment, if there is one. Data from the label column is used to label either the x-axis or the
legend, depending on whether rowSeriesFlag is enabled.

If both rowSeriesFlag and rowLabelVisFlag are enabled, data from the label column will be used
in the legend.

If rowSeriesFlag is not enabled and both rowLabelVisFlag and xAxisFlag are enabled, data from
the label column will appear on the x-axis.

This property is in the Data Label property group.

rowLabelVisFlag

Determineswhether or not data from the label column is used in chart labels. (By default, the label
column is the first non-numeric column in your data attachment. You can override this default
with labelColumnName.)

If both rowSeriesFlag and rowLabelVisFlag are enabled, data from the label column is used in the
legend. If rowSeriesFlag is enabled and both rowLabelVisFlag and rowNameVisFlag are disabled,
integer row identifiers are used in the legend.

254 Building and Using Apama Dashboards 10.11.2

11 Graph Objects

If rowSeriesFlag is not enabled and both rowLabelVisFlag and xAxisFlag are enabled, data from
the label columnwill appear on the x-axis. If rowSeriesFlag, rowLabelVisFlag, and rowNameVisFlag
are disabled, and xAxisFlag is enabled, integer row identifiers are used on the x-axis.

This property is in the Data Label property group.

rowNameVisFlag

Determines whether generated row names are used in chart labels. Enable this property if your
data attachment has no label column (see labelColumnName). Note that if both rowNameVisFlag
and rowLabelVisFlag are enabled, row names and label-column values can appear side-by-side
in chart labels.

This property is in the Data Label property group.

traceLabelColumnName

Sets the trace label column. By default, the trace label column is the first non-numeric text column
in your data attachment. Data from the label column is used in the legend, if rowSeriesFlag is
enabled.

If both rowSeriesFlag and rowLabelVisFlag are enabled, data from the label column will be used
in the legend.

This property is in the Data Label property group.

Bar graph: Historian group
Do not use the properties in this group.

historyTableName

Do not use this property.

This property is in the Historian property group.

historyTableRowNameFlag

Do not use this property.

This property is in the Historian property group.

Bar graph: Interaction group
Properties in this group control various forms of interaction between the end user and the graph,
including scrolling, highlighting, and activating commands, drill downs, and tooltips.

Building and Using Apama Dashboards 10.11.2 255

11 Graph Objects

Interaction group properties

The group includes the following properties:

“command” on page 256

“commandCloseWindowOnSuccess” on page 257

“commandConfirm” on page 257

“commandConfirmText” on page 257

“drillDownColumnSubs” on page 257

“drillDownSelectMode” on page 258

“drillDownTarget” on page 258

“mouseOverFlag” on page 258

“mouseOverHighlightFlag” on page 258

“scrollbarMode” on page 258

“scrollbarSize” on page 259

command

Assign a command or group of commands to this stock chart by right-clicking on the command
property name in theObject Propertieswindow. SelectDefine Command and chooseSYSTEM,
APAMA, or MULTIPLE. See “Using the Define Apama Command dialog” on page 200.

Once a command or command group has been assigned to this object, you can activate it from a
deployed dashboard or from the Dashboard Builder:

Dashboard Builder: Double click on the object.

Web-based deployment: Single click on the object or else right click on it and select Execute
Command from the popup menu.

Local deployment: By default, single-click on the object or else right-click on it and select
Execute Command from the popup menu. To override the default, select Tools > Options
in the Builder (do this before you generate the deployment package), and uncheckSingle-Click
for Drill Down and Commands in the General tab. This allows the end user to use either a
double click or a right click.

When you activate a command, any defined drill down substitutions are performed, and then the
command is executed.

If you assign multiple commands, the commands are launched in an arbitrary order, and are
executed asynchronously; there is no guarantee that one command will finish before the next one
in the sequence starts.

This property is in the Interaction property group.

256 Building and Using Apama Dashboards 10.11.2

11 Graph Objects

commandCloseWindowOnSuccess

Select this property to automatically close the window that initiates a SYSTEM command when
the command is executed successfully. This applies to SYSTEM commands only, and is not
supported at all for thin-client, web-page deployments.

With APAMA commands, the window is closed whether or not the command is executed
successfully. For MULTIPLE commands, the window closes when the first command in the
command group succeeds.

This property is in the Interaction property group.

commandConfirm

By default, when the end user executes a command (see the command property), the command
confirmation dialog is disabled. To control this option for each individual object, use the
commandConfirm check box. If confirmation is required for a MULTIPLE command group, a single
confirmation dialog is presented; if you confirm the execution, all individual commands in the
group are executed with no further confirmation. If the you cancel the execution, none of the
commands in the group is executed.

You can also override the confirmation status of individual objectswith an application-wide policy.
Select Tools | Options and choose from three confirmation values:

Do not confirm: Indicates that no commands require confirmation (regardless of each object's
confirmation status).

Confirm all: Indicates that all commands require confirmation (regardless of each object's
confirmation status).

Use object confirm flag (default): Indicates that the confirmation status of each object will
determine whether confirmation is required.

This property is in the Interaction property group.

commandConfirmText

Use this property to write your own text for the confirmation dialog. Otherwise, default text is
used. See commandConfirm.

This property is in the Interaction property group.

drillDownColumnSubs

Use this property to direct a dashboard to assign data-table column values to specified dashboard
variables when the end user activates a drilldown on this object. In the Object Properties window,
double-click on drillDownColumnSubs in the Property Name field to bring up the Drill Down
Column Substitutions dialog.

The dialog has the following fields and buttons:

Building and Using Apama Dashboards 10.11.2 257

11 Graph Objects

Substitution String: Enter the dashboard variable next to the name of the data table column
whose value you want assigned to the variable. Press Enter.

Add Column: Enter the name of a column and click theAdd Column button to insert a column
into the table.

Clear: Click the Clear button to remove all variables listed.

The Column Name list is populated based on the table's data attachment. If you have not yet
attached the table to data, this list is empty.

Once you have selected which column values to pass in as substitutions, double-click on any
element in your object to open a drill down window that displays corresponding values.

This property is in the Interaction property group.

drillDownSelectMode

Use this property to control how a drill down display is activated. Select one of the following:

Anywhere to activate a drill down display by double-clicking anywhere on the chart.

Element Only to enable a drill down display only when you double-click on an element of
the chart, such as a bar or candlestick.

This property is in the Interaction property group.

drillDownTarget

To specify a drill down display, double click on drillDownTarget in the Property Name field to
bring up the Drill Down Properties dialog. See “Drill-Down Specification” on page 521.

This property is in the Interaction property group.

mouseOverFlag

Select this property to enable tooltips for your bar graph. To display a tooltip, point to a bar or
trace marker with your mouse. The tooltip will contain information from your data attachment
about that bar or marker.

This property is in the Interaction property group.

mouseOverHighlightFlag

Select this property to enable bar highlighting. To highlight a bar in red, point to the bar.

This property is in the Interaction property group.

scrollbarMode

Select one of the following to set the behavior of the x-axis scroll bar in the graph:

258 Building and Using Apama Dashboards 10.11.2

11 Graph Objects

Never: Default setting. Some bars may get clipped.

As Needed: Display the scroll bar when there is not enough space to display all of the bars in
the plot area. Each bar uses at least minSpacePerBar pixels along the x-axis.

Always: Display a scroll bar at all times.

Note:
If drawHorizontalFlag is selected, the x-axis is vertical.

This property is in the Interaction property group.

scrollbarSize

Specify the height of the horizontal scroll bar and the width of the vertical scroll bar, in pixels.

The default value is -1, which sets the size to the system default.

This property is in the Interaction property group.

Bar graph: Label group

Properties in this group control the graph's main label (which defaults to Bar Graph), including
text, alignment, color, font, and size.

Label group properties

The group includes the following properties:

“label” on page 259

“labelTextAlignX” on page 259

“labelTextColor” on page 260

“labelTextFont” on page 260

“labelTextHeight” on page 260

label

Specifies the text for the chart label. Click the ellipsis for multi-line text.

The default is Bar Graph.

This property is in the Label property group.

labelTextAlignX

Sets the alignment of the chart label (see the label property). Select Left, Center, or Right from
the drop down list.

Building and Using Apama Dashboards 10.11.2 259

11 Graph Objects

This property is in the Label property group.

labelTextColor

Specifies the color of the chart label text (see the label property). Select the ... button and choose
a color from the palette. Close the Color Chooser window when you are done.

This property is in the Label property group.

labelTextFont

Specifies the font of the chart label text (see the label property). Select an item from drop down
list.

This property is in the Label property group.

labelTextHeight

Specifies the point size of the chart label text (see the label property).

This property is in the Label property group.

Bar graph: Layout group
Properties in this group control the layout of bars and axis labels, including alignment and spacing
of bars, as well as spacing and rotation of axis labels. You can also specify 3D bars, as well as a
horizontal, stacked, or waterfall arrangement for the bars.

Layout group properties

This group contains the following properties:

“barCenterFlag” on page 261

“barFitFlag” on page 261

“draw3dDepth” on page 261

“draw3dFlag” on page 261

“drawHorizontalFlag” on page 261

“drawStackedFlag” on page 261

“drawWaterfallFlag” on page 261

“horizAxisLabelRotationAngle” on page 262

“horizAxisMinLabelHeight” on page 262

“minSpaceBetweenBars” on page 262

260 Building and Using Apama Dashboards 10.11.2

11 Graph Objects

“minSpaceBetweenGroups” on page 262

“minSpacePerBar” on page 262

barCenterFlag

Select to center the bars in the plot area. If not selected, the barswill be left or top aligned, depending
on drawHorizontalFlag. This property is only used if the barFitFlag is not selected.

This property is in the Layout property group.

barFitFlag

Select to stretch the bars to fit the available space in the plot area. If deselected, theminSpacePerBar
property is used to determine the bar width.

This property is in the Layout property group.

draw3dDepth

Sets the depth in pixels of the bars, provided draw3dFlag is enabled.

This property is in the Layout property group.

draw3dFlag

Select to change the display of the bars from 2D to 3D.

This property is in the Layout property group.

drawHorizontalFlag

Select to have the bars in your graph displayed horizontally.

This property is in the Layout property group.

drawStackedFlag

Select to stack each bar group in your graph.

This property is in the Layout property group.

drawWaterfallFlag

Select to stack each bar group in your graph with an offset between bar sections.

This property is in the Layout property group.

Building and Using Apama Dashboards 10.11.2 261

11 Graph Objects

horizAxisLabelRotationAngle

Sets the amount of rotation of labels on the horizontal axis. Values range from 0 to 90 degrees. A
value of 0 causes the bar graph to automatically pick the optimum angle of rotation (this is the
default).

This property is in the Layout property group.

horizAxisMinLabelHeight

Sets the minimum amount of space to reserve for labels on the horizontal axis. If axis labels vary
over time, this property can be used to reserve a consistent amount of space to prevent overlapping.

This property is in the Layout property group.

minSpaceBetweenBars

Set the minimum space between bars, in pixels.

This property is in the Layout property group.

minSpaceBetweenGroups

Set the minimum space between bar groups, in pixels.

This property is in the Layout property group.

minSpacePerBar

Sets the minimum width for each bar, in pixels, provided drawHorizontalFlag is disabled.

The default value is 1.

This property is in the Layout property group.

vertAxisMinLabelWidth

Specifies the minimum width in pixels for the vertical axis labels.

This property is in the Layout property group.

waterfallBarConnectFlag

If drawWaterfallFlag is checked, select to connect the bar sections in each bar group.

This property is in the Layout property group.

262 Building and Using Apama Dashboards 10.11.2

11 Graph Objects

waterfallTotalBarColor

Specifies the color for the bar that shows the sum of the bar sections in each bar group. See
waterfallTotalFlag.

This property is in the Layout property group.

waterfallTotalBarFStyle

Do not use this property.

This property is in the Layout property group.

waterfallTotalBarLabel

Specifies the label for the bar that shows the sum of the bar sections in each bar group. See
waterfallTotalFlag.

This property is in the Layout property group.

waterfallTotalFlag

If drawWaterfallFlag is checked, select to display a bar that shows the sum of the bar sections in
each bar group.

This property is in the Layout property group.

Bar graph: Legend group
Properties in this group control the visibility, appearance, and content of the graph legend.

Legend group properties

The group contains the following properties:

“legendBgColor” on page 263

“legendBgGradientFlag” on page 264

“legendValueVisFlag” on page 264

“legendVisFlag” on page 264

“legendWidthPercent” on page 264

legendBgColor

Specifies the background color of the legend. Select the ... button and choose a color from the
palette. Close the Color Chooser window when you are done.

Building and Using Apama Dashboards 10.11.2 263

11 Graph Objects

This property is in the Legend property group.

legendBgGradientFlag

Select to display a gradient in the legend background.

This property is in the Legend property group.

legendValueVisFlag

Select to display the numerical values of your data in the legend.

This property is in the Legend property group.

legendVisFlag

Select to display the legend.

This property is in the Legend property group.

legendWidthPercent

Set the percent of the total width of the object used for the legend.

This property is in the Legend property group.

Bar graph: Marker group
Properties in this group control the appearance of trace markers (but see also “Bar graph: Trace
group” on page 268).

Marker group properties

The group contains the following properties:

“markDefaultSize” on page 264

“markScaleMode” on page 264

markDefaultSize

Sets the size of the markers (see “traceProperties” on page 268) in pixels. Supply an integer value
that is between 1 and 18, inclusive.

This property is in the Marker property group.

markScaleMode

Sets the scale mode for trace marks. Select one of the following from the drop down menu:

264 Building and Using Apama Dashboards 10.11.2

11 Graph Objects

No Scale: All marks, across and within traces, are the same size.

Scale by Trace: Scale marks according to the trace in which they reside, that is, marks in the
first trace are the largest, across all traces, and the marks in the last trace are the smallest.

Scale Within Trace: Scale marks according to the relative order of the data within each trace.

This property is in the Marker property group.

Bar graph: Object group
Properties in this group control the visibility and transparency of the graph as a whole. They also
control (or reflect) the overall position and dimensions of the graph. In addition, a property in this
group reflects the generated name of this individual graph.

Object group properties

This group contains the following properties:

“anchor” on page 265

“dock” on page 265

“objHeight” on page 266

“objName” on page 266

“objWidth” on page 266

“objX” on page 266

“objY” on page 266

“transparencyPercent” on page 266

“visFlag” on page 266

anchor

Select zero or more of Top, Left, Bottom, and Right to control the object's placement. The anchor
property is only appliedwhen the display is resized either by changing theBackground Properties
on the display or by resizing the window in Layout mode. If an object has the dock property set,
the anchor property is ignored. See “About resize modes” on page 30.

dock

Select None (default), Top, Left, Bottom, Right, or Fill in order to control the object's placement
in Layout resize mode. See “About resize modes” on page 30.

Building and Using Apama Dashboards 10.11.2 265

11 Graph Objects

objHeight

Set the height of a chart by entering a value for this property or by dragging a handle of the
bounding box that appears when the chart is selected. When you drag a handle of the bounding
box, the displayed value for this property changes to reflect the real-time height of the chart.

This property is in the Object property group.

objName

An identifier that is generated by the Dashboard Builder. This name can be used by other objects'
properties in order to refer to the named chart, as with, for example, the graphName property of
the Legend visualization object.

This property is in the Object property group.

objWidth

Set the width of a chart by entering a value for this property or by dragging a handle of the
bounding box that appears when the chart is selected. When you drag a handle of the bounding
box, the displayed value for this property changes to reflect the real-time width of the chart.

This property is in the Object property group.

objX

Sets the X coordinate of the center of this visualization object, relative to the lower left corner of
the current dashboard. This value is set automaticallywhen you position the objectwith themouse.

This property is in the Object property group.

objY

Sets the Y coordinate of the center of this visualization object, relative to the lower left corner of
the current dashboard. This value is set automaticallywhen you position the objectwith themouse.

This property is in the Object property group.

transparencyPercent

Sets the transparency of this chart.

This property is in the Object property group.

visFlag

Deselect to make this visualization object invisible in the current dashboard.

This property is in the Object property group.

266 Building and Using Apama Dashboards 10.11.2

11 Graph Objects

Bar graph: Plot Area group
Properties in this group control the appearance of the plot area, the rectangular area that serves
as background for the bars (but not for the legend or axis labels; see “Bar graph: Background
group” on page 243).

Plot Area group properties

The group includes the following properties:

“gridBgColor” on page 267

“gridBgGradientFlag” on page 267

“gridBgImage” on page 267

“gridColor” on page 267

“traceFillStyle” on page 268

gridBgColor

Sets the color of the plot area. Select the ... button and choose a color from the palette. Close the
Color Chooser window when you are done.

This property is in the Plot Area property group.

gridBgGradientFlag

Select to display a gradient in the grid background. Set the color of the grid background with the
labelTextAlignX property.

This property is in the Plot Area property group.

gridBgImage

Specify an image (.gif, .jpg, or .png file) to display in the plot area. Select the name of the image
file from the drop down menu, or enter the pathname of the file. The drop down menu contains
the names of image files located in the current directory (typically, the dashboards directory of
your project directory, under your Apama installation's work directory), as well as image files
located in the first level of subdirectories. If you enter a pathname, use an absolute pathname or
a pathname that is relative to the current directory.

This property is in the Plot Area property group.

gridColor

Sets the color of the horizontal line or lines in the plot area that mark y-axis major divisions. Select
the ... button and choose a color from the palette. Close the Color Chooser windowwhen you are
done.

Building and Using Apama Dashboards 10.11.2 267

11 Graph Objects

This property is in the Plot Area property group.

Bar graph:Trace group
Properties in this group control the appearance of trace lines and trace markers (but see also “Bar
graph: Marker group” on page 264), including color, style, and line width.

Trace group properties

This group includes the following properties:

“traceFillStyle” on page 268

“traceProperties” on page 268

“traceShadowFlag” on page 270

traceFillStyle

Set traceFillStyle to one of the following fill styles for the area under the trace:

Solid

Transparent

Gradient

Transparent Gradient

None

None is the default.

This property is in the Trace property group.

traceProperties

Specify the line color, line style, line width, marker color and marker style of all traces.

In the Object Properties window, double-click on traceProperties in the Property Name field to
bring up the Trace Properties dialog. In the Trace Properties dialog you can assign attributes to
each plotting trace in your graph.

268 Building and Using Apama Dashboards 10.11.2

11 Graph Objects

The dialog has six columns of fields:

Trace: One field for each trace that is currently in the graph. Current settings for each trace
are shown.

Line Color: Select the ellipsis button in the Color column and choose a color from the palette.
Close the Color Chooser window.

Line Style: Select the ellipsis button in the Line Style column and choose a style from the
drop down menu. Choose either No Line, Solid, Dotted, Dashed, or Dot Dashed.

Line Width: Select the ellipsis button in the Line Width column and choose a size from the
drop down menu. Choose either Thin, Medium or Thick.

Marker Color: Select the ellipsis button in the Marker Color column and choose a color from
the palette. Close the Color Chooser window.

Marker Style: Select the ellipsis button in the Marker Style column and choose a style from
the drop downmenu. Choose either No Marker, Dot, +, *, o, x, Filled Circle, Filled Diamond,
Filled Triangle, Filled Square, or Filled Star.

The dialog contains the following buttons:

Add Trace Property: Click to add a trace property field. The data for the trace does not have
to be available yet. Youmay consider adding and assigning attributes tomore traces than your
data currently needs for when you havemore data to show. It is not necessary to set properties
for each trace you currently or subsequently have. This is optional and can be done after
additional data is displayed in a subsequent new trace.

Delete Trace Property: Removes the last trace property field from the Trace Properties
dialog.

OK: Applies values and closes the dialog.

Building and Using Apama Dashboards 10.11.2 269

11 Graph Objects

Apply: Applies values without closing the dialog.

Reset: Resets all fields to last values applied.

Clear: Clears all fields. Detaches object from data source (once Apply or OK is selected).

Cancel: Closes the dialog with last values applied.

This property is in the Trace property group.

traceShadowFlag

Select to enable trace shadows.

This property is in the Trace property group.

Bar graph: X-Axis group
This property group includes a property, xAxisFlag, that controls the visibility of x-axis labels.

xAxisFlag

Select to display x-axis labels.

This property is in the X-Axis property group.

Bar graph:Y-Axis group
Properties in this group control the visibility and range of the y-axis or y-axes, as well as y-axis
label formats and y-axis divisions. They also control the visibility of y-axis grid lines (but see also
“Bar graph: Plot Area group” on page 267).

Y-Axis group properties

The group includes the following properties:

“traceYAxisFlag” on page 271

“traceYAxisFormat” on page 271

“traceYAxisMajorDivisions” on page 271

“traceYAxisMinorDivisions” on page 271

“yAxisAutoScaleMode” on page 271

“yAxisFlag” on page 271

“yAxisFormat” on page 272

“yAxisGridMode” on page 272

270 Building and Using Apama Dashboards 10.11.2

11 Graph Objects

“yAxisMajorDivisions” on page 272

“yAxisMinorDivisions” on page 272

traceYAxisFlag

Select this property to plot the traces against a y-axis that is separate from the bars. The
traceYAxisFlag property is unavailable if the drawHorizontalFlag property is selected. The trace
y-axis will be drawn to the right of the plot area.

This property is in the Y-Axis property group.

traceYAxisFormat

Select or enter the numeric format of trace values displayed on the y-axis. Use syntax from the
Java DecimalFormat class.

This property is in the Y-Axis property group.

traceYAxisMajorDivisions

Specify the number of major divisions on the trace y-axis. This option only applies if the
traceYAxisFlag is on.

This property is in the Y-Axis property group.

traceYAxisMinorDivisions

Specify the number of minor divisions on the trace y-axis. This option only applies if the
traceYAxisFlag is on.

This property is in the Y-Axis property group.

yAxisAutoScaleMode

Select one of the following modes to control the y-axis range:

Off: The yValueMin and yValueMax properties determine the range of the y-axis. This is the
default.

On: The dashboard calculates the y-axis range according to data values being plotted.

On - Include Min/Max: The dashboard calculates the smallest range (with rounding) that
includes yValueMin and yValueMax as well as all plotted points.

This property is in the Y-Axis property group.

yAxisFlag

Select to display the y-axis.

Building and Using Apama Dashboards 10.11.2 271

11 Graph Objects

This property is in the Y-Axis property group.

yAxisFormat

Sets the numeric format of values displayed on the y-axis. Select or enter a format. Use syntax
from the Java DecimalFormat class.

This property is in the Y-Axis property group.

yAxisGridMode

Controls the alignment of grid lines drawn to the left and right of the bar graph. Select one of the
following:

Bar Axis: Align grid lines with the left y-axis. This is the default

Trace Axis: Align with the right y-axis.

Bar and Trace Axis: Draw two sets of grid lines, one aligned with the left y-axis and the other
with the right y-axis.

This property is in the Y-Axis property group.

yAxisMajorDivisions

Specify the number of major divisions on the y-axis.

This property is in the Y-Axis property group.

yAxisMinorDivisions

Specify the number of minor divisions on the y-axis.

This property is in the Y-Axis property group.

Google map
The map object displays an embedded Google map in display server clients.

272 Building and Using Apama Dashboards 10.11.2

11 Graph Objects

Note:
The images for a Google map object must be located either in the same folder as the .rtv files
or in a .jarfile referenced by the project. The icons used by the sample in the samples/dashboard_
studio/tutorial directory of your Apama installation come from the gmsjmodels.jar file that
is located in the lib directory of yourApama installation. See “Additional JAR Files” on page 629
for information on adding .jar files to a dashboard project.

In the Builder, a Google map instance appears as a gray rectangle which you use to set the size
and position of the map object, and also configure the latitude, longitude, zoom level and other
map object properties through the Builder's property sheet. The Google map object is rendered
only when the display is opened in the display server deployment.

In the Builder and Viewer, the Google map object instance appears as an empty gray rectangle.
The Viewer does not support the map object.

Using the map object properties and RTView data attachments, the map object can be populated
with marker objects at specific latitude/longitude positions, and also links between the markers.
RTView drilldown and command operations can be triggered by clicking on the map object, as
well as on its markers and links. Double-click, right-click, and drillDownColumn substitutions are
supported as on other table-driven objects. Operations such as zoom, pan and marker selection
can be tied to substitutions.

The Thin Client must have internet access to download the Google Maps Javascript API and map
data. The Thin Client supports Google Maps in our supported browsers. The Thin Client loads
the Google Maps Javascript API to render andmanipulate the map. In most cases, a key or license

Building and Using Apama Dashboards 10.11.2 273

11 Graph Objects

must be obtained from Google for business use of the Google Maps Javascript API. For details,
see the “ Licensing” on page 280 section.

The Object Properties panel organizes Google map object properties into the groups below.

Map graph: Data group
The properties in this group specify how data is displayed in the map object. This group contains
the following properties:

“valueTable” on page 274

“ valueTableForLinks” on page 274

valueTable

To attach data to the map object, right-click Property Value field of the valueTable property and
select Attach to Data. The valueTable property can be used to place markers (icons) on the map,
at specific locations. The propertymust be attached to a table that contains one row for eachmarker.
The column names are unimportant, but the column order and type must be as follows.

column 1 (string): The name

column 2 (number): The latitude

column 3 (number): The longitude

column 4 (string): The icon name/path

column 5 (integer): The icon height in pixels

The first three columns are required, the others are optional. The marker name must be unique as
it is used in drilldowns to indicate the selected ("clicked") marker, and can also be used to select
a marker.

If column 4 (icon name) is omitted or empty, the default Google Maps marker is used. If column
5 (icon height) exists and its value is greater than zero, the value is used to center the icon on the
marker's latitude/longitude position, otherwise the 0,0 pixel of the icon will be placed on the
marker's latitude/longitude position.

valueTableForLinks

Use this property to draw links between markers on the map. The property must be attached to
a table that contains one row for each link, with the columns shown below. The column names
are unimportant, but the column order and type must be as follows. The first 2 columns are
required, the others are optional.

column 1 (string): The name of marker at start of link

column 2 (string): The name of marker at end of link

column 3 (string): The link line color, as a CSS color name or #rrggbb hex value

274 Building and Using Apama Dashboards 10.11.2

11 Graph Objects

column 4 (integer): The link line width

column 5 (integer): The arrow mode

The first two columns specify the names of themarkers at the start and end of the link. Thesemust
correspond to the names of markers in the valueTable. If column 3 is omitted, the link color is
black. If column 4 is omitted, the link width is 2 pixels. The arrow mode values are 1 (one arrow,
pointing to start marker), 2 (one arrow, pointing to end marker) and 3 (two markers, at each end
of link). If column 5 is omitted, the default mode of 3 is used.

Map graph: Interaction group
The properties in this group specify interactions in themap object. This group contains the following
properties:

“command” on page 275

“commandCloseWindowOnSuccess” on page 275

“commandConfirm” on page 275

“commandConfirmText” on page 276

“drillDownColumnSubs ” on page 276

“drillDownSelectMode ” on page 276

“drillDownTarget ” on page 276

command

Use the command property to invoke behavior when the user clicks on the map, a marker, or a link.

commandCloseWindowOnSuccess

If selected, the window that initiates a system commandwill automatically close when the system
command is executed successfully. This property only applies to system commands. With data
source commands, the window is closed whether or not the command is executed successfully.

For multiple commands, this property is applied to each command individually. Therefore if the
first command in the multiple command sequence succeeds, the window closes before the rest of
the commands are executed.

Note:
The commandCloseWindowOnSuccess property is not supported in display server.

commandConfirm

If selected, the command confirmation dialog is enabled. Use the commandConfirmText property to
write your own text for the confirmation dialog, otherwise the text from command property will
be used.

Building and Using Apama Dashboards 10.11.2 275

11 Graph Objects

For multiple commands, if you confirm the execution then all individual commands will be
executed in sequence with no further confirmation. If the you cancel the execution, none of the
commands in the sequence are executed.

commandConfirmText

Enter command confirmation text directly in the Property Value field. If commandConfirmText is
not specified, then the text from command property will be used.

drillDownColumnSubs

The drillDownColumnSubs property is treated the same as for other table-driven objects. If amarker
is clicked, the drillDownColumnSubs are set using values from the valueTable row that corresponds
to that marker. If a link is clicked, the drillDownColumnSubs are set using values from the
valueTableForLinks row that corresponds to that link. In addition, the following predefined
substitutions are also set when a drilldown is executed:

$mapSelLat: The latitude of the map location or marker clicked.

$mapSelLng: The longitude of the map location or marker clicked.

$mapLat: The latitude of the map's current center location.

$mapLng: The longitude of the map's current center location.

$mapZoom: The current zoom level of the map, a value between 0 and 21.

drillDownSelectMode

Control how a drill down display is activated. Select one of the following options:

Anywhere: A click anywhere on the map triggers the object's command or drilldown.

Markers: Only a click on a marker triggers the command or drilldown.

Links: Only a click on a link triggers the command or drilldown.

Markers & Links: Only a click on amarker or a link triggers the command or drilldown. (This
is the default setting)

drillDownTarget

To specify a drill down display, double click on drillDownTarget in the Property Name field to
bring up the Drill Down Properties dialog. See “Drill-Down Specification” on page 521.

Map graph: Map group
The properties in this group specify the position, zoom level and label behavior in the map object.
This group contains the following properties:

“labelsZoomThreshold ” on page 277

276 Building and Using Apama Dashboards 10.11.2

11 Graph Objects

“latitude” on page 277

“longitude” on page 277

“selectedMarker” on page 277

“zoom” on page 277

labelsZoomThreshold

If the labelsZoomThreshold property is set to a value greater than zero, a label balloon appears
next to each marker when the zoom level is greater than or equal to that value. The label text in
the balloon is the name assigned to the marker by the first column in valueTable. A label can be
closed by clicking its "x" button. The label reappears if the display is closed and reopened or if the
zoom threshold is reached. The default value of labelsZoomThreshold is zero which disables the
labels.

latitude

The latitude property specifies the latitude of the point on which the map is to be centered.

longitude

The longitude property specifies the longitude of the point on which the map is to be centered.

selectedMarker

The selectedMarker property specifies the name of the marker to select.

zoom

The zoom property specifies the zoom level of the map, between 0 and 21.

Map graph: Object group
The properties in this group specify the layout in themap object. This group contains the following
properties:

“anchor” on page 278

“dock” on page 278

“objHeight” on page 279

“objName” on page 279

“objWidth” on page 279

“objX” on page 279

“objY” on page 279

Building and Using Apama Dashboards 10.11.2 277

11 Graph Objects

“visFlag” on page 280

anchor

Specify where to anchor an object in the display.

Note:
If an object has the dock property set, the anchor property will be ignored.

The anchor property is applied only when the dimensions of the display are modified, either by
editing Background Properties or resizing the window in Layout mode. Select None, or one or
more following options:

Object not anchored. This is the default.None

Anchor top of object at top of display.Top

Anchor left side of object at left of display.Left

Anchor bottom of object at bottom of display.Bottom

Anchor right side of object at right of display.Right

When a display is resized, the number of pixels between an anchored object and the specified
location remain constant. If an object is anchored on opposite sides (that is Top and Bottom or
Left and Right), the object will be stretched to fill the available space.

dock

Specify the docking location of an object in the display. Select from the following options:

Object is not docked. This is the default.None

Dock object at top of display.Top

Dock object at left of display.Left

Dock object at bottom of display.Bottom

Dock object at right of display.Right

Dock object in available space remaining in the display after all docked objects are
positioned.

Fill

If the dimensions of the display aremodified, either by editingBackground Properties or resizing
thewindow in Layoutmode, the properties (objX, objY, objWidth and objHeight) of docked objects
will automatically adapt to match the new size of the display.

Whenmultiple objects are docked to the same side of the display, the first object is docked against
the side of the display, the next object is docked against the edge of the first object, and so on.

278 Building and Using Apama Dashboards 10.11.2

11 Graph Objects

When objects are docked to multiple sides of the display, the order in which objects were added
to the display controls docking position. For example, the first object added to the display is docked
at the Top and the second object is docked at the Left. Consequently, the first object will fill the
entirewidth of the display and the second object will fill the left side of the display from the bottom
of the first object to the bottom of the display.

Objects in a display have the dock property set to Fill, are laid out across a grid in the available
space remaining after all docked objects are positioned. By default, the grid has one row and as
many columns as there are objects in the display. You can modify the grid in the Background
Properties dialog. Once an object is docked, there are some limitations on how that object can be
modified.

Docked objects cannot be dragged or repositioned using objX and objY properties.

Docked objects cannot be resized using the objWidth or objHeight properties. To resize you
must drag on the resize handle.

Docked objects can only be resized toward the center of the display (for example, if an object
is docked at the Top, only its height can be increased by dragging down towards the center
of the display).

Docked objects set to Fill cannot be resized at all.

Docked objects cannot be moved using Align. Non-docked objects can be aligned against a
docked object, but a docked object will not move to align against another object.

Docked objects are ignored by Distribute.

objHeight

Set height of the object in pixels.

objName

Name given to facilitate object management through the Object List dialog. Select Tools > Object
List

objWidth

Set width of the object in pixels.

objX

Set the x-axis position of object.

objY

Set the y-axis position of object.

Building and Using Apama Dashboards 10.11.2 279

11 Graph Objects

visFlag

Controls visibility of the object.

Licensing
The GoogleMaps JavaScript API requires a key or license fromGoogle. For more information, see
https://developers.google.com/maps/licensing.

Apama does not provide a key or license for the Google Maps JavaScript API. However, the Thin
Client can be configured to download the API using a custom URL that contains specific key or
license information obtained from Google.

The custom URL is defined by creating a JavaScript file named apama_extra.js under the
APAMA_WORK\dashboards folder. Users can also create the apama_extra.js file under the dashboards
folder of a Designer project.

The apama_extra.js file contains just one JavaScript statement. For example,

to specify a URL containing a Google API key, add the following line:

rtv.customGoogleMapsApiBaseURL =
"https://maps.googleapis.com/maps/api/js?key=YOUR_GOOGLE_API_KEY";

to specify a "Google Maps API for Work" client ID and release version 3.20:

rtv.customGoogleMapsApiBaseURL =
"https://maps.googleapis.com/maps/api/js?client=YOUR_GOOGLE_CLIENT_ID&v=3.20";

If apama_extra.js is found under the dashboards folder of the Designer project, then this JavaScript
file will be used for the display server deployment. Otherwise, the system will try to look for
apama_extra.js under the APAMA_WORK\dashboards folder.

If no apama_extra.js is found, the Thin Client uses the following public URL to download the
latest "experimental" version of the API with no key or license information: https://
maps.googleapis.com/maps/api/js.

Important:
Please refer to https://developers.google.com/maps/licensing for information about the license
key in order to use this Google Map object.

Heat map
Heatmaps visualize data by displaying rectangles of various sizes and colors. Complex heatmaps
display a hierarchy of rectangles, where a rectangle's level in the hierarchy is represented by its
level of geometric nesting within other rectangles.

Heat maps visualize tabular data that contains one or more index columns as well as one or more
numerical columns.

You specify the data to be visualized with the valueTable property.

280 Building and Using Apama Dashboards 10.11.2

11 Graph Objects

https://developers.google.com/maps/licensing
https://maps.googleapis.com/maps/api/js
https://maps.googleapis.com/maps/api/js
https://developers.google.com/maps/licensing

You designate the index columns by specifying a column name or list of column names as the
value of the property nodeIndexColumnNames.

If there are two or more non-index numerical columns, the first is the size-data column and the
second is the color-data column. If there is only one non-index numerical column, it serves as both
the size-data column and the color-data column.

Heat maps with one index column
A heat map with a single index column contains one rectangle for each unique value in the index
column.

For a given index value, the area of the corresponding rectangle is proportional to the result of
aggregating the values in the size-data column in those rows whose index column contains the
index value. You specify the type of aggregation to use (sum, count, average, min, or max) with the
sizeValueGroupType property.

In addition, for a given index value, the color of the corresponding rectangle is determined by the
result of aggregating the values in the color-data column in those rows whose index column
contains the index value (see “Mapping from possible aggregation results to colors” on page 282).
You specify the type of aggregation to use (sum, count, average, min, or max) with the
colorValueGroupType property.

Important:
Negative aggregated values are treated as 0.

Heat maps with multiple index columns
Heat maps with multiple index columns display a rectangle hierarchy. The number of levels of
the hierarchy is the number of columns from the visualized data table that are specified as index
columns.

In such a heat map, there is a rectangle at level n for each unique sequence of values from the first
n index columns, for every level between 1 and the number of index columns, inclusive.

For a given such sequence of n index values, the area of the corresponding rectangle is proportional
to the result of aggregating the values in the size-data column in those rows whose first n index
columns contain the values in the sequence. You specify the type of aggregation to use (sum, count,
average, min, or max) with the sizeValueGroupType property.

Building and Using Apama Dashboards 10.11.2 281

11 Graph Objects

In addition, for a given such sequence of n index values, the color of the corresponding rectangle
is determined by the result of aggregating the values in the color-data column in those rowswhose
first n index columns contain the values in the sequence. You specify the type of aggregation to
use (sum, count, average, min, or max) with the colorValueGroupType property.

Important:
Negative aggregated values are treated as 0.

Mapping from possible aggregation results to colors
The possible color-data aggregation results are mapped to colors as follows:

If colorValueAutoScaleMode is Off

The possible aggregation result value specified in colorValueMin is mapped to the color
specified by minColor.

The possible aggregation result value specified in colorValueMax is mapped to the color
specified by maxColor.

If colorValueAutoScaleMode is On

The smallest actual aggregation result for the current display ismapped to the color specified
by minColor.

The largest actual aggregation result for the current display ismapped to the color specified
by maxColor.

If colorValueAutoScaleMode is Off - Include Min/Max

minColor is mapped to the smaller of colorValueMin and the smallest actual aggregation
result for the current display.

maxColor is larger of colorValueMax and the largest actual aggregation result for the current
display.

In all three cases, possible aggregation result values that are in between thosemapped to minColor
and maxColor are mapped through interpolation, using the colors between minColor and maxColor
arranged either in gradient order or color-wheel order (as determined by linearColorMappingFlag).

Drill down displays
Since data in a heat map is aggregated, the value shown in a node might not be the same as the
value passed down to a drill down display. For example, suppose your heat map is attached to a
table where the index column is Plant and the size column is Units Completed. If you have two
rows where the Plant is San Francisco, then the node size is based on the total of the Units
Completed values for both rows. However when you drill down, the drill down value for Units
Completed will be the value in the first row in the table where the Plant is San Francisco.

282 Building and Using Apama Dashboards 10.11.2

11 Graph Objects

Object class name

When a heat map object is selected in the Builder canvas, the Object Class Name that appears at
the top of the Object Properties pane is obj_heatmap.

Heat map property groups

The Object Properties panel organizes heat map properties into the following groups:

“Heat map: Background properties” on page 283

“Heat map: Data group” on page 286

“Heat map: Data format group” on page 288

“Heat map: Data Label group” on page 289

“Heat map: Historian group” on page 289

“Heat map: Interaction group” on page 289

“Heat map: Label group” on page 293

“Heat map: Layout group” on page 294

“Heat map: Node group” on page 295

“Heat map: Object group” on page 297

“Heat map: Quality group” on page 299

Heat map: Background properties
Properties in this group control the visibility and appearance of the map's background.

Background properties

The group contains the following properties:

“bgBorderColor” on page 284

“bgBorderFlag” on page 284

“bgColor ” on page 284

“bgEdgeWidth ” on page 284

“bgGradientColor2” on page 284

“bgGradientMode” on page 284

“bgRaisedFlag” on page 285

Building and Using Apama Dashboards 10.11.2 283

11 Graph Objects

“bgRoundness” on page 285

“bgShadowFlag” on page 285

“bgStyle” on page 285

“bgVisFlag ” on page 286

“borderPixels ” on page 286

bgBorderColor

Sets the color of the border (see bgBorderFlag) of the background rectangle. Select the ... button
and choose a color from the palette. Close the Color Chooser window when you are done.

bgBorderFlag

Select to display a border around the background rectangle.

This property is in the Background property group.

bgColor

Sets the background color. Select the ... button and choose a color from the palette. Close the Color
Chooser window when you are done.

This property is in the Background property group.

bgEdgeWidth

Sets the width in pixels of the 3D edge on the background rectangle. This property is only used if
bgBorderFlag is selected.

This property is in the Background property group.

bgGradientColor2

Sets the color for the second color in the gradient. The default is white. The bgColor property sets
the first color in the gradient.

This property is in the Background property group.

bgGradientMode

Display a gradient in the background rectangle. Select from the following options:

None: No gradient.

Diagonal Edge: Gradient is drawn at a 45 degree angle from the top left to the bottom right
corner of the object.

284 Building and Using Apama Dashboards 10.11.2

11 Graph Objects

Diagonal Center: Gradient is drawn at a 45 degree angle from the center to the top left and
the bottom right corners of the object.

Horizontal Edge: Gradient is drawn horizontally from the top to the bottom of the object.

Horizontal Center: Gradient is drawn horizontally from the center to the top and bottom of
the object.

Vertical Edge: Gradient is drawn vertically from the left to the right of the object.

Vertical Center: Gradient is drawn vertically from the center to the left and right of the object.

This property is in the Background property group.

bgRaisedFlag

Reverses the direction of the gradient, as well as that of the 3D edge if the bgStyle selected is 3D
Rectangle.

This property is in the Background property group.

bgRoundness

Sets the arc length of the rounded corners. This property is only available if the bgStyle selected
is Round Rectangle.

The value of bgRoundness cannot exceed half the value of the objWidth or the objHeight. If
bgRoundness does exceed that value, half of objWidth or objHeight (whichever is smaller) will be
used instead. For example if objWidth is 100 and objHeight is 50, then the value of bgRoundness
cannot exceed 25. If it does, then half the value of objHeight (25) will be used instead. This property
is in the Background property group.

bgShadowFlag

Select to display a drop shadow on the background rectangle.

This property is in the Background property group.

bgStyle

Choose one of the following three options from the drop down menu:

Rectangle: Select to display a background rectangle.

3D Rectangle: Select to display a 3D edge on the background rectangle. If selected, use
bgEdgeWidth to set the width of the 3D edge.

Round Rectangle: Select to display a background rectangle with rounded edges. If selected,
use bgRoundness to set the arc length of the rounded corners.

This property is in the Background property group.

Building and Using Apama Dashboards 10.11.2 285

11 Graph Objects

bgVisFlag

Select to display the background rectangle.

This property is in the Background property group.

borderPixels

Sets the width in pixels of the border between the chart and the edge of the background rectangle.

This property is in the Background property group.

Heat map: Data group
Properties in this group control what data appears in the heat map, and how it is mapped to node
size and color.

Data group properties

The group contains the following properties:

“colorValueAutoScaleMode” on page 286

“colorValueDivisor” on page 286

“colorValueGroupType” on page 287

“colorValueMax” on page 287

“colorValueMin” on page 287

“nodeIndexColumnNames” on page 287

“sizeValueDivisor” on page 287

“sizeValueGroupType” on page 287

“valueTable” on page 252

colorValueAutoScaleMode

Controls how aggregation results are mapped to colors. See “Mapping from possible aggregation
results to colors” on page 282.

This property is in the Data property group.

colorValueDivisor

Divides colorValueMin, colorValueMax, and color-data aggregation results by the specified value.

This property is in the Data property group.

286 Building and Using Apama Dashboards 10.11.2

11 Graph Objects

colorValueGroupType

Sets the type of aggregation to use for color data: sum, average,count, min, or max.

This property is in the Data property group.

colorValueMax

Controls how aggregation results are mapped to colors. See “Mapping from possible aggregation
results to colors” on page 282.

This property is in the Data property group.

colorValueMin

Controls how aggregation results are mapped to colors. See “Mapping from possible aggregation
results to colors” on page 282.

This property is in the Data property group.

nodeIndexColumnNames

Specify a semicolon-delimited list of index column names. If not specified, the first text column
in the table attached to valueTable is used as the index column and the first two numeric columns
are used as data columns.

This property is in the Data property group.

sizeValueDivisor

sizeValueDivisor Divides size-data aggregation results by the specified value.

.This property is in the Data property group.

sizeValueGroupType

Sets the type of aggregation to use for size data: sum, average,count, min, or max.

This property is in the Data property group.

valueTable

Specifies the data to be visualized. Tabular data attached to the valueTable property must contain
one ormore index columns and at least one data column. The heatmap displays one level of nodes
for each index column specified. Use the nodeIndexColumnNames property to specify column names.
The first non-index numeric data column is used to control the size of each node. The second
non-index numeric data column is used to control the color of the node. If only one data column
is specified, it controls both node size and node color.

Building and Using Apama Dashboards 10.11.2 287

11 Graph Objects

Data attached to valueTable is aggregated by unique index value.

Note:
Negative aggregated values are treated as 0. By default, both size and color data is subtotaled.
Alternately, you can specify aggregation types using the colorValueGroupType and
sizeValueGroupType properties.

See “Heat map” on page 280 for more information.

This property is in the Data property group.

Heat map: Data format group
Properties in this group control the format of tooltip-displayed data, as well as the mapping from
color data to colors.

Data group properties

The group contains the following properties:

“colorValueFormat” on page 288

“linearColorMappingFlag” on page 288

“maxColor” on page 288

“minColor” on page 289

“sizeValueFormat” on page 289

colorValueFormat

Sets the numeric format of the color value displayed in tooltips. Use syntax from the Java
DecimalFormat class. To enable tooltips, select the mouseOverFlag.

This property is in the Data Format property group.

linearColorMappingFlag

If selected, possible aggregation result values that are in between those mapped to minColor and
maxColor are mapped through interpolation, using the colors between minColor and maxColor
arranged in gradient order. If deselected, the interpolation uses the colors arranged in color-wheel
order.

This property is in the Data Format property group.

maxColor

Sets the maximum color. Possible node colors range from the minColor to maxColor. See “Mapping
from possible aggregation results to colors” on page 282.

288 Building and Using Apama Dashboards 10.11.2

11 Graph Objects

This property is in the Data Format property group.

minColor

Sets the minimum color. Possible node colors range from the minColor to maxColor. See “Mapping
from possible aggregation results to colors” on page 282.

This property is in the Data Format property group.

sizeValueFormat

Sets the numeric format of the size value displayed in tooltips. Use syntax from the Java
DecimalFormat class. To enable tooltips, select the mouseOverFlag.

This property is in the Data Format property group.

Heat map: Data Label group
The property in this group, columnDisplayNames, sets alternate display names for column names.

columnDisplayNames

Sets alternate display names for columnnames in your heatmapdata. Columnnames are displayed
in tooltips.

This property is in the Data Label property group.

Heat map: Historian group
Do not use the properties in this group.

historyTableName

Do not use this property.

This property is in the Historian property group.

historyTableRowNameFlag

Do not use this property.

This property is in the Historian property group.

Heat map: Interaction group
Properties in this group control various forms of interaction between the end user and the graph,
including scrolling, highlighting, and activating commands, drill downs, and tooltips.

Building and Using Apama Dashboards 10.11.2 289

11 Graph Objects

Interaction group properties

The group includes the following properties:

“command” on page 290

“commandCloseWindowOnSuccess” on page 291

“commandConfirm” on page 291

“commandConfirmText” on page 291

“drillDownColumnSubs” on page 291

“drillDownSelectMode” on page 292

“drillDownTarget” on page 292

“mouseOverAdditionalColumns” on page 292

“mouseOverDefaultColumnsFlag” on page 292

“mouseOverFlag” on page 293

command

Assign a command or group of commands to this stock chart by right-clicking on the command
property name in the Object Properties window. Select Define Command and choose SYSTEM,
APAMA, orMULTIPLE. Formore information, see “Using theDefineApamaCommanddialog” on
page 200.

Once a command or command group has been assigned to this object, you can activate it from a
deployed dashboard or from the Dashboard Builder:

Dashboard Builder: Double click on the object.

Web-based deployment: Single click on the object or else right click on it and select Execute
Command from the popup menu.

Local deployment: By default, single-click on the object or else right-click on it and select
Execute Command from the popup menu. To override the default, select Tools > Options
in the Builder (do this before you generate the deployment package), and uncheckSingle-Click
for Drill Down and Commands in the General tab. This allows the end user to use either a
double click or a right click.

When you activate a command, any defined drill down substitutions are performed, and then the
command is executed.

If you assign multiple commands, the commands are launched in an arbitrary order, and are
executed asynchronously; there is no guarantee that one command will finish before the next one
in the sequence starts.

This property is in the Interaction property group.

290 Building and Using Apama Dashboards 10.11.2

11 Graph Objects

commandCloseWindowOnSuccess

Select this property to automatically close the window that initiates a SYSTEM command when
the command is executed successfully. This applies to SYSTEM commands only, and is not
supported at all for thin-client, web-page deployments.

With APAMA commands, the window is closed whether or not the command is executed
successfully. For MULTIPLE commands, the window closes when the first command in the
command group succeeds.

This property is in the Interaction property group.

commandConfirm

By default, when the end user executes a command (see the command property), the command
confirmation dialog is disabled. To control this option for each individual object, use the
commandConfirm check box. If confirmation is required for a MULTIPLE command group, a single
confirmation dialog is presented; if you confirm the execution, all individual commands in the
group are executed with no further confirmation. If the you cancel the execution, none of the
commands in the group is executed.

You can also override the confirmation status of individual objectswith an application-wide policy.
Select Tools | Options and choose from three confirmation values:

Do not confirm: Indicates that no commands require confirmation (regardless of each object's
confirmation status).

Confirm all: Indicates that all commands require confirmation (regardless of each object's
confirmation status).

Use object confirm flag (default): Indicates that the confirmation status of each object will
determine whether confirmation is required.

This property is in the Interaction property group.

commandConfirmText

Use this property to write your own text for the confirmation dialog. Otherwise, default text is
used. See commandConfirm.

This property is in the Interaction property group.

drillDownColumnSubs

Use this property to direct a dashboard to assign data-table column values to specified dashboard
variableswhen the end user activates a drilldown on this object. In theObject Propertieswindow,
double-click on drillDownColumnSubs in the Property Name field to bring up the Drill Down
Column Substitutions dialog.

The dialog has the following fields and buttons:

Building and Using Apama Dashboards 10.11.2 291

11 Graph Objects

Substitution String: Enter the dashboard variable next to the name of the data table column
whose value you want assigned to the variable. Press Enter.

Add Column: Enter the name of a column and click theAdd Column button to insert a column
into the table.

Clear: Click the Clear button to remove all variables listed.

The Column Name list is populated based on the table's data attachment. If you have not yet
attached the table to data, this list is empty.

Once you have selected which column values to pass in as substitutions, double-click on any
element in your object to open a drill down window that displays corresponding values.

This property is in the Interaction property group.

drillDownSelectMode

Use this property to control how a drill down display is activated. Select one of the following:

Anywhere to activate a drill down display by double-clicking anywhere on the chart.

Element Only to enable a drill down display only when you double-click on an element of
the chart, such as a bar or candlestick.

This property is in the Interaction property group.

drillDownTarget

To specify a drill down display, double click on drillDownTarget in the Property Name field to
bring up the Drill Down Properties dialog. See “Drill-Down Specification” on page 521.

This property is in the Interaction property group.

mouseOverAdditionalColumns

Select the button to open a dialog to select which columns to include in tooltips and, optionally,
specify a date format (or other numeric format) and value divisor (for numeric columns) for each
column displayed. In the tool tip, the name and value for each selected column is displayed. If the
mouseOverDefaultColumnsFlag is selected, then columns you include are inserted following the
default columns in the tooltip. If specified, columnDisplayNames are applied to the columns you
selected to include.

This property is in the Interaction property group.

mouseOverDefaultColumnsFlag

Select to include columnnames and values from valueTable (for index columns anddata columns)
in tooltips. If columnDisplayNames are specified, they will be applied to all column names.

This property is in the Interaction property group.

292 Building and Using Apama Dashboards 10.11.2

11 Graph Objects

mouseOverFlag

Select to enable tooltips for your heat map. To display a tooltip, select the map and point to a node
with yourmouse. The tooltipwill contain information fromyour data attachment about that node.

Note:
Heat maps containing large data sets may run slowly on the display server if mouseOverFlag is
selected.

This property is in the Interaction property group.

Heat map: Label group

Properties in this group control the graph's main label (which defaults to Heatmap), including
text, alignment, color, font, and size.

Label group properties

The group includes the following properties:

“label” on page 293

“labelMinTabWidth” on page 293

“labelTextAlignX” on page 294

“labelTextAlignY” on page 294

“labelTextColor” on page 294

“labelTextFont” on page 294

“labelTextHeight” on page 294

label

Specifies the text for the chart label. Click the ellipsis for multi-line text.

The default is Heatmap.

This property is in the Label property group.

labelMinTabWidth

Setsminimumwidth of the label tab. This property only applies if labelTextAlignY is set toTabTop.

This property is in the Label property group.

Building and Using Apama Dashboards 10.11.2 293

11 Graph Objects

labelTextAlignX

Sets the x-axis alignment of the chart label (see the label property). Select Left, Center, or Right
from the drop down list.

This property is in the Label property group.

labelTextAlignY

Sets the y-axis position of the chart label (see the label property). Select one of the following from
the drop down list:

Outside Top: Well above the background rectangle

Top: Just above the background rectangle

Title Top: Along the top line of the background rectangle

Tab Top: Just above the background rectangle. Height and width of the tab is dependent on
the height andwidth of the text. Use the labelMinTabWidth property to specify a minimum tab
width.

Inside Top: Inside the top of the background rectangle

This property is in the Label property group.

labelTextColor

Specifies the color of the chart label text (see the label property). Select the ... button and choose
a color from the palette. Close the Color Chooser window when you are done.

This property is in the Label property group.

labelTextFont

Specifies the font of the chart label text (see the label property). Select an item from drop down
list.

This property is in the Label property group.

labelTextHeight

Specifies the point size of the chart label text (see the label property).

This property is in the Label property group.

Heat map: Layout group
Properties in this group affect the layout of nodes in the heat map.

294 Building and Using Apama Dashboards 10.11.2

11 Graph Objects

Layout group properties

This group contains the following properties:

“adjustSizeForLabelFlag” on page 295

“layoutStyle” on page 295

adjustSizeForLabelFlag

Select to compress the ratio between the smaller nodes and larger nodes so that the size of smaller
nodes is increased to accommodate labels.

Note:
This property only applies to nodes that display labels.

This property is in the Layout property group.

layoutStyle

Select from the following layout styles:

Squarified: Nodes are more square in shape and ordered according to the size of the value
from the top-left to the bottom-right.

Strip: Nodes are more square in shape and ordered according to the order of the rows in the
valueTable.

Slice Horizontal: Nodes are short and wide and ordered according to the order of the rows
in the valueTable.

Slice Vertical: Nodes are tall and narrow and ordered according to the order of the rows in
the valueTable.

Slice Best: Nodes are laid out either like Slice Horizontal or Slice Vertical based on what
fits best in the available space.

Slice Alternate Horizontal: The layout alternates betweenSlice Horizontal andSlice Vertical
based on the node depth. The top level nodes use Slice Horizontal.

Slice Alternate Vertical: The layout alternates between Slice Horizontal and Slice Vertical
based on the node depth. The top level nodes use Slice Vertical.

This property is in the Layout property group.

Heat map: Node group
Properties in this group affect the appearance of nodes in the heat map.

Building and Using Apama Dashboards 10.11.2 295

11 Graph Objects

Node group properties

This group contains the following properties:

“nodeBgBorderHighlightFlag” on page 296

“nodeBgBorderSize” on page 296

“nodeBgColor” on page 296

“nodeLabelNestDepth” on page 296

“nodeLabelTextColor” on page 296

“nodeLabelTextFont” on page 297

“nodeLabelTextHeight” on page 297

“nodeLabelVisFlag” on page 297

nodeBgBorderHighlightFlag

Select to draw a border highlight around the nodes.

Note:
This property is ignored if the nodeBgBorderSize is set to 0 or 1.

This property is in the Node property group.

nodeBgBorderSize

Specify (in pixels) the size of the border between nodes. If set to -1, the deepest nested level of
nodes has a one pixel border and the border increases by two pixels for each level of nesting.

This property is in the Node property group.

nodeBgColor

Select the button and choose from the palette to set the background color for the nodes.

This property is in the Node property group.

nodeLabelNestDepth

Specify the number of nest levels to display node labels. If set to 0, then no labels are displayed.

This property is in the Node property group.

nodeLabelTextColor

Select the button and choose from the palette to set the text color for the node labels.

296 Building and Using Apama Dashboards 10.11.2

11 Graph Objects

This property is in the Node property group.

nodeLabelTextFont

Select the font to use for the node labels.

This property is in the Node property group.

nodeLabelTextHeight

Specify the text height for the node labels.

This property is in the Node property group.

nodeLabelVisFlag

Select to display labels on the nodes.

Note:
This property is ignored if nodeLabelNestDepth is set to 0.

This property is in the Node property group.

Heat map: Object group
Properties in this group control the visibility and transparency of the heat map as a whole. They
also control (or reflect) the overall position and dimensions of the heatmap. In addition, a property
in this group reflects the generated name of this individual heat map.

Object group properties

This group contains the following properties:

“anchor” on page 298

“dock” on page 298

“objHeight” on page 298

“objName” on page 298

“objWidth” on page 298

“objX” on page 298

“objY” on page 298

“transparencyPercent” on page 299

“visFlag” on page 299

Building and Using Apama Dashboards 10.11.2 297

11 Graph Objects

anchor

Select zero or more of Top, Left, Bottom, and Right in order to control the object's placement.
The anchorproperty is only appliedwhen the display is resized either by changing theBackground
Properties on the display or by resizing the window in Layout mode. If an object has the dock
property set, the anchor property is ignored. See “About resize modes” on page 30.

dock

Select None (default), Top, Left, Bottom, Right, or Fill in order to control the object's placement
in Layout resize mode. See “About resize modes” on page 30.

objHeight

Set the height of a chart by entering a value for this property or by dragging a handle of the
bounding box that appears when the chart is selected. When you drag a handle of the bounding
box, the displayed value for this property changes to reflect the real-time height of the chart.

This property is in the Object property group.

objName

An identifier that is generated by the Dashboard Builder. This name can be used by other objects'
properties in order to refer to the named chart, as with, for example, the graphName property of
the Legend visualization object.

This property is in the Object property group.

objWidth

Set the width of a chart by entering a value for this property or by dragging a handle of the
bounding box that appears when the chart is selected. When you drag a handle of the bounding
box, the displayed value for this property changes to reflect the real-time width of the chart.

This property is in the Object property group.

objX

Sets the X coordinate of the center of this visualization object, relative to the lower left corner of
the current dashboard. This value is set automaticallywhen you position the objectwith themouse.

This property is in the Object property group.

objY

Sets the Y coordinate of the center of this visualization object, relative to the lower left corner of
the current dashboard. This value is set automaticallywhen you position the objectwith themouse.

This property is in the Object property group.

298 Building and Using Apama Dashboards 10.11.2

11 Graph Objects

transparencyPercent

Sets the transparency of this chart.

This property is in the Object property group.

visFlag

Deselect to make this visualization object invisible in the current dashboard.

This property is in the Object property group.

Heat map: Quality group
Properties in this group allow you to color nodes based on data quality.

Quality group properties

This group contains the following properties:

“valueQuality” on page 299

“valueQualityColumnName” on page 299

“valueQualityEnabledFlag” on page 300

“valueQualityLostData” on page 300

“valueQualityLostDataColor” on page 300

“valueQualityNoData” on page 300

“valueQualityNoDataColor” on page 300

valueQuality

Specify a value to compare to settings for the valueQualityLostData and valueQualityNoData
properties. If the specified valueQualitymatches, the selected corresponding valueQuality*Color
is applied to all nodes in the heat map.

Note:
The valueQuality property is ignored if the valueQualityEnabledFlag is deselected.

This property is in the Quality property group.

valueQualityColumnName

Specify a column in the valueTable to compare, per row, to settings for the valueQualityLostData
and valueQualityNoData properties. If values in the specified valueQualityColumnNamematch, the

Building and Using Apama Dashboards 10.11.2 299

11 Graph Objects

selected corresponding valueQuality*Color is selectively applied to each node in the heat map. If
the valueTable contains multiple rows for a single index, the highest data quality value is used.

Note:
The valueQualityColumnName property is ignored if the valueQualityEnabledFlag is deselected.

This property is in the Quality property group.

valueQualityEnabledFlag

If selected, nodes are colored based on data quality.

This property is in the Quality property group.

valueQualityLostData

Enter the lost data value.

This property is in the Quality property group.

valueQualityLostDataColor

Select the button and choose from the palette to set the node color if the valuematches the specified
valueQualityLostData.

This property is in the Quality property group.

valueQualityNoData

Enter the no data value.

This property is in the Quality property group.

valueQualityNoDataColor

Select the button and choose from the palette to set the node color if the valuematches the specified
valueQualityNoData.

This property is in the Quality property group.

HTML5 Bar graph
The web bar chart is a pure HTML implementation of an RTView bar chart object. In the RTView
thin client, the web bar chart provides an interactive, high performance chart without requiring
the Flash player or other browser plug-in.

There is no web bar chart in the Builder palette. Instead, a new property named webChartFlag has
been added to the swing (obj_bargraph) bar charts. To enable the web bar chart, you must set the
webChartFlag property to true (checked) on a swing bar chart instance. Then, when the display is

300 Building and Using Apama Dashboards 10.11.2

11 Graph Objects

opened in the thin client in a web compatible browser, the web bar chart appears in place of the
swing bar chart. This feature is similar to the webChartFlag property that has been available on
the swing trend graph objects in several prior releases.

Properties

The web bar chart supports all of the major properties available in the swing bar charts. However,
several minor properties are not supported or have limited support in the web bar chart. See
“HTML5 bar graph properties” on page 302.

HTML5 bar graph behavior
Legend. The legend does not show bar or trace data (y) values. Data values are only shown
in the mouseover tooltips (if mouseOverFlag = 1). Labels longer than 200 pixels are wrapped
in the legend, and labels longer than 150 pixels are clipped in the tooltip. Thewidth and height
of the legend is different between the bar chart implementations. Barwidth and spacing differs
slightly between the chart implementations.

Bar values. The web chart automatically selects a text color and shadow to contrast with the
corresponding bar, ignoring barValueTextColor.

Y axis autoscaling. Given the same y data values, the web bar chart may choose a different
value range for the y axes in autoscale mode as compared to the older charts. Also the format
and number of y axis labels shown on the web chart are determined automatically, unlike the
swing bar chart where various yAxis* properties are used.

X axis label rotation threshold, spacing, and count differ between implementations. Also the
web chart may skip labels on some bar groups to avoid crowded or overlapping labels.

Zooming. You can zoom in on the chart's X axis (Y axis if drawHorizontalFlag = 1) by dragging
across the plot area.

Reset button. If you change the chart's visible range, via the scrollbar or by dragging the cursor
to perform a zoom, then a button labeled Reset will appear in the upper left corner of the plot
area. A click on this button will reset the x axis to its original settings.

Scrolling. If the mouse is moved below the bottom of the chart while dragging the scrollbar,
the scrolling will stop. This is unlike the behavior of other rtview objects, which will continue
to scroll until the mouse button is released.

The perspective in 3Dmode differs (above-right perspective in swing chart, center perspective
in web chart).

The waterfall total bar (if visible) is not labeled on the X axis of the web chart.

The web chart plots each trace point in the center of the corresponding bar group, while the
swing chart plots each trace point on the center of each corresponding bar.

Building and Using Apama Dashboards 10.11.2 301

11 Graph Objects

HTML5 bar graph issues
The max zoom-in level is one bar group. For example if there are 2 bars in each bar group,
there will usually be at least 2 bars visible regardless of how far you zoom in. But, if the user
intentionally zooms in on blank space between bars it is possible to end up with no visible
bars.

After zooming or scrolling, the y axis range (x axis in horizontal mode) may change to reflect
the range of values of the visible bars. This is designed behavior.

If draw3dFlag is set, dragging the scrollbar will also initiate a zoom-in, as though the user
dragged in the plot area. This can be avoided by scrolling via clicks on the scrollbar arrows,
instead.

Scrolling performance on a chart with many bars may be sluggish, depending on the vintage
of the browser and host.

The chart's tooltipmay overlap the Reset buttonmaking it difficult to click the button.Moving
the mouse a bit will correct this problem.

Performance is affected by the number of bars, traces, trace points, use of trace line shadows,
bar/trace fill, and other properties. Performance is also affected by the browser and version,
and the CPU speed of the client host system. On a touch interface, a swipe will scroll the chart
left or right.

On a touch interface, a pinch-open gesture in the plot area will zoom the chart's range *in* to
the pinched range. A pinch-close gesturewill zoomout to the pinched range. A left/right swipe
(or an up/down swipe in horizontal mode) will scroll the chart. The scrollbar (if visible) cannot
be dragged reliably on a touch device, but the scrollbar arrow keys can be tapped.

HTML5 bar graph properties
Some chart properties are hidden in the builder if webChartFlag is checked. An "n/a" after the
property means the feature is not supported, "auto" means the value is assigned automatically
and is not configurable, otherwise the assumed value of the property is shown.

ValueProperty

n/a (alert coloring & styling of trace markers is not
supported, only supported for bars)

traceValueAlarmStatusTable

n/avalueHighAlarmMarkColor

n/avalueHighAlarmMarkStyle

n/avalueHighWarningMarkColor

n/avalueHighWarningMarkStyle

n/avalueLowAlarmMarkColor

302 Building and Using Apama Dashboards 10.11.2

11 Graph Objects

ValueProperty

n/avalueLowAlarmMarkStyle

n/avalueLowWarningMarkColor

n/avalueLowWarningMarkStyle

1bgEdgeWidth

n/abgGradientMode

n/abgGradientColor2

falsebgRaisedFlag

falsebgShadowFlag

RectanglebgStyle

n/aborderPixels

n/abarImage

autobarValueTextColor

autobarValueTextFont

autobarValueTextHeight

autolabelColumnFormat

autotraceYValueFormat

autoyValueFormat

truerowLabelVisFlag

falserowNameVisFlag

truemouseOverHighlightFlag

autoscrollbarSize

truescrollbarStartAtMaxFlag

n/alabelMinTabWidth

truebarCenterFlag

truebarFitFlag

autohorizAxisLabelRotationAngle

n/ahorizAxisMinLabelHeight

Building and Using Apama Dashboards 10.11.2 303

11 Graph Objects

ValueProperty

n/avertAxisMinLabelWidth

n/alegendBgGradientMode

NonelegendBgGradientColor2

autolegendWidthPercent

false (bar value is shown in tooltip, not legend)legendValueVisFlag

n/aoutlineColor

automarkDefaultSize

No scalemarkScaleMode

0transparencyPercent

NonegridBgGradientMode

n/agridBgGradientColor2

n/agridBgImage

autotraceYAxisFormat

autotraceYAxisMajorDivisions

autotraceYAxisMinorDivisions

autoyAxisFormat

Bar AxisyAxisGridMode

autoyAxisMajorDivisions

autoyAxisMinorDivisions

n/a (uses trace color)traceProperties.MarkerColor

Legend
The legend visualization object is useful for displaying a legend that is too lengthy for the built-in
legends of the graph objects.

304 Building and Using Apama Dashboards 10.11.2

11 Graph Objects

You can use a legend visualization object in conjunction with a bar graph, pie graph, radar graph,
or XY graph.

The legend displays information from the graph object to which it is connected. Connect a legend
to a graph object by setting the legend's graphName property to the value of the graph's objName
property. Set up all formatting for the legend data in the graph object that it will reflect.

When this visualization object is selected in the Builder canvas, the Object Class Name that
appears at the top of the Object Properties pane is obj_legend.

The Object Properties panel organizes legend properties into the groups below.

Legend: Background group
Properties in this group control the visibility and appearance of the legend's outer rectangle, which
serves as the background of both the label (see “label” on page 311) and the legend's inner rectangle
(see “Legend: Legend group” on page 311).

Background group properties

The group contains the following properties:

“bgBorderColor” on page 306

“bgBorderFlag” on page 306

“bgColor” on page 306

“bgEdgeWidth” on page 306

“bgGradientColor2” on page 306

“bgGradientMode” on page 306

“bgRaisedFlag” on page 307

“bgRoundness” on page 307

“bgShadowFlag” on page 307

“bgStyleFlag” on page 307

Building and Using Apama Dashboards 10.11.2 305

11 Graph Objects

“bgVisFlag” on page 307

“borderPixels” on page 308

bgBorderColor

Sets the color of the border (see bgBorderFlag) of the background rectangle. Select the ... button
and choose a color from the palette. Close the Color Chooser window when you are done.

bgBorderFlag

Select to display a border around the background rectangle.

This property is in the Background property group.

bgColor

Sets the background color. Select the ... button and choose a color from the palette. Close the Color
Chooser window when you are done.

This property is in the Background property group.

bgEdgeWidth

Sets the width in pixels of the 3D edge on the background rectangle. This property is only used if
bgBorderFlag is selected.

This property is in the Background property group.

bgGradientColor2

Sets the color for the second color in the gradient. The default is white. The bgColor property sets
the first color in the gradient.

This property is in the Background property group.

bgGradientMode

Display a gradient in the background rectangle. Select from the following options:

None: No gradient.

Diagonal Edge: Gradient is drawn at a 45 degree angle from the top left to the bottom right
corner of the object.

Diagonal Center: Gradient is drawn at a 45 degree angle from the center to the top left and
the bottom right corners of the object.

Horizontal Edge: Gradient is drawn horizontally from the top to the bottom of the object.

306 Building and Using Apama Dashboards 10.11.2

11 Graph Objects

Horizontal Center: Gradient is drawn horizontally from the center to the top and bottom of
the object.

Vertical Edge: Gradient is drawn vertically from the left to the right of the object.

Vertical Center: Gradient is drawn vertically from the center to the left and right of the object.

This property is in the Background property group.

bgRaisedFlag

Reverses the direction of the gradient, as well as that of the 3D edge if the bgStyle selected is 3D
Rectangle.

This property is in the Background property group.

bgRoundness

Sets the arc length of the rounded corners. This property is only available if the bgStyle selected
is Round Rectangle.

The value of bgRoundness cannot exceed half the value of the objWidth or the objHeight. If
bgRoundness does exceed that value, half of objWidth or objHeight (whichever is smaller) will be
used instead. For example if objWidth is 100 and objHeight is 50, then the value of bgRoundness
cannot exceed 25. If it does, then half the value of objHeight (25) will be used instead. This property
is in the Background property group.

bgShadowFlag

Select to display a drop shadow on the background rectangle.

This property is in the Background property group.

bgStyleFlag

Choose one of the following three options from the drop down menu:

Rectangle: Select to display a background rectangle.

3D Rectangle: Select to display a 3D edge on the background rectangle. If selected, use
bgEdgeWidth to set the width of the 3D edge.

Round Rectangle: Select to display a background rectangle with rounded edges. If selected,
use bgRoundness to set the arc length of the rounded corners.

This property is in the Background property group.

bgVisFlag

Select to display the background rectangle.

Building and Using Apama Dashboards 10.11.2 307

11 Graph Objects

This property is in the Background property group.

borderPixels

Sets the width in pixels of the border between the chart and the edge of the background rectangle.

This property is in the Background property group.

Legend: Data group
The property in this group, graphName, controls what data appears in the graph.

graphName

To attach your legend to a given graph object, set this property to the value objName for the given
graph object.

This property is in the Data property group.

Legend: Historian group
Do not use the properties in this group.

historyTableName

Do not use this property.

This property is in the Historian property group.

historyTableRowNameFlag

Do not use this property.

This property is in the Historian property group.

Legend: Interaction group
Properties in this group configure interaction between the end user and the graph, including
commands and drill down interactions.

Interaction group properties

The group includes the following properties:

“command” on page 309

“commandCloseWindowOnSuccess” on page 309

“commandConfirm” on page 309

308 Building and Using Apama Dashboards 10.11.2

11 Graph Objects

“confirmText” on page 310

“drillDownTarget” on page 310

command

Assign a command or group of commands to this stock chart by right-clicking on the command
property name in the Object Properties window. Select Define Command and choose SYSTEM,
APAMA, or MULTIPLE. See “Using the Define Apama Command dialog” on page 200.

Once a command or command group has been assigned to this object, you can activate it from a
deployed dashboard or from the Dashboard Builder:

Dashboard Builder: Double click on the object.

Web-based deployment: Single click on the object or else right click on it and select Execute
Command from the popup menu.

Local deployment: By default, single-click on the object or else right-click on it and select
Execute Command from the popup menu. To override the default, select Tools > Options
in the Builder (do this before you generate the deployment package), and uncheckSingle-Click
for Drill Down and Commands in the General tab. This allows the end user to use either a
double click or a right click.

When you activate a command, any defined drill down substitutions are performed, and then the
command is executed.

If you assign multiple commands, the commands are launched in an arbitrary order, and are
executed asynchronously; there is no guarantee that one command will finish before the next one
in the sequence starts.

This property is in the Interaction property group.

commandCloseWindowOnSuccess

Select this property to automatically close the window that initiates a SYSTEM command when
the command is executed successfully. This applies to SYSTEM commands only, and is not
supported at all for thin-client, web-page deployments.

With APAMA commands, the window is closed whether or not the command is executed
successfully. For MULTIPLE commands, the window closes when the first command in the
command group succeeds.

This property is in the Interaction property group.

commandConfirm

By default, when the end user executes a command (see the command property), the command
confirmation dialog is disabled. To control this option for each individual object, use the
commandConfirm check box. If confirmation is required for a MULTIPLE command group, a single
confirmation dialog is presented; if you confirm the execution, all individual commands in the

Building and Using Apama Dashboards 10.11.2 309

11 Graph Objects

group are executed with no further confirmation. If the you cancel the execution, none of the
commands in the group is executed.

You can also override the confirmation status of individual objectswith an application-wide policy.
Select Tools | Options and choose from three confirmation values:

Do not confirm: Indicates that no commands require confirmation (regardless of each object's
confirmation status).

Confirm all: Indicates that all commands require confirmation (regardless of each object's
confirmation status).

Use object confirm flag (default): Indicates that the confirmation status of each object will
determine whether confirmation is required.

This property is in the Interaction property group.

confirmText

Use this property to write your own text for the confirmation dialog. Otherwise, default text is
used. See commandConfirm.

This property is in the Interaction property group.

drillDownTarget

To specify a drill down display, double click on drillDownTarget in the Property Name field to
bring up the Drill Down Properties dialog. See “Drill-Down Specification” on page 521.

This property is in the Interaction property group.

Legend: Label group

Properties in this group control the legend's main label (which defaults to Legend), including
text, alignment, color, font, and size.

Label group properties

The group includes the following properties:

“label” on page 311

“labelTextAlignX” on page 311

“labelTextColor” on page 311

“labelTextFont” on page 311

“labelTextHeight” on page 311

310 Building and Using Apama Dashboards 10.11.2

11 Graph Objects

label

Specifies the text for the chart label. Click the ellipsis for multi-line text.

The default is Legend.

This property is in the Label property group.

labelTextAlignX

Sets the alignment of the chart label (see the label property). Select Left, Center, or Right from
the drop down list.

This property is in the Label property group.

labelTextColor

Specifies the color of the chart label text (see the label property). Select the ... button and choose a
color from the palette. Close the Color Chooser window when you are done.

This property is in the Label property group.

labelTextFont

Specifies the font of the chart label text (see the label property). Select an item from drop down
list.

This property is in the Label property group.

labelTextHeight

Specifies the point size of the chart label text (see the label property).

This property is in the Label property group.

Legend: Legend group
Properties in this group control the visibility, appearance, and content of the legend.

Legend group properties

The group contains the following properties:

“legendBgColor” on page 312

“legendBgGradientFlag” on page 312

“legendVisFlag” on page 312

“legendTextColor” on page 312

Building and Using Apama Dashboards 10.11.2 311

11 Graph Objects

“legendTextFont” on page 312

“legendTextHeight” on page 313

“legendValueMinSpace” on page 313

“legendValueVisFlag” on page 313

“legendVisFlag” on page 313

legendBgColor

Sets the fill color of the legend inner rectangle. The inner rectangle is smaller than and in front of
the legend's background rectangle (see “bgColor” on page 306). The chart label (see “label” on
page 311) lies outside of the inner rectangle; the rest of the legend text lieswithin the inner rectangle.

To set the color, select the ... button and choose a color from the palette to set the background color
of the legend. Close the Color Chooser window when you are done.

This property is in the Legend property group.

legendBgGradientFlag

Select to display a gradient in the legend inner rectangle (see legendBgColor).

This property is in the Legend property group.

legendVisFlag

Select to display the legend.

This property is in the Legend property group.

legendTextColor

Sets the color of the legend text (other than the chart label; see “label” on page 311 and
“labelTextColor” on page 311). To set the color, select the ... button and choose a color from the
palette. Close the Color Chooser window when you are done.

This property is in the Legend property group.

legendTextFont

Sets the font of the legend text (other than the chart label: see “label” on page 311 and
“labelTextFont” on page 311). Select an item from the drop down menu.

This property is in the Legend property group.

312 Building and Using Apama Dashboards 10.11.2

11 Graph Objects

legendTextHeight

Specifies the point size of the legend text (other than the chart label; see “label” on page 311 and
“labelTextHeight” on page 311)

This property is in the Legend property group.

legendValueMinSpace

Specifies the minimum number of pixels between values and labels in the legend. This property
applies only if legendValueVisFlag is enabled.

This property is in the Legend property group.

legendValueVisFlag

Select to display the numerical values of your data in the legend.

This property is in the Legend property group.

legendVisFlag

Select to display the legend.

This property is in the Legend property group.

Legend: Object group
Properties in this group control the visibility and transparency of the legend as a whole. They also
control (or reflect) the overall position and dimensions of the legend object. In addition, a property
in this group reflects the generated name of this individual legend.

Object group properties

“anchor” on page 314

“dock” on page 314

“objHeight” on page 314

“objName” on page 314

“objWidth” on page 314

“objX” on page 314

“objY” on page 314

“transparencyPercent” on page 315

“visFlag” on page 315

Building and Using Apama Dashboards 10.11.2 313

11 Graph Objects

anchor

Select zero or more of Top, Left, Bottom, and Right in order to control the object's placement.
The anchorproperty is only appliedwhen the display is resized either by changing theBackground
Properties on the display or by resizing the window in Layout mode. If an object has the dock
property set, the anchor property is ignored. See “About resize modes” on page 30.

dock

Select None (default), Top, Left, Bottom, Right, or Fill in order to control the object's placement
in Layout resize mode. See “About resize modes” on page 30.

objHeight

Set the height of a chart by entering a value for this property or by dragging a handle of the
bounding box that appears when the chart is selected. When you drag a handle of the bounding
box, the displayed value for this property changes to reflect the real-time height of the chart.

This property is in the Object property group.

objName

An identifier that is generated by the Dashboard Builder. This name can be used by other objects'
properties in order to refer to the named chart.

This property is in the Object property group.

objWidth

Set the width of a chart by entering a value for this property or by dragging a handle of the
bounding box that appears when the chart is selected. When you drag a handle of the bounding
box, the displayed value for this property changes to reflect the real-time width of the chart.

This property is in the Object property group.

objX

Sets the X coordinate of the center of this visualization object, relative to the lower left corner of
the current dashboard. This value is set automaticallywhen you position the objectwith themouse.

This property is in the Object property group.

objY

Sets the Y coordinate of the center of this visualization object, relative to the lower left corner of
the current dashboard. This value is set automaticallywhen you position the objectwith themouse.

This property is in the Object property group.

314 Building and Using Apama Dashboards 10.11.2

11 Graph Objects

transparencyPercent

Sets the transparency of this chart.

This property is in the Object property group.

visFlag

Deselect to make this visualization object invisible in the current dashboard.

This property is in the Object property group.

Pie graph
Pie graphs visualize one or more numerical columns from tabular data. A typical attachment has
either one row and multiple numeric columns, or multiple rows with one numeric column and
one non-numeric column (whose values are used as graph labels that uniquely identify each row).

A pie graph can visualize data in either of two ways:

Column series: The first numeric column of the visualized data is used to populate thewedges
in the pie. Each wedge corresponds to a row and displays that row's relative value.

Row series: The first row of the visualized data is used to populate the wedges in the pie. Each
wedge corresponds to a numerical column and displays that column's relative value.

Use the valueTable property to attach data to a pie graph. Use the rowSeriesFlag property to
specify row series or column series visualization.

When a pie graph is selected in the Builder canvas, the Object Class Name that appears at the
top of the Object Properties pane is obj_pie.

The Object Properties panel organizes pie graph properties into the groups below.

Pie graph: Background group
Properties in this group control the visibility and appearance of the portion of the graph that serves
as the background of both the pie and the legend.

Building and Using Apama Dashboards 10.11.2 315

11 Graph Objects

Background group properties

The group contains the following properties:

“bgBorderColor” on page 316

“bgBorderFlag” on page 316

“bgColor” on page 316

“bgEdgeWidth” on page 316

“bgGradientColor2” on page 317

“bgGradientMode” on page 317

“bgRaisedFlag” on page 317

“bgRoundness” on page 317

“bgShadowFlag” on page 317

“bgStyleFlag” on page 318

“bgVisFlag” on page 318

“borderPixels” on page 318

bgBorderColor

Sets the color of the border (see bgBorderFlag) of the background rectangle. Select the ... button
and choose a color from the palette. Close the Color Chooser window when you are done.

bgBorderFlag

Select to display a border around the background rectangle.

This property is in the Background property group.

bgColor

Sets the background color. Select the ... button and choose a color from the palette. Close the Color
Chooser window when you are done.

This property is in the Background property group.

bgEdgeWidth

Sets the width in pixels of the 3D edge on the background rectangle. This property is only used if
bgBorderFlag is selected.

This property is in the Background property group.

316 Building and Using Apama Dashboards 10.11.2

11 Graph Objects

bgGradientColor2

Sets the color for the second color in the gradient. The default is white. The bgColor property sets
the first color in the gradient.

This property is in the Background property group.

bgGradientMode

Display a gradient in the background rectangle. Select from the following options:

None: No gradient.

Diagonal Edge: Gradient is drawn at a 45 degree angle from the top left to the bottom right
corner of the object.

Diagonal Center: Gradient is drawn at a 45 degree angle from the center to the top left and
the bottom right corners of the object.

Horizontal Edge: Gradient is drawn horizontally from the top to the bottom of the object.

Horizontal Center: Gradient is drawn horizontally from the center to the top and bottom of
the object.

Vertical Edge: Gradient is drawn vertically from the left to the right of the object.

Vertical Center: Gradient is drawn vertically from the center to the left and right of the object.

This property is in the Background property group.

bgRaisedFlag

Reverses the direction of the gradient, as well as that of the 3D edge if the bgStyle selected is 3D
Rectangle.

This property is in the Background property group.

bgRoundness

Sets the arc length of the rounded corners. This property is only available if the bgStyle selected
is Round Rectangle.

The value of bgRoundness cannot exceed half the value of the objWidth or the objHeight. If
bgRoundness does exceed that value, half of objWidth or objHeight (whichever is smaller) will be
used instead. For example if objWidth is 100 and objHeight is 50, then the value of bgRoundness
cannot exceed 25. If it does, then half the value of objHeight (25) will be used instead. This property
is in the Background property group.

bgShadowFlag

Select to display a drop shadow on the background rectangle.

Building and Using Apama Dashboards 10.11.2 317

11 Graph Objects

This property is in the Background property group.

bgStyleFlag

Choose one of the following three options from the drop down menu:

Rectangle: Select to display a background rectangle.

3D Rectangle: Select to display a 3D edge on the background rectangle. If selected, use
bgEdgeWidth to set the width of the 3D edge.

Round Rectangle: Select to display a background rectangle with rounded edges. If selected,
use bgRoundness to set the arc length of the rounded corners.

This property is in the Background property group.

bgVisFlag

Select to display the background rectangle.

This property is in the Background property group.

borderPixels

Sets the width in pixels of the border between the chart and the edge of the background rectangle.

This property is in the Background property group.

Pie graph: Column group
This group contains one property, columnsToHide,which controlswhich data-attachment columns
are excluded from being used for charted data or labels.

columnsToHide

Specify columns from the data attachment to exclude from being used for charted data or labels.

Data from the labelColumnName column will be used for labels even if that column name is also
specified in the columnsToHide property.

Columns specified in the columnsToHide property can still be used in the drillDownColumnSubs
property.

This property is in the Column property group.

Pie graph: Data group
Properties in this group control what data appears in the graph, and whether the data appears in
column series or row series form.

318 Building and Using Apama Dashboards 10.11.2

11 Graph Objects

Data group properties

The group contains the following properties:

“rowSeriesFlag” on page 250

“valueTable” on page 252

rowSeriesFlag

This property controls whether row or column data populates the graph:

When the rowSeriesFlag checkbox is not selected, the first numeric column from your data
attachment is used to populate the wedges in the pie. Eachwedge corresponds to a row in that
column and displays that row's relative value.

If the rowSeriesFlag checkbox is selected, the first row from your data attachment is used to
populate the wedges in the pie. Each wedge corresponds to a numerical column in that row
and displays that column's relative value. Column names are used in the legend.

This property is in the Data property group.

valueTable

Attach your data to the valueTable property. Right-click on the property name in the Object
Properties panel, and select a menu item under Attach to Data. A typical attachment has either
multiple rows, one numeric column, and one non-numeric column, or one row and multiple
numeric columns.

The rowSeriesFlag property controls how row and column data populates the graph:

When the rowSeriesFlag checkbox is not selected, the first numeric column from your data
attachment is used to populate the wedges in the pie. Eachwedge corresponds to a row in that
column and displays that row's relative value.

If the rowSeriesFlag checkbox is selected, the first row from your data attachment is used to
populate the wedges in the pie. Each wedge corresponds to a numerical column in that row
and displays that column's relative value. Column names are used in the legend.

This property is in the Data property group.

Pie graph: Data Format group
Properties on this group control the format of displayed wedge values as well as numerical and
date labels.

Data Format group properties

The group includes the following properties:

“labelColumnFormat” on page 320

Building and Using Apama Dashboards 10.11.2 319

11 Graph Objects

“valueFormat” on page 320

labelColumnFormat

Sets the format of numeric or date labels displayed in the legend, and in tooltips.

Select or enter the format specification. Use syntax from the Java DecimalFormat class for numeric
labels, and syntax from the Java SimpleDateFormat class for date labels.

To enable tooltips, select the mouseOverFlag.

This property is in the Data Format property group.

valueFormat

Select or enter the numeric format of wedge values displayed on wedges, in the legend and in
tooltips. Use syntax from the Java DecimalFormat class. To enable tooltips, select themouseOverFlag.

This property is in the Data Format property group.

Pie graph: Data Label group
Properties in this group control the labels that are in the legend and in tooltips.

Data Label properties

The group contains the following properties:

“columnDisplayNames” on page 320

“labelColumnName” on page 320

“rowLabelVisFlag” on page 321

“rowNameVisFlag” on page 321

columnDisplayNames

Set alternate display names for the columns of the data attached to valueTable. Column names
are displayed in the legend, if rowSeriesFlag is selected.

This property is in the Data Label property group.

labelColumnName

Sets the label column. By default, the label column is the first non-numeric text column in your
data attachment, if there is one.Note that the column apama.instanceID (contained in all DataView
instance tables) is a non-numerical text column.

Data from the label column is used to label the legend, if rowSeriesFlag is disabled. Data from the
label column is used in tooltips, if rowSeriesFlag and mouseOverFlag are enabled.

320 Building and Using Apama Dashboards 10.11.2

11 Graph Objects

This property is in the Data Label property group.

rowLabelVisFlag

Determines whether or not data from the label column is used in the chart legend, when
rowSeriesFlag is disabled. See labelColumnName. If rowLabelVisFlag is disabled, integer row
identifiers are used in the legend.

This property is in the Data Label property group.

rowNameVisFlag

If your data attachment has no label column (see labelColumnName), select this property to use
generated row names in the legend when the rowSeriesFlag is not selected.

This property is in the Data Label property group.

Pie graph: Historian group
Do not use the properties in this group.

historyTableName

Do not use this property.

This property is in the Historian property group.

historyTableRowNameFlag

Do not use this property.

This property is in the Historian property group.

Pie graph: Interaction group
Properties in this group control various forms of interaction between the end user and the graph,
including configuring command, drill down, and tooltip interactions.

Interaction group properties

The group includes the following properties:

“command” on page 322

“commandCloseWindowOnSuccess” on page 322

“commandConfirm” on page 323

“confirmText” on page 323

Building and Using Apama Dashboards 10.11.2 321

11 Graph Objects

“drillDownColumnSubs” on page 323

“drillDownSelectMode” on page 324

“drillDownTarget” on page 324

“mouseOverFlag” on page 324

command

Assign a command or group of commands to this stock chart by right-clicking on the command
property name in theObject Propertieswindow. SelectDefine Command and chooseSYSTEM,
APAMA, or MULTIPLE. See “Using the Define Apama Command dialog” on page 200.

Once a command or command group has been assigned to this object, you can activate it from a
deployed dashboard or from the Dashboard Builder:

Dashboard Builder: Double click on the object.

Web-based deployment: Single click on the object or else right click on it and select Execute
Command from the popup menu.

Local deployment: By default, single-click on the object or else right-click on it and select
Execute Command from the popup menu. To override the default, select Tools | Options in
the Builder (do this before you generate the deployment package), and uncheck Single-Click
for Drill Down and Commands in the General tab. This allows the end user to use either a
double click or a right click.

When you activate a command, any defined drill down substitutions are performed, and then the
command is executed.

If you assign multiple commands, the commands are launched in an arbitrary order, and are
executed asynchronously; there is no guarantee that one command will finish before the next one
in the sequence starts.

This property is in the Interaction property group.

commandCloseWindowOnSuccess

Select this property to automatically close the window that initiates a SYSTEM command when
the command is executed successfully. This applies to SYSTEM commands only, and is not
supported at all for thin-client, web-page deployments.

With APAMA commands, the window is closed whether or not the command is executed
successfully. For MULTIPLE commands, the window closes when the first command in the
command group succeeds.

This property is in the Interaction property group.

322 Building and Using Apama Dashboards 10.11.2

11 Graph Objects

commandConfirm

By default, when the end user executes a command (see the command property), the command
confirmation dialog is disabled. To control this option for each individual object, use the
commandConfirm check box. If confirmation is required for a MULTIPLE command group, a single
confirmation dialog is presented; if you confirm the execution, all individual commands in the
group are executed with no further confirmation. If the you cancel the execution, none of the
commands in the group is executed.

You can also override the confirmation status of individual objectswith an application-wide policy.
Select Tools | Options and choose from three confirmation values:

Do not confirm: Indicates that no commands require confirmation (regardless of each object's
confirmation status).

Confirm all: Indicates that all commands require confirmation (regardless of each object's
confirmation status).

Use object confirm flag (default): Indicates that the confirmation status of each object will
determine whether confirmation is required.

This property is in the Interaction property group.

confirmText

Use this property to write your own text for the confirmation dialog. Otherwise, default text is
used. See commandConfirm.

This property is in the Interaction property group.

drillDownColumnSubs

Use this property to direct a dashboard to assign data-table column values to specified dashboard
variableswhen the end user activates a drilldown on this object. In theObject Propertieswindow,
double-click on drillDownColumnSubs in the Property Name field to bring up the Drill Down
Column Substitutions dialog.

The dialog has the following fields and buttons:

Substitution String: Enter the dashboard variable next to the name of the data table column
whose value you want assigned to the variable. Press Enter.

Add Column: Enter the name of a column and click theAdd Column button to insert a column
into the table.

Clear: Click the Clear button to remove all variables listed.

The Column Name list is populated based on the table's data attachment. If you have not yet
attached the table to data, this list is empty.

Once you have selected which column values to pass in as substitutions, double-click on any
element in your object to open a drill down window that displays corresponding values.

Building and Using Apama Dashboards 10.11.2 323

11 Graph Objects

This property is in the Interaction property group.

drillDownSelectMode

Use this property to control how a drill down display is activated. Select one of the following:

Anywhere to activate a drill down display by double-clicking anywhere on the chart.

Element Only to enable a drill down display only when you double-click on an element of
the chart, such as a bar or candlestick.

This property is in the Interaction property group.

drillDownTarget

To specify a drill down display, double click on drillDownTarget in the Property Name field to
bring up the Drill Down Properties dialog. See “Drill-Down Specification” on page 521.

This property is in the Interaction property group.

mouseOverFlag

Select this property to enable tooltips for your pie graph. To display a tooltip, point to a pie wedge
with your mouse. The tooltip will contain information from your data attachment about that pie
wedge.

This property is in the Interaction property group.

Pie graph: Label group

Properties in this group control the graph's main label (which defaults to Pie Graph), including
text, alignment, color, font, and size.

Label group properties

The group includes the following properties:

“label” on page 324

“labelTextAlignX” on page 325

“labelTextColor” on page 325

“labelTextFont” on page 325

“labelTextHeight” on page 325

label

Specifies the text for the chart label. Click the ellipsis for multi-line text.

324 Building and Using Apama Dashboards 10.11.2

11 Graph Objects

The default is Pie Graph.

This property is in the Label property group.

labelTextAlignX

Sets the alignment of the chart label (see the label property). Select Left, Center, or Right from
the drop down list.

This property is in the Label property group.

labelTextColor

Specifies the color of the chart label text (see the label property). Select the ... button and choose
a color from the palette. Close the Color Chooser window when you are done.

This property is in the Label property group.

labelTextFont

Specifies the font of the chart label text (see the label property). Select an item from drop down
list.

This property is in the Label property group.

labelTextHeight

Specifies the point size of the chart label text (see the label property).

This property is in the Label property group.

Pie graph: Legend group
Properties in this group control the visibility, appearance, and content of the graph legend.

Legend group properties

The group contains the following properties:

“legendBgColor” on page 326

“legendBgGradientFlag” on page 326

“legendValueVisFlag” on page 326

“legendVisFlag” on page 326

“legendWidthPercent” on page 326

Building and Using Apama Dashboards 10.11.2 325

11 Graph Objects

legendBgColor

Select the ... button and choose a color from the palette to set the background color of the legend.
Close the Color Chooser window when you are done.

This property is in the Legend property group.

legendBgGradientFlag

Select to display a gradient in the legend background.

This property is in the Legend property group.

legendValueVisFlag

Select to display the numerical values of your data in the legend.

This property is in the Legend property group.

legendVisFlag

Select to display the legend.

This property is in the Legend property group.

legendWidthPercent

Set the percent of the total width of the object used for the legend.

This property is in the Legend property group.

Pie graph: Object group
Properties in this group control the visibility and transparency of the graph as a whole. They also
control (or reflect) the overall position and dimensions of the graph. In addition, a property in this
group reflects the generated name of this individual graph.

Object group properties

This group contains the following properties:

“anchor” on page 327

“dock” on page 327

“objHeight” on page 327

“objName” on page 327

“objWidth” on page 327

326 Building and Using Apama Dashboards 10.11.2

11 Graph Objects

“objX” on page 327

“objY” on page 328

“transparencyPercent” on page 328

“visFlag” on page 328

anchor

Select zero or more of Top, Left, Bottom, and Right in order to control the object's placement.
The anchorproperty is only appliedwhen the display is resized either by changing theBackground
Properties on the display or by resizing the window in Layout mode. If an object has the dock
property set, the anchor property is ignored. See “About resize modes” on page 30.

dock

Select None (default), Top, Left, Bottom, Right, or Fill in order to control the object's placement
in Layout resize mode. See “About resize modes” on page 30.

objHeight

Set the height of a chart by entering a value for this property or by dragging a handle of the
bounding box that appears when the chart is selected. When you drag a handle of the bounding
box, the displayed value for this property changes to reflect the real-time height of the chart.

This property is in the Object property group.

objName

An identifier that is generated by the Dashboard Builder. This name can be used by other objects'
properties in order to refer to the named chart.

This property is in the Object property group.

objWidth

Set the width of a chart by entering a value for this property or by dragging a handle of the
bounding box that appears when the chart is selected. When you drag a handle of the bounding
box, the displayed value for this property changes to reflect the real-time width of the chart.

This property is in the Object property group.

objX

Sets the X coordinate of the center of this visualization object, relative to the lower left corner of
the current dashboard. This value is set automaticallywhen you position the objectwith themouse.

This property is in the Object property group.

Building and Using Apama Dashboards 10.11.2 327

11 Graph Objects

objY

Sets the Y coordinate of the center of this visualization object, relative to the lower left corner of
the current dashboard. This value is set automaticallywhen you position the objectwith themouse.

This property is in the Object property group.

transparencyPercent

Sets the transparency of this chart.

This property is in the Object property group.

visFlag

Deselect to make this visualization object invisible in the current dashboard.

This property is in the Object property group.

Pie graph: Wedge group
Properties in this group control the appearance of the pie's wedges, including thickness, gradient
effect, and color.

Wedge group properties

This group contains the following properties:

“pieThickness” on page 328

“wedgeGradientFlag” on page 328

“wedgeProperties” on page 329

pieThickness

Sets the thickness of the wedges in pixels.

This property is in the Wedge property group.

wedgeGradientFlag

Select the box to enable the gradient effect in the wedges.

This property is in the Wedge property group.

328 Building and Using Apama Dashboards 10.11.2

11 Graph Objects

wedgeProperties

Use this property to assign a color to each wedge in a pie graph. In the Object Properties window,
double-click on wedgeProperties in the Property Name field to bring up the Wedge Properties
dialog.

Note:
Before you assign attributes towedges in your pie graph, it is recommended that you first attach
the pie graph to data.

The Wedge Properties dialog has two columns of fields:

Wedge: Each wedge from the pie graph is listed.

Color: Select the ellipsis button in the and choose a color from the palette. Close the Color
Chooser window.

The dialog has the following buttons:

Add Wedge Property: Click to add a wedge entry field. The data for the wedge does not have
to be available yet. You may consider adding and assigning attributes to more wedges than
your data currently needs for when you have more data to show.

Delete Wedge Property: Removes the last wedge entry field from the Wedge Properties
dialog.

OK: Applies values and closes the dialog.

Apply: Applies values without closing the dialog.

Reset: Resets all fields to last values applied.

Clear: Clears all fields. Detaches object from data source (once Apply or OK is selected).

Building and Using Apama Dashboards 10.11.2 329

11 Graph Objects

Cancel: Closes the dialog with last values applied.

This property is in the Wedge property group.

HTML5 Pie graph
The HTML5 pie chart is an HTML implementation of an swing pie chart object. In the thin client,
the HTML5 pie chart provides an interactive, high performance pie chart without requiring the
Flash player or other browser plug-ins. A new property named webChartFlag has been added to
the swing (obj_pie) pie charts. You can enable the HTML5 pie chart object by selecting the
webChartFlag property, which is available on obj_pie object .When the display is opened in the
thin client in a web compatible browser, the HTML5 pie chart appears in place of swing pie chart.

HTML5 pie graph behavior
There are some behavioral differences between the swing pie chart and the HTML5 pie chart:

Stretching. Unlike the swing pie chart (obj_pie), the HTML5 pie chart does not stretch to an
oval shape to fill the available space. Instead, the HTML5 pie chart remains round, with its
diameter determined by the smaller dimension.

Slice Order. In the swing pie chart, the bottom edge of the first wedge/slice corresponding to
the first row in the valueTable is drawn at 0 degrees (that is, its bottom edge is horizontal).
The slices for subsequent rows follow in counter-clockwise order. In the HTML5 pie chart, the
first slice is drawn at 90 degrees, so its left edge is vertical. The slices for subsequent rows
follow in clockwise order.

Tooltip. The tooltip on the HTML5 pie chart shows the label and value for a wedge, but does
not show its computed percentage.

HTML5 pie graph properties
The HTML5 pie chart supports all of the major properties available in the swing pie charts.
However, several minor properties are not supported or have limited support in the HTML5 pie
chart. The following properties are not supported by HTML5 pie chart:

Background group

bgEdgeWidth

bgGradientColor2

borderPixels

Data Format group

labelColumnFormat

Data Label group

rowLabelVisFlag

330 Building and Using Apama Dashboards 10.11.2

11 Graph Objects

rowNameVisFlag

Label group

labelMinTabWidth

Legend group

legendBgGradientMode

legendBgGradientColor2

legendWidthPercent

legendValueVisFlag

legendPercentVisFlag

outlineColor

Object group

transparencyPercent

Radar graph
Radar graphs visualize tabular data that has one or more numerical columns. Typically, the
visualized data also has one non-numerical column whose values are used as graph labels that
uniquely identify each row.

A radar graph can visualize data in either of two ways:

Building and Using Apama Dashboards 10.11.2 331

11 Graph Objects

Row series visualization: The graph displays one radial grid line for each numeric column of
the visualized data, and one trace for each row of the data. A given trace intersects a given
radial grid line at a distance (from the graph's center) that is proportional to the value of the
grid line's corresponding column for the trace's corresponding row. A marker is displayed at
the point of intersection.

Column series visualization: The graph displays one radial grid line for each row of your data
attachment, and one trace for each numeric column of your data attachment. A given trace
intersects a given radial grid line at a distance (from the graph's center) that is proportional to
the value of the trace's corresponding column for the grid line's corresponding row. Amarker
is displayed at the point of intersection.

Use the valueTable property to attach data to a radar graph. Use the rowSeriesFlag property to
specify row series or column series visualization.

When a radar graph is selected in the Builder canvas, the Object Class Name that appears at the
top of the Object Properties pane is obj_radar.

The Object Properties panel organizes radar graph properties into the groups below.

Radar graph: Alert group
Properties in this group allow you to specify changes in the appearance of trace lines andmarkers
that signal changes in the status of specified data elements. You can specify threshold values (see
valueHighAlarm, valueHighWarning, valueLowAlarm, and valueHighWarning) or attach a data
table to valueAlarmStatusTable that indicates the status of each element of the table that is attached
to valueTable.

Alert group properties

This group includes the following properties:

“valueAlarmStatusTable” on page 333

“valueHighAlarm” on page 334

“valueHighAlarmEnabledFlag” on page 334

“valueHighAlarmLineVisFlag” on page 334

“valueHighAlarmMarkColor” on page 334

“valueHighAlarmMarkStyle” on page 334

“valueHighWarning” on page 335

“valueHighWarningEnabledFlag” on page 335

“valueHighWarningLineVisFlag” on page 335

“valueHighWarningMarkColor” on page 335

“valueHighWarningMarkStyle” on page 335

332 Building and Using Apama Dashboards 10.11.2

11 Graph Objects

“valueLowAlarm” on page 336

“valueLowAlarmEnabledFlag” on page 336

“valueLowAlarmLineVisFlag” on page 336

“valueLowAlarmMarkColor” on page 336

“valueLowAlarmMarkStyle” on page 336

“valueLowWarning” on page 337

“valueLowWarningEnabledFlag” on page 337

“valueLowWarningLineVisFlag” on page 337

“valueLowWarningMarkColor” on page 337

“valueLowWarningMarkStyle” on page 337

valueAlarmStatusTable

Attach an alarm table containing status indexes to this property in order to enable rule based alarm
statuses for trace markers. The table attached to valueAlarmStatusTablemust have the same
number of rows and columns as valueTable. For each data element in valueTable, the status index
at the corresponding position in valueAlarmStatusTable is used to set the alarm status of the
marker that represents the data element.

Following are the valid indexes are:

0: Use normal marker color and style. See “traceProperties” on page 268.

1: Use low alarm marker color and style. See “valueLowAlarmMarkColor” on page 336 and
“valueLowAlarmMarkStyle” on page 336.

2: Use low warning marker color and style. See “valueLowWarningMarkColor” on page 337
and “valueLowWarningMarkStyle” on page 337.

3: Use high warning marker color and style. See “valueHighWarningMarkColor” on page 335
and “valueHighWarningMarkStyle” on page 335.

4: Use high alarm marker color and style. See “valueHighAlarmMarkColor” on page 334 and
“valueHighAlarmMarkStyle” on page 334.

-1: Determine marker color and style by comparing the value to the enabled alarm thresholds.
See “valueHighAlarm” on page 334, “valueHighWarning” on page 335, “valueLowAlarm” on
page 336, and “valueLowWarning” on page 337.

If no data is attached to valueAlarmStatusTable, the alarm status for a trace marker is determined
by comparing the marker's value to the enabled thresholds. See valueHighAlarm,
valueHighWarning, valueLowAlarm, and valueLowWarning.

This property is in the Alert property group.

Building and Using Apama Dashboards 10.11.2 333

11 Graph Objects

valueHighAlarm

Specifies the threshold value used by valueHighAlarmLineVisFlag, valueHighAlarmMarkColor,
and valueHighAlarmMarkStyle.

This property is in the Alert property group.

valueHighAlarmEnabledFlag

Select to enable the high alarm threshold. See valueHighAlarm.

This property is in the Alert property group.

valueHighAlarmLineVisFlag

Select to display a dashed line at the high alarm threshold. The color of the line is set to
valueHighAlarmMarkColor. This line is displayed only if valueHighAlarmEnabledFlag is selected.

This property is in the Alert property group.

valueHighAlarmMarkColor

When a trace marker's value is greater than or equal to valueHighAlarm, the marker changes to
valueHighAlarmMarkColor andvalueHighWarningMarkStyle, providedvalueHighAlarmEnabledFlag
is selected and no data is attached to valueAlarmStatusTable.

If data is attached to valueAlarmStatusTable, a marker changes to valueHighAlarmMarkColor and
valueHighAlarmMarkStylewhen themarker's corresponding element in the attached alarm status
table is 4.

If data is attached to valueAlarmStatusTable, and the marker's corresponding element in the
attached alarm status table is -1, marker color and style behave as if no data were attached to
valueAlarmStatusTable.

This property is in the Alert property group.

valueHighAlarmMarkStyle

When a trace marker's value is greater than or equal to valueHighAlarm, the marker changes to
valueHighAlarmMarkColor and valueHighAlarmMarkStyle, providedvalueHighAlarmEnabledFlag
is selected and no data is attached to valueAlarmStatusTable.

If data is attached to valueAlarmStatusTable, a marker changes to valueHighAlarmMarkColor
and valueHighAlarmMarkStylewhen the marker's corresponding element in the attached alarm
status table is 4.

If data is attached to valueAlarmStatusTable, and the marker's corresponding element in the
attached alarm status table is -1, marker color and style behave as if no data were attached to
valueAlarmStatusTable.

This property is in the Alert property group.

334 Building and Using Apama Dashboards 10.11.2

11 Graph Objects

valueHighWarning

Specifies the threshold value used by valueHighWarningLineVisFlag,
valueHighWarningMarkColor, and valueHighWarningMarkStyle.

This property is in the Alert property group.

valueHighWarningEnabledFlag

Select to enable the high warning threshold. See valueHighWarning.

This property is in the Alert property group.

valueHighWarningLineVisFlag

Select to display a dashed line at the high warning threshold. The color of the line is set to
valueHighWarningMarkColor. This line is displayed only if valueHighWarningEnabledFlag is
selected.

This property is in the Alert property group.

valueHighWarningMarkColor

When a trace marker's value is greater than or equal to valueHighWarning but less than
valueHighAlarm, the marker changes to valueHighWarningMarkColor and
valueHighAlarmMarkStyle, provided valueHighAlarmEnabledFlag is selected and no data is
attached to valueAlarmStatusTable.

If data is attached to valueAlarmStatusTable, a marker changes to valueHighWarningMarkColor
and valueHighWarningMarkStylewhen themarker's corresponding element in the attached alarm
status table is 3.

If data is attached to valueAlarmStatusTable, and the marker's corresponding element in the
attached alarm status table is -1, marker color and style behave as of no data were attached to
valueAlarmStatusTable.

This property is in the Alert property group.

valueHighWarningMarkStyle

When a trace marker's value is greater than or equal to valueHighWarning but less than
valueHighAlarm, the marker changes to valueHighWarningMarkColor and
valueHighWarningMarkStyle, provided valueHighWarningEnabledFlag is selected and no data is
attached to valueAlarmStatusTable.

If data is attached to valueAlarmStatusTable, a marker changes to valueHighWarningMarkColor
and valueHighWarningMarkStylewhen the marker's corresponding element in the attached alarm
status table is 3.

Building and Using Apama Dashboards 10.11.2 335

11 Graph Objects

If data is attached to valueAlarmStatusTable, and the marker's corresponding element in the
attached alarm status table is -1, marker color and style behave as of no data were attached to
valueAlarmStatusTable.

This property is in the Alert property group.

valueLowAlarm

Specifies the threshold value used by valueLowAlarmLineVisFlag, valueLowAlarmMarkColor,
and valueLowWarningMarkStyle.

This property is in the Alert property group.

valueLowAlarmEnabledFlag

Select to enable the low alarm threshold. See valueLowAlarm.

This property is in the Alert property group.

valueLowAlarmLineVisFlag

Select to display a dashed line at the low alarm threshold. The color of the line is set to
valueLowAlarmMarkColor. This line is displayed only if valueLowAlarmEnabledFlag is selected.

This property is in the Alert property group.

valueLowAlarmMarkColor

When a trace marker's value is less than or equal to valueLowAlarm, the marker changes to
valueLowAlarmMarkColor and valueLowAlarmMarkStyle, provided valueLowAlarmEnabledFlag
is selected and no data is attached to valueAlarmStatusTable.

If data is attached to valueAlarmStatusTable, a marker changes to valueLowAlarmMarkColor and
valueLowAlarmMarkStylewhen themarker's corresponding element in the attached alarm status
table is 1.

If data is attached to valueAlarmStatusTable, and the marker's corresponding element in the
attached alarm status table is -1, marker color and style behave as of no data were attached to
valueAlarmStatusTable.

This property is in the Alert property group.

valueLowAlarmMarkStyle

When a trace marker's value is less than or equal to valueLowAlarm, the marker changes to
valueLowAlarmMarkColor and valueLowAlarmMarkStyle, provided valueLowAlarmEnabledFlag
is selected and no data is attached to valueAlarmStatusTable.

If data is attached to valueAlarmStatusTable, amarker changes to valueLowAlarmMarkColor and
valueLowAlarmMarkStylewhen the marker's corresponding element in the attached alarm status
table is 1.

336 Building and Using Apama Dashboards 10.11.2

11 Graph Objects

If data is attached to valueAlarmStatusTable, and the marker's corresponding element in the
attached alarm status table is -1, marker color and style behave as of no data were attached to
valueAlarmStatusTable.

This property is in the Alert property group.

valueLowWarning

Specifies the threshold value used byvalueLowWarningLineVisFlag, valueLowWarningMarkColor,
and valueLowWarningMarkStyle.

This property is in the Alert property group.

valueLowWarningEnabledFlag

Select to enable the low warning threshold. See valueLowWarning.

This property is in the Alert property group.

valueLowWarningLineVisFlag

Select to display a dashed line at the low warning threshold. The color of the line is set to
valueLowWarningMarkColor. This line is displayed only if valueLowWarningEnabledFlag is
selected.

This property is in the Alert property group.

valueLowWarningMarkColor

When a trace marker's value is less than or equal to valueLowWarning but greater than
valueLowAlarm, themarker changes to valueLowWarningMarkColor andvalueLowAlarmMarkStyle,
provided valueLowWarningEnabledFlag is selected and no data is attached to
valueAlarmStatusTable.

If data is attached to valueAlarmStatusTable, a marker changes to valueLowWarningMarkColor and
valueLowWarningMarkStyle when the marker's corresponding element in the attached alarm
status table is 2.

If data is attached to valueAlarmStatusTable, and the marker's corresponding element in the
attached alarm status table is -1, marker color and style behave as of no data were attached to
valueAlarmStatusTable.

This property is in the Alert property group.

valueLowWarningMarkStyle

When a trace marker's value is less than or equal to valueLowWarning but greater than
valueLowAlarm, the marker changes to valueLowWarningMarkColor and
valueLowWarningMarkStyle, provided valueLowWarningEnabledFlag is selected and no data is
attached to valueAlarmStatusTable.

Building and Using Apama Dashboards 10.11.2 337

11 Graph Objects

If data is attached to valueAlarmStatusTable, a marker changes to valueLowWarningMarkColor
and valueLowWarningMarkStylewhen the marker's corresponding element in the attached alarm
status table is 2.

If data is attached to valueAlarmStatusTable, and the marker's corresponding element in the
attached alarm status table is -1, marker color and style behave as of no data were attached to
valueAlarmStatusTable.

This property is in the Alert property group.

Radar graph: Background group
Properties in this group control the visibility and appearance of the portion of the graph that serves
as the background of both the plot area and legend.

Background group properties

The group contains the following properties:

“bgBorderColor” on page 338

“bgBorderFlag” on page 338

“bgColor” on page 339

“bgEdgeWidth” on page 339

“bgGradientColor2” on page 339

“bgGradientMode” on page 339

“bgRaisedFlag” on page 339

“bgRoundness” on page 340

“bgShadowFlag” on page 340

“bgStyleFlag” on page 340

“bgVisFlag” on page 340

“borderPixels” on page 340

bgBorderColor

Sets the color of the border (see bgBorderFlag) of the background rectangle. Select the ... button
and choose a color from the palette. Close the Color Chooser window when you are done.

bgBorderFlag

Select to display a border around the background rectangle.

This property is in the Background property group.

338 Building and Using Apama Dashboards 10.11.2

11 Graph Objects

bgColor

Sets the background color. Select the ... button and choose a color from the palette. Close the Color
Chooser window when you are done.

This property is in the Background property group.

bgEdgeWidth

Sets the width in pixels of the 3D edge on the background rectangle. This property is only used if
bgBorderFlag is selected.

This property is in the Background property group.

bgGradientColor2

Sets the color for the second color in the gradient. The default is white. The bgColor property sets
the first color in the gradient.

This property is in the Background property group.

bgGradientMode

Display a gradient in the background rectangle. Select from the following options:

None: No gradient.

Diagonal Edge: Gradient is drawn at a 45 degree angle from the top left to the bottom right
corner of the object.

Diagonal Center: Gradient is drawn at a 45 degree angle from the center to the top left and
the bottom right corners of the object.

Horizontal Edge: Gradient is drawn horizontally from the top to the bottom of the object.

Horizontal Center: Gradient is drawn horizontally from the center to the top and bottom of
the object.

Vertical Edge: Gradient is drawn vertically from the left to the right of the object.

Vertical Center: Gradient is drawn vertically from the center to the left and right of the object.

This property is in the Background property group.

bgRaisedFlag

Reverses the direction of the gradient, as well as that of the 3D edge if the bgStyle selected is 3D
Rectangle.

This property is in the Background property group.

Building and Using Apama Dashboards 10.11.2 339

11 Graph Objects

bgRoundness

Sets the arc length of the rounded corners. This property is only available if the bgStyle selected
is Round Rectangle.

The value of bgRoundness cannot exceed half the value of the objWidth or the objHeight. If
bgRoundness does exceed that value, half of objWidth or objHeight (whichever is smaller) will be
used instead. For example if objWidth is 100 and objHeight is 50, then the value of bgRoundness
cannot exceed 25. If it does, then half the value of objHeight (25) will be used instead. This property
is in the Background property group.

bgShadowFlag

Select to display a drop shadow on the background rectangle.

This property is in the Background property group.

bgStyleFlag

Choose one of the following three options from the drop down menu:

Rectangle: Select to display a background rectangle.

3D Rectangle: Select to display a 3D edge on the background rectangle. If selected, use
bgEdgeWidth to set the width of the 3D edge.

Round Rectangle: Select to display a background rectangle with rounded edges. If selected,
use bgRoundness to set the arc length of the rounded corners.

This property is in the Background property group.

bgVisFlag

Select to display the background rectangle.

This property is in the Background property group.

borderPixels

Sets the width in pixels of the border between the chart and the edge of the background rectangle.

This property is in the Background property group.

Radar graph: Column group
This group contains one property, columnsToHide,which controlswhich data-attachment columns
are excluded from being used for plotted data or labels.

340 Building and Using Apama Dashboards 10.11.2

11 Graph Objects

columnsToHide

Specify columns from the data attachment to exclude from being used for plotted data or labels.
Data from the labelColumnName column will be used for labels even if that column name is also
specified in the columnsToHide property. Columns specified in the columnsToHide property can
still be used in the drillDownColumnSubs property.

This property is in the Column property group.

Radar graph: Data group
Properties in this group controlwhat data appears in the graph, aswell aswhether the data appears
in column series or row series form.

The group contains the following properties:

“rowSeriesFlag” on page 341

“valueDivisor” on page 342

“valueDivisor” on page 342

“valueMin” on page 342

“valueTable” on page 342

rowSeriesFlag

The rowSeriesFlag property controls how data populates the graph:

If the rowSeriesFlag is enabled, the graph displays one radial grid line for each numeric column
of your data attachment (see valueTable), and one trace for each row of your data attachment.
A given trace intersects a given radial grid line at a distance (from the graph's center) that is
proportional to the value of the grid line's corresponding column for the trace's corresponding
row. A marker is displayed at the point of intersection.

If the attachment has a label column (see labelColumnName) and rowLabelVisFlag is selected,
values from that column are used as legend labels. If radialAxisLabelVisFlag is enabled, the
numerical column names appear as labels along the radial axis.

If the rowSeriesFlag is disabled, the graph displays one radial grid line for each row of your
data attachment (see valueTable), and one trace for each numeric column of your data
attachment. A given trace intersects a given radial grid line at a distance (from the graph's
center) that is proportional to the value of the trace's corresponding column for the grid line's
corresponding row. A marker is displayed at the point of intersection.

If the attachment has a label column (see labelColumnName) and both rowLabelVisFlag and
radialAxisLabelVisFlag are enabled, values from that column appear as labels along the radial
axis. Numerical column names are used as legend labels.

This property is in the Data property group.

Building and Using Apama Dashboards 10.11.2 341

11 Graph Objects

valueDivisor

Specifies a value by which to divide data table values in order to arrive at the plotted value for
this chart.

The default value is 1. If this property is set to 0, the dashboard uses 1 as the divisor.

This property is in the Data property group.

valueMax

The valueMin and valueMax properties control the range of the value axis if
valueAxisAutoScaleMode is set to Off. In this case, the chart origin (the bottom of the value axis)
is labeledwith valueMin. The intersection of the value axis and the radial axis (the top of the value
axis) is labeled with valueMax.

In addition, if valueAxisAutoScaleMode is set to On - Include Min/Max, the dashboard calculates
the smallest x-axis range that includes both valueMin and valueMax as well as all plotted points.

This property is in the Data property group.

valueMin

The valueMin and valueMax properties control the range of the value axis if
valueAxisAutoScaleMode is set to Off. In this case, the chart origin (the bottom of the value axis)
is labeled with valueMin. The intersection of the value axis and the radial axis (the top of the value
axis) is labeled with valueMax.

In addition, if valueAxisAutoScaleMode is set to On - Include Min/Max, the dashboard calculates
the smallest x-axis range that includes both valueMin and valueMax as well as all plotted points.

This property is in the Data property group.

valueTable

Attach your data to the valueTable property. Right-click on the property name in the Object
Properties panel, and select a menu item under Attach to Data.

The attached data table should have one ormore numerical columns. Typically, the data attachment
also has one non-numerical column, the label column (see labelColumnName) whose values
uniquely identify each row (that is, no two rows of the table have the same value for the label
column).

The rowSeriesFlag property controls how data populates the graph:

If the rowSeriesFlag is enabled, the graph displays one radial grid line for each numeric column
of your data attachment, and one trace for each row of your data attachment. A given trace
intersects a given radial grid line at a distance (from the graph's center) that is proportional to
the value of the grid line's corresponding column for the trace's corresponding row. Amarker
is displayed at the point of intersection.

342 Building and Using Apama Dashboards 10.11.2

11 Graph Objects

If the attachment has a label column and rowLabelVisFlag is selected, values from that column
are used in the legend in order to identify each trace. If radialAxisLabelVisFlag is enabled, the
numerical column names appear as labels along the radial axis.

If the rowSeriesFlag is disabled, the graph displays one radial grid line for each row of your
data attachment, and one trace for each numeric column of your data attachment. A given
trace intersects a given radial grid line at a distance (from the graph's center) that is proportional
to the value of the trace's corresponding column for the grid line's corresponding row. A
marker is displayed at the point of intersection.

If the attachment has a label column and both rowLabelVisFlag and radialAxisVisFlag are enabled,
values from that column appear as labels along the radial axis. Numerical column names are used
in the legend in order to identify each trace.

This property is in the Data property group.

Radar graph: Data Format group
Properties on this group control the format of displayed values as well as numerical and date
labels.

The group includes the following properties:

“labelColumnFormat” on page 343

“valueFormat” on page 343

labelColumnFormat

Sets the format of numeric or date labels displayed in the legend, along the radial axis, and in
tooltips.

Select or enter the format specification. Use syntax based on the Java DecimalFormat class for
numeric labels, and syntax based on the Java SimpleDateFormat class for date labels.

To enable tooltips, select the mouseOverFlag.

This property is in the Data Format property group.

valueFormat

Sets the numeric format of trace values displayed in tooltips.

Select or enter a format. Use syntax from the Java DecimalFormat class. To enable tooltips, select
the mouseOverFlag property.

This property is in the Data Format property group.

Radar graph: Data Label group
Properties in this group control the labels that are used along the radial axis or in the legend.

Building and Using Apama Dashboards 10.11.2 343

11 Graph Objects

Data Label group properties

The group contains the following properties:

“columnDisplayNames” on page 344

“labelColumnName” on page 344

“rowLabelVisFlag” on page 344

“rowNameVisFlag” on page 344

columnDisplayNames

Set alternate display names for the columns of the data attached to valueTable. Column names
label the radial axes or are used in the legend, depending on whether or not rowSeriesFlag is
selected.

This property is in the Data Label property group.

labelColumnName

Sets the label column. By default, the label column is the first non-numeric text column in your
data attachment, if there is one. Data from the label column either appears as labels along the
radial axis or else is used in the legend, depending on whether rowSeriesFlag is enabled.

If both rowSeriesFlag and rowLabelVisFlag are enabled, data from the label column is used in the
legend.

If rowSeriesFlag is not enabled and both rowLabelVisFlag and radialAxisLabelVisFlag are enabled,
data from the label column appears as labels the radial axis.

This property is in the Data Label property group.

rowLabelVisFlag

Determines whether or not data from the label column is used in chart labels. See
labelColumnName. If rowLabelVisFlag is disabled, integer row identifiers either appear as labels
along the radial axis (if rowSeriesFlag is disabled and radialAxisLabelVisFlag is enabled) or else
are used in the legend (if rowSeriesFlag is enabled).

This property is in the Data Label property group.

rowNameVisFlag

If your data attachment has no label column (see labelColumnName), select this property to use
generated row names in chart labels.

This property is in the Data Label property group.

344 Building and Using Apama Dashboards 10.11.2

11 Graph Objects

Radar graph: Historian group
Do not use the properties in this group.

historyTableName

Do not use this property.

This property is in the Historian property group.

historyTableRowNameFlag

Do not use this property.

This property is in the Historian property group.

Radar graph: Interaction group
Properties in this group control various forms of interaction between the end user and the graph,
including command, drill down, and tooltip interactions.

Interaction group properties

The group includes the following properties:

“command” on page 345

“commandCloseWindowOnSuccess” on page 346

“commandConfirm” on page 346

“confirmText ” on page 347

“drillDownColumnSubs” on page 347

“drillDownSelectMode” on page 347

“drillDownTarget” on page 347

“mouseOverFlag” on page 348

command

Assign a command or group of commands to this stock chart by right-clicking on the command
property name in the Object Properties window. Select Define Command and choose SYSTEM,
APAMA, or MULTIPLE. See “Using the Define Apama Command dialog” on page 200.

Once a command or command group has been assigned to this object, you can activate it from a
deployed dashboard or from the Dashboard Builder:

Dashboard Builder: Double click on the object.

Building and Using Apama Dashboards 10.11.2 345

11 Graph Objects

Web-based deployment: Single click on the object or else right click on it and select Execute
Command from the popup menu.

Local deployment: By default, single-click on the object or else right-click on it and select
Execute Command from the popup menu. To override the default, select Tools > Options
in the Builder (do this before you generate the deployment package), and uncheckSingle-Click
for Drill Down and Commands in the General tab. This allows the end user to use either a
double click or a right click.

When you activate a command, any defined drill down substitutions are performed, and then the
command is executed.

If you assign multiple commands, the commands are launched in an arbitrary order, and are
executed asynchronously; there is no guarantee that one command will finish before the next one
in the sequence starts.

This property is in the Interaction property group.

commandCloseWindowOnSuccess

Select this property to automatically close the window that initiates a SYSTEM command when
the command is executed successfully. This applies to SYSTEM commands only, and is not
supported at all for thin-client, web-page deployments.

With APAMA commands, the window is closed whether or not the command is executed
successfully. For MULTIPLE commands, the window closes when the first command in the
command group succeeds.

This property is in the Interaction property group.

commandConfirm

By default, when the end user executes a command (see the command property), the command
confirmation dialog is disabled. To control this option for each individual object, use the
commandConfirm check box. If confirmation is required for a MULTIPLE command group, a single
confirmation dialog is presented; if you confirm the execution, all individual commands in the
group are executed with no further confirmation. If the you cancel the execution, none of the
commands in the group is executed.

You can also override the confirmation status of individual objectswith an application-wide policy.
Select Tools > Options and choose from three confirmation values:

Do not confirm: Indicates that no commands require confirmation (regardless of each object's
confirmation status).

Confirm all: Indicates that all commands require confirmation (regardless of each object's
confirmation status).

Use object confirm flag (default): Indicates that the confirmation status of each object will
determine whether confirmation is required.

This property is in the Interaction property group.

346 Building and Using Apama Dashboards 10.11.2

11 Graph Objects

confirmText

Use this property to write your own text for the confirmation dialog. Otherwise, default text is
used. See commandConfirm.

This property is in the Interaction property group.

drillDownColumnSubs

Use this property to direct a dashboard to assign data-table column values to specified dashboard
variables when the end user activates a drilldown on this object. In the Object Properties window,
double-click on drillDownColumnSubs in the Property Name field to bring up the Drill Down
Column Substitutions dialog.

The dialog has the following fields and buttons:

Substitution String: Enter the dashboard variable next to the name of the data table column
whose value you want assigned to the variable. Press Enter.

Add Column: Enter the name of a column and click theAdd Column button to insert a column
into the table.

Clear: Click the Clear button to remove all variables listed.

The Column Name list is populated based on the table's data attachment. If you have not yet
attached the table to data, this list is empty.

Once you have selected which column values to pass in as substitutions, double-click on any
element in your object to open a drill down window that displays corresponding values.

This property is in the Interaction property group.

drillDownSelectMode

Use this property to control how a drill down display is activated. Select one of the following:

Anywhere to activate a drill down display by double-clicking anywhere on the chart.

Element Only to enable a drill down display only when you double-click on an element of
the chart, such as a bar or candlestick.

This property is in the Interaction property group.

drillDownTarget

To specify a drill down display, double click on drillDownTarget in the Property Name field to
bring up the Drill Down Properties dialog. See “Drill-Down Specification” on page 521.

This property is in the Interaction property group.

Building and Using Apama Dashboards 10.11.2 347

11 Graph Objects

mouseOverFlag

Select this property to enable tooltips for your radar graph. To display a tooltip, point to a trace
marker with your mouse. The tooltip will contain information from your data attachment about
that marker.

This property is in the Interaction property group.

Radar graph: Label group

Properties in this group control the graph'smain label (which defaults toRadar Graph), including
text, alignment, color, font, and size.

Label group properties

The group includes the following properties:

“label” on page 348

“labelTextAlignX” on page 348

“labelTextColor” on page 348

“labelTextFont” on page 349

“labelTextHeight” on page 349

label

Specifies the text for the chart label. Click the ellipsis for multi-line text.

The default is Radar Graph.

This property is in the Label property group.

labelTextAlignX

Sets the alignment of the chart label (see the label property). Select Left, Center, or Right from
the drop down list.

This property is in the Label property group.

labelTextColor

Specifies the color of the chart label text (see the label property). Select the ... button and choose a
color from the palette. Close the Color Chooser window when you are done.

This property is in the Label property group.

348 Building and Using Apama Dashboards 10.11.2

11 Graph Objects

labelTextFont

Specifies the font of the chart label text (see the label property). Select an item from drop down
list.

This property is in the Label property group.

labelTextHeight

Specifies the point size of the chart label text (see the label property).

This property is in the Label property group.

Radar graph: Legend group
Properties in this group control the visibility and appearance of the graph legend.

Legend group properties

The group contains the following properties:

“legendBgColor” on page 349

“legendBgGradientFlag” on page 349

“legendVisFlag” on page 349

“legendWidthPercent” on page 350

legendBgColor

Select the ... button and choose a color from the palette to set the background color of the legend.
Close the Color Chooser window when you are done.

This property is in the Legend property group.

legendBgGradientFlag

Select to display a gradient in the legend background.

This property is in the Legend property group.

legendVisFlag

Select to display the legend.

This property is in the Legend property group.

Building and Using Apama Dashboards 10.11.2 349

11 Graph Objects

legendWidthPercent

Set the percent of the total width of the object used for the legend.

This property is in the Legend property group.

Radar graph: Marker group
Properties in this group control the appearance of trace markers (but see also “Radar graph: Trace
group” on page 354).

Marker group properties

The group contains the following properties:

“markDefaultSize” on page 350

“markScaleMode” on page 350

markDefaultSize

Sets the size of the trace markers in pixels. Supply an integer value that is between 1 and 18,
inclusive.

This property is in the Marker property group.

markScaleMode

Sets the scale mode for trace marks. Select one of the following from the drop down menu:

No Scale: All marks, across and within traces, are the same size.

Scale by Trace: Scale marks according to the trace in which they reside, that is, marks in the
first trace are the largest, across all traces, and the marks in the last trace are the smallest.

Scale Within Trace: Scale marks according to the relative order of the data within each trace.

This property is in the Marker property group.

Radar graph: Object group
Properties in this group control the visibility and transparency of the graph as a whole. They also
control (or reflect) the overall position and dimensions of the graph. In addition, a property in this
group reflects the generated name of this individual graph.

Object group properties

This group contains the following properties:

350 Building and Using Apama Dashboards 10.11.2

11 Graph Objects

“anchor” on page 351

“dock” on page 351

“objHeight” on page 351

“objName” on page 351

“objWidth” on page 351

“objX” on page 352

“objY” on page 352

“transparencyPercent” on page 352

“visFlag” on page 352

anchor

Select zero or more of Top, Left, Bottom, and Right in order to control the object's placement.
The anchorproperty is only appliedwhen the display is resized either by changing theBackground
Properties on the display or by resizing the window in Layout mode. If an object has the dock
property set, the anchor property is ignored. See “About resize modes” on page 30.

dock

Select None (default), Top, Left, Bottom, Right, or Fill in order to control the object's placement
in Layout resize mode. See “About resize modes” on page 30.

objHeight

Set the height of a chart by entering a value for this property or by dragging a handle of the
bounding box that appears when the chart is selected. When you drag a handle of the bounding
box, the displayed value for this property changes to reflect the real-time height of the chart.

This property is in the Object property group.

objName

An identifier that is generated by the Dashboard Builder. This name can be used by other objects'
properties in order to refer to the named chart.

This property is in the Object property group.

objWidth

Set the width of a chart by entering a value for this property or by dragging a handle of the
bounding box that appears when the chart is selected. When you drag a handle of the bounding
box, the displayed value for this property changes to reflect the real-time width of the chart.

Building and Using Apama Dashboards 10.11.2 351

11 Graph Objects

This property is in the Object property group.

objX

Sets the X coordinate of the center of this visualization object, relative to the lower left corner of
the current dashboard. This value is set automaticallywhen you position the objectwith themouse.

This property is in the Object property group.

objY

Sets the Y coordinate of the center of this visualization object, relative to the lower left corner of
the current dashboard. This value is set automaticallywhen you position the objectwith themouse.

This property is in the Object property group.

transparencyPercent

Sets the transparency of this chart.

This property is in the Object property group.

visFlag

Deselect to make this visualization object invisible in the current dashboard.

This property is in the Object property group.

Radar graph: Plot Area group
Properties in this group control the appearance of the plot area, the rectangular area that serves
as background for the axes, grid lines, and trace lines (but not for the legend or radial axis labels;
see “Radar graph: Background group” on page 338).

Plot Area group properties

The group includes the following properties:

“gridColor” on page 352

“plotBgColor” on page 353

“plotBgGradientFlag” on page 353

“plotBgImage” on page 353

gridColor

To set the color of the grid lines, select the ... button and choose a color from the palette. Close the
Color Chooser window when you are done.

352 Building and Using Apama Dashboards 10.11.2

11 Graph Objects

This property is in the Plot Area property group.

plotBgColor

To set the color of the plot area, select the ... button and choose a color from the palette to set the
background color. Close the Color Chooser window when you are done.

This property is in the Plot Area property group.

plotBgGradientFlag

Select to display a gradient in the plot area background. Set the color of the plot area background
with the plotBgColor property.

This property is in the Plot Area property group.

plotBgImage

Specify an image (.gif, .jpg, or .png file) to display in the plot area. Select the name of the image
file from the drop down menu, or enter the pathname of the file. The drop down menu contains
the names of image files located in the current directory (typically, the dashboards directory of
your project directory, under your Apama installation's work directory), as well as image files
located in the first level of subdirectories. If you enter a pathname, use an absolute pathname or
a pathname that is relative to the current directory.

This property is in the Plot Area property group.

Radar graph: Radial Axis group
Properties in this group control the visibility and appearance of the radial axis, radial axis labels,
and radial grid lines.

Radial Axis group

The group includes the following properties:

“radialAxisColor” on page 354

“radialAxisLabelVisFlag” on page 354

“radialAxisLineStyle” on page 354

“radialAxisMinLabelWidth” on page 354

“radialAxisVisFlag” on page 354

“radialGridLineStyle ” on page 354

“radialGridVisFlag ” on page 354

Building and Using Apama Dashboards 10.11.2 353

11 Graph Objects

radialAxisColor

To set the color of the radial axis and radial axis label, select the ... button and choose a color from
the palette. Close the Color Chooser window when you are done.

This property is in the Radial Axis property group.

radialAxisLabelVisFlag

Controls the visibility of the labels that appear along the radial axis.

This property is in the Radial Axis property group.

radialAxisLineStyle

Controls the style of the radial axis. Choose eitherNo Line,Solid,Dotted,Dashed, orDot Dashed.

This property is in the Radial Axis property group.

radialAxisMinLabelWidth

Specifies the minimum width in pixels for the labels that appear along the radial axis.

This property is in the Radial Axis property group.

radialAxisVisFlag

Controls the visibility of the radial axis.

This property is in the Radial Axis property group.

radialGridLineStyle

Controls the style of the radial grid lines. Choose either No Line, Solid, Dotted, Dashed, or Dot
Dashed.

This property is in the Radial Axis property group.

radialGridVisFlag

Controls the visibility of the radial grid lines.

This property is in the Radial Axis property group.

Radar graph:Trace group
Properties in this group control the appearance of trace lines and tracemarkers (but see also “Radar
graph: Marker group” on page 350), including color, style, and line width.

354 Building and Using Apama Dashboards 10.11.2

11 Graph Objects

Trace group properties

This group includes the following properties:

“traceFillStyle” on page 355

“traceProperties” on page 355

traceFillStyle

Set traceFillStyle to one of the following fill styles for the area under the trace:

Solid

Transparent

Gradient

Transparent Gradient

None

None is the default.

This property is in the Trace property group.

traceProperties

Specify the line color, line style, line width, marker color and marker style of all traces.

In the Object Properties window, double-click on traceProperties in the Property Name field to
bring up the Trace Properties dialog. In the Trace Properties dialog, you can assign attributes to
each plotting trace in your graph.

Building and Using Apama Dashboards 10.11.2 355

11 Graph Objects

The dialog has six columns of fields:

Trace: One field for each trace that is currently in the graph. Current settings for each trace
are shown.

Line Color: Select the ellipsis button in the Color column and choose a color from the palette.
Close the Color Chooser window.

Line Style: Select the ellipsis button in the Line Style column and choose a style from the
drop down menu. Choose either No Line, Solid, Dotted, Dashed, or Dot Dashed.

Line Width: Select the ellipsis button in the Line Width column and choose a size from the
drop down menu. Choose either Thin, Medium or Thick.

Marker Color: Select the ellipsis button in the Marker Color column and choose a color from
the palette. Close the Color Chooser window.

Marker Style: Select the ellipsis button in the Marker Style column and choose a style from
the drop downmenu. Choose either No Marker, Dot, +, *, o, x, Filled Circle, Filled Diamond,
Filled Triangle, Filled Square, or Filled Star.

The dialog contains the following buttons:

Add Trace Property: Click to add a trace property field. The data for the trace does not have
to be available yet. Youmay consider adding and assigning attributes tomore traces than your
data currently needs for when you havemore data to show. It is not necessary to set properties
for each trace you currently or subsequently have. This is optional and can be done after
additional data is displayed in a subsequent new trace.

Delete Trace Property: Removes the last trace property field from the Trace Properties
dialog.

OK: Applies values and closes the dialog.

Apply: Applies values without closing the dialog.

Reset: Resets all fields to last values applied. Specify the line color, line style, line width,
marker color and marker style of all traces.

This property is in the Trace property group.

Radar graph: Value Axis group
Properties in this group control the visibility and range of the value axis, as well as value-axis
label formats and value-axis divisions. They also control the visibility of value-axis grid lines.

Value Axis group properties

The group includes the following properties:

“valueAxisAutoScaleMode” on page 357

“valueAxisColor” on page 357

356 Building and Using Apama Dashboards 10.11.2

11 Graph Objects

“valueAxisFlag” on page 357

“valueAxisFormat” on page 357

“valueAxisLineStyle” on page 357

“valueAxisMajorDivisions” on page 358

“valueAxisMinorDivisions” on page 358

“valueGridLineStyle” on page 358

“valueGridVisFlag” on page 358

valueAxisAutoScaleMode

Select one of the following modes to control the y-axis range:

Off: The valueMin and valueMax properties determine the range of the value axis. This is the
default. The chart origin (the bottomof the value axis) is labeledwith valueMin. The intersection
of the value axis and the radial axis (the top of the value axis) is labeled with valueMax.

On: The dashboard calculates the value axis range according to data values being plotted.

On - Include Min/Max: The dashboard calculates the smallest range that includes both valueMin
and valueMax as well as all plotted points.

This property is in the Value Axis property group.

valueAxisColor

To set the color of the value axis and value axis labels, select the ... button and choose a color from
the palette. Close the Color Chooser window when you are done.

This property is in the Value Axis property group.

valueAxisFlag

Controls the visibility of the value axis.

This property is in the Value Axis property group.

valueAxisFormat

Sets the format of the numerical labels that appear along the value axis. Select or enter the format
specification. Use syntax based on the Java DecimalFormat class.

This property is in the Value Axis property group.

valueAxisLineStyle

Controls the style of the value axis. Choose eitherNo Line,Solid,Dotted,Dashed, orDot Dashed.

Building and Using Apama Dashboards 10.11.2 357

11 Graph Objects

This property is in the Value Axis property group.

valueAxisMajorDivisions

Specifies the number of major divisions on the value axis. Each major division is separated by a
value grid line. A numeric label appears along the value axis at the intersections with the grid
lines (as well as at the origin and at the intersection with the radial axis).

This property is in the Value Axis property group.

valueAxisMinorDivisions

Specifies the number of minor divisions on the value axis. Each minor division is separated by a
horizontal tick mark.

This property is in the Value Axis property group.

valueGridLineStyle

Controls the style of the value grid lines. Choose either No Line, Solid, Dotted, Dashed, or Dot
Dashed.

This property is in the Value Axis property group.

valueGridVisFlag

Controls the visibility of the value grid lines.

This property is in the Value Axis property group.

XY graph
XY graphs visualize tabular data that has at least two rows with two or more numeric columns.
An XY graph can visualize data in either of two ways:

Row series visualization: The graph has one trace for each non-first row of the visualized data.
(The first row is used for the x components of the plotted points, as described below.) Within
each trace, there is a plotted point for each column of the data.

For a given point in a given trace, the x component is the value of the point's corresponding
column for the first row of the visualized data, and the y component is the value of that column
for the trace's corresponding row.

Column series visualization: The graph has one trace for each numeric column of the visualized
data, except for the first numeric column. (The first numeric column is used for the x components
of the plotted points, as described below.) Within each trace, there is a plotted point for each
row of the data.

358 Building and Using Apama Dashboards 10.11.2

11 Graph Objects

For a given point in a given trace, the x component is the value of the first numeric column for
the point's corresponding row, and the y component is the value of the trace's corresponding
column for the point's corresponding row.

Use the valueTable property to attach data to an XY graph. Use the rowSeriesFlag property to
specify row series or column series visualization.

When an XY graph is selected in the Builder canvas, the Object Class Name that appears at the
top of the Object Properties pane is obj_xygraph.

The Object Properties panel organizes XY graph properties into the groups below.

XY graph: Alert group
Properties in this group allow you to specify changes in the appearance of trace lines andmarkers
that signal changes in the status of specified data elements. You can specify threshold values (see
valueHighAlarm, valueHighWarning, valueLowAlarm, and valueLowWarning) or attach a data
table to valueAlarmStatusTable that indicates the status of each element of the table that is attached
to valueTable.

Alert group propeties

This group includes the following properties:

“valueAlarmStatusTable” on page 360

“valueHighAlarm” on page 361

“valueHighAlarmEnabledFlag” on page 361

“valueHighAlarmLineVisFlag” on page 361

“valueHighAlarmMarkColor” on page 361

“valueHighAlarmMarkStyle” on page 362

“valueHighAlarmTraceColor” on page 362

“valueHighAlarmTraceStyle” on page 362

“valueHighWarning” on page 362

Building and Using Apama Dashboards 10.11.2 359

11 Graph Objects

“valueHighWarningEnabledFlag” on page 362

“valueHighWarningLineVisFlag” on page 363

“valueHighWarningMarkColor” on page 363

“valueHighWarningMarkStyle” on page 363

“valueHighWarningTraceColor” on page 363

“valueHighWarningTraceStyle” on page 364

“valueLowAlarm” on page 364

“valueLowAlarmEnabledFlag” on page 364

“valueLowAlarmLineVisFlag” on page 364

“valueLowAlarmMarkColor” on page 364

“valueLowAlarmMarkStyle” on page 365

“valueLowAlarmTraceColor” on page 365

“valueLowAlarmTraceStyle” on page 365

“valueLowWarning” on page 365

“valueLowWarningEnabledFlag” on page 365

“valueLowWarningLineVisFlag” on page 365

“valueLowWarningMarkColor” on page 366

“valueLowWarningMarkStyle” on page 366

“valueLowWarningTraceColor” on page 366

“valueLowWarningTraceStyle” on page 366

valueAlarmStatusTable

Attach an alarm table containing status indexes to this property in order to enable rule based alarm
statuses for trace markers. The table attached to valueAlarmStatusTablemust have the same
number of rows and columns as valueTable. For each data element in valueTable, the status index
at the corresponding position in valueAlarmStatusTable is used to set the alarm status of the
marker that represents the data element.

Following are the valid indexes are:

0: Use normal marker color and style. See “traceProperties” on page 385.

1: Use low alarm marker color and style “valueLowAlarmMarkColor” on page 364 and
“valueLowAlarmMarkStyle” on page 365.

360 Building and Using Apama Dashboards 10.11.2

11 Graph Objects

2: Use low warning marker color and style. See “valueLowWarningMarkColor” on page 366
and “valueLowWarningMarkStyle” on page 366.

3: Use high warning marker color and style. See “valueHighWarningMarkColor” on page 363
and “valueHighWarningMarkStyle” on page 363.

4: Use high alarm marker color and style. See “valueHighAlarmMarkColor” on page 361 and
“valueHighAlarmMarkStyle” on page 362.

-1: Determine marker color and style by comparing the value to the enabled alarm thresholds.
See “valueHighAlarm” on page 361, “valueHighWarning” on page 362, “valueLowAlarm” on
page 364, and “valueLowWarning” on page 365.

If no data is attached to valueAlarmStatusTable, the alarm status for a trace marker is determined
by comparing the marker's value to the enabled thresholds. See valueHighAlarm,
valueHighWarning, valueLowAlarm, and valueLowWarning.

This property is in the Alert property group.

valueHighAlarm

Specifies the threshold value used by valueHighAlarmLineVisFlag, valueHighAlarmMarkColor,
valueHighAlarmMarkStyle, valueHighAlarmTraceColor, and valueHighAlarmTraceStyle.

This property is in the Alert property group.

valueHighAlarmEnabledFlag

Select to enable the high alarm threshold. See valueHighAlarm.

This property is in the Alert property group.

valueHighAlarmLineVisFlag

Select to display a dotted line at the high alarm threshold. The color of the line is set to
“valueHighAlarmMarkColor” on page 361. This line is displayed only if
valueHighAlarmEnabledFlag is selected.

This property is in the Alert property group.

valueHighAlarmMarkColor

When a trace marker's value is greater than or equal to valueHighAlarm, the marker changes to
valueHighAlarmMarkColor and valueHighAlarmMarkStyle, provided valueHighAlarmEnabledFlag
is selected and no data is attached to valueAlarmStatusTable.

If data is attached to valueAlarmStatusTable, a marker changes to valueHighAlarmMarkColor and
valueHighAlarmMarkStylewhen themarker's corresponding element in the attached alarm status
table is 4.

Building and Using Apama Dashboards 10.11.2 361

11 Graph Objects

If data is attached to valueAlarmStatusTable, and the marker's corresponding element in the
attached alarm status table is -1, marker color and style behave as if no data were attached to
valueAlarmStatusTable.

This property is in the Alert property group.

valueHighAlarmMarkStyle

When a trace marker's value is greater than or equal to valueHighAlarm, the marker changes to
valueHighAlarmMarkColor and valueHighAlarmMarkStyle, providedvalueHighAlarmEnabledFlag
is selected and no data is attached to valueAlarmStatusTable.

If data is attached to valueAlarmStatusTable, a marker changes to valueHighAlarmMarkColor
and valueHighAlarmMarkStylewhen the marker's corresponding element in the attached alarm
status table is 4.

If data is attached to valueAlarmStatusTable, and the marker's corresponding element in the
attached alarm status table is -1, marker color and style behave as if no data were attached to
valueAlarmStatusTable.

This property is in the Alert property group.

valueHighAlarmTraceColor

When the value of any segment of a trace line is greater than or equal to valueHighAlarm, that
segment of the trace line changes to valueHighAlarmTraceColor and valueHighAlarmTraceStyle,
provided valueHighAlarmEnabledFlag is selected.

This property is in the Alert property group.

valueHighAlarmTraceStyle

When the value of any segment of a trace line is greater than or equal to valueHighAlarm, that
segment of the trace line changes to valueHighAlarmTraceColor and valueHighAlarmTraceStyle,
provided valueHighAlarmEnabledFlag is selected.

This property is in the Alert property group.

valueHighWarning

Specifies the threshold value used by valueHighWarningLineVisFlag,
valueHighWarningMarkColor, valueHighWarningMarkStyle, valueHighWarningTraceColor, and
valueHighWarningTraceStyle.

This property is in the Alert property group.

valueHighWarningEnabledFlag

Select to enable the high warning threshold. See valueHighWarning.

362 Building and Using Apama Dashboards 10.11.2

11 Graph Objects

This property is in the Alert property group.

valueHighWarningLineVisFlag

Select to display a dotted line at the high warning threshold. The color of the line is set to
valueHighWarningMarkColor. This line is displayed only if valueHighWarningEnabledFlag is
selected.

This property is in the Alert property group.

valueHighWarningMarkColor

When a trace marker's value is greater than or equal to valueHighWarning but less than
valueHighAlarm, the marker changes to valueHighWarningMarkColor and
valueHighWarningMarkStyle, provided valueHighWarningEnabledFlag is selected and no data
is attached to valueAlarmStatusTable.

If data is attached to valueAlarmStatusTable, a marker changes to valueHighWarningMarkColor
and valueHighWarningMarkStylewhen themarker's corresponding element in the attached alarm
status table is 3.

If data is attached to valueAlarmStatusTable, and the marker's corresponding element in the
attached alarm status table is -1, marker color and style behave as of no data were attached to
valueAlarmStatusTable.

This property is in the Alert property group.

valueHighWarningMarkStyle

When a trace marker's value is greater than or equal to valueHighWarning but less than
valueHighAlarm, the marker changes to valueHighWarningMarkColor and
valueHighWarningMarkStyle, provided valueHighWarningEnabledFlag is selected and no data is
attached to valueAlarmStatusTable.

If data is attached to valueAlarmStatusTable, a marker changes to valueHighWarningMarkColor
and valueHighWarningMarkStylewhen the marker's corresponding element in the attached alarm
status table is 3.

If data is attached to valueAlarmStatusTable, and the marker's corresponding element in the
attached alarm status table is -1, marker color and style behave as of no data were attached to
valueAlarmStatusTable.

This property is in the Alert property group.

valueHighWarningTraceColor

When the value of any segment of a trace line is greater than or equal to valueHighWarning
property but less than valueHighAlarm, that segment of the trace line changes to
valueHighWarningTraceColor and valueHighWarningTraceStyle, provided
valueHighWarningEnabledFlag is selected.

Building and Using Apama Dashboards 10.11.2 363

11 Graph Objects

This property is in the Alert property group.

valueHighWarningTraceStyle

When the value of any segment of a trace line is greater than or equal to valueHighWarning
property but less than valueHighAlarm, that segment of the trace line changes to
valueHighWarningTraceColor and valueHighWarningTraceStyle, provided
valueHighWarningEnabledFlag is selected.

This property is in the Alert property group.

valueLowAlarm

Specifies the threshold value used by valueLowAlarmLineVisFlag, valueLowAlarmMarkColor,
valueLowAlarmMarkStyle, valueLowAlarmTraceColor, and valueLowAlarmTraceStyle.

This property is in the Alert property group.

valueLowAlarmEnabledFlag

Select to enable the low alarm threshold. See valueLowAlarm.

This property is in the Alert property group.

valueLowAlarmLineVisFlag

Select to display a dotted line at the low alarm threshold. The color of the line is set to
valueLowAlarmMarkColor. This line is displayed only if valueLowAlarmEnabledFlag is selected.

This property is in the Alert property group.

valueLowAlarmMarkColor

When a trace marker's value is less than or equal to valueLowAlarm, the marker changes to
valueLowAlarmMarkColor and valueLowAlarmMarkStyle, provided valueLowAlarmEnabledFlag
is selected and no data is attached to valueAlarmStatusTable.

If data is attached to valueAlarmStatusTable, a marker changes to valueLowAlarmMarkColor and
valueLowAlarmMarkStylewhen themarker's corresponding element in the attached alarm status
table is 1.

If data is attached to valueAlarmStatusTable, and the marker's corresponding element in the
attached alarm status table is -1, marker color and style behave as of no data were attached to
valueAlarmStatusTable.

This property is in the Alert property group.

364 Building and Using Apama Dashboards 10.11.2

11 Graph Objects

valueLowAlarmMarkStyle

When a trace marker's value is less than or equal to valueLowAlarm, the marker changes to
valueLowAlarmMarkColor and valueLowAlarmMarkStyle, provided valueLowAlarmEnabledFlag
is selected and no data is attached to valueAlarmStatusTable.

If data is attached to valueAlarmStatusTable, amarker changes to valueLowAlarmMarkColor and
valueLowAlarmMarkStylewhen the marker's corresponding element in the attached alarm status
table is 1.

If data is attached to valueAlarmStatusTable, and the marker's corresponding element in the
attached alarm status table is -1, marker color and style behave as of no data were attached to
valueAlarmStatusTable.

This property is in the Alert property group.

valueLowAlarmTraceColor

When the value of any segment of a trace line is less than or equal to valueLowAlarm, that segment
of the trace line changes to valueLowAlarmTraceColor and valueLowAlarmTraceStyle, provided
valueLowAlarmEnabledFlag is selected.

This property is in the Alert property group.

valueLowAlarmTraceStyle

When the value of any segment of a trace line is less than or equal to valueLowAlarm, that segment
of the trace line changes to valueLowAlarmTraceColor and valueLowAlarmTraceStyle, provided
valueLowAlarmEnabledFlag is selected.

This property is in the Alert property group.

valueLowWarning

Specifies the threshold value used by valueLowWarningLineVisFlag, valueLowAlarmMarkColor,
valueLowWarningMarkStyle, valueLowWarningTraceColor, and valueLowWarningTraceStyle.

This property is in the Alert property group.

valueLowWarningEnabledFlag

Select to enable the low warning threshold. See valueLowWarning.

This property is in the Alert property group.

valueLowWarningLineVisFlag

Select to display a dotted line at the low warning threshold. The color of the line is set to
valueLowWarningMarkColor. This line is displayed only if valueLowWarningEnabledFlag is
selected.

Building and Using Apama Dashboards 10.11.2 365

11 Graph Objects

This property is in the Alert property group.

valueLowWarningMarkColor

When a trace marker's value is less than or equal to valueLowWarning but greater than
valueLowAlarm, the marker changes to valueLowWarningMarkColor and
valueLowWarningMarkStyle, provided valueLowWarningEnabledFlag is selected and no data is
attached to valueAlarmStatusTable.

If data is attached to valueAlarmStatusTable, a marker changes to valueLowWarningMarkColor and
valueLowWarningMarkStyle when the marker's corresponding element in the attached alarm
status table is 2.

If data is attached to valueAlarmStatusTable, and the marker's corresponding element in the
attached alarm status table is -1, marker color and style behave as of no data were attached to
valueAlarmStatusTable.

This property is in the Alert property group.

valueLowWarningMarkStyle

When a trace marker's value is less than or equal to valueLowWarning but greater than
valueLowAlarm, the marker changes to valueLowWarningMarkColor and
valueLowWarningMarkStyle, provided valueLowWarningEnabledFlag is selected and no data is
attached to valueAlarmStatusTable.

If data is attached to valueAlarmStatusTable, a marker changes to valueLowWarningMarkColor
and valueLowWarningMarkStylewhen the marker's corresponding element in the attached alarm
status table is 2.

If data is attached to valueAlarmStatusTable, and the marker's corresponding element in the
attached alarm status table is -1, marker color and style behave as of no data were attached to
valueAlarmStatusTable.

This property is in the Alert property group.

valueLowWarningTraceColor

When the value of any segment of a trace line is less than or equal to valueLowWarning but greater
than valueLowAlarm, that segment of the trace line changes to valueLowWarningTraceColor and
valueLowWarningTraceStyle, provided valueLowWarningEnabledFlag is selected.

This property is in the Alert property group.

valueLowWarningTraceStyle

When the value of any segment of a trace line is less than or equal to valueLowWarning property
but greater than valueLowAlarm, that segment of the trace line changes to
valueLowWarningTraceColor and valueLowWarningTraceStyle, provided
valueLowWarningEnabledFlag is selected.

366 Building and Using Apama Dashboards 10.11.2

11 Graph Objects

This property is in the Alert property group.

XY graph: Background group
Properties in this group control the visibility and appearance of the portion of the graph that serves
as the background of both the plot area and legend.

Background group properties

The group contains the following properties:

“bgBorderColor” on page 367

“bgBorderFlag” on page 367

“bgColor” on page 367

“bgEdgeWidth” on page 368

“bgGradientColor2” on page 368

“bgGradientMode” on page 368

“bgRaisedFlag” on page 368

“bgRoundness” on page 368

“bgShadowFlag” on page 369

“bgStyleFlag” on page 369

“bgVisFlag” on page 369

“borderPixels” on page 369

bgBorderColor

Sets the color of the border (see bgBorderFlag) of the background rectangle. Select the ... button
and choose a color from the palette. Close the Color Chooser window when you are done.

bgBorderFlag

Select to display a border around the background rectangle.

This property is in the Background property group.

bgColor

Sets the background color. Select the ... button and choose a color from the palette. Close the Color
Chooser window when you are done.

This property is in the Background property group.

Building and Using Apama Dashboards 10.11.2 367

11 Graph Objects

bgEdgeWidth

Sets the width in pixels of the 3D edge on the background rectangle. This property is only used if
bgBorderFlag is selected.

This property is in the Background property group.

bgGradientColor2

Sets the color for the second color in the gradient. The default is white. The bgColor property sets
the first color in the gradient.

This property is in the Background property group.

bgGradientMode

Display a gradient in the background rectangle. Select from the following options:

None: No gradient

Diagonal Edge: Gradient is drawn at a 45 degree angle from the top left to the bottom right
corner of the object.

Diagonal Center: Gradient is drawn at a 45 degree angle from the center to the top left and
the bottom right corners of the object.

Horizontal Edge: Gradient is drawn horizontally from the top to the bottom of the object.

Horizontal Center: Gradient is drawn horizontally from the center to the top and bottom of
the object.

Vertical Edge: Gradient is drawn vertically from the left to the right of the object.

Vertical Center: Gradient is drawn vertically from the center to the left and right of the object.

This property is in the Background property group.

bgRaisedFlag

Reverses the direction of the gradient, as well as that of the 3D edge if the bgStyle selected is 3D
Rectangle.

This property is in the Background property group.

bgRoundness

Sets the arc length of the rounded corners. This property is only available if the bgStyle selected
is Round Rectangle.

The value of bgRoundness cannot exceed half the value of the objWidth or the objHeight. If
bgRoundness does exceed that value, half of objWidth or objHeight (whichever is smaller) will be

368 Building and Using Apama Dashboards 10.11.2

11 Graph Objects

used instead. For example if objWidth is 100 and objHeight is 50, then the value of bgRoundness
cannot exceed 25. If it does, then half the value of objHeight (25) will be used instead. This property
is in the Background property group.

bgShadowFlag

Select to display a drop shadow on the background rectangle.

This property is in the Background property group.

bgStyleFlag

Choose one of the following three options from the drop down menu:

Rectangle: Select to display a background rectangle.

3D Rectangle: Select to display a 3D edge on the background rectangle. If selected, use
bgEdgeWidth to set the width of the 3D edge.

Round Rectangle: Select to display a background rectangle with rounded edges. If selected,
use bgRoundness to set the arc length of the rounded corners.

This property is in the Background property group.

bgVisFlag

Select to display the background rectangle.

This property is in the Background property group.

borderPixels

Sets the width in pixels of the border between the chart and the edge of the background rectangle.

This property is in the Background property group.

XY graph: Column group
This group contains one property, columnsToHide ,which controlswhich data-attachment columns
are excluded from being used for plotted data or labels.

columnsToHide

Specifies columns from the data attachment to exclude from being used for plotted data or labels.
Data from the labelColumnName column are used for labels even if that column name is also
specified in the columnsToHide property. Columns specified in the columnsToHide property can
still be used in the drillDownColumnSubs property.

This property is in the Column property group.

Building and Using Apama Dashboards 10.11.2 369

11 Graph Objects

XY graph: Data group
Properties in this group controlwhat data appears in the graph, aswell aswhether the data appears
in column series or row series form.

Data group properties

The group contains the following properties:

“rowSeriesFlag” on page 370

“valueTable” on page 371

“xValueDivisor” on page 371

“xValueMax” on page 371

“xValueMin” on page 371

“yValueDivisor” on page 372

“yValueMax” on page 372

“yValueMin” on page 372

rowSeriesFlag

Controls how x and y data populate the graph:

If the rowSeriesFlag checkbox is selected, the graph has one trace for each non-first row of
your data attachment. (The first row is used for the x components of the plotted points, as
described below.)Within each trace, there is a plotted point for each column of your attachment.

For a given point in a given trace, the x component is the value of the point's corresponding
column for the first row of your attachment, and the y component is the value of that column
for the trace's corresponding row. Values from the label column (see labelColumnName) or
generated row identifiers are used as labels in the legend.

If the rowSeriesFlag checkbox is not selected, there is a trace for each numeric column of your
data attachment, except for the first numeric column. (The first numeric column is used for
the x components of the plotted points, as described below.)Within each trace, there is a plotted
point for each row of your attachment.

For a given point in a given trace, the x component is the value of the first numeric column
for the point's corresponding row, and the y component is the value of the trace's corresponding
column for the point's corresponding row. Column names appear in the legend.

This property is in the Data property group.

370 Building and Using Apama Dashboards 10.11.2

11 Graph Objects

valueTable

Attach your data to the valueTable property. Your data attachment must contain at least two rows
and at least two numeric columns. The property rowSeriesFlag controls howx and ydata populate
the graph:

If the rowSeriesFlag checkbox is selected, the graph has one trace for each non-first row of
your data attachment. (The first row is used for the x components of the plotted points, as
described below.)Within each trace, there is a plotted point for each column of your attachment.

For a given point in a given trace, the x component is the value of the point's corresponding
column for the first row of your attachment, and the y component is the value of that column
for the trace's corresponding row. Values from the label column (see labelColumnName) or
generated row identifiers are used as labels in the legend.

If the rowSeriesFlag checkbox is not selected, there is a trace for each numeric column of your
data attachment, except for the first numeric column. (The first numeric column is used for
the x components of the plotted points, as described below.)Within each trace, there is a plotted
point for each row of your attachment.

For a given point in a given trace, the x component is the value of the first numeric column
for the point's corresponding row, and the y component is the value of the trace's corresponding
column for the point's corresponding row. Column names appear in the legend.

This property is in the Data property group.

xValueDivisor

The x values are divided by the value entered into the xValueDivisor. The default is 1.

This property is in the Data property group.

xValueMax

The xValueMin and xValueMax properties control the range of the x-axis if xAxisAutoScaleMode
is set to Off. In addition, if xAxisAutoScaleMode is set to On - Include Min/Max, the dashboard
calculates the smallest x-axis range that includes both xValueMin and xValueMax as well as all
plotted points.

This property is in the Data property group.

xValueMin

The xValueMin and xValueMax properties control the range of the x-axis if xAxisAutoScaleMode
is set to Off. In addition, if xAxisAutoScaleMode is set to On - Include Min/Max, the dashboard
calculates the smallest x-axis range that includes both xValueMin and xValueMax as well as all
plotted points.

This property is in the Data property group.

Building and Using Apama Dashboards 10.11.2 371

11 Graph Objects

yValueDivisor

The y values are divided by the value entered into the yValueDivisor. The default is 1.

This property is in the Data property group.

yValueMax

The yValueMin and yValueMaxproperties control the range of the y-axis if the yAxisAutoScaleMode
is set to Off. In addition, if yAxisAutoScaleMode is set to On - Include Min/Max, the dashboard
calculates the smallest y-axis range that includes both yValueMin and yValueMax as well as all
plotted points.

This property is in the Data property group.

yValueMin

The yValueMin and yValueMax properties control the range of the y-axis if the yAxisAutoScaleMode
is set to Off. In addition, if yAxisAutoScaleMode is set to On - Include Min/Max, the dashboard
calculates the smallest y-axis range that includes both yValueMin and yValueMax as well as all
plotted points.

This property is in the Data property group.

XY graph: Data Format group
Properties on this group control the format of displayed values as well as numerical and date
labels.

Data Format group properties

The group includes the following properties:

“labelColumnFormat” on page 372

“xValueFormat” on page 373

“yValueFormat” on page 373

labelColumnFormat

Select or enter the format of numeric or date labels displayed in the legend and popup legend (see
legendPopupFlag).

For numeric labels, use syntax from the Java DecimalFormat class.

For date labels, use from the Java SimpleDateFormat class.

This property is in the Data Format property group.

372 Building and Using Apama Dashboards 10.11.2

11 Graph Objects

xValueFormat

Sets the numeric format of trace values displayed in the legend and popup legend.

Select or enter a format. Use syntax from the Java DecimalFormat class.

This property is in the Data Format property group.

yValueFormat

Sets the numeric format of trace values displayed in the legend and popup legend.

Select or enter a format. Use syntax from the Java DecimalFormat class.

This property is in the Data Format property group.

XY graph: Data Label group
Properties in this group control the labels that are used in the legend.

Data Label group properties

The group contains the following properties:

“columnDisplayNames” on page 373

“labelColumnName” on page 373

“rowLabelVisFlag” on page 374

“rowNameVisFlag” on page 374

columnDisplayNames

Sets alternate display names for column names in your XY graph's data. Column names are
displayed in the legend when rowSeriesFlag is not selected.

This property is in the Data Label property group.

labelColumnName

Sets the label column. By default, the label column is the first non-numeric text column in your
data attachment, if there is one (for Apama data tables, apama.instanceID is used if there is no
other non-numeric column).

Data from the label column is used to label the legend, if both rowLabelVisFlag and rowSeriesFlag
are enabled.

This property is in the Data Label property group.

Building and Using Apama Dashboards 10.11.2 373

11 Graph Objects

rowLabelVisFlag

Determineswhether data from the label column (see labelColumnName) is used for legend labels.
Data from the label column is used to label the legend if both rowLabelVisFlag and rowSeriesFlag
are enabled.

This property is in the Data Label property group.

rowNameVisFlag

If your data attachment has no label column (see labelColumnName), select this property to use
generated row names in the legend when the rowSeriesFlag is not selected.

This property is in the Data Label property group.

XY graph: Historian group
Do not use the properties in this group.

historyTableName

Do not use this property.

This property is in the Historian property group.

historyTableRowNameFlag

Do not use this property.

This property is in the Historian property group.

XY graph: Interaction group
Properties in this group control various forms of interaction between the end user and the graph,
including scrolling, zooming, and activating commands, drill downs, and tooltips.

Interaction group properties

The group includes the following properties:

“command” on page 375

“commandCloseWindowOnSuccess” on page 375

“commandConfirm” on page 376

“confirmText” on page 376

“cursorColor” on page 376

374 Building and Using Apama Dashboards 10.11.2

11 Graph Objects

“cursorFlag” on page 376

“drillDownColumnSubs” on page 377

“drillDownSelectMode” on page 377

“drillDownTarget” on page 377

“scrollbarMode” on page 377

“scrollbarSize” on page 378

“mouseOverFlag” on page 378

“zoomEnabledFlag” on page 378

command

Assign a command or group of commands to this stock chart by right-clicking on the command
property name in the Object Properties window. Select Define Command and choose SYSTEM,
APAMA, or MULTIPLE. See “Using the Define Apama Command dialog” on page 200.

Once a command or command group has been assigned to this object, you can activate it from a
deployed dashboard or from the Dashboard Builder:

Dashboard Builder: Double click on the object.

Web-based deployment: Single click on the object or else right click on it and select Execute
Command from the popup menu.

Local deployment: By default, single-click on the object or else right-click on it and select
Execute Command from the popup menu. To override the default, select Tools > Options
in the Builder (do this before you generate the deployment package), and uncheckSingle-Click
for Drill Down and Commands in the General tab. This allows the end user to use either a
double click or a right click.

When you activate a command, any defined drill down substitutions are performed, and then the
command is executed.

If you assign multiple commands, the commands are launched in an arbitrary order, and are
executed asynchronously; there is no guarantee that one command will finish before the next one
in the sequence starts.

This property is in the Interaction property group.

commandCloseWindowOnSuccess

Select this property to automatically close the window that initiates a SYSTEM command when
the command is executed successfully. This applies to SYSTEM commands only, and is not
supported at all for thin-client, web-page deployments.

Building and Using Apama Dashboards 10.11.2 375

11 Graph Objects

With APAMA commands, the window is closed whether or not the command is executed
successfully. For MULTIPLE commands, the window closes when the first command in the
command group succeeds.

This property is in the Interaction property group.

commandConfirm

By default, when the end user executes a command (see the command property), the command
confirmation dialog is disabled. To control this option for each individual object, use the
commandConfirm check box. If confirmation is required for a MULTIPLE command group, a single
confirmation dialog is presented; if you confirm the execution, all individual commands in the
group are executed with no further confirmation. If the you cancel the execution, none of the
commands in the group is executed.

You can also override the confirmation status of individual objectswith an application-wide policy.
Select Tools > Options and choose from three confirmation values:

Do not confirm: Indicates that no commands require confirmation (regardless of each object's
confirmation status).

Confirm all: Indicates that all commands require confirmation (regardless of each object's
confirmation status).

Use object confirm flag (default): Indicates that the confirmation status of each object will
determine whether confirmation is required.

This property is in the Interaction property group.

confirmText

Use this property to write your own text for the confirmation dialog. Otherwise, default text is
used. See commandConfirm.

This property is in the Interaction property group.

cursorColor

To set the color of the cursor (see cursorFlag), select the ... button and choose a color from the
palette. Close the Color Chooser window when you are done.

This property is in the Interaction property group.

cursorFlag

Select to enable the cursor.When the cursor is enabled, point to a location on a trace to see a cursor
line at that location and display the time and values of all traces at the cursor line on the legend.
Hold down the control key to snap the cursor to the closest data point. Select the legendPopupFlag
to display the legend along the cursor.

This property is in the Interaction property group.

376 Building and Using Apama Dashboards 10.11.2

11 Graph Objects

drillDownColumnSubs

Use this property to direct a dashboard to assign data-table column values to specified dashboard
variables when the end user activates a drilldown on this object. In the Object Properties window,
double-click on drillDownColumnSubs in the Property Name field to bring up the Drill Down
Column Substitutions dialog.

The dialog has the following fields and buttons:

Substitution String: Enter the dashboard variable next to the name of the data table column
whose value you want assigned to the variable. Press Enter.

Add Column: Enter the name of a column and click theAdd Column button to insert a column
into the table.

Clear: Click the Clear button to remove all variables listed.

The Column Name list is populated based on the table's data attachment. If you have not yet
attached the table to data, this list is empty.

Once you have selected which column values to pass in as substitutions, double-click on any
element in your object to open a drill down window that displays corresponding values.

This property is in the Interaction property group.

drillDownSelectMode

Use this property to control how a drill down display is activated. Select one of the following:

Anywhere to activate a drill down display by double-clicking anywhere on the chart.

Element Only to enable a drill down display only when you double-click on an element of
the chart, such as a bar or candlestick.

This property is in the Interaction property group.

drillDownTarget

To specify a drill down display, double click on drillDownTarget in the Property Name field to
bring up the Drill Down Properties dialog. See “Drill-Down Specification” on page 521.

This property is in the Interaction property group.

scrollbarMode

Select one of the following from the scrollbarMode property to set the behavior of the scroll bar
in the table:

Never: Default setting

Always: Display a scroll bar at all times.

Building and Using Apama Dashboards 10.11.2 377

11 Graph Objects

As Needed: Display the scroll bar when necessitated by zooming in the trace area or when
you have X or Y values that are outside of the min/max range.

This property is in the Interaction property group.

scrollbarSize

Specifies the height of the horizontal scroll bar and the width of the vertical scroll bar, in pixels.
The default value is -1, which sets the size to the system default.

This property is in the Interaction property group.

mouseOverFlag

Select to enable tooltips for your graph. To display a tooltip, point to a trace marker with your
mouse. The tooltip contains information from your data attachment about that trace marker. This
property applies only if legendPopupFlag is disabled.

This property is in the Interaction property group.

zoomEnabledFlag

Select to enable zoomingwithin the graph. Click in the graph's trace area and drag the cursor until
a desired range is selected. While dragging, a rectangle is drawn to show the zoom area. The
rectangle's default color is yellow (this can be changed in the cursorColor property). After the
zoom is performed, the graph stores up to four zoom operations in queue. To zoom out, press the
Shift key and click in the graph's trace area.

This property is in the Interaction property group.

XY graph: Label group

Properties in this group control the graph's main label (which defaults to XY Graph), including
text, alignment, color, font, and size.

Label group properties

The group includes the following properties:

“label” on page 379

“labelTextAlignX” on page 379

“labelTextColor” on page 379

“labelTextFont” on page 379

“labelTextHeight” on page 379

378 Building and Using Apama Dashboards 10.11.2

11 Graph Objects

label

Specifies the text for the chart label. Click the ellipsis for multi-line text.

The default is XY Graph.

This property is in the Label property group.

labelTextAlignX

Sets the alignment of the chart label (see the label property). Select Left, Center, or Right from
the drop down list.

This property is in the Label property group.

labelTextColor

Specifies the color of the chart label text (see the label property). Select the ... button and choose a
color from the palette. Close the Color Chooser window when you are done.

This property is in the Label property group.

labelTextFont

Specifies the font of the chart label text (see the label property). Select an item from drop down
list.

This property is in the Label property group.

labelTextHeight

Specifies the point size of the chart label text (see the label property).

This property is in the Label property group.

XY graph: Legend group
Properties in this group control the visibility and appearance of the graph legend.

Legend group properties

The group contains the following properties:

“legendBgColor” on page 380

“legendBgGradientFlag” on page 380

“legendPopupFlag” on page 380

“legendValueMinSpace” on page 380

Building and Using Apama Dashboards 10.11.2 379

11 Graph Objects

“legendValueVisFlag” on page 380

“legendVisFlag” on page 380

“legendWidthPercent” on page 380

legendBgColor

Select the ... button and choose a color from the palette to set the background color of the legend.
Close the Color Chooser window when you are done.

This property is in the Legend property group.

legendBgGradientFlag

Select to display a gradient in the legend background.

This property is in the Legend property group.

legendPopupFlag

Select to display the legend along the cursor.

This property is in the Legend property group.

legendValueMinSpace

Specifies the minimum number of pixels between values and labels in the legend. This property
applies only if legendValueVisFlag is enabled.

This property is in the Legend property group.

legendValueVisFlag

Select to display the numerical values of your data in the legend.

This property is in the Legend property group.

legendVisFlag

Select to display the legend.

This property is in the Legend property group.

legendWidthPercent

Set the percent of the total width of the object used for the legend.

This property is in the Legend property group.

380 Building and Using Apama Dashboards 10.11.2

11 Graph Objects

XY graph: Marker group
Properties in this group control the appearance of trace markers (but see also “XY graph: Trace
group” on page 384).

Marker group properties

The group contains the following properties:

“markDefaultSize” on page 381

“markScaleMode” on page 381

markDefaultSize

Sets the size of the markers in pixels. Supply an integer value that is between 1 and 18, inclusive.

This property is in the Marker property group.

markScaleMode

Sets the scale mode for trace marks. Select one of the following from the drop down menu:

No Scale: All marks, across and within traces, are the same size.

Scale by Trace: Scale marks according to the trace in which they reside, that is, marks in the
first trace are the largest, across all traces, and the marks in the last trace are the smallest.

Scale Within Trace: Scale marks according to the relative order of the data within each trace.

This property is in the Marker property group.

XY graph: Object group
Properties in this group control the visibility and transparency of the graph as a whole. They also
control (or reflect) the overall position and dimensions of the graph. In addition, a property in this
group reflects the generated name of this individual graph.

Object group properties

This group contains the following properties:

“anchor” on page 382

“dock” on page 382

“objHeight” on page 382

“objName” on page 382

“objWidth” on page 382

Building and Using Apama Dashboards 10.11.2 381

11 Graph Objects

“objX” on page 382

“objY” on page 383

“transparencyPercent” on page 383

“visFlag” on page 383

anchor

Select zero or more of Top, Left, Bottom, and Right in order to control the object's placement.
The anchorproperty is only appliedwhen the display is resized either by changing theBackground
Properties on the display or by resizing the window in Layout mode. If an object has the dock
property set, the anchor property is ignored. See “About resize modes” on page 30.

dock

Select None (default), Top, Left, Bottom, Right, or Fill in order to control the object's placement
in Layout resize mode. See “About resize modes” on page 30.

objHeight

Set the height of a chart by entering a value for this property or by dragging a handle of the
bounding box that appears when the chart is selected. When you drag a handle of the bounding
box, the displayed value for this property changes to reflect the real-time height of the chart.

This property is in the Object property group.

objName

An identifier that is generated by the Dashboard Builder. This name can be used by other objects'
properties in order to refer to the named chart.

This property is in the Object property group.

objWidth

Set the width of a chart by entering a value for this property or by dragging a handle of the
bounding box that appears when the chart is selected. When you drag a handle of the bounding
box, the displayed value for this property changes to reflect the real-time width of the chart.

This property is in the Object property group.

objX

Sets the X coordinate of the center of this visualization object, relative to the lower left corner of
the current dashboard. This value is set automaticallywhen you position the objectwith themouse.

This property is in the Object property group.

382 Building and Using Apama Dashboards 10.11.2

11 Graph Objects

objY

Sets the Y coordinate of the center of this visualization object, relative to the lower left corner of
the current dashboard. This value is set automaticallywhen you position the objectwith themouse.

This property is in the Object property group.

transparencyPercent

Sets the transparency of this chart.

This property is in the Object property group.

visFlag

Deselect to make this visualization object invisible in the current dashboard.

This property is in the Object property group.

XY graph: Plot Area group
Properties in this group control the appearance of the plot area, the rectangular area that serves
as background for the grid lines and trace lines (but not for the legend or axis labels; see “XY graph:
Background group” on page 367).

Plot Area group properties

The group includes the following properties:

“gridBgColor” on page 383

“gridBgGradientFlag” on page 383

“gridBgImage” on page 384

“gridColor” on page 384

gridBgColor

To set the color of the plot area, select the ... button and choose a color from the palette to set the
background color. Close the Color Chooser window when you are done.

This property is in the Plot Area property group.

gridBgGradientFlag

Select to display a gradient in the grid background. Set the color of the grid background with the
gridBgColor property.

This property is in the Plot Area property group.

Building and Using Apama Dashboards 10.11.2 383

11 Graph Objects

gridBgImage

Specify an image (.gif, .jpg, or .png file) to display in the plot area. Select the name of the image
file from the drop down menu, or enter the pathname of the file. The drop down menu contains
the names of image files located in the current directory (by default, the dashboards directory of
your Apama installation's work directory), as well as image files located in the first level of
subdirectories. If you enter a pathname, use an absolute pathname or a pathname that is relative
to the current directory.

This property is in the Plot Area property group.

gridColor

Sets the color of the dotted, horizontal midline of the plot area. Select the ... button and choose a
color from the palette. Close the Color Chooser window when you are done.

This property is in the Plot Area property group.

XY graph:Trace group
Properties in this group control the appearance of trace lines and trace markers (but see also “XY
graph: Marker group” on page 381), including color, style, and line width.

Trace group properties

This group includes the following properties:

“traceFillStyle” on page 384

“traceProperties” on page 385

traceFillStyle

Set traceFillStyle to one of the following fill styles for the area under the trace:

Solid

Transparent

Gradient

Transparent Gradient

None

None is the default.

This property is in the Trace property group.

384 Building and Using Apama Dashboards 10.11.2

11 Graph Objects

traceProperties

Specify the line color, line style, line width, marker color and marker style of all traces.

In the Object Properties window, double-click on traceProperties in the Property Name field to
bring up the Trace Properties dialog. In the Trace Properties dialog you can assign attributes to
each plotting trace in your graph.

The dialog has six columns of fields:

Trace: One field for each trace that is currently in the graph. Current settings for each trace
are shown.

Line Color: Select the ellipsis button in the Color column and choose a color from the palette.
Close the Color Chooser window.

Line Style: Select the ellipsis button in the Line Style column and choose a style from the
drop down menu. Choose either No Line, Solid, Dotted, Dashed, or Dot Dashed.

Line Width: Select the ellipsis button in the Line Width column and choose a size from the
drop down menu. Choose either Thin, Medium or Thick.

Marker Color: Select the ellipsis button in the Marker Color column and choose a color from
the palette. Close the Color Chooser window.

Marker Style: Select the ellipsis button in the Marker Style column and choose a style from
the drop downmenu. Choose either No Marker, Dot, +, *, o, x, Filled Circle, Filled Diamond,
Filled Triangle, Filled Square, or Filled Star.

The dialog contains the following buttons:

Add Trace Property: Click to add a trace property field. The data for the trace does not have
to be available yet. Youmay consider adding and assigning attributes tomore traces than your

Building and Using Apama Dashboards 10.11.2 385

11 Graph Objects

data currently needs for when you havemore data to show. It is not necessary to set properties
for each trace you currently or subsequently have. This is optional and can be done after
additional data is displayed in a subsequent new trace.

Delete Trace Property: Removes the last trace property field from the Trace Properties dialog.

OK: Applies values and closes the dialog.

Apply: Applies values without closing the dialog.

Reset: Resets all fields to last values applied. Specify the line color, line style, line width,
marker color and marker style of all traces.

This property is in the Trace property group.

XY graph: X-Axis group
Properties in this group control the visibility and scaling of the x-axis, aswell as x-axis label formats
and x-axis divisions. They also control x-axis sorting and reversing.

X-Axis group properties

The group includes the following properties:

“xAxisAutoScaleMode” on page 386

“xAxisAutoScaleRoundFlag” on page 387

“xAxisFlag” on page 387

“xAxisFormat” on page 387

“xAxisLabel” on page 387

“xAxisLabelTextHeight” on page 387

“xAxisMajorDivisions” on page 387

“xAxisMinorDivisions” on page 387

“xAxisReverseFlag” on page 388

“xValueSortFlag” on page 388

xAxisAutoScaleMode

Select one of the following modes to control the x-axis range:

Off: The xValueMin and xValueMax properties determine the range of the x-axis. This is the
default.

On: The dashboard calculates the x-axis range according to data values being plotted.

386 Building and Using Apama Dashboards 10.11.2

11 Graph Objects

On - Include Min/Max: The dashboard calculates the smallest range that includes xValueMin
and xValueMax as well as all plotted points.

This property is in the X-Axis property group.

xAxisAutoScaleRoundFlag

Select to round values on the x-axis.

This property is in the X-Axis property group.

xAxisFlag

Select to display the x-axis.

This property is in the X-Axis property group.

xAxisFormat

Sets the numeric format of values displayed on the x-axis. Select or enter a format. Use syntax
from the Java DecimalFormat class.

This property is in the X-Axis property group.

xAxisLabel

Specifies the x-axis label.

This property is in the X-Axis property group.

xAxisLabelTextHeight

Specifies the height in pixels of the x-axis labels.

This property is in the X-Axis property group.

xAxisMajorDivisions

Specify the number of major divisions on the x-axis.

This property is in the X-Axis property group.

xAxisMinorDivisions

Specify the number of minor divisions on the x- axis.

This property is in the X-Axis property group.

Building and Using Apama Dashboards 10.11.2 387

11 Graph Objects

xAxisReverseFlag

Select to reverse the order of the x-axis values and plot values decreasing from left to right.

This property is in the X-Axis property group.

xValueSortFlag

Select to sort data from lowest to highest x values.

This property is in the X-Axis property group.

XY graph:Y-Axis group
Properties in this group control the visibility and scaling of the y-axis, aswell as y-axis label formats
and y-axis divisions. They also control whether there is a single y-axis, or one per trace.

Y-Axis group properties

The group includes the following properties:

“yAxisAutoScaleMode” on page 388

“yAxisFlag” on page 389

“yAxisFormat” on page 389

“yAxisLabel” on page 389

“yAxisLabelTextHeight” on page 389

“yAxisMajorDivisions” on page 389

“yAxisMinLabelWidth” on page 389

“yAxisMinorDivisions” on page 389

“yAxisMultiRangeFlag” on page 389

yAxisAutoScaleMode

Select one of the following modes to control the y-axis range:

Off: The yValueMin and yValueMax properties determine the range of the y-axis. This is the
default.

On: The dashboard calculates the y-axis range according to data values being plotted.

On - Include Min/Max: The dashboard calculates the smallest range (with rounding) that
includes both yValueMin and yValueMax as well as all plotted points.

This property is in the Y-Axis property group.

388 Building and Using Apama Dashboards 10.11.2

11 Graph Objects

yAxisFlag

Select to display the y-axis.

This property is in the Y-Axis property group.

yAxisFormat

Sets the numeric format of values displayed on the y-axis.

Select or enter a format. Use syntax from the Java DecimalFormat class.

This property is in the Y-Axis property group.

yAxisLabel

Specifies the y-axis label.

This property is in the Y-Axis property group.

yAxisLabelTextHeight

Specifies the height in pixels of the y-axis labels.

This property is in the Y-Axis property group.

yAxisMajorDivisions

Specifies the number of major divisions on the y-axis.

This property is in the Y-Axis property group.

yAxisMinLabelWidth

Specifies the minimum width in pixels for the y-axis labels.

This property is in the Y-Axis property group.

yAxisMinorDivisions

Specifies the number of minor divisions on the y-axis.

This property is in the Y-Axis property group.

yAxisMultiRangeFlag

Select to enable one axis per trace with each trace having its own range.

This property is in the Y-Axis property group.

Building and Using Apama Dashboards 10.11.2 389

11 Graph Objects

390 Building and Using Apama Dashboards 10.11.2

11 Graph Objects

12 Table Objects

■ Standard tables .. 392

■ Rotated tables .. 417

■ HTML5 tables ... 429

Building and Using Apama Dashboards 10.11.2 391

This chapter describes the visualization objects in the Tables tab of the Dashboard Builder tool.

Standard tables
Standard tables display tabular data in a straightforward manner. For each row of the data, there
is a row of the displayed table; for each column in the data, there is a column in the displayed
table, with the exception of those specified as hidden. Hidden columns can still be used in labels
and drill-down substitutions.

Tables are particularly useful as a starting point for drill down. By default, tables are configured
to set a number of predefined substitution variables when the end user activates drill down.

Use the valueTable property to attach data to a standard table. Use the columnsToHide property
to specify columns to be omitted from the display.

Include a new line character (\n) in cell text to display multi-line text.

To copy displayed table data to the system clipboard so that it can be pasted into another
application, right click and select Copy Table Values or Copy Cell Value.

This section covers the following table visualizations:

Table

Table with Row Labels

Table without Grid

These visualizations all share the same properties. They differ from one another only with regard
to their default values for these properties. When one of these objects is selected in the Builder
canvas, the Object Class Name that appears at the top of the Object Properties pane is
obj_table02.

See also “Rotated tables ” on page 417, which covers a table with a different set of properties.

The Object Properties panel organizes standard table properties into the groups below.

The rule's action is performed on those cells specified by the first field that bear the specified
comparison relation to the specified value, or else for the rows that contain those cells, or for the
columns that contain those cells (depending on how the Target field is set; see below).

392 Building and Using Apama Dashboards 10.11.2

12 Table Objects

The third field is populated with values from the table's data attachment, based on the selected
comparison field, along with the options top(5) and bottom(5). Select top(5) to specify the five
highest values among the cells specified by the first Condition field. Select bottom(5) to specify
the five lowest values among the cells specified by the first Condition field. Once you make a
selection, you can edit the number in parentheses.

Action: Use this field to specify the rule's action.

In the first drop down menu, select one of the following:

Set Background Color To: controls the color of cell backgrounds.

Set Font Color To: controls the color of cell text.

Hide Rows: controls the visibility of the rows containing the cells specified by the Condition
fields.

Display Image: replaces cell values with an image. Select the name of the image file from the
drop downmenu, or enter the pathname of the file (a .gif, .jpg, or .png file). The drop down
menu contains the names of image files located in the current directory (typically, the dashboards
directory of your project directory, under your Apama installation's work directory), as well
as image files located in the first level of subdirectories. If you enter a pathname, use an absolute
pathname or a pathname that is relative to the current directory.

In the second drop down menu, choose which color to apply to the background or font, enter or
select an image, or enter the name of a dashboard variable to use as the value of this field.

Target: Use this field to control the cells to which the action is applied. Select one of the
following from the drop down list:

Rows: applies the action to the rows that contain the cells specified in theCondition fields.

Cells: applies the action to the cells specified in the Condition fields.

Columns: applies the action to the columns that contain the cells specified in theCondition
fields.

You must select Rows if the action is Hide Rows.

In the Filter Properties dialog, double-click on an existing rule to edit it. Click the Remove button
to delete a rule. Click Clear to remove all rules. Use the Move Up and Move Down buttons to
control the order in which the rules are applied.

This property is in the Alert property group.

Standard table: Alert group
This property group contains filterProperties , which specifies how to modify table appearance at
runtime in response to changes in the values of individual cells.

Building and Using Apama Dashboards 10.11.2 393

12 Table Objects

filterProperties

Specifies rules that are applied at runtime in order to set text color, background color, row visibility,
and cell images based on the values of individual cells. The rules are applied in the order in which
they are listed in the Filter Properties dialog, therefore later rulesmay override the effects of earlier
rules.

In the Object Properties window, double-click on filterProperties in the Property Name field.
The Filter Properties dialog appears.

Click the Add button in the Filter Properties dialog to add a rule. The Edit Filter dialog appears.

The dialog has the following fields and buttons:

394 Building and Using Apama Dashboards 10.11.2

12 Table Objects

Condition: Use these fields to specify the cells for which the rule's action is to be performed.
The first field specifies a group of cells and the second and third fields specify a condition. The
action is performed for those cells in the specified group that meet the specified condition, or
else for the rows containing those cells, or for the columns contain those cells (depending on
how the Target field is set; see below).

In the first field, supply a column name to specify all cells in a column. Supply Column Header
to specify all column header cells. Supply Row Name for all implicit row name cells.

In the second field, select a comparison relation.

In the third field, select or enter a value or dashboard variable name.

Standard table: Background group
Properties in this group control the visibility and appearance of the rectangle that serves as the
background of the table and the table's main label (see label).

Background group properties

The group contains the following properties:

“bgBorderColor” on page 395

“bgBorderFlag” on page 396

“bgColor” on page 396

“bgEdgeWidth” on page 396

“bgGradientColor2” on page 396

“bgGradientMode” on page 396

“bgRaisedFlag” on page 397

“bgRoundness” on page 397

“bgShadowFlag” on page 397

“bgStyleFlag” on page 397

“bgVisFlag” on page 397

“borderPixels” on page 397

“tableBgColor” on page 398

bgBorderColor

Sets the color of the border (see bgBorderFlag) of the background rectangle. Select the ... button
and choose a color from the palette. Close the Color Chooser window when you are done.

Building and Using Apama Dashboards 10.11.2 395

12 Table Objects

bgBorderFlag

Select to display a border around the background rectangle.

This property is in the Background property group.

bgColor

Sets the background color. Select the ... button and choose a color from the palette. Close the Color
Chooser window when you are done.

This property is in the Background property group.

bgEdgeWidth

Sets the width in pixels of the 3D edge on the background rectangle. This property is only used if
bgBorderFlag is selected.

This property is in the Background property group.

bgGradientColor2

Sets the color for the second color in the gradient. The default is white. The bgColor property sets
the first color in the gradient.

This property is in the Background property group.

bgGradientMode

Display a gradient in the background rectangle. Select from the following options:

None: No gradient

Diagonal Edge: Gradient is drawn at a 45 degree angle from the top left to the bottom right
corner of the object.

Diagonal Center: Gradient is drawn at a 45 degree angle from the center to the top left and
the bottom right corners of the object.

Horizontal Edge: Gradient is drawn horizontally from the top to the bottom of the object.

Horizontal Center: Gradient is drawn horizontally from the center to the top and bottom of
the object.

Vertical Edge: Gradient is drawn vertically from the left to the right of the object.

Vertical Center: Gradient is drawn vertically from the center to the left and right of the object.

This property is in the Background property group.

396 Building and Using Apama Dashboards 10.11.2

12 Table Objects

bgRaisedFlag

Reverses the direction of the gradient, as well as that of the 3D edge if the bgStyle selected is 3D
Rectangle.

This property is in the Background property group.

bgRoundness

Sets the arc length of the rounded corners. This property is only available if the bgStyle selected
is Round Rectangle.

The value of bgRoundness cannot exceed half the value of the objWidth or the objHeight. If
bgRoundness does exceed that value, half of objWidth or objHeight (whichever is smaller) will be
used instead. For example if objWidth is 100 and objHeight is 50, then the value of bgRoundness
cannot exceed 25. If it does, then half the value of objHeight (25) will be used instead. This property
is in the Background property group.

bgShadowFlag

Select to display a drop shadow on the background rectangle.

This property is in the Background property group.

bgStyleFlag

Choose one of the following three options from the drop down menu:

Rectangle: Select to display a background rectangle.

3D Rectangle: Select to display a 3D edge on the background rectangle. If selected, use
bgEdgeWidth to set the width of the 3D edge.

Round Rectangle: Select to display a background rectangle with rounded edges. If selected,
use bgRoundness to set the arc length of the rounded corners.

This property is in the Background property group.

bgVisFlag

Select to display the background rectangle.

This property is in the Background property group.

borderPixels

Sets the width in pixels of the border between the chart and the edge of the background rectangle.

This property is in the Background property group.

Building and Using Apama Dashboards 10.11.2 397

12 Table Objects

tableBgColor

Sets the color of empty space in the table. Select the ... button and choose a color from the palette.
Close the Color Chooser window when you are done.

This property is in the Background property group.

Standard table: Cell group
Properties in this group control the appearance of cell text and cell background color.

Cell group properties

The group contains the following properties:

“cellBgColor” on page 398

“cellBgStripedContrast” on page 398

“cellBgStripedFlag” on page 398

“cellTextColor” on page 399

“cellTextFont” on page 399

“cellTextSize” on page 399

cellBgColor

Sets the background color of the cells. Select the ... button and choose a color from the palette.
Close the Color Chooser window when you are done.

This property is in the Cell property group.

cellBgStripedContrast

Specifies the contrast level for the stripes if cellBgStripedFlag is enabled.

This property is in the Cell property group.

cellBgStripedFlag

Specifies alternating striped rows. Alternate rows have a lighter shade of the color specified in
cellBgColor.

This property is in the Cell property group.

398 Building and Using Apama Dashboards 10.11.2

12 Table Objects

cellTextColor

Sets the text color of the cells. Select the ... button and choose a color from the palette. Close the
Color Chooser window when you are done.

This property is in the Cell property group.

cellTextFont

Sets the font for cell text. Select an item from the drop down menu.

This property is in the Cell property group.

cellTextSize

Sets the point size of the cell text. The default is 11 points. If you enter a negative value, the default
is used.

This property is in the Cell property group.

Standard table: Column group
Properties in this group control the visibility, width, and resize behavior of table columns, as well
as the format and alignment of cell text within each column.

Column group properties

The group contains the following properties:

“autoResizeFlag” on page 399

“columnAlignment” on page 400

“columnFormat” on page 400

“columnProperties” on page 401

“columnsToHide” on page 402

“indexColumns” on page 403

autoResizeFlag

When this property is enabled, columnwidths change automatically to accommodate table resizing.
When this property is disabled, columnwidth is fixed at the values specified by columnProperties.

This property is in the Column property group.

Building and Using Apama Dashboards 10.11.2 399

12 Table Objects

columnAlignment

Specifies the alignment of textwithin each column. Select the ellipsis button. TheColumnAlignment
Properties dialog appears.

Select one of the following alignment specifications from the drop down menu in the Alignment
column:

Default

Left

Center

Right

The default setting depends on the type of column.

This property is in the Column property group.

columnFormat

Specifies formats for numerical and date columns. In the Object Properties window, double-click
on columnFormat in the Property Name field. The Column Format Properties dialog appears.

400 Building and Using Apama Dashboards 10.11.2

12 Table Objects

The Column Name list is populated based on the table's data attachment. If you have not yet
attached the table to data, this list is empty.

In theColumn Format column of the dialog, enter a format or select a format from the drop down
menu, and press Enter. Specify numerical formats based on the Java format specification, or with
the following shorthand:

$ for US dollar money values

$$ for US dollar money values with additional formatting, () for non-money values, formatted
similar to money

for positive or negative whole values

Specify date formats based on the Java date specification.

The dialog has the following buttons:

Add Column: Enter the name of the column and click the Add Column button to insert a
column into the table.

Clear: Click the Clear button to clear all cells in the Column Format column of the dialog.

Note:
Text columns that contain text representing numbers are treated as if they are numeric columns,
so number formats can be applied.

This property is in the Column property group.

columnProperties

Specifies the width of each column. In the Object Properties window, double-click on
columnProperties in the Property Name field. The Column Width Properties dialog appears.

Building and Using Apama Dashboards 10.11.2 401

12 Table Objects

The Column Name list is populated based on the table's data attachment. If you have not yet
attached the table to data, this list is empty.

In the Column Width column of the dialog, enter the width in pixels.

The dialog has the following buttons:

Add Column: Enter the name of the column and click the Add Column button to insert a
column into the table.

Clear: Click the Clear button to clear all cells in the Column Width column of the dialog.

This property is in the Column property group.

columnsToHide

Specifies columns from the data attachment to exclude frombeing displayed in the table. Columns
specified in the columnsToHide property can still be used in the drillDownColumnSubs property.

In the Object Properties window, double-click on columnsToHide in the Property Name field. The
Columns To Hide dialog appears.

402 Building and Using Apama Dashboards 10.11.2

12 Table Objects

The Column Name list is populated based on the table's data attachment. If you have not yet
attached the table to data, this list is empty.

In the Hide Column column of the dialog, click the checkbox for each column that you want to
hide.

The dialog has the following buttons:

Add Column: Enter the name of the column and click the Add Column button to insert a
column into the table.

Clear: Click the Clear button to clear all cells in the Column Width column of the dialog.

Dashboard Builder displays a warning message if you attempt to hide the row header column.

This property is in the Column property group.

indexColumns

Use this property in order to maintain the highlight of selected rows after data updates or table
sorts are executed. In theObject Propertieswindow, double-click on indexColumns in theProperty
Namefield. The IndexColumns dialog appears. Select one ormore columnswhose values uniquely
identify each row.

This property is in the Column property group.

Standard table: Column Header group
Properties in this group control the color, font, and size of column-header text, as well as the
column-header background color.

Building and Using Apama Dashboards 10.11.2 403

12 Table Objects

Column Header group properties

The group contains the following properties:

“columnHeaderBgColor” on page 404

“columnHeaderTextColor” on page 404

“columnHeaderTextFont” on page 404

“columnHeaderTextSize” on page 404

columnHeaderBgColor

Sets the background color of the column headers. Select the ... button and choose a color from the
palette. Close the Color Chooser window when you are done.

This property is in the Column Header property group.

columnHeaderTextColor

Sets the text color of the column headers. Select the ... button and choose a color from the palette.
Close the Color Chooser window when you are done.

This property is in the Column Header property group.

columnHeaderTextFont

Sets the font for column header text. Select an item from the drop down menu.

This property is in the Column Header property group.

columnHeaderTextSize

Sets the point size of the column header text. The default is 11 points. If you enter a negative value,
the default is used.

This property is in the Column Header property group.

Standard table: Data group
Properties in this group determine what data populates the table.

Data group properties

The group contains the following properties:

“insertNewRowsAtTopFlag” on page 405

“insertNewRowsFlag” on page 405

404 Building and Using Apama Dashboards 10.11.2

12 Table Objects

“maxNumberOfRows” on page 405

“rowLabelMode” on page 405

“valueTable” on page 405

insertNewRowsAtTopFlag

Controls whether new rows are inserted at the top or bottom of the table, if insertNewRowsFlag
is enabled.

This property is in the Data property group.

insertNewRowsFlag

Controlswhether the table contents are replaced or augmentedwith newdata sent to the dashboard.
If this property is enabled, the table contents are augmented through the addition of new rows.
If this property is not enabled, new data replaces the table contents.

This property is in the Data property group.

maxNumberOfRows

Sets the maximum number of rows that the table can contain. Enter a value that is less than or
equal to 131072.

This property is in the Data property group.

rowLabelMode

Supply a positive value to enable a row-header column consisting of generated row IDs.

This property is in the Data property group.

valueTable

Attach your data to the valueTable property. Right-click on the property name in the Object
Properties panel, and select a menu item under Attach to Data.

This property is in the Data property group.

Standard table: Data Label group
This property group contains the property columnDisplayNames, which specifies non-default
column-header text.

columnDisplayNames

Sets alternate display names for the columns of the data attached to valueTable.

Building and Using Apama Dashboards 10.11.2 405

12 Table Objects

This property is in the Data Label property group.

Standard table: Grid group
Properties in this group control the visibility of the horizontal and vertical lines that separate table
rows and columns.

Grid group properties

The group contains the following properties:

“gridHorizontalVisFlag” on page 406

“gridVerticalVisFlag” on page 406

gridHorizontalVisFlag

Controls the visibility of the horizontal lines that separate table rows.

This property is in the Grid property group.

gridVerticalVisFlag

Controls the visibility of the vertical lines that separate table columns.

This property is in the Grid property group.

Standard table: Historian group
Do not use the properties in this group.

historyTableName

Do not use this property.

This property is in the Historian property group.

historyTableRowNameFlag

Do not use this property.

This property is in the Historian property group.

Standard table: Interaction group
Properties in this group control various forms of interaction between the end user and the table,
including scrolling, highlighting, selecting rows, and activating commands, drill downs, and

406 Building and Using Apama Dashboards 10.11.2

12 Table Objects

tooltips. There is also a property that controls end-user keyboard navigation with the Tab key.
See also “Standard table: Sort group” on page 416.

Interaction group properties

The group contains the following properties:

“clearSelection” on page 407

“columnResizeEnabledFlag” on page 408

“command” on page 408

“commandCloseWindowOnSuccess” on page 409

“commandConfirm” on page 409

“confirmText” on page 409

“drillDownColumnSubs” on page 410

“drillDownSelectMode” on page 410

“drillDownTarget” on page 410

“editDataEnabledFlag” on page 410

“editDataLocalVarName” on page 411

“multiSelectFlag” on page 411

“rowHighlightEnabledFlag” on page 411

“scrollToSelectionFlag” on page 411

“scrollbarMode” on page 411

“tabIndex” on page 411

clearSelection

Use the clearSelection property to clear multiple selected rows in a table. When the property is
set to a value of 1, the row selection is cleared. When the property is set to a value of 2, the row
selection is cleared and either the table's action or its drillDownTarget is invoked.

A table's clearSelection property would be attached to a local variable that is set by a control
object on the same display.

For example, to add a Clear Selection button to a display that contains a table that supports
multiple row selection:

1. Add a local variable named $clearSelectionwith an initial value of 0.

2. Create a button object, with these property values:

Building and Using Apama Dashboards 10.11.2 407

12 Table Objects

label : "Clear Selection"

valueToSet : 1

varToSet : <attached to the $clearSelection variable>

3. Set these table object's properties:

clearSelection : <attached to the $clearSelection variable>

4. If the table object has a drilldown command, or a drillDownTarget, add this to its Drill Down
Substitutions:

$clearSelection : 0

The last step is required to reset the value of the $clearSelection variable to zero when a row is
selected in the table.

columnResizeEnabledFlag

If selected, the end user can resize table columns by dragging the vertical separators between the
column headers. This property also enables resize by dragging for the Dashboard Builder.

Note:
This property is ignored for thin client (display server) deployments.

This property is in the Interaction property group.

command

Assign a command or group of commands to this stock chart by right-clicking on the command
property name in the Object Properties window. Select Define Command and choose SYSTEM,
APAMA, or MULTIPLE. See “Using the Define Apama Command dialog” on page 200.

Once a command or command group has been assigned to this object, you can activate it from a
deployed dashboard or from the Dashboard Builder:

Dashboard Builder: Double click on the object.

Web-based deployment: Single click on the object or else right click on it and select Execute
Command from the popup menu.

Local deployment: By default, single-click on the object or else right-click on it and select
Execute Command from the popup menu. To override the default, select Tools > Options
in the Builder (do this before you generate the deployment package), and uncheckSingle-Click
for Drill Down and Commands in the General tab. This allows the end user to use either a
double click or a right click.

When you activate a command, any defined drill down substitutions are performed, and then the
command is executed.

408 Building and Using Apama Dashboards 10.11.2

12 Table Objects

If you assign multiple commands, the commands are launched in an arbitrary order, and are
executed asynchronously; there is no guarantee that one command will finish before the next one
in the sequence starts.

This property is in the Interaction property group.

commandCloseWindowOnSuccess

Select this property to automatically close the window that initiates a SYSTEM command when
the command is executed successfully. This applies to SYSTEM commands only, and is not
supported at all for thin-client (display server) deployments.

With APAMA commands, the window is closed whether or not the command is executed
successfully. For MULTIPLE commands, the window closes when the first command in the
command group succeeds.

This property is in the Interaction property group.

commandConfirm

By default, when the end user executes a command (see the command property), the command
confirmation dialog is disabled. To control this option for each individual object, use the
commandConfirm check box. If confirmation is required for a MULTIPLE command group, a single
confirmation dialog is presented; if you confirm the execution, all individual commands in the
group are executed with no further confirmation. If the you cancel the execution, none of the
commands in the group is executed.

You can also override the confirmation status of individual objectswith an application-wide policy.
Select Tools > Options and choose from three confirmation values:

Do not confirm: Indicates that no commands require confirmation (regardless of each object's
confirmation status).

Confirm all: Indicates that all commands require confirmation (regardless of each object's
confirmation status).

Use object confirm flag (default): Indicates that the confirmation status of each object will
determine whether confirmation is required.

This property is in the Interaction property group.

confirmText

Use this property to write your own text for the confirmation dialog. Otherwise, default text is
used. See commandConfirm.

This property is in the Interaction property group.

Building and Using Apama Dashboards 10.11.2 409

12 Table Objects

drillDownColumnSubs

Use this property to direct a dashboard to assign data-table column values to specified dashboard
variables when the end user activates a drilldown on this object. In the Object Properties window,
double-click on drillDownColumnSubs in the Property Name field to bring up the Drill Down
Column Substitutions dialog.

The dialog has the following fields and buttons:

Substitution String: Enter the dashboard variable next to the name of the data table column
whose value you want assigned to the variable. Press Enter.

Add Column: Enter the name of a column and click theAdd Column button to insert a column
into the table.

Clear: Click the Clear button to remove all variables listed.

The Column Name list is populated based on the table's data attachment. If you have not yet
attached the table to data, this list is empty.

Once you have selected which column values to pass in as substitutions, double-click on any
element in your object to open a drill down window that displays corresponding values.

This property is in the Interaction property group.

drillDownSelectMode

Use this property to control how a drill down display is activated. Select one of the following:

Anywhere to activate a drill down display by double-clicking anywhere on the chart.

Element Only to enable a drill down display only when you double-click on an element of
the chart, such as a bar or candlestick.

This property is in the Interaction property group.

drillDownTarget

To specify a drill down display, double click on drillDownTarget in the Property Name field to
bring up the Drill Down Properties dialog. See “Drill-Down Specification” on page 521.

This property is in the Interaction property group.

editDataEnabledFlag

Do not use this property.

This property is in the Interaction property group.

410 Building and Using Apama Dashboards 10.11.2

12 Table Objects

editDataLocalVarName

Do not use this property.

This property is in the Interaction property group.

multiSelectFlag

Enables the selection of multiple rows. When the user selects multiple rows and drills down, the
drill down substitution values contain a semi colon delimited list of values, one value for each
row that can be used with most data sources in the Filter fields of the Attach To Data dialogs.

This property is in the Interaction property group.

rowHighlightEnabledFlag

Enables highlighting of an entire row when a cell in the row is selected by the end user.

This property is in the Interaction property group.

scrollToSelectionFlag

When this property is enabled, the selected row is made visible whenever the table is updated or
redrawn. If multiple rows are selected, the topmost selected row is made visible.

This property is in the Interaction property group.

scrollbarMode

Select one of the following to set the behavior of the table scroll bars:

Never: Default setting. Some rows or columns may get clipped.

As Needed: Display a scroll bar or scroll bars when there is not enough space to display all
of the rows or columns.

Always: Display scroll bars at all times.

This property is in the Interaction property group.

tabIndex

Defines the order inwhich this table object receives focus (relative to other table objects and control
objects) during keyboard navigation using the Tab key. Initial focus is given to the object with the
smallest positive tabIndex value. The tabbing order proceeds in ascending order. If multiple objects
share the same tabIndex value, initial focus and tabbing order are determined by the alpha-numeric
order of the table names. Tables with a tabIndex value of 0 are last in the tabbing order.

Note:

Building and Using Apama Dashboards 10.11.2 411

12 Table Objects

This property does not apply to thin-client (display server) deployments, or to objects that are
disabled, invisible, or have a value of less than 0.

This property is in the Interaction property group.

Standard table: Label group
Properties in this group control the table's main label, including text, alignment, color, font, and
size.

Label group properties

The group contains the following properties:

“label” on page 412

“labelTextAlignX” on page 412

“labelTextColor” on page 412

“labelTextFont” on page 412

“labelTextHeight” on page 413

label

Specifies the text for the chart label. Click the ellipsis for multi-line text.

The default is Table, Table with Row Labels, or Table without Grid.

This property is in the Label property group.

labelTextAlignX

Sets the alignment of the chart label (see the label property). Select Left, Center, or Right from
the drop down list.

This property is in the Label property group.

labelTextColor

Specifies the color of the chart label text (see the label property). Select the ... button and choose
a color from the palette. Close the Color Chooser window when you are done.

This property is in the Label property group.

labelTextFont

Specifies the font of the chart label text (see the label property). Select an item from drop down
list.

412 Building and Using Apama Dashboards 10.11.2

12 Table Objects

This property is in the Label property group.

labelTextHeight

Specifies the point size of the chart label text (see the label property).

This property is in the Label property group.

Standard table: Object group
Properties in this group control the visibility and transparency of the table as a whole. They also
control (or reflect) the overall position and dimensions of the table. In addition, a property in this
group reflects the generated name of this individual table.

Object group properties

The group contains the following properties:

“anchor” on page 413

“dock” on page 413

“objHeight” on page 414

“objName” on page 414

“objWidth” on page 414

“objX” on page 414

“objY” on page 414

“visFlag” on page 414

anchor

Select zero or more of Top, Left, Bottom, and Right in order to control the object's placement.
The anchorproperty is only appliedwhen the display is resized either by changing theBackground
Properties on the display or by resizing the window in Layout mode. If an object has the dock
property set, the anchor property is ignored. See “About resize modes” on page 30.

dock

Select None (default), Top, Left, Bottom, Right, or Fill in order to control the object's placement
in Layout resize mode. See “About resize modes” on page 30.

Building and Using Apama Dashboards 10.11.2 413

12 Table Objects

objHeight

Set the height of a chart by entering a value for this property or by dragging a handle of the
bounding box that appears when the chart is selected. When you drag a handle of the bounding
box, the displayed value for this property changes to reflect the real-time height of the chart.

This property is in the Object property group.

objName

An identifier that is generated by the Dashboard Builder. This name can be used by other objects'
properties in order to refer to the named chart.

This property is in the Object property group.

objWidth

Set the width of a chart by entering a value for this property or by dragging a handle of the
bounding box that appears when the chart is selected. When you drag a handle of the bounding
box, the displayed value for this property changes to reflect the real-time width of the chart.

This property is in the Object property group.

objX

Sets the X coordinate of the center of this visualization object, relative to the lower left corner of
the current dashboard. This value is set automaticallywhen you position the objectwith themouse.

This property is in the Object property group.

objY

Sets the Y coordinate of the center of this visualization object, relative to the lower left corner of
the current dashboard. This value is set automaticallywhen you position the objectwith themouse.

This property is in the Object property group.

visFlag

Deselect to make this visualization object invisible in the current dashboard.

This property is in the Object property group.

Standard table: Row Header group
A property in this group specifies whether the cells in the first column are considered to be row
headers. If this property is selected, other properties control row-header text color, font, point size,
and background color.

414 Building and Using Apama Dashboards 10.11.2

12 Table Objects

Row Header group properties

The group contains the following properties:

“rowHeaderBgColor” on page 415

“rowHeaderEnabledFlag” on page 415

“rowHeaderFilterColorsEnabledFlag” on page 415

“rowHeaderTextColor” on page 415

“rowHeaderTextFont” on page 416

“rowHeaderTextSize” on page 416

rowHeaderBgColor

Sets the background color of row-header cells, provided rowHeaderEnabledFlag is enabled. Select
the ... button and choose a color from the palette. Close the Color Chooser windowwhen you are
done.

This property is in the Row Header property group.

rowHeaderEnabledFlag

Specifies that the cells in the first column are row headers When this property is enabled, you can
set the appearance of the row-header column using rowHeaderBgColor, rowHeaderTextColor,
rowHeaderTextFont, and rowHeaderTextSize properties.

Dashboard Builder displays a warning message if you attempt to hide the row-header column by
using the columnsToHide property.

This property is in the Row Header property group.

rowHeaderFilterColorsEnabledFlag

Disable this property to disable the effect of filterProperties on the background color or text color
of cells in the row-header column, provided rowHeaderEnabledFlag is enabled. Note that this
does not override the effects of filterProperties on row visibility.

This property is in the Row Header property group.

rowHeaderTextColor

Sets the text color for row-header cells, provided rowHeaderEnabledFlag is enabled. Select the ...
button and choose a color from the palette. Close the Color Chooser windowwhen you are done.

This property is in the Row Header property group.

Building and Using Apama Dashboards 10.11.2 415

12 Table Objects

rowHeaderTextFont

Sets the font for row-header cells, provided rowHeaderEnabledFlag is enabled. Select an item
from the drop down list.

This property is in the Row Header property group.

rowHeaderTextSize

Sets the text point size for row-header cells, provided rowHeaderEnabledFlag is enabled.

This property is in the Row Header property group.

Standard table: Sort group
Properties in this group control the order in which table rows appear, as well as whether the end
user can re-sort table rows by clicking on a column header.

Sort group properties

The group contains the following properties:

“showSortIconFlag” on page 416

“sortAscendingFlag” on page 416

“sortColumnName” on page 417

showSortIconFlag

When this property is enabled, the end user can click a column's header to sort the table rows
according to the values in that column. The sortAscendingFlag property determines whether the
sort is initially ascending or descending. Clicking a column header again reverses the sort order.
In Dashboard Builder, sortAscendingFlag changes in real time to reflect the current sort order,
and sortColumnName changes in real time to reflect the current sort column.

In addition, when this property is enabled, a sort icon (an arrow head) appears next to the header
of the current sort column (determined initially by sortColumnName). The direction in which the
arrow head points indicates whether the current sort order is ascending or descending.

This property is in the Sort property group.

sortAscendingFlag

Determines whether the current sort order is ascending or descending. See sortColumnName and
showSortIconFlag.

This property is in the Sort property group.

416 Building and Using Apama Dashboards 10.11.2

12 Table Objects

sortColumnName

Sets the columnwhose values determine the order inwhich table rows appear. If sortAscendingFlag
is enabled, rows with earlier values (either numerically or alphabetically) appear first. See also
showSortIconFlag.

This property is in the Sort property group.

Rotated tables
Rotated tables display tabular data by swapping rows and columns. For each row of the data,
there is a column in the displayed table; for each column in the data, there is a row in the displayed
table.

Use the valueTable property to attach data to a rotated table.

Include a new line character (\n) in the cell text to display multi-line text.

To copy data to the system clipboard so that it can be pasted into another application, right-click
and select Copy Table Values or Copy Cell Value.

When a rotated table is selected in the Builder canvas, the Object Class Name that appears at the
top of the Object Properties pane is obj_table03.

The Object Properties panel organizes rotated table properties into the groups below.

Rotated table: Background group
Properties in this group control the visibility and appearance of the rectangle that serves as the
background of the table and the table's main label (see label).

Background group properties

The group contains the following properties:

“bgBorderColor” on page 418

“bgBorderFlag” on page 418

“bgColor” on page 418

Building and Using Apama Dashboards 10.11.2 417

12 Table Objects

“bgEdgeWidth” on page 418

“bgGradientColor2” on page 418

“bgGradientMode” on page 419

“bgRaisedFlag” on page 419

“bgRoundness” on page 419

“bgShadowFlag” on page 419

“bgStyleFlag” on page 419

“bgVisFlag” on page 420

“borderPixels” on page 420

bgBorderColor

Sets the color of the border (see bgBorderFlag) of the background rectangle. Select the ... button
and choose a color from the palette. Close the Color Chooser window when you are done.

bgBorderFlag

Select to display a border around the background rectangle.

This property is in the Background property group.

bgColor

Sets the background color. Select the ... button and choose a color from the palette. Close the Color
Chooser window when you are done.

This property is in the Background property group.

bgEdgeWidth

Sets the width in pixels of the 3D edge on the background rectangle. This property is only used if
bgBorderFlag is selected.

This property is in the Background property group.

bgGradientColor2

Sets the color for the second color in the gradient. The default is white. The bgColor property sets
the first color in the gradient.

This property is in the Background property group.

418 Building and Using Apama Dashboards 10.11.2

12 Table Objects

bgGradientMode

Display a gradient in the background rectangle. Select from the following options:

None: No gradient

Diagonal Edge: Gradient is drawn at a 45 degree angle from the top left to the bottom right
corner of the object.

Diagonal Center: Gradient is drawn at a 45 degree angle from the center to the top left and
the bottom right corners of the object.

Horizontal Edge: Gradient is drawn horizontally from the top to the bottom of the object.

Horizontal Center: Gradient is drawn horizontally from the center to the top and bottom of
the object.

Vertical Edge: Gradient is drawn vertically from the left to the right of the object.

Vertical Center: Gradient is drawn vertically from the center to the left and right of the object.

This property is in the Background property group.

bgRaisedFlag

Reverses the direction of the gradient, as well as that of the 3D edge if the bgStyle selected is 3D
Rectangle.

This property is in the Background property group.

bgRoundness

Sets the arc length of the rounded corners. This property is only available if the bgStyle selected
is Round Rectangle.

The value of bgRoundness cannot exceed half the value of the objWidth or the objHeight. If
bgRoundness does exceed that value, half of objWidth or objHeight (whichever is smaller) will be
used instead. For example if objWidth is 100 and objHeight is 50, then the value of bgRoundness
cannot exceed 25. If it does, then half the value of objHeight (25) will be used instead. This property
is in the Background property group.

bgShadowFlag

Select to display a drop shadow on the background rectangle.

This property is in the Background property group.

bgStyleFlag

Choose one of the following three options from the drop down menu:

Building and Using Apama Dashboards 10.11.2 419

12 Table Objects

Rectangle: Select to display a background rectangle.

3D Rectangle: Select to display a 3D edge on the background rectangle. If selected, use
bgEdgeWidth to set the width of the 3D edge.

Round Rectangle: Select to display a background rectangle with rounded edges. If selected,
use bgRoundness to set the arc length of the rounded corners.

This property is in the Background property group.

bgVisFlag

Select to display the background rectangle.

This property is in the Background property group.

borderPixels

Sets the width in pixels of the border between the chart and the edge of the background rectangle.

This property is in the Background property group.

Rotated table: Cell group
Properties in this group control the appearance of cell text and cell background color.

Cell group properties

The group contains the following properties:

“cellBgColor” on page 420

“cellBgStripedContrast” on page 421

“cellBgStripedFlag” on page 421

“cellTextColor” on page 421

“cellTextFont” on page 421

“cellTextSize” on page 421

cellBgColor

Sets the background color of the cells. Select the ... button and choose a color from the palette.
Close the Color Chooser window when you are done.

This property is in the Cell property group.

420 Building and Using Apama Dashboards 10.11.2

12 Table Objects

cellBgStripedContrast

Specifies the contrast level for the stripes if cellBgStripedFlag is enabled.

This property is in the Cell property group.

cellBgStripedFlag

Specifies alternating striped rows. Alternate rows have a lighter shade of the color specified in
cellBgColor.

This property is in the Cell property group.

cellTextColor

Sets the text color of the cells. Select the ... button and choose a color from the palette. Close the
Color Chooser window when you are done.

This property is in the Cell property group.

cellTextFont

Sets the font for cell text. Select an item from the drop down menu.

This property is in the Cell property group.

cellTextSize

Sets the point size of the cell text.

This property is in the Cell property group.

Rotated table: Column group
Properties in this group control the width and resize-behavior of table columns.

Column group properties

The group contains the following properties:

“autoResizeFlag” on page 421

“columnProperties” on page 422

autoResizeFlag

When this property is enabled, columnwidths change automatically to accommodate table resizing.
When this property is disabled, columnwidth is fixed at the values specified by columnProperties.

Building and Using Apama Dashboards 10.11.2 421

12 Table Objects

This property is in the Column property group.

columnProperties

Specifies the width of each column. In the Object Properties window, double-click on
columnProperties in the Property Name field. The Column Width Properties dialog appears.

The Column Name list is populated based on the table's data attachment. If you have not yet
attached the table to data, this list is empty.

In the Column Width column of the dialog, enter the width in pixels.

The dialog has the following buttons:

Add Column: Enter the name of the column and click the Add Column button to insert a
column into the table.

Clear: Click the Clear button to clear all cells in the Column Width column of the dialog.

This property is in the Column property group.

Rotated table: Data group
The property in this group, valueTable, determines what data populates the table.

valueTable

Attach your data to the valueTable property. Right-click on the property name in the Object
Properties panel, and select a menu item under Attach to Data.

This property is in the Data property group.

422 Building and Using Apama Dashboards 10.11.2

12 Table Objects

Rotated table: Grid group
Properties in this group control the visibility of the horizontal and vertical lines that separate table
rows and columns.

Grid group properties

The group contains the following properties:

“gridHorizontalVisFlag” on page 423

“gridVerticalVisFlag” on page 423

gridHorizontalVisFlag

Controls the visibility of the horizontal line that separate table rows.

This property is in the Grid property group.

gridVerticalVisFlag

Controls the visibility of the vertical line that separate table columns.

This property is in the Grid property group.

Rotated table: Historian group
Do not use the properties in this group.

historyTableName

Do not use this property.

This property is in the Historian property group.

historyTableRowNameFlag

Do not use this property.

This property is in the Historian property group.

Rotated table: Interaction group
Properties in this group control command and drill-down of interaction between the end user and
the table.

Building and Using Apama Dashboards 10.11.2 423

12 Table Objects

Interaction group properties

The group contains the following properties:

“command” on page 424

“commandCloseWindowOnSuccess” on page 424

“commandConfirm” on page 425

“confirmText” on page 425

“drillDownColumnSubs” on page 425

“drillDownSelectMode” on page 426

“drillDownTarget” on page 426

command

Assign a command or group of commands to this stock chart by right-clicking on the command
property name in the Object Properties window. Select Define Command and choose SYSTEM,
APAMA, or MULTIPLE. See “Using the Define Apama Command dialog” on page 200.

Once a command or command group has been assigned to this object, you can activate it from a
deployed dashboard or from the Dashboard Builder:

Dashboard Builder: Double click on the object.

Web-based deployment: Single click on the object or else right click on it and select Execute
Command from the popup menu.

Local deployment: By default, single-click on the object or else right-click on it and select
Execute Command from the popup menu. To override the default, select Tools > Options
in the Builder (do this before you generate the deployment package), and uncheckSingle-Click
for Drill Down and Commands in the General tab. This allows the end user to use either a
double click or a right click.

When you activate a command, any defined drill down substitutions are performed, and then the
command is executed.

If you assign multiple commands, the commands are launched in an arbitrary order, and are
executed asynchronously; there is no guarantee that one command will finish before the next one
in the sequence starts.

This property is in the Interaction property group.

commandCloseWindowOnSuccess

Select this property to automatically close the window that initiates a SYSTEM command when
the command is executed successfully. This applies to SYSTEM commands only, and is not
supported at all for thin-client, web-page deployments.

424 Building and Using Apama Dashboards 10.11.2

12 Table Objects

With APAMA commands, the window is closed whether or not the command is executed
successfully. For MULTIPLE commands, the window closes when the first command in the
command group succeeds.

This property is in the Interaction property group.

commandConfirm

By default, when the end user executes a command (see the command property), the command
confirmation dialog is disabled. To control this option for each individual object, use the
commandConfirm check box. If confirmation is required for a MULTIPLE command group, a single
confirmation dialog is presented; if you confirm the execution, all individual commands in the
group are executed with no further confirmation. If the you cancel the execution, none of the
commands in the group is executed.

You can also override the confirmation status of individual objectswith an application-wide policy.
Select Tools > Options and choose from three confirmation values:

Do not confirm: Indicates that no commands require confirmation (regardless of each object's
confirmation status).

Confirm all: Indicates that all commands require confirmation (regardless of each object's
confirmation status).

Use object confirm flag (default): Indicates that the confirmation status of each object will
determine whether confirmation is required.

This property is in the Interaction property group.

confirmText

Use this property to write your own text for the confirmation dialog. Otherwise, default text is
used. See commandConfirm.

This property is in the Interaction property group.

drillDownColumnSubs

Use this property to direct a dashboard to assign data-table column values to specified dashboard
variableswhen the end user activates a drilldown on this object. In theObject Propertieswindow,
double-click on drillDownColumnSubs in the Property Name field to bring up the Drill Down
Column Substitutions dialog.

The dialog has the following fields and buttons:

Substitution String: Enter the dashboard variable next to the name of the data table column
whose value you want assigned to the variable. Press Enter.

Add Column: Enter the name of a column and click theAdd Column button to insert a column
into the table.

Clear: Click the Clear button to remove all variables listed.

Building and Using Apama Dashboards 10.11.2 425

12 Table Objects

The Column Name list is populated based on the table's data attachment. If you have not yet
attached the table to data, this list is empty.

Once you have selected which column values to pass in as substitutions, double-click on any
element in your object to open a drill down window that displays corresponding values.

This property is in the Interaction property group.

drillDownSelectMode

Use this property to control how a drill down display is activated. Select one of the following:

Anywhere to activate a drill down display by double-clicking anywhere on the chart.

Element Only to enable a drill down display only when you double-click on an element of
the chart, such as a bar or candlestick.

This property is in the Interaction property group.

drillDownTarget

To specify a drill down display, double click on drillDownTarget in the Property Name field to
bring up the Drill Down Properties dialog. See “Drill-Down Specification” on page 521.

This property is in the Interaction property group.

Rotated table: Label group
Properties in this group control the table's main label, including text, alignment, color, font, and
size.

Label group properties

The group contains the following properties:

“label” on page 426

“labelTextAlignX” on page 427

“labelTextColor” on page 427

“labelTextFont” on page 427

“labelTextHeight” on page 427

label

Specifies the text for the chart label. Click the ellipsis for multi-line text.

The default is Table.

This property is in the Label property group.

426 Building and Using Apama Dashboards 10.11.2

12 Table Objects

labelTextAlignX

Sets the alignment of the chart label (see the label property). Select Left, Center, or Right from
the drop down list.

This property is in the Label property group.

labelTextColor

Specifies the color of the chart label text (see the label property). Select the ... button and choose
a color from the palette. Close the Color Chooser window when you are done.

This property is in the Label property group.

labelTextFont

Specifies the font of the chart label text (see the label property). Select an item from drop down
list.

This property is in the Label property group.

labelTextHeight

Specifies the point size of the chart label text (see the label property).

This property is in the Label property group.

Rotated table: Object group
Properties in this group control the visibility and transparency of the table as a whole. They also
control (or reflect) the overall position and dimensions of the table. In addition, a property in this
group reflects the generated name of this individual table.

Object group properties

The group contains the following properties:

“anchor” on page 428

“dock” on page 428

“objHeight” on page 428

“objName” on page 428

“objWidth” on page 428

“objX” on page 428

“objY” on page 428

Building and Using Apama Dashboards 10.11.2 427

12 Table Objects

“visFlag” on page 429

anchor

Select zero or more of Top, Left, Bottom, and Right in order to control the object's placement.
The anchorproperty is only appliedwhen the display is resized either by changing theBackground
Properties on the display or by resizing the window in Layout mode. If an object has the dock
property set, the anchor property is ignored. See “About resize modes” on page 30.

dock

Select None (default), Top, Left, Bottom, Right, or Fill in order to control the object's placement
in Layout resize mode. See “About resize modes” on page 30.

objHeight

Set the height of a chart by entering a value for this property or by dragging a handle of the
bounding box that appears when the chart is selected. When you drag a handle of the bounding
box, the displayed value for this property changes to reflect the real-time height of the chart.

This property is in the Object property group.

objName

An identifier that is generated by the Dashboard Builder. This name can be used by other objects'
properties in order to refer to the named chart.

This property is in the Object property group.

objWidth

Set the width of a chart by entering a value for this property or by dragging a handle of the
bounding box that appears when the chart is selected. When you drag a handle of the bounding
box, the displayed value for this property changes to reflect the real-time width of the chart.

This property is in the Object property group.

objX

Sets the X coordinate of the center of this visualization object, relative to the lower left corner of
the current dashboard. This value is set automaticallywhen you position the objectwith themouse.

This property is in the Object property group.

objY

Sets the Y coordinate of the center of this visualization object, relative to the lower left corner of
the current dashboard. This value is set automaticallywhen you position the objectwith themouse.

428 Building and Using Apama Dashboards 10.11.2

12 Table Objects

This property is in the Object property group.

visFlag

Deselect to make this visualization object invisible in the current dashboard.

This property is in the Object property group.

HTML5 tables
TheHTML5 table is an advancedHTML implementation of obj_table02which provides enhanced
filtering. The HTML5 table is available in the Thin Client only.

To display your data in a HTML5 table, select the Table (HTML5) table object instance in the
Builder's Tables tab. One can also select any of the other table objects under Tables tab except the
Rotated Table and check the webGridFlag property.

Requirements

HTML5 table appears in the Thin Client in anymodern version of a supported browser. No plug-in
is required. In older browsers which do not support HTML5, the HTML5 table will be rendered
with the classic grid table.

Features

The HTML5 table supports advanced, interactive table features in the Thin Client: sorting on
multiple columns, filtering onmultiple columns, column resizing, column reordering, and hiding
columns. In addition, you can unsort a previously selected sort column and, in a grid with
rowHeaderEnabledFlag = true, additional columns can be locked into the row header. You can
save all of those column settings permanently so that they are restored when you return to the
display later. Many of these features are accessed from the column menu, shown in the screen
shot above, opened by clicking on the menu icon in each column's header.

Building and Using Apama Dashboards 10.11.2 429

12 Table Objects

Also, for improved performance and usability, if a data table contains more than 200 rows, by
default the HTML5 table displays it in pages of 200 rows. For more information on paging, see
the Paging section.

Column Sorting

Click on a column header to sort the table by that column. On the first click, the column is sorted
in ascending order. On the second click the column is sorted in descending order. On the third
click, the column is returned to its original unsorted state. A sort on a string column is
case-insensitive.

You can select multiple sort columns. In that case, the sorting is performed in the order that the
column headers were clicked. Multiple column sorting is a very useful feature, but can also cause
confusion if you intend to sort on a single column, but forget to "unsort" any previously selected
sort columns first. You should check for the up/down sort icon in other column headers if a sort
gives unexpected results.

Column sorting is reflected in an export to HTML and Excel.

Column Visibility

You can hide or show columns in the table by clicking on any column's menu icon, and choosing
Columns from the menu. This opens a submenu with a checkbox for each column that toggles
the visibility of the column.All columns in the data table appear in theColumnsmenu, even those
that are initially hidden by the obj_table02 property columnsToHide.

If the grid has the rowHeaderEnabledFlag property checked then the leftmost column (the row
header column) cannot be hidden.

Column visibility changes are not reflected in an export to HTML and Excel.

Column Filtering

You can create a filter on any column. If filters are created on multiple columns, only the rows
that pass all of the filters are displayed.

The background of a column's menu icon changes to white to indicate that a filter is defined on
that column. This is intended to remind you which columns are filtered.

You can configure a filter on any column by clicking on the column's menu icon and choosing
Filter from the menu. This opens the Column Filter dialog.

Options in the Column Filter dialog vary according to the data type of the selected column:

String columns: You can enter a filter string such as "abc" and, from the dropdown list, select
the operator (equal to, not equal to, starts with, contains, etc) to be used when comparing the
filter string to each string in the column. All of the filter comparisons on strings are
case-insensitive. You can optionally enter a second filter string (e.g. "xyz") and specify if an
AND or OR combination should be used to combine the first and second filter results on the
column.

Numeric columns: You can enter numeric filter values and select arithmetic comparison
operators, (=, !=, >, >=, <, <=). You can optionally enter a second filter value and comparison

430 Building and Using Apama Dashboards 10.11.2

12 Table Objects

operator, and specify if an AND or OR combination should be used to combine the first and
second filter results.

Boolean columns: You simply select whether matching items should be true or false.

Date columns: You can select a date and time, and choose whether matching items should
have a timestamp that is same as, before, or after the filter time. The date is selected by clicking
the calendar icon and picking a date from the Calendar dialog. The time is selected by clicking
the time icon and picking a time from the dropdown list. Alternatively, a date and time can
be typed in the edit box.

Data updates to the grid are suspended while the filter menu is opened. The updates are applied
when the menu is closed.

Column filtering is reflected in an export to HTML and Excel.

Column Locking

This feature is available only if the obj_table02 instance has the row header feature enabled
(rowHeaderEnabledFlag is checked). If so, the leftmost column is "locked" in position, that is it does
not scroll horizontally with the other columns in the table. If the row header is enabled, then two
items labeled Lock and Unlock appear in the column menu. These can be used to add or remove
additional columns from the non-scrolling row header area.

If the row header is enabled, at least one column must remain locked.

Column locking is not reflected in an export to HTML and Excel.

Column Reordering

You can reorder the grid columns by dragging and dropping a column's header into another
position. If the grid has rowHeaderEnabledFlag checked, then dragging a column into or out of the
row header area (the leftmost columns) is equivalent to locking or unlocking the column.

Column reordering is not reflected in an export to HTML and Excel.

Paging

If the data table containsmore than one page of rows, the page controls are displayed at the bottom
of the grid. The default page size is 200 but can be set on each obj_table02 instance via the new
property named webGridRowsPerPage. The default value of that property is zero, which indicates
that the default size (200) should be used. If the height of the grid is less than 64 pixels, there is
insufficient space to display the page controls so only the rows on the first page will be viewable.

Note:
Using a number above 200 for webGridRowsPerPagepropertywill affect performance andusability.

RowMouseover

A new property named webGridHoverColor is available on obj_table02. It is visible only if
webGridFlag = true . The default value of webGridHoverColor is checked. If it is set to any other
color index value, then that color is used to highlight the row that is under the mouse cursor. But
if the obj_table02 filterProperties feature is used to color rows, that color takes precedence, so
the webGridHoverColormay not be useful in those cases. Also, if the row header is enabled, the

Building and Using Apama Dashboards 10.11.2 431

12 Table Objects

row header column and the other columns are highlighted separately, according to which section
of the grid the mouse is over.

Saving Settings

You can permanently save all of the custom settings made to the grid, including filtering, sorting,
column size (width), columnorder, columnvisibility, and column locking. This is done by opening
any column menu, clicking Settings , and then clicking Save All.

The grid's settings are written as an item in the browser's local storage. The item's value is a string
containing the grid's settings. The item uses a unique key comprised of the URL path name, the
display name, and the obj_table02 instance's RTView object name. If the Thin Client's login feature
is enabled, the key will also include the username and role, so different settings can be saved for
each user and role for a grid on any given display, in the same browser and host.

If the user saves the grid settings and navigates away from the display or closes the browser, then
the next time the user returns to the display in the same browser, the settings are retrieved from
the browser's local storage and applied to the grid. The browser's local storage items are persistent,
so the grid settings are preserved if the browser is closed and reopened or if the host system is
restarted.

If the obj_table02 has autoResizeFlag = true, then the column widths are not restored from the
saved settings, and the values computed by the auto-resize feature are used instead. This is by
design.

You can delete the grid's item from local storage by clicking Settings -> Clear All in any column
menu. This permanently deletes the saved settings for the grid and returns the grid to the state
defined in the display file. Note that each browser has its own local storage on each host. The local
storage items are not shared between browsers on the same host or on different hosts. So, if a user
logs in as Joe with role = admin in Internet Explorer on host H1, and saves grid settings for display
X, then those grid settings are restored each time a user logs in as Joe, role admin, on host H1 and
opens display X in Internet Explorer. But if all the same is true except that the browser is Chrome,
then the settings saved in Internet Explorer are not applied. Or if the user is Joe and role is admin
and the browser is Internet Explorer and the display is X, but the host system is H2 not H1, then
the grid settings saved on H1 are not applied.

Support for Large Tables

The HTML5 table can support data tables with many rows and columns. However, for best
performance the display server's cellsperpage property should be specified so that the server
sends large tables to the client in pages, rather than sending all of the rows. In this server paging
mode, large tables are also filtered and sorted in the display server, to improve performance and
decrease data traffic. See the RTViewdocumentation for a description of the cellsperpageproperty,
and the related cellsperexport and cellsperreport properties. A typical value for cellsperpage
is 20000.

Unsupported obj_table02 Features

The following are existing features of obj_table02 that are not supported by the HTML5 table:

432 Building and Using Apama Dashboards 10.11.2

12 Table Objects

The rowHeaderEnabledFlag property is supported, but rowHeaderBgColor, rowHeaderTextColor,
rowHeaderTextFont, rowHeaderTextSize are ignored. Instead the rowheader column is rendered
like all other columns.

The columnResizeEnabledFlag is ignored if it is false, the HTML5 table always allows column
resizing.

The editDataEnabledFlag is ignored, the table editing feature using custom commands is
currently not supported.

Other limitations, and differences between the new and classic grids:

Time zones: The strings shown in a date column are formatted by the display server using its
time zone. But if a filter is specified on a date column, the date and time for the filter are
computed using the client system's time zone. This can be confusing if the display server and
client are in different time zones.

Selected rows: The grid's row selection is cleared if the sort is changed or if columns are resized
or reordered.

Scrollbars: In general the grid only displays scrollbars when they are needed. However, the
HTML5 table and the classic grid use different algorithms for deciding when to show or hide
scrollbars, and do not use identical row heights and column widths. So the HTML5 table may
sometimes display scrollbars when the classic grid does not, for a grid instance with a given
width and height.

Keyboard traversal: In the classic grid, selecting a row and then using the up/down arrow keys
changes the selection to the previous/next row. In the HTML5 table, the arrow keys moves the
keyboard focus to another row, as indicated by a highlight border around the focused table
cell, but the user must press the space bar to select the row that contains the highlighted
(focused) cell.

Columnwidths: On aHTML5 table with no locked columns (rowHeaderEnabledFlag = false),
columns expand to fill any unused width in the table, even if autoResizeFlag = false. That
is, if the total width of the columns is less than the grid width (ie. the columns don't use all of
the available width) then each column is expanded proportionally to fill the table. In contrast,
the classic and Swing (Viewer) grids just leave unused space at the right edge of the grid. If
the grid has locked columns (rowHeaderEnabledFlag = true), then the HTML5 table behaves
the same as the classic and Swing grids.

Export: The export to HTML and export to excel features are supported on the HTML5 table,
and behave much the same as on the classic grid. The exported table respects the grid's filter
and sort settings but ignores any column reordering, sizing, or hiding changes made by the
user.

Data updates to the grid are suspended while the filter menu is opened. The updates are
applied when the menu is closed.

TreeGrid view

You can configure the rows in the HTML5 tables to appear in a tree grid view. The HTML5 table
rows can be expanded or collapsed in a hierarchy defined by indexColumns in the table.

Building and Using Apama Dashboards 10.11.2 433

12 Table Objects

Note:
This feature is supported only for thin client (display server).

To enable the tree grid view

1. Select the webTreeGridFlag property. A new column with tree grid view is added as the first
column in the table.

2. Specify the name of the newly added column in the webTreeLabelColumn property.

3. Select the columns that are to be considered for the hierarchical structure in indexColumns.

4. Save the dashboard.

5. Deploy the dashboard using the display server deployment type.

434 Building and Using Apama Dashboards 10.11.2

12 Table Objects

13 Trend Objects

■ Sparkline charts ... 436

■ Stock charts .. 456

■ Trend graphs .. 482

Building and Using Apama Dashboards 10.11.2 435

This chapter describes the visualization objects in the Trends tab of the Dashboard Builder tool.

Sparkline charts
Sparkline charts are generally used to present trends and variations in a simple and condensed
way. As the name implies there is a line associated with data, but no background or axis. It is
possible to add labels at the beginning and ending points of the line, which then can be toggled
on and off.

Attach scalar data to the value property or tabular data to the valueTable property. Tabular data
attached to the valueTable property should have two columns: the first must contain numeric
values or time stamps (x-axis values), and the second column should contain the corresponding
(y-axis) numeric values.

When a sparkline chart is selected in the Builder canvas, the Object Class Name that appears at
the top of the Object Properties pane is obj_sparkline.

The Object Properties panel organizes stock chart properties into the groups below.

Sparkline chart: Alert group
Properties in this group allow you to set marker colors and styles based on a threshold value.

Alert group properties

The group contains the following properties:

“valueHighAlarmEnabledFlag” on page 437

“valueHighAlarm” on page 437

“valueHighAlarmLineVisFlag” on page 437

“valueHighAlarmMarkColor” on page 437

“valueHighAlarmMarkStyle” on page 437

“valueHighAlarmTraceColor” on page 438

436 Building and Using Apama Dashboards 10.11.2

13 Trend Objects

“valueHighAlarmTraceStyle” on page 438

“valueLowAlarmEnabledFlag” on page 438

“valueLowAlarm” on page 438

“valueLowAlarmLineVisFlag” on page 438

“valueLowAlarmMarkColor” on page 438

“valueLowAlarmMarkStyle” on page 439

“valueLowAlarmTraceColor” on page 439

“valueLowAlarmTraceStyle” on page 439

valueHighAlarmEnabledFlag

Select to enable the high alarm threshold and related properties.

This property is in the Alert property group.

valueHighAlarm

Set the value of the high alarm threshold.

This property is in the Alert property group.

valueHighAlarmLineVisFlag

Select to display a dotted line at the high alarm threshold. The color of the line is set to the
valueHighAlarmMarkColor.

This property is in the Alert property group.

valueHighAlarmMarkColor

When a trace marker's value is greater than or equal to the valueHighAlarm property, the marker
will change to the valueHighAlarmMarkColor and valueHighAlarmMarkStyle.

This property is in the Alert property group.

valueHighAlarmMarkStyle

When a trace marker's value is greater than or equal to the valueHighAlarm property, the marker
will change to the valueHighAlarmMarkColor and valueHighAlarmMarkStyle.

This property is in the Alert property group.

Building and Using Apama Dashboards 10.11.2 437

13 Trend Objects

valueHighAlarmTraceColor

When the value of any segment of a trace line is greater than or equal to the valueHighAlarm
property, that segment of the trace line will change to the valueHighAlarmTraceColor and
valueHighAlarmTraceStyle.

Note:
If valueHighAlarmTraceStyle is set toNo Line, then valueHighAlarmTraceColorwill not change.

This property is in the Alert property group.

valueHighAlarmTraceStyle

When the value of any segment of a trace line is greater than or equal to the valueHighAlarm
property, that segment of the trace line will change to the valueHighAlarmTraceColor and
valueHighAlarmTraceStyle.

Note:
If valueHighAlarmTraceStyle is set toNo Line, then valueHighAlarmTraceColorwill not change.

This property is in the Alert property group.

valueLowAlarmEnabledFlag

Select to enable the low alarm threshold and related properties:

This property is in the Alert property group.

valueLowAlarm

Set the value of the low alarm threshold.

This property is in the Alert property group.

valueLowAlarmLineVisFlag

Select to display a dotted line at the low alarm threshold. The color of the line is set to the
valueLowAlarmMarkColor.

This property is in the Alert property group.

valueLowAlarmMarkColor

When the trace marker's value is less than or equal to the valueLowAlarm property, the marker will
change to the valueLowAlarmMarkColor and valueLowAlarmMarkStyle.

This property is in the Alert property group.

438 Building and Using Apama Dashboards 10.11.2

13 Trend Objects

valueLowAlarmMarkStyle

When the trace marker's value is less than or equal to the valueLowAlarm property, the marker will
change to the valueLowAlarmMarkColor and valueLowAlarmMarkStyle.

This property is in the Alert property group.

valueLowAlarmTraceColor

When the value of any segment of a trace line is less than or equal to the valueLowAlarm property,
that segment of the trace line will change to the valueLowAlarmTraceColor and
valueLowAlarmTraceStyle.

This property is in the Alert property group.

valueLowAlarmTraceStyle

When the value of any segment of a trace line is less than or equal to the valueLowAlarm property,
that segment of the trace line will change to the valueLowAlarmTraceColor and
valueLowAlarmTraceStyle.

This property is in the Alert property group.

Sparkline chart: Background group
Properties in this group control the visibility and appearance of the portion of the graph that serves
as the background of the plot area.

Background group properties

The group contains the following properties:

“bgBorderColor” on page 440

“bgBorderFlag” on page 440

“bgColor” on page 440

“bgEdgeWidth” on page 440

“bgGradientColor2” on page 440

“bgGradientMode” on page 440

“bgRaisedFlag” on page 441

“bgRoundness” on page 441

“bgShadowFlag” on page 441

“bgStyleFlag” on page 441

Building and Using Apama Dashboards 10.11.2 439

13 Trend Objects

“bgVisFlag” on page 441

“borderPixels” on page 442

bgBorderColor

Sets the color of the border (see bgBorderFlag) of the background rectangle. Select the ... button
and choose a color from the palette. Close the Color Chooser window when you are done.

This property is in the Background property group.

bgBorderFlag

Select to display a border around the background rectangle.

This property is in the Background property group.

bgColor

Sets the background color. Select the ... button and choose a color from the palette. Close the Color
Chooser window when you are done.

This property is in the Background property group.

bgEdgeWidth

Sets the width in pixels of the 3D edge on the background rectangle. This property is only used if
bgBorderFlag is selected.

This property is in the Background property group.

bgGradientColor2

Sets the color for the second color in the gradient. The default is white. The bgColor property sets
the first color in the gradient.

This property is in the Background property group.

bgGradientMode

Display a gradient in the background rectangle. Select from the following options:

None: No gradient.

Diagonal Edge: Gradient is drawn at a 45 degree angle from the top left to the bottom right
corner of the object.

Diagonal Center: Gradient is drawn at a 45 degree angle from the center to the top left and
the bottom right corners of the object.

Horizontal Edge: Gradient is drawn horizontally from the top to the bottom of the object.

440 Building and Using Apama Dashboards 10.11.2

13 Trend Objects

Horizontal Center: Gradient is drawn horizontally from the center to the top and bottom of
the object.

Vertical Edge: Gradient is drawn vertically from the left to the right of the object.

Vertical Center: Gradient is drawn vertically from the center to the left and right of the object.

This property is in the Background property group.

bgRaisedFlag

Reverses the direction of the gradient, as well as that of the 3D edge if the bgStyle selected is 3D
Rectangle.

This property is in the Background property group.

bgRoundness

Sets the arc length of the rounded corners. This property is only available if the bgStyle selected
is Round Rectangle.

The value of bgRoundness cannot exceed half the value of the objWidth or the objHeight. If
bgRoundness does exceed that value, half of objWidth or objHeight (whichever is smaller) will be
used instead. For example if objWidth is 100 and objHeight is 50, then the value of bgRoundness
cannot exceed 25. If it does, then half the value of objHeight (25) will be used instead.

This property is in the Background property group.

bgShadowFlag

Select to display a drop shadow on the background rectangle.

This property is in the Background property group.

bgStyleFlag

Choose one of the following three options from the drop down menu:

Rectangle: Select to display a background rectangle.

3D Rectangle: Select to display a 3D edge on the background rectangle. If selected, use
bgEdgeWidth to set the width of the 3D edge.

Round Rectangle: Select to display a background rectangle with rounded edges. If selected,
use bgRoundness to set the arc length of the rounded corners.

This property is in the Background property group.

bgVisFlag

Select to display the background rectangle.

Building and Using Apama Dashboards 10.11.2 441

13 Trend Objects

This property is in the Background property group.

borderPixels

Sets the width in pixels of the border between the chart and the edge of the background rectangle.

This property is in the Background property group.

Sparkline chart: Data group
Properties in this group control the data to which the chart is attached, as well as the y-axis range
and the maximum number of data points contained in the chart.

Data group properties

This group includes the following properties:

“maxPointsPerTrace” on page 442

“value” on page 442

“valueDivisor” on page 442

“valueTable” on page 443

“yValueMax” on page 443

“yValueMin” on page 443

maxPointsPerTrace

The default is 1000. The maximum value for this property is 30000.

This property is in the Data property group.

value

Attach your scalar data to the value property.

This property is in the Data property group.

valueDivisor

Divides y-axis values by the number entered.

This property is in the Data property group.

442 Building and Using Apama Dashboards 10.11.2

13 Trend Objects

valueTable

Attach your tabular data to the valueTable property. Tabular data attachedmust have two columns:
the firstmust contain numeric values or time stamps (x-axis values) and the second column should
contain the corresponding (y-axis) numeric values.

This property is in the Data property group.

yValueMax

Controls the range of y-axis if the yAxisAutoScaleMode is set to Off. Select On for the
yAxisAutoScaleMode to calculate the y-axis range according to data values being plotted. To calculate
the y-axis range including yValueMin and yValueMax, select On - Include Min/Max.

This property is in the Data property group.

yValueMin

Controls the range of y-axis if the yAxisAutoScaleMode is set to Off. Select On for the
yAxisAutoScaleMode to calculate the y-axis range according to data values being plotted. To calculate
the y-axis range including yValueMin and yValueMax, select On - Include Min/Max.

This property is in the Data property group.

Sparkline chart: Data Format group
This group contains the yValueFormat property, which controls the format of displayed values.

yValueFormat

Select or enter the numeric format of values displayed in the legend and popup legend. To enter
a format, use syntax from the Java DecimalFormat class.

This property is in the Data Format property group.

Sparkline chart: Historian group
Do not use the properties in this group.

historyTableName

Do not use this property.

historyTableRowNameFlag

Do not use this property.

Building and Using Apama Dashboards 10.11.2 443

13 Trend Objects

Sparkline chart: Interaction group
Properties in this group control various forms of interaction between the end user and the chart,
including activating commands, drill downs, and tooltips.

Interaction group properties

The group includes the following properties:

“command” on page 444

“commandCloseWindowOnSuccess” on page 445

“commandConfirm” on page 445

“confirmText” on page 445

“cursorColor” on page 445

“cursorFlag” on page 446

“drillDownTarget” on page 446

“legendPopupFlag” on page 446

command

Assign a command or group of commands to this stock chart by right-clicking on the command
property name in the Object Properties window. Select Define Command and choose SYSTEM,
APAMA, or MULTIPLE. See “Using the Define Apama Command dialog” on page 200.

Once a command or command group has been assigned to this object, you can activate it from a
deployed dashboard or from the Dashboard Builder:

Dashboard Builder: Double click on the object.

Web-based deployment: Single click on the object or else right click on it and select Execute
Command from the popup menu.

Local deployment: By default, single-click on the object or else right-click on it and select
Execute Command from the popup menu. To override the default, select Tools > Options
in the Builder (do this before you generate the deployment package), and uncheckSingle-Click
for Drill Down and Commands in the General tab. This allows the end user to use either a
double click or a right click.

When you activate a command, any defined drill down substitutions are performed, and then the
command is executed.

If you assign multiple commands, the commands are launched in an arbitrary order, and are
executed asynchronously; there is no guarantee that one command will finish before the next one
in the sequence starts.

444 Building and Using Apama Dashboards 10.11.2

13 Trend Objects

This property is in the Interaction property group.

commandCloseWindowOnSuccess

Select this property to automatically close the window that initiates a SYSTEM command when
the command is executed successfully. This applies to SYSTEM commands only, and is not
supported at all for thin-client, web-page deployments.

With APAMA commands, the window is closed whether or not the command is executed
successfully. For MULTIPLE commands, the window closes when the first command in the
command group succeeds.

This property is in the Interaction property group.

commandConfirm

By default, when the end user executes a command (see the command property), the command
confirmation dialog is disabled. To control this option for each individual object, use the
commandConfirm check box. If confirmation is required for a MULTIPLE command group, a single
confirmation dialog is presented; if you confirm the execution, all individual commands in the
group are executed with no further confirmation. If the you cancel the execution, none of the
commands in the group is executed.

You can also override the confirmation status of individual objectswith an application-wide policy.
Select Tools > Options and choose from three confirmation values:

Do not confirm: Indicates that no commands require confirmation (regardless of each object's
confirmation status).

Confirm all: Indicates that all commands require confirmation (regardless of each object's
confirmation status).

Use object confirm flag (default): Indicates that the confirmation status of each object will
determine whether confirmation is required.

This property is in the Interaction property group.

confirmText

Use this property to write your own text for the confirmation dialog. Otherwise, default text is
used. See commandConfirm.

This property is in the Interaction property group.

cursorColor

Sets the color of the cursor. Select the ... button and choose a color from the palette. Close the Color
Chooser window when you are done.

The default is yellow.

Building and Using Apama Dashboards 10.11.2 445

13 Trend Objects

This property is in the Interaction property group.

cursorFlag

Select to enable the cursor. When the cursor is enabled, select the chart and point to a location on
a trace to see a cursor line at that location and display the time and values of the trend line at the
cursor line on the legend. Select the legendPopupFlag to display the legend along the cursor.

The cursor is disabled by default.

This property is in the Interaction property group.

drillDownTarget

To specify a drill down display, double click on drillDownTarget in the Property Name field to
bring up the Drill Down Properties dialog. See “Drill-Down Specification” on page 521.

This property is in the Interaction property group.

legendPopupFlag

Controls whether a legend pops up when you mouse over the trend line.

This property is in the Interaction property group.

Sparkline chart: Label group

Properties in this group control the graph's main label (which defaults to Sparkline), including
text, alignment, color, font, and size.

Label group properties

The group includes the following properties:

“label” on page 446

“labelMinTabWidth” on page 447

“labelTextAlignX” on page 447

“labelTextAlignY” on page 447

“labelTextColor” on page 447

“labelTextFont” on page 447

“labelTextHeight” on page 448

label

Specifies the text for the chart label. Click the ellipsis for multi-line text.

446 Building and Using Apama Dashboards 10.11.2

13 Trend Objects

The default is Sparkline.

This property is in the Label property group.

labelMinTabWidth

Setsminimumwidth of the label tab. This property only applies if labelTextAlignY is set toTabTop.

This property is in the Label property group.

labelTextAlignX

Sets the x-axis alignment of the chart label (see the label property). Select Left, Center, or Right
from the drop down list.

This property is in the Label property group.

labelTextAlignY

Sets the y-axis position of the chart label (see the label property). Select one of the following from
the drop down list:

Outside Top: Well above the background rectangle

Top: Just above the background rectangle

Title Top: Along the top line of the background rectangle

Tab Top: Just above the background rectangle. Height and width of the tab is dependent on
the height andwidth of the text. Use the labelMinTabWidth property to specify a minimum tab
width.

Inside Top: Inside the top of the background rectangle

This property is in the Label property group.

labelTextColor

Specifies the color of the chart label text (see the label property). Select the ... button and choose
a color from the palette. Close the Color Chooser window when you are done.

This property is in the Label property group.

labelTextFont

Specifies the font of the chart label text (see the label property). Select an item from drop down
list.

This property is in the Label property group.

Building and Using Apama Dashboards 10.11.2 447

13 Trend Objects

labelTextHeight

Specifies the point size of the chart label text (see the label property).

This property is in the Label property group.

Sparkline chart: Legend group
Properties in this group control the visibility, appearance, and content of the chart legend.

Legend group properties

The group contains the following properties:

“legendBgColor” on page 448

“legendBgGradientColor2” on page 448

“legendBgGradientMode” on page 448

“legendTimeFormat” on page 449

“legendValueMinSpace” on page 449

“legendVisFlag” on page 449

“legendWidthPercent” on page 449

legendBgColor

Select the ... button and choose a color from the palette to set the background color of the legend.
Close the Color Chooser window when you are done.

This property is in the Legend property group.

legendBgGradientColor2

Sets the color for the second color in the gradient. The default is white. The bgColor property sets
the first color in the gradient.

This property is in the Background property group.

legendBgGradientMode

Display a gradient in the legend background rectangle. Select from the following options:

None: No gradient.

Diagonal Edge: Gradient is drawn at a 45 degree angle from the top left to the bottom right
corner of the object.

448 Building and Using Apama Dashboards 10.11.2

13 Trend Objects

Diagonal Center: Gradient is drawn at a 45 degree angle from the center to the top left and
the bottom right corners of the object.

Horizontal Edge: Gradient is drawn horizontally from the top to the bottom of the object.

Horizontal Center: Gradient is drawn horizontally from the center to the top and bottom of
the object.

Vertical Edge: Gradient is drawn vertically from the left to the right of the object.

Vertical Center: Gradient is drawn vertically from the center to the left and right of the object.

This property is in the Background property group.

legendTimeFormat

Sets the format for the time displayed in the legend. Use syntax from the Java SimpleDateFormat
class. For example, MMMM dd, yyyy hh:mm:ss results in the form August 30, 2010 05:32:12
PM. If no format is given, the timeFormat is used.

This property is in the Legend property group.

legendValueMinSpace

Specify the minimum distance in pixels between values and labels in the legend.

This property is in the Legend property group.

legendVisFlag

Select to display the legend.

This property is in the Legend property group.

legendWidthPercent

Sets the percent of the total width of the object used for the legend.

This property is in the Legend property group.

Sparkline chart: Marker group
This group contains the property markDefaultSize, which controls the size of the trace marker.

markDefaultSize

Sets the size, in pixels, of the marker at the end of the trace line. Supply an integer value that is
between 1 and 18, inclusive.

This property is in the Marker property group.

Building and Using Apama Dashboards 10.11.2 449

13 Trend Objects

Sparkline chart: Object group
Properties in this group control the visibility and transparency of the chart as a whole. They also
control (or reflect) the overall position and dimensions of the chart. In addition, a property in this
group reflects the generated name of this individual chart.

Object group properties

This group contains the following properties:

“anchor” on page 450

“dock” on page 450

“objHeight” on page 450

“objName” on page 451

“objWidth” on page 451

“objX” on page 451

“objY” on page 451

“transparencyPercent” on page 451

“visFlag” on page 451

anchor

Select zero or more of Top, Left, Bottom, and Right in order to control the object's placement.
The anchorproperty is only appliedwhen the display is resized either by changing theBackground
Properties on the display or by resizing the window in Layout mode. If an object has the dock
property set, the anchor property is ignored. See “About resize modes” on page 30.

dock

Select None (default), Top, Left, Bottom, Right, or Fill in order to control the object's placement
in Layout resize mode. See “About resize modes” on page 30.

objHeight

Sets the height of a chart by entering a value for this property or by dragging a handle of the
bounding box that appears when the stock chart is selected. When you drag a handle of the
bounding box, the displayed value for this property changes to reflect the real-time height of the
chart.

This property is in the Object property group.

450 Building and Using Apama Dashboards 10.11.2

13 Trend Objects

objName

An identifier that is generated by the Dashboard Builder. This name can be used by other objects'
properties in order to refer to the named stock chart.

This property is in the Object property group.

objWidth

Sets the width of a chart by entering a value for this property or by dragging a handle of the
bounding box that appears when the stock chart is selected. When you drag a handle of the
bounding box, the displayed value for this property changes to reflect the real-time width of the
chart.

This property is in the Object property group.

objX

Sets the X coordinate of the center of this visualization object, relative to the lower left corner of
the current dashboard. This value is set automaticallywhen you position the objectwith themouse.

This property is in the Object property group.

objY

Sets the Y coordinate of the center of this visualization object, relative to the lower left corner of
the current dashboard. This value is set automaticallywhen you position the objectwith themouse.

This property is in the Object property group.

transparencyPercent

Sets the transparency of this chart.

This property is in the Object property group.

visFlag

Deselect to make this visualization object invisible in the current dashboard.

This property is in the Object property group.

Sparkline chart: Plot Area group
The property in this group, traceBgColor, controls the color of the plot area.

Building and Using Apama Dashboards 10.11.2 451

13 Trend Objects

traceBgColor

To set the color of the plot area, select the ... button and choose a color from the palette to set the
background color. Close the Color Chooser window when you are done.

This property is in the Plot Area property group.

Sparkline chart:Trace group
The properties control the visibility and appearance of the trace line.

Trace group properties

The group includes the following properties:

“traceFillStyle” on page 452

“traceLabel” on page 452

“traceLineColor” on page 453

“traceLineStyle” on page 453

“traceLineThickness” on page 453

“traceNMarkColor” on page 453

“traceNMarkStyle” on page 453

“traceNValueHistoryFlag” on page 454

traceFillStyle

Select one of the following fill styles for from the drop down menu:

Solid

Transparent

Gradient

Transparent Gradient

None

The default setting is None.

This property is in theTrace property group.

traceLabel

Enter a label for the trace line. This label appears in the chart's legend.

452 Building and Using Apama Dashboards 10.11.2

13 Trend Objects

This property is in the Trace property group.

traceLineColor

Sets the trace line color. Select the ... button and choose a color from the palette. Close the Color
Chooser window when you are done.

This property is in the Trace property group.

traceLineStyle

Select one of the following line styles for the trace line from the drop down menu:

No Line

Solid

Dotted

Dashed

Dot Dashed

This property is in the Trace property group.

traceLineThickness

Select one of the following thickness specifications for the price trace line from the drop down
menu:

Thin

Medium

Thick

This property is in the Trace property group.

traceNMarkColor

Select the ... button and choose a color from the palette to set the trace marker color. Close the
Color Chooser window when you are done.

This property is in the Trace property group.

traceNMarkStyle

Sets the style of themarker used on the trace. Select one of the following items from the drop down
menu:

No Marker

Building and Using Apama Dashboards 10.11.2 453

13 Trend Objects

Dot

+

*

o

x

Filled Circle

Filled Diamond

Filled Triangle

Filled Square

Filled Star

This property is in the Trace property group.

traceNValueHistoryFlag

Do not use this property.

This property is in the Trace property group.

Sparkline chart: X-Axis group
Properties in this group control the range of the x-axis.

X-Axis group properties

The group includes the following properties:

“timeRange” on page 454

“timeRangeBegin” on page 455

“timeRangeEnd” on page 455

timeRange

Sets the total amount of time, in seconds, plotted on the chart.

If timeRange is set to -1, the time range is determined by the first and last timestamp found in the
attached data.

Note:timeRange is ignored if both timeRangeBegin and timeRangeEnd are set.

The default is -1.0.

454 Building and Using Apama Dashboards 10.11.2

13 Trend Objects

This property is in the X-Axis property group.

timeRangeBegin

Sets the start time value of the data to be plotted on the chart. Following are the supported formats:

mm/dd/yyyy hh:mm:ss (e.g., 01/16/2004 12:30:03)

yyyy-mm-dd hh:mm:ss (e.g., 2004-01-16 12:30:03)

The number of milliseconds since midnight, January 1, 1970 UTC

Note:
If only the time is specified, the current date is used.

This property is in the X-Axis property group.

timeRangeEnd

Sets the end time value of the data to be plotted on the chart. Following are the supported formats
are:

mm/dd/yyyy hh:mm:ss (e.g., 01/16/2010 12:30:03)

yyyy-mm-dd hh:mm:ss (e.g., 2010-01-16 12:30:03)

The number of milliseconds since midnight, January 1, 1970 UTC

Note:
If only the time is specified, the current date is used.

This property is in the X-Axis property group.

Sparkline chart:Y-Axis group
This group contains the yAxisAutoScalMode property, which controls the range of the y-axis.

yAxisAutoScalMode

Select how the y-axis range is calculated from the drop down menu:

Off: The yValueMin and yValueMax properties determine the range of y-axis.

On: The dashboard calculates the y-axis range according to data values being plotted.

On - Include Min/Max: The dashboard calculates the smallest range (with rounding) that
includes yValueMin and yValueMin as well as all plotted points.

This property is in the Y-Axis property group.

Building and Using Apama Dashboards 10.11.2 455

13 Trend Objects

Stock charts
Stock charts visualize live and historical data related to financial instrument trades. They can
include overlays that allow the display of data frommultiple instruments or the display of periodic
events such as stock splits and earnings announcements.

Each plotted point on a stock chart encapsulates four pieces of quantitative information for a
particular instrument and time period: opening value, high value, low value, and closing value.
Each chart visualizes tabular data that includes a time-valued column as well four numerical
columns (for opening, high, low, and closing values).

Use the priceTraceCurrentTable and priceTraceHistoryTable properties to attach data to a stock
chart. Use the timeRangeMode property to specify the duration of the time period represented by
each plotted point.

Use the overlayCount property to specify the number of overlays to be included in the chart. Use
the overlayNCurrentTable and overlayNHistoryTable properties to add the Nth overlay.

When a stock chart is selected in the Builder canvas, the Object Class Name that appears at the
top of the Object Properties pane is obj_stockchart.

The Object Properties panel organizes stock chart properties into the groups below.

Stock chart: Background group
Properties in this group control the visibility and appearance of the portion of the chart that serves
as the background of both the plot area and legend.

Background group properties

The group contains the following properties:

“bgBorderFlag” on page 457

“bgColor” on page 457

“bgEdgeWidth” on page 457

456 Building and Using Apama Dashboards 10.11.2

13 Trend Objects

“bgGradientColor2” on page 457

“bgGradientMode” on page 457

“bgRaisedFlag” on page 458

“bgRoundness” on page 458

“bgShadowFlag” on page 458

“bgStyleFlag” on page 458

“bgVisFlag” on page 459

“borderPixels” on page 459

bgBorderFlag

Select to display a border around the background rectangle.

This property is in the Background property group.

bgColor

Sets the background color. Select the ... button and choose a color from the palette. Close the Color
Chooser window when you are done.

This property is in the Background property group.

bgEdgeWidth

Sets the width in pixels of the 3D edge on the background rectangle. This property is only used if
bgBorderFlag is selected.

This property is in the Background property group.

bgGradientColor2

Sets the color for the second color in the gradient. The default is white. The bgColor property sets
the first color in the gradient.

This property is in the Background property group.

bgGradientMode

Display a gradient in the background rectangle. Select from the following options:

None: No gradient.

Diagonal Edge: Gradient is drawn at a 45 degree angle from the top left to the bottom right
corner of the object.

Building and Using Apama Dashboards 10.11.2 457

13 Trend Objects

Diagonal Center: Gradient is drawn at a 45 degree angle from the center to the top left and
the bottom right corners of the object.

Horizontal Edge: Gradient is drawn horizontally from the top to the bottom of the object.

Horizontal Center: Gradient is drawn horizontally from the center to the top and bottom of
the object.

Vertical Edge: Gradient is drawn vertically from the left to the right of the object.

Vertical Center: Gradient is drawn vertically from the center to the left and right of the object.

This property is in the Background property group.

bgRaisedFlag

Reverses the direction of the gradient, as well as that of the 3D edge if the bgStyle selected is 3D
Rectangle.

This property is in the Background property group.

bgRoundness

Sets the arc length of the rounded corners. This property is only available if the bgStyle selected
is Round Rectangle.

The value of bgRoundness cannot exceed half the value of the objWidth or the objHeight. If
bgRoundness does exceed that value, half of objWidth or objHeight (whichever is smaller) will be
used instead. For example if objWidth is 100 and objHeight is 50, then the value of bgRoundness
cannot exceed 25. If it does, then half the value of objHeight (25) will be used instead.

This property is in the Background property group.

bgShadowFlag

Select to display a drop shadow on the background rectangle.

This property is in the Background property group.

bgStyleFlag

Choose one of the following three options from the drop down menu:

Rectangle: Select to display a background rectangle.

3D Rectangle: Select to display a 3D edge on the background rectangle. If selected, use
bgEdgeWidth to set the width of the 3D edge.

Round Rectangle: Select to display a background rectangle with rounded edges. If selected,
use bgRoundness to set the arc length of the rounded corners.

This property is in the Background property group.

458 Building and Using Apama Dashboards 10.11.2

13 Trend Objects

bgVisFlag

Select to display the background rectangle.

This property is in the Background property group.

borderPixels

Sets the width in pixels of the border between the chart and the edge of the background rectangle.

This property is in the Background property group.

Stock chart: Data group
Properties in this group control the y-axis range.

Data group properties

The group contains the following properties:

“yValueMax” on page 459

“yValueMin” on page 459

yValueMax

Controls the y-axis range.

This property is in the Data property group.

yValueMin

Controls the y-axis range.

This property is in the Data property group.

Stock chart: Data Format group
The property in this group, yValueFormat, controls the numeric format of values displayed in the
legend and popup legend.

yValueFormat

Select or enter the numeric format of values displayed in the legend and popup legend. To enter
a format, use syntax from the Java DecimalFormat class.

This property is in the Data Format property group.

Building and Using Apama Dashboards 10.11.2 459

13 Trend Objects

Stock chart: Interaction group
Properties in this group control various forms of interaction between the end user and the chart,
including scrolling, zooming, and activating commands, drill downs, and tooltips.

Interaction group properties

The group includes the following properties:

“command” on page 460

“commandCloseWindowOnSuccess” on page 461

“commandConfirm” on page 461

“confirmText” on page 461

“cursorColor” on page 462

“cursorFlag” on page 462

“drillDownColumnSubs” on page 462

“drillDownSelectMode” on page 462

“drillDownTarget” on page 463

“mouseOverFlag” on page 463

“scrollbarMode” on page 463

“scrollbarSize” on page 463

“zoomEnabledFlag” on page 463

command

Assign a command or group of commands to this stock chart by right-clicking on the command
property name in the Object Properties window. Select Define Command and choose SYSTEM,
APAMA, or MULTIPLE. See “Using the Define Apama Command dialog” on page 200.

Once a command or command group has been assigned to this object, you can activate it from a
deployed dashboard or from the Dashboard Builder:

Dashboard Builder: Double click on the object.

Web-based deployment: Single click on the object or else right click on it and select Execute
Command from the popup menu.

Local deployment: By default, single-click on the object or else right-click on it and select
Execute Command from the popup menu. To override the default, select Tools > Options
in the Builder (do this before you generate the deployment package), and uncheckSingle-Click

460 Building and Using Apama Dashboards 10.11.2

13 Trend Objects

for Drill Down and Commands in the General tab. This allows the end user to use either a
double click or a right click.

When you activate a command, any defined drill down substitutions are performed, and then the
command is executed.

If you assign multiple commands, the commands are launched in an arbitrary order, and are
executed asynchronously; there is no guarantee that one command will finish before the next one
in the sequence starts.

This property is in the Interaction property group.

commandCloseWindowOnSuccess

Select this property to automatically close the window that initiates a SYSTEM command when
the command is executed successfully. This applies to SYSTEM commands only, and is not
supported at all for thin-client, web-page deployments.

With APAMA commands, the window is closed whether or not the command is executed
successfully. For MULTIPLE commands, the window closes when the first command in the
command group succeeds.

This property is in the Interaction property group.

commandConfirm

By default, when the end user executes a command (see the command property), the command
confirmation dialog is disabled. To control this option for each individual object, use the
commandConfirm check box. If confirmation is required for a MULTIPLE command group, a single
confirmation dialog is presented; if you confirm the execution, all individual commands in the
group are executed with no further confirmation. If the you cancel the execution, none of the
commands in the group is executed.

You can also override the confirmation status of individual objectswith an application-wide policy.
Select Tools > Options and choose from three confirmation values:

Do not confirm: Indicates that no commands require confirmation (regardless of each object's
confirmation status).

Confirm all: Indicates that all commands require confirmation (regardless of each object's
confirmation status).

Use object confirm flag (default): Indicates that the confirmation status of each object will
determine whether confirmation is required.

This property is in the Interaction property group.

confirmText

Use this property to write your own text for the confirmation dialog. Otherwise, default text is
used. See commandConfirm.

Building and Using Apama Dashboards 10.11.2 461

13 Trend Objects

This property is in the Interaction property group.

cursorColor

Sets the color of the cursor, as well as the zoom-area rectangle (see zoomEnabledFlag). Select the
... button and choose a color from the palette. Close the Color Chooser window when you are
done.

The default is yellow.

This property is in the Interaction property group.

cursorFlag

Select to enable the cursor. When the cursor is enabled, select the chart and point to a location on
a trace to see a cursor line at that location and display the time and values of all traces at the cursor
line on the legend. Select the legendPopupFlag to display the legend along the cursor.

The cursor is disabled by default.

This property is in the Interaction property group.

drillDownColumnSubs

Use this property to direct a dashboard to assign data-table column values to specified dashboard
variables when the end user activates a drilldown on this object. In the Object Properties window,
double-click on drillDownColumnSubs in the Property Name field to bring up the Drill Down
Column Substitutions dialog.

The dialog has the following fields and buttons:

Substitution String: Enter the dashboard variable next to the name of the data table column
whose value you want assigned to the variable. Press Enter.

Add Column: Enter the name of a column and click theAdd Column button to insert a column
into the table.

Clear: Click the Clear button to remove all variables listed.

The Column Name list is populated based on the table's data attachment. If you have not yet
attached the table to data, this list is empty.

Once you have selected which column values to pass in as substitutions, double-click on any
element in your object to open a drill down window that displays corresponding values.

This property is in the Interaction property group.

drillDownSelectMode

Use this property to control how a drill down display is activated. Select one of the following:

Anywhere to activate a drill down display by double-clicking anywhere on the chart.

462 Building and Using Apama Dashboards 10.11.2

13 Trend Objects

Element Only to enable a drill down display only when you double-click on an element of
the chart, such as a bar or candlestick.

This property is in the Interaction property group.

drillDownTarget

To specify a drill down display, double click on drillDownTarget in the Property Name field to
bring up the Drill Down Properties dialog. See “Drill-Down Specification” on page 521.

This property is in the Interaction property group.

mouseOverFlag

Select to enable trace element tooltips.When the enabled, hold themouse over a location to display
in a tooltip the time and the open and close values of all traces at the location.

This property is in the Interaction property group.

scrollbarMode

Sets whether and when the scroll bar appears in the chart. Select one of the following from the
drop down menu:

Never: Default setting

Always: Display a scroll bar at all times.

As Needed: Display the scroll bar when necessitated by zooming in the trace area, or when
more data is loaded into the chart than is displayed in the time range. For example, if the time
range of the data in your data attachment is greater than timeRange, setting scrollbarMode to
As Needed will enable a scroll bar, allowing the end user to view all data loaded into the
chart.

This property is in the Interaction property group.

scrollbarSize

Specifies the height of the horizontal scroll bar and the width of the vertical scroll bar, in pixels.
The default value is -1, which sets the size to the system default.

This property is in the Interaction property group.

zoomEnabledFlag

Select to enable zooming within the chart. Click in the chart's trace area and drag the cursor until
a desired range is selected. While dragging, a rectangle is drawn to show the zoom area. The
rectangle's default color is yellow (this can be changed in the cursorColor property). After the
zoom is performed, the chart stores up to four zoom operations in queue. To zoom out, press the
shift key and click in the chart's trace area.

Building and Using Apama Dashboards 10.11.2 463

13 Trend Objects

This property is in the Interaction property group.

Stock chart: Historian group
Do not use the properties in this group.

historyTableName

Do not use this property.

historyTableRowNameFlag

Do not use this property.

Stock chart: Label group

Properties in this group control the chart's main label (which defaults to Stock Chart), including
text, alignment, color, font, and size.

Label group properties

The group includes the following properties:

“label” on page 464

“labelTextAlignX” on page 464

“labelTextColor” on page 465

“labelTextFont” on page 465

“labelTextHeight” on page 465

label

Specifies the text for the chart label. Click the ellipsis for multi-line text.

The default is Stock Chart.

This property is in the Label property group.

labelTextAlignX

Specifies the alignment of the chart label. Select Left, Right, or Center from the drop down list.

This property is in the Label property group.

464 Building and Using Apama Dashboards 10.11.2

13 Trend Objects

labelTextColor

Specifies the color of the chart label text. Select the ... button and choose a color from the palette.
Close the Color Chooser window when you are done.

This property is in the Label property group.

labelTextFont

Specifies the font of the chart label text. Select an item from drop down list.

This property is in the Label property group.

labelTextHeight

Specifies the point size of the chart label text.

This property is in the Label property group.

Stock chart: Legend group
Properties in this group control the visibility, appearance, and content of the chart legend.

Legend group properties

The group contains the following properties:

“legendBgColor” on page 465

“legendBgGradientFlag” on page 466

“legendPopupFlag” on page 466

“legendValueMinSpace” on page 466

“legendValueVisFlag” on page 466

“legendVisFlag” on page 466

“legendWidthPercent” on page 466

legendBgColor

Select the ... button and choose a color from the palette to set the background color of the legend.
Close the Color Chooser window when you are done.

This property is in the Legend property group.

Building and Using Apama Dashboards 10.11.2 465

13 Trend Objects

legendBgGradientFlag

Select to display a gradient in the legend background.

This property is in the Legend property group.

legendPopupFlag

When the cursorFlag property is enabled, select legendPopupFlag to display the legend along the
cursor.

This property is in the Legend property group.

legendValueMinSpace

Specifies the minimum distance in pixels between values and labels in the legend.

This property is in the Legend property group.

legendValueVisFlag

Select to display the numerical values of your data in the legend. If cursorFlag is enabled, the
numerical values are always shown in the legend.

This property is in the Legend property group.

legendVisFlag

Select to display the legend.

This property is in the Legend property group.

legendWidthPercent

Sets the percent of the total width of the object used for the legend.

This property is in the Legend property group.

Stock chart: Object group
Properties in this group control the visibility and transparency of the chart as a whole. They also
control (or reflect) the overall position and dimensions of the chart. In addition, a property in this
group reflects the generated name of this individual chart.

Object group properties

This group contains the following properties:

“anchor” on page 467

466 Building and Using Apama Dashboards 10.11.2

13 Trend Objects

“dock” on page 467

“objHeight” on page 467

“objName” on page 467

“objWidth” on page 467

“objX” on page 468

“objY” on page 468

“transparencyPercent” on page 468

“visFlag” on page 468

anchor

Select zero or more of Top, Left, Bottom, and Right in order to control the object's placement.
The anchorproperty is only appliedwhen the display is resized either by changing theBackground
Properties on the display or by resizing the window in Layout mode. If an object has the dock
property set, the anchor property is ignored. See “About resize modes” on page 30.

dock

Select None (default), Top, Left, Bottom, Right, or Fill in order to control the object's placement
in Layout resize mode. See “About resize modes” on page 30.

objHeight

Set the height of a chart by entering a value for this property or by dragging a handle of the
bounding box that appears when the chart is selected. When you drag a handle of the bounding
box, the displayed value for this property changes to reflect the real-time height of the chart.

This property is in the Object property group.

objName

An identifier that is generated by the Dashboard Builder. This name can be used by other objects'
properties in order to refer to the named chart.

This property is in the Object property group.

objWidth

Set the width of a chart by entering a value for this property or by dragging a handle of the
bounding box that appears when the chart is selected. When you drag a handle of the bounding
box, the displayed value for this property changes to reflect the real-time width of the chart.

This property is in the Object property group.

Building and Using Apama Dashboards 10.11.2 467

13 Trend Objects

objX

Sets the X coordinate of the center of this visualization object, relative to the lower left corner of
the current dashboard. This value is set automaticallywhen you position the objectwith themouse.

This property is in the Object property group.

objY

Sets the Y coordinate of the center of this visualization object, relative to the lower left corner of
the current dashboard. This value is set automaticallywhen you position the objectwith themouse.

This property is in the Object property group.

transparencyPercent

Sets the transparency of this chart.

This property is in the Object property group.

visFlag

Deselect to make this visualization object invisible in the current dashboard.

This property is in the Object property group.

Stock chart: Plot Area group
Properties in this group control the appearance of the plot area, the rectangular area that serves
as background for the trace markers (but not for the legend or axis labels; see “Stock chart:
Background group” on page 456). There is also a property that controls the color of the horizontal
grid line or lines.

Plot Area group properties

The group includes the following properties:

“gridBgColor” on page 468

“gridBgGradientFlag” on page 469

“gridBgImage” on page 469

“gridColor” on page 469

gridBgColor

To set the color of the plot area, select the ... button and choose a color from the palette to set the
background color. Close the Color Chooser window when you are done.

468 Building and Using Apama Dashboards 10.11.2

13 Trend Objects

This property is in the Plot Area property group.

gridBgGradientFlag

Select to display a gradient in the plot area.

This property is in the Plot Area property group.

gridBgImage

Specify an image (.gif, .jpg, or .png file) to display in the plot area. Select the name of the image
file from the drop down menu, or enter the pathname of the file. The drop down menu contains
the names of image files located in the current directory (typically, the dashboards directory of
your project directory, under your Apama installation's work directory), as well as image files
located in the first level of subdirectories. If you enter a pathname, use an absolute pathname or
a pathname that is relative to the current directory.

This property is in the Plot Area property group.

gridColor

Sets the color of the dotted, horizontal grid line in the plot area (see xAxisMajorDivisions). Select
the ... button and choose a color from the palette. Close the Color Chooser windowwhen you are
done.

This property is in the Plot Area property group.

Stock chart: Price Trace group
The properties control the visibility and appearance of the price trace, as well as the data to which
it is attached.

Trace group properties

The group includes the following properties:

“priceTraceBarGainColor” on page 470

“priceTraceBarLossColor” on page 470

“priceTraceCurrentTable” on page 470

“priceTraceFillStyle” on page 471

“priceTraceHistoryTable” on page 471

“priceTraceLabel” on page 472

“priceTraceLineColor” on page 472

“priceTraceLineStyle” on page 472

Building and Using Apama Dashboards 10.11.2 469

13 Trend Objects

“priceTraceLineThickness” on page 472

“priceTraceType” on page 473

“priceTraceVisFlag” on page 473

priceTraceBarGainColor

Sets the color to indicate that a stock price value at market close is greater than value at market
open. Select the ... button and choose a color from the palette. Close the Color Chooser window
when you are done.

The default is green.

Note:
This property does not apply if you have chosen Line for the priceTraceType property or both
Candlestick for priceTraceType and None for priceTraceFillStyle.

This property is in the Price Trace property group.

priceTraceBarLossColor

Sets the color to indicate that a stock price value at market close is less than value at market open.
Select the ... button and choose a color from the palette. Close the Color Chooser window when
you are done.

The default is red.

Note:
This property does not apply if you have chosen Line for the priceTraceType property or both
Candlestick for priceTraceType and None for priceTraceFillStyle.

This property is in the Price Trace property group.

priceTraceCurrentTable

Attach your tabular data to the priceTraceHistoryTable and priceTraceCurrentTable properties.
The priceTraceCurrentTable property is used for viewing live data. The table in your data
attachment should contain a single row that corresponds to and continually updates the last point
on the graph.

Unless you attach this property to aDataViewOHLC table, the table in your data attachmentmust
contain the following five columns in this specific order:

Date: Following are the supported formats for this column are:

mm/dd/yyyy hh:mm:ss (for example, 01/16/2010 12:30:03)

yyyy-mm-dd hh:mm:ss (for example, 2010-01-16 12:30:03)

The number of milliseconds since midnight, January 1, 1970 UTC

470 Building and Using Apama Dashboards 10.11.2

13 Trend Objects

Open: Value of stock price at first market open for defined time period

High: High value of stock price for defined time period

Low: Low value of stock price for defined time period

Close: Value of stock price at last market close for defined time period

See “Attaching Dashboards to Correlator Data” on page 47.

This property is in the Price Trace property group.

priceTraceFillStyle

Select one of the following candlestick fill styles for from the drop down menu:

Solid

Transparent

Gradient

Transparent Gradient

None

This setting has an effect only if priceTraceType is set to CandleStick.

The default setting is None.

This property is in the Price Trace property group.

priceTraceHistoryTable

Attach your tabular data to the priceTraceHistoryTable or priceTraceCurrentTable property. The
priceTraceHistoryTableproperty is used for viewing and analyzing historical data (data generated
before the correlator first sends data to this particular chart). The table in your data attachment
should contain multiple rows, each corresponding to a point on the graph.

Unless you attach this property to aDataViewOHLC table, the table in your data attachmentmust
contain the following five columns in this specific order:

Date: Following are the supported formats for this column:

mm/dd/yyyy hh:mm:ss (for example, 01/16/2010 12:30:03)

yyyy-mm-dd hh:mm:ss (for example, 2010-01-16 12:30:03)

The number of milliseconds since midnight, January 1, 1970 UTC

Open: Value of stock price at first market open for the defined time period

High: High value of stock price for the defined time period

Low: Low value of stock price for the defined time period

Building and Using Apama Dashboards 10.11.2 471

13 Trend Objects

Close: Value of stock price at last market close for the defined time period

See “Attaching Dashboards to Correlator Data” on page 47.

This property is in the Price Trace property group.

priceTraceLabel

Enter a label for the price trace line. This label appears in the chart's legend, aswell as in the tooltip
enabled by the mouseOverFlag property.

This property is in the Price Trace property group.

priceTraceLineColor

Sets the price trace line color. Select the ... button and choose a color from the palette. Close the
Color Chooser window when you are done.

Note:
This property does not apply if you chose OHLC or Bar for priceTraceType.

This property is in the Price Trace property group.

priceTraceLineStyle

Select one of the following line styles for the price trace line from the drop down menu:

No Line

Solid

Dotted

Dashed

Dot Dashed

This property is in the Price Trace property group.

priceTraceLineThickness

Select one of the following thickness specifications for the price trace line from the drop down
menu:

Thin

Medium

Thick

Note:
This property does not apply if you chose OHLC or Candlestick for priceTraceType.

472 Building and Using Apama Dashboards 10.11.2

13 Trend Objects

This property is in the Price Trace property group.

priceTraceType

Select one of the following trace types from the drop down menu:

Line: A line graph that shows closing price values

Bar: A bar graph that shows closing price values

OHLC: A bar extending from the low to high price for each trading day. A left flange indicates
the opening price and a right flange indicates the closing price. The priceTraceBarLossColor
and priceTraceBarGainColor properties show whether the stock closed at a higher or lower
price than the opening price.

Candlestick: A bar extending from the opening to closing price for each trading period. The
wicks on either end show the high and low for the trading period. The priceTraceBarLossColor
and priceTraceBarGainColor properties show whether the stock closed at a higher or lower
price than the opening price.

This property is in the Price Trace property group.

priceTraceVisFlag

Use the checkbox to control price trace visibility.

This property is in the Price Trace property group.

Stock chart:Trace group
Properties in this group control the number of overlays the chart contains, as well as the overlay
fill style.

Trace group properties

The group includes the following properties:

“overlayCount” on page 473

“overlayFillStyle” on page 474

overlayCount

Sets the number of overlays. The maximum is nineteen. For each overlay, the Dashboard Builder
automatically creates a set of properties in the Object Properties window.

This property is in the Trace property group.

Building and Using Apama Dashboards 10.11.2 473

13 Trend Objects

overlayFillStyle

When the value of overlayNType is Line, this specifies the effect with which to fill the area from
the line to the bottom of the graph. The color is determined by overlayNLineColor. Select one of
the following fill styles from the drop down menu:

Solid

Transparent

Gradient

Transparent Gradient.

None (default)

This property is in the Trace property group.

Stock chart:TraceN group
There is one group of these properties for each overlay in the chart (see overlayCount). The
properties control the visibility and appearance of overlays, as well as the data to which they are
attached.

TraceN group properties

The group includes the following properties:

“overlayNCurrentTable” on page 474

“overlayNHistoryTable” on page 475

“overlayNLabel” on page 475

“overlayNLineColor” on page 475

“overlayNLineStyle” on page 475

“overlayNLineThickness” on page 475

“overlayNType” on page 476

“overlayNVisFlag” on page 476

overlayNCurrentTable

The overlayNCurrentTable and overlayNHistoryTable properties are used in conjunction with
the priceTraceHistoryTable or priceTraceCurrentTable properties to compare data (for example,
to compare the activity of several stocks). See “Attaching Dashboards to Correlator Data” on
page 47. To enable, set the overlayCount to the number of overlay traces that you want to show.

This property is in the TraceN property group.

474 Building and Using Apama Dashboards 10.11.2

13 Trend Objects

overlayNHistoryTable

The overlayNCurrentTable and overlayNHistoryTable properties are used in conjunction with
the priceTraceHistoryTable or priceTraceCurrentTable properties to compare data (e.g. to compare
the activity of several stocks). See “Attaching Dashboards to Correlator Data” on page 47. By
default the overlays are disabled. To enable, set the overlayCount to the number of overlay traces
you want to show.

This property is in the TraceN property group.

overlayNLabel

Enter a label for the overlay line. This label appears in legend and tooltip enabled by
mouseOverFlag.

This property is in the TraceN property group.

overlayNLineColor

Select the ... button and choose a color from the palette to set the overlay line color. Close the Color
Chooser window when you are done.

This property is in the TraceN property group.

overlayNLineStyle

Select one of the following styles for the overlay line from the drop down menu:

No Line

Solid

Dotted

Dashed

Dot Dashed

Note:
This property does not apply if you chose Bar or Event for overlayNType.

This property is in the TraceN property group.

overlayNLineThickness

Select the following thickness of the overlay line from the drop down menu:

Thin

Medium

Building and Using Apama Dashboards 10.11.2 475

13 Trend Objects

Thick

Note:
This property does not apply if you chose Bar or Event for overlayNType.

This property is in the TraceN property group.

overlayNType

Select one of the following overlay types from the drop down menu:

Line: A line graph that shows closing price values

Bar: A bar graph that shows closing price values

Event: A series ofmarkers representing company events such as stock splits, companymerges,
etc. The first letter of the overlayNLabel is the letter that appears in each event marker.

This property is in the TraceN property group.

overlayNVisFlag

Use the checkbox to control overlay visibility.

This property is in the TraceN property group.

Stock chart: X-Axis group
Properties in this group control the range and labeling of the x-axis, as well as the time interval
between plotted points.

X-Axis group properties

The group includes the following properties:

“timeFormat” on page 477

“timeRange” on page 477

“timeRangeBegin” on page 477

“timeRangeEnd” on page 478

“timeRangeMode” on page 478

“tradeDayBegin” on page 478

“tradeDayEnd” on page 479

“tradeDayEndLabelFlag” on page 479

“xAxisFlag” on page 479

476 Building and Using Apama Dashboards 10.11.2

13 Trend Objects

“xAxisLabel” on page 479

“xAxisLabelTextHeight” on page 479

“xAxisMajorDivisions” on page 479

“xAxisMinorDivisions” on page 479

timeFormat

Sets the format for the time displayed in the x-axis using syntax from the Java SimpleDateFormat
class. This property is only used when the timeRangeMode is Continuous.

For example,MMMM dd, yyyy hh:mm:ss a results in dates of the formAugust 30, 2010 05:32:12
PM. If no format is given, the date and time are not displayed on the x-axis.

Include a new line character ('\n') to displaymultiple-line text in the time axis labels. For example,
MM\dd'\n'hh:mm:ss results in the following form:
08\30
05:32:12

If left blank, the axis is labeled with a default format based on the range.

This property is in the X-Axis property group.

timeRange

Sets the total amount of time, in seconds, plotted on the chart.

If timeRange is set to -1, the time range is determined by the first and last timestamp found in the
priceTraceHistoryTable and priceTraceCurrentTable. If both tables are empty, the chart uses the
first and last timestamp of the first overlay trace that has a non-empty overlayNHistoryTable or
overlayNCurrentTable.

Note:timeRange is ignored if both timeRangeBegin and timeRangeEnd are set.

The default is -1.0.

This property is in the X-Axis property group.

timeRangeBegin

Sets the start time value of the data to be plotted on the chart. Following are the supported formats:

mm/dd/yyyy hh:mm:ss (e.g., 01/16/2010 12:30:03)

yyyy-mm-dd hh:mm:ss (e.g., 2010-01-16 12:30:03)

The number of milliseconds since midnight, January 1, 1970 UTC

Note:
If only the time is specified, the current date is used.

Building and Using Apama Dashboards 10.11.2 477

13 Trend Objects

This property is in the X-Axis property group.

timeRangeEnd

Sets the end time value of the data to be plotted on the chart. Following are the supported formats
are:

mm/dd/yyyy hh:mm:ss (e.g., 01/16/2010 12:30:03)

yyyy-mm-dd hh:mm:ss (e.g., 2010-01-16 12:30:03)

The number of milliseconds since midnight, January 1, 1970 UTC

Note:
If only the time is specified, the current date is used.

This property is in the X-Axis property group.

timeRangeMode

Select the timeRangeMode from the drop downmenu. This property sets the interval between trace
data points. timeRangeMode also affects the x-axis labels. With some time intervals, for example,
x-axis labels are dates, while with other time intervals, x-axis labels are times. There are eight
modes:

Auto: Selects the setting that best matches the time intervals in the price trace data table.

Intra-Day: Time intervals are less than one day, for example, hourly or every 15 minutes.

Daily: Time intervals are days.

Weekly: Time intervals are weeks.

Monthly: Time intervals are months.

Quarterly: Time intervals are quarters.

Yearly: Time intervals are annual.

Continuous: Plots each point using the corresponding timestamp from the data table. This
data can vary in time intervals.

Note:
If the price trace data is more granular than the time interval specified in your data attachment,
the price trace data will be aggregated to match the timeRangeMode.

This property is in the X-Axis property group.

tradeDayBegin

Defines the daily start time of the trading day. This property is used only with intraday data (time
intervals less than one day, for example, hourly or every 15 minutes). The default value is 09:30.

478 Building and Using Apama Dashboards 10.11.2

13 Trend Objects

This property is in the X-Axis property group.

tradeDayEnd

Defines the daily end time of the trading day. This property is used only with intraday data (time
intervals less than one day, for example, hourly or every 15 minutes). The default value is 16:00.

This property is in the X-Axis property group.

tradeDayEndLabelFlag

Select to show the last data point of a day and the first data point of the next day (which are equal
values) with separate points on the chart. Otherwise, they are shown together at one point on the
chart.

This property is only used with intraday data.

The default is disabled.

This property is in the X-Axis property group.

xAxisFlag

Select to display the x-axis.

This property is in the X-Axis property group.

xAxisLabel

Specifies a label to display below the x-axis.

This property is in the X-Axis property group.

xAxisLabelTextHeight

Specifies the height in pixels of the x-axis labels.

This property is in the X-Axis property group.

xAxisMajorDivisions

Specify the number of major divisions on the x-axis.

This property is in the X-Axis property group.

xAxisMinorDivisions

Specify the number of minor divisions on the x-axis.

Note:

Building and Using Apama Dashboards 10.11.2 479

13 Trend Objects

This property applies when the timeRangeMode property is set to Continuous.

This property is in the X-Axis property group.

Stock chart:Y-Axis group
Properties in this group control the visibility and scaling of the y-axis or y-axes, as well as y-axis
labeling and y-axis divisions. They also control the visibility of y-axis grid lines (but see also “Stock
chart: Plot Area group” on page 468).

Y-Axis group properties

The group includes the following properties:

“yAxisAutoScaleMode” on page 480

“yAxisFlag” on page 480

“yAxisFormat” on page 481

“yAxisLabel” on page 481

“yAxisLabelTextHeight” on page 481

“yAxisMajorDivisions” on page 481

“yAxisMinLabelWidth” on page 481

“yAxisMinorDivisions” on page 481

“yAxisMultiRangeFlag” on page 481

“yAxisPercentFlag” on page 482

yAxisAutoScaleMode

Select how the y-axis range is calculated from the drop down menu:

Off: The yValueMin and yValueMax properties determine the range of y-axis.

On: The dashboard calculates the y-axis range according to data values being plotted.

On - Include Min/Max: The dashboard calculates the smallest range (with rounding) that
includes yValueMin and yValueMax as well as all plotted points.

This property is in the Y-Axis property group.

yAxisFlag

Select to display the y-axis.

This property is in the Y-Axis property group.

480 Building and Using Apama Dashboards 10.11.2

13 Trend Objects

yAxisFormat

Select or enter the numeric format of values displayed on the y-axis. To enter a format, use syntax
from the Java DecimalFormat class.

This property is in the Y-Axis property group.

yAxisLabel

Specify label to display to the left of the y-axis.

This property is in the Y-Axis property group.

yAxisLabelTextHeight

Specify the height of the y-axis labels in pixels.

This property is in the Y-Axis property group.

yAxisMajorDivisions

Specify the number of major divisions on the y-axis. Major divisions are separated by horizontal
grid lines. See “gridColor” on page 469.

This property is in the Y-Axis property group.

yAxisMinLabelWidth

Specify the minimum width of the y-axis labels in pixels.

This property is in the Y-Axis property group.

yAxisMinorDivisions

Specify the number of minor divisions on the y-axis.

This property is in the Y-Axis property group.

yAxisMultiRangeFlag

Select to have one axis per trace, with each trace having its own range. The first trace is drawn on
the outer left of the graph. The remaining traces are drawn on the inner left of the trace area.

Otherwise, all traces are plotted against a single y-axis.

The default is enabled.

This property is in the Y-Axis property group.

Building and Using Apama Dashboards 10.11.2 481

13 Trend Objects

yAxisPercentFlag

Select to show the percent changed from the first data point instead of values for the y-axis.

This property is in the Y-Axis property group.

Trend graphs
Trend graphs visualize live and historical, time-indexed, quantitative data. Each graph contains
one ormore traces, and each trace visualizes tabular data that includes one, two, or three columns:

One-column data contains a numerical column. The dashboard assigns a time stamp to each
row as the data is received.

Two-column data contains a time-valued column and a numerical column.

Three-columndata contains a time-valued column, a numerical column, and a string (data-label)
column.

Use the traceCount property to specify the number of traces to be included in the chart. Use the
traceNValue and traceNValueTable properties to attach data to the Nth overlay.

Alternatively, enable multiTraceTableFlag and use multiTraceHistoryValueTable and
multiTraceCurrentValueTable in order to specify data for multiple traces by using a single history
attachment and a single current value attachment.

Trend graphs include the following visualization objects from the Trends tab:

Stock Chart

Sparkline

Single Variable Trend

Multiple Variable Trend

Filled Trend

Threshold Trend

482 Building and Using Apama Dashboards 10.11.2

13 Trend Objects

Trend with Banded Group

Trend graphs include the following visualization objects from the Trends HTML5 tab:

Sparkline

Single Variable Trend

Multiple Variable Trend

Filled Trend

Threshold Trend

Trend with Trace Group

These visualizations all share the same properties. They differ from one another only with regard
to their default values for these properties. When any of these objects is selected in the Builder
canvas, the Object Class Name that appears at the top of the Object Properties pane is
obj_stockchart.

The Object Properties panel organizes trend graph properties into the groups below.

Trend graph: Alert group
Properties in this group allow you to specify changes in the appearance of trace lines, and trace
markers in response to changes in the status of plotted data elements. See also
traceNValueAlarmStatus and traceNValueAlarmStatusTable in the Trend graph: TraceN group
property group.

Alert group properties

This group includes the following properties:

“valueHighAlarm” on page 484

“valueHighAlarmEnabledFlag” on page 484

“valueHighAlarmLineVisFlag” on page 484

“valueHighAlarmMarkColor” on page 485

“valueHighAlarmMarkStyle” on page 485

“valueHighAlarmTraceColor” on page 485

“valueHighAlarmTraceStyle” on page 485

“valueHighWarning” on page 485

“valueHighWarningEnabledFlag” on page 485

“valueHighWarningLineVisFlag” on page 486

Building and Using Apama Dashboards 10.11.2 483

13 Trend Objects

“valueHighWarningMarkColor” on page 486

“valueHighWarningMarkStyle” on page 486

“valueHighWarningTraceColor” on page 486

“valueHighWarningTraceStyle” on page 486

“valueLowAlarm” on page 486

“valueLowAlarmEnabledFlag” on page 487

“valueLowAlarmLineVisFlag” on page 487

“valueLowAlarmMarkColor” on page 487

“valueLowAlarmMarkStyle” on page 487

“valueLowAlarmTraceColor” on page 487

“valueLowAlarmTraceStyle” on page 487

“valueLowWarning” on page 488

“valueLowWarningEnabledFlag” on page 488

“valueLowWarningLineVisFlag” on page 488

“valueLowWarningMarkColor” on page 488

“valueLowWarningMarkStyle” on page 488

“valueLowWarningTraceColor” on page 488

“valueLowWarningTraceStyle” on page 489

valueHighAlarm

Specifies the threshold value used by valueHighAlarmLineVisFlag, valueHighAlarmMarkColor,
valueHighAlarmMarkStyle, valueHighAlarmTraceColor, and valueHighAlarmTraceStyle.

This property is in the Alert property group.

valueHighAlarmEnabledFlag

Select to enable the high alarm threshold. See valueHighAlarm.

This property is in the Alert property group.

valueHighAlarmLineVisFlag

Select to display a dotted line at the high alarm threshold. The color of the line is set to
valueHighAlarmMarkColor. This line is displayed only if valueHighAlarmEnabledFlag is selected.

This property is in the Alert property group.

484 Building and Using Apama Dashboards 10.11.2

13 Trend Objects

valueHighAlarmMarkColor

When a trace marker's value is greater than or equal to valueHighAlarm, the marker changes to
valueHighAlarmMarkColor and valueHighAlarmMarkStyle, provided valueHighAlarmEnabledFlag
is selected. But see also traceNValueAlarmStatus and traceNValueAlarmStatusTable.

This property is in the Alert property group.

valueHighAlarmMarkStyle

When a trace marker's value is greater than or equal to valueHighAlarm, the marker changes to
valueHighAlarmMarkColor and valueHighAlarmMarkStyle, providedvalueHighAlarmEnabledFlag
is selected. But see also traceNValueAlarmStatus and traceNValueAlarmStatusTable.

This property is in the Alert property group.

valueHighAlarmTraceColor

When the value of any segment of a trace line is greater than or equal to valueHighAlarm, that
segment of the trace line changes to valueHighAlarmTraceColor and valueHighAlarmTraceStyle,
provided valueHighAlarmEnabledFlag is selected.

This property is in the Alert property group.

valueHighAlarmTraceStyle

When the value of any segment of a trace line is greater than or equal to valueHighAlarm, that
segment of the trace line changes to valueHighAlarmTraceStyle and valueHighAlarmTraceStyle,
provided valueHighAlarmEnabledFlag is selected.

This property is in the Alert property group.

valueHighWarning

Specifies the threshold value used by valueHighWarningLineVisFlag,
valueHighWarningMarkColor, valueHighWarningMarkStyle, valueHighWarningTraceColor, and
valueHighWarningTraceStyle.

This property is in the Alert property group.

valueHighWarningEnabledFlag

Select to enable the high warning threshold. See valueHighWarning.

This property is in the Alert property group.

Building and Using Apama Dashboards 10.11.2 485

13 Trend Objects

valueHighWarningLineVisFlag

Select to display a dotted line at the high warning threshold. The color of the line is set to
valueHighWarningMarkColor. This line is displayed only if valueHighWarningEnabledFlag is
selected.

This property is in the Alert property group.

valueHighWarningMarkColor

When a trace marker's value is greater than or equal to valueHighWarning but less than
valueHighAlarm, the marker changes to valueHighWarningMarkColor and
valueHighWarningMarkStyle, provided valueHighWarningEnabledFlag is selected. But see also
traceNValueAlarmStatus and traceNValueAlarmStatusTable.

This property is in the Alert property group.

valueHighWarningMarkStyle

When a trace marker's value is greater than or equal to valueHighWarning but less than
valueHighAlarm, the marker changes to valueHighWarningMarkColor and
valueHighWarningMarkStyle, provided valueHighWarningEnabledFlag is selected. But see also
traceNValueAlarmStatus and traceNValueAlarmStatusTable.

This property is in the Alert property group.

valueHighWarningTraceColor

When the value of any segment of a trace line is greater than or equal to valueHighWarning
property but less than valueHighAlarm, that segment of the trace line changes to
valueHighWarningTraceColor and valueHighWarningTraceStyle, provided
valueHighWarningEnabledFlag is selected.

This property is in the Alert property group.

valueHighWarningTraceStyle

When the value of any segment of a trace line is greater than or equal to valueHighWarning
property but less than valueHighAlarm, that segment of the trace line changes to
valueHighWarningTraceColor and valueHighWarningTraceStyle, provided
valueHighWarningEnabledFlag is selected.

This property is in the Alert property group.

valueLowAlarm

Specifies the threshold value used by valueLowAlarmLineVisFlag, valueLowAlarmMarkColor,
valueLowAlarmMarkStyle, valueLowAlarmTraceColor, and valueLowAlarmTraceStyle.

486 Building and Using Apama Dashboards 10.11.2

13 Trend Objects

This property is in the Alert property group.

valueLowAlarmEnabledFlag

Select to enable the low alarm threshold. See valueLowAlarm.

This property is in the Alert property group.

valueLowAlarmLineVisFlag

Select to display a dotted line at the low alarm threshold. The color of the line is set to
valueLowAlarmMarkColor. This line is displayed only if valueLowAlarmEnabledFlag is selected.

This property is in the Alert property group.

valueLowAlarmMarkColor

When a trace marker's value is less than or equal to valueLowAlarm, the marker changes to
valueLowAlarmMarkColor and valueLowAlarmMarkStyle, provided valueLowAlarmEnabledFlag
is selected. But see also traceNValueAlarmStatus and traceNValueAlarmStatusTable.

This property is in the Alert property group.

valueLowAlarmMarkStyle

When a trace marker's value is less than or equal to valueLowAlarm, the marker changes to
valueLowAlarmMarkColor and valueLowAlarmMarkStyle, provided valueLowAlarmEnabledFlag
is selected. But see also traceNValueAlarmStatus and traceNValueAlarmStatusTable.

This property is in the Alert property group.

valueLowAlarmTraceColor

When the value of any segment of a trace line is less than or equal to valueLowAlarm, that segment
of the trace line changes to valueLowAlarmTraceColor and valueLowAlarmTraceStyle, provided
valueLowAlarmEnabledFlag is selected.

This property is in the Alert property group.

valueLowAlarmTraceStyle

When the value of any segment of a trace line is less than or equal to valueLowAlarm, that segment
of the trace line changes to valueLowAlarmTraceColor and valueLowAlarmTraceStyle, provided
valueLowAlarmEnabledFlag is selected.

This property is in the Alert property group.

Building and Using Apama Dashboards 10.11.2 487

13 Trend Objects

valueLowWarning

Specifies the threshold value used byvalueLowWarningLineVisFlag, valueLowWarningMarkColor,
valueLowWarningMarkStyle, valueLowWarningTraceColor, and valueLowWarningTraceStyle.

This property is in the Alert property group.

valueLowWarningEnabledFlag

Select to enable the low warning threshold. See valueLowWarning.

This property is in the Alert property group.

valueLowWarningLineVisFlag

Select to display a dotted line at the low warning threshold. The color of the line is set to
valueLowWarningMarkColor. This line is displayed only if valueLowWarningEnabledFlag is
selected.

This property is in the Alert property group.

valueLowWarningMarkColor

When a trace marker's value is less than or equal to valueLowWarning but greater than
valueLowAlarm, the marker changes to valueLowWarningMarkColor and
valueLowWarningMarkStyle, provided valueLowWarningEnabledFlag is selected. But see also
traceNValueAlarmStatus and traceNValueAlarmStatusTable.

This property is in the Alert property group.

valueLowWarningMarkStyle

When a trace marker's value is less than or equal to valueLowWarning but greater than
valueLowAlarm, the marker changes to valueLowWarningMarkColor and
valueLowWarningMarkStyle, provided valueLowWarningEnabledFlag is selected. But see also
traceNValueAlarmStatus and traceNValueAlarmStatusTable.

This property is in the Alert property group.

valueLowWarningTraceColor

When the value of any segment of a trace line is less than or equal to valueLowWarning but greater
than valueLowAlarm, that segment of the trace line changes to valueLowWarningTraceColor and
valueLowWarningTraceStyle, provided valueLowWarningEnabledFlag is selected.

This property is in the Alert property group.

488 Building and Using Apama Dashboards 10.11.2

13 Trend Objects

valueLowWarningTraceStyle

When the value of any segment of a trace line is less than or equal to valueLowWarning property
but greater than valueLowAlarm, that segment of the trace line changes to
valueLowWarningTraceColor and valueLowWarningTraceStyle, provided
valueLowWarningEnabledFlag is selected.

This property is in the Alert property group.

Trend graph: Background group
Properties in this group control the visibility and appearance of the portion of the graph that serves
as the background of both the plot area and legend.

Background group properties

The group contains the following properties:

“bgBorderFlag” on page 489

“bgColor” on page 489

“bgEdgeWidth” on page 490

“bgGradientColor2” on page 490

“bgGradientMode” on page 490

“bgRaisedFlag” on page 490

“bgRoundness” on page 490

“bgShadowFlag” on page 491

“bgStyleFlag” on page 491

“bgVisFlag” on page 491

“borderPixels” on page 491

bgBorderFlag

Select to display a border around the background rectangle.

This property is in the Background property group.

bgColor

Sets the background color. Select the ... button and choose a color from the palette. Close the Color
Chooser window when you are done.

This property is in the Background property group.

Building and Using Apama Dashboards 10.11.2 489

13 Trend Objects

bgEdgeWidth

Sets the width in pixels of the 3D edge on the background rectangle. This property is only used if
bgBorderFlag is selected.

This property is in the Background property group.

bgGradientColor2

Sets the color for the second color in the gradient. The default is white. The bgColor property sets
the first color in the gradient.

This property is in the Background property group.

bgGradientMode

Display a gradient in the background rectangle. Select from the following options:

None: No gradient.

Diagonal Edge: Gradient is drawn at a 45 degree angle from the top left to the bottom right
corner of the object.

Diagonal Center: Gradient is drawn at a 45 degree angle from the center to the top left and
the bottom right corners of the object.

Horizontal Edge: Gradient is drawn horizontally from the top to the bottom of the object.

Horizontal Center: Gradient is drawn horizontally from the center to the top and bottom of
the object.

Vertical Edge: Gradient is drawn vertically from the left to the right of the object.

Vertical Center: Gradient is drawn vertically from the center to the left and right of the object.

This property is in the Background property group.

bgRaisedFlag

Reverses the direction of the gradient, as well as that of the 3D edge if the bgStyle selected is 3D
Rectangle.

This property is in the Background property group.

bgRoundness

Sets the arc length of the rounded corners. This property is only available if the bgStyle selected
is Round Rectangle.

The value of bgRoundness cannot exceed half the value of the objWidth or the objHeight. If
bgRoundness does exceed that value, half of objWidth or objHeight (whichever is smaller) will be

490 Building and Using Apama Dashboards 10.11.2

13 Trend Objects

used instead. For example if objWidth is 100 and objHeight is 50, then the value of bgRoundness
cannot exceed 25. If it does, then half the value of objHeight (25) will be used instead.

This property is in the Background property group.

bgShadowFlag

Select to display a drop shadow on the background rectangle.

This property is in the Background property group.

bgStyleFlag

Choose one of the following three options from the drop down menu:

Rectangle: Select to display a background rectangle.

3D Rectangle: Select to display a 3D edge on the background rectangle. If selected, use
bgEdgeWidth to set the width of the 3D edge.

Round Rectangle: Select to display a background rectangle with rounded edges. If selected,
use bgRoundness to set the arc length of the rounded corners.

This property is in the Background property group.

bgVisFlag

Select to display the background rectangle.

This property is in the Background property group.

borderPixels

Sets the width in pixels of the border between the chart and the edge of the background rectangle.

This property is in the Background property group.

Trend graph: Data group
Properties in this group control the y-axis range, as well as the maximum number of data points
contained in the chart. It also contains a flag that controls whether only historical data is included.

Data group properties

The group contains the following properties:

“historyOnlyFlag” on page 492

“maxPointsPerTrace” on page 492

“yValueMax” on page 492

Building and Using Apama Dashboards 10.11.2 491

13 Trend Objects

“yValueMin” on page 492

historyOnlyFlag

When checked, the graph plots only data that is applied to the traceNValueTable properties and
will ignore the timeShift property and any data that is applied to the traceNValue properties. This
is useful when the same graph instance is to be used to view either historical data or historical
data together with current data by setting substitutions on the display.

The default is unchecked.

This property is in the Data property group.

maxPointsPerTrace

Themaximum number of data points contained in the chart. Specify a value between 2 and 30000,
inclusive.

The default is 1000.

This property is in the Data property group.

yValueMax

Determines the range of the y-axis if the yAxisAutoScaleMode is set to Off. Select On for the
yAxisAutoScaleMode to calculate the y-axis range according to data values being plotted. To
calculate a y-axis range that always includes yValueMin and yValueMax, select On - Include
Min/Max.

This property is used only if yAxisMultiRangeMode is set to Off or Classic.

This property is in the Data property group.

yValueMin

Controls the range of y-axis if the yAxisAutoScaleMode is set to Off. Select On for the
yAxisAutoScaleMode to calculate the y-axis range according to data values being plotted. To
calculate a y-axis range that always includes yValueMin and yValueMax, select On - Include
Min/Max.

This property is used only if yAxisMultiRangeMode is set to Off or Classic.

This property is in the Data property group.

Trend graph: Data Format group
This group contains the yValueFormat property, which controls the format of displayed values.

492 Building and Using Apama Dashboards 10.11.2

13 Trend Objects

yValueFormat

Select or enter the numeric format of values displayed in the legend and popup legend. To enter
a format, use syntax from the Java DecimalFormat class.

This property is in the Data Format property group.

Trend graph: Interaction group
Properties in this group control various forms of interaction between the end user and the chart,
including scrolling and activating commands, drill downs, and tooltips.

Interaction group properties

This group contains the following properties:

“commandCloseWindowOnSuccess” on page 493

“command” on page 494

“commandConfirm” on page 494

“confirmText” on page 495

“cursorColor” on page 495

“cursorFlag” on page 495

“drillDownSelectMode” on page 495

“drillDownTarget” on page 495

“scrollbarMode” on page 496

“scrollbarSize” on page 497

“zoomEnabledFlag” on page 497

commandCloseWindowOnSuccess

Select this property to automatically close the window that initiates a SYSTEM command when
the command is executed successfully. This applies to SYSTEM commands only, and is not
supported at all for thin-client, web-page deployments.

With APAMA commands, the window is closed whether or not the command is executed
successfully. For MULTIPLE commands, the window closes when the first command in the
command group succeeds.

This property is in the Interaction property group.

Building and Using Apama Dashboards 10.11.2 493

13 Trend Objects

command

Assign a command or group of commands to this stock chart by right-clicking on the command
property name in the Object Properties window. Select Define Command and choose SYSTEM,
APAMA, or MULTIPLE. See “Using the Define Apama Command dialog” on page 200.

Once a command or command group has been assigned to this object, you can activate it from a
deployed dashboard or from the Dashboard Builder:

Dashboard Builder: Double click on the object.

Web-based deployment: Single click on the object or else right click on it and select Execute
Command from the popup menu.

Local deployment: By default, single-click on the object or else right-click on it and select
Execute Command from the popup menu. To override the default, select Tools > Options
in the Builder (do this before you generate the deployment package), and uncheckSingle-Click
for Drill Down and Commands in the General tab. This allows the end user to use either a
double click or a right click.

When you activate a command, any defined drill down substitutions are performed, and then the
command is executed.

If you assign multiple commands, the commands are launched in an arbitrary order, and are
executed asynchronously; there is no guarantee that one command will finish before the next one
in the sequence starts.

This property is in the Interaction property group.

commandConfirm

By default, when the end user executes a command (see command), the command confirmation
dialog is disabled. To control this option for each individual object, use the commandConfirm check
box. If confirmation is required for a MULTIPLE command group, a single confirmation dialog is
presented; if you confirm the execution, all individual commands in the group are executed with
no further confirmation. If the you cancel the execution, none of the commands in the group is
executed.

You can also override the confirmation status of individual objectswith an application-wide policy.
Select Tools > Options and choose from three confirmation values:

Do not confirm: Indicates that no commands require confirmation (regardless of each object's
confirmation status).

Confirm all: Indicates that all commands require confirmation (regardless of each object's
confirmation status).

Use object confirm flag (default): Indicates that the confirmation status of each object will
determine whether confirmation is required.

This property is in the Interaction property group.

494 Building and Using Apama Dashboards 10.11.2

13 Trend Objects

confirmText

Use this property to write your own text for the confirmation dialog. Otherwise, default text is
used. See commandConfirm.

This property is in the Interaction property group.

cursorColor

Sets the color of the cursor, as well as the zoom-area rectangle (see zoomEnabledFlag). Select the
... button and choose a color from the palette. Close the Color Chooser window when you are
done.

The default is grey.

This property is in the Interaction property group.

cursorFlag

Select to enable the cursor. When the cursor is enabled, select the chart and point to a location on
a trace to see a cursor line at that location and display the time and values of all traces at the cursor
line on the legend. Select the legendPopupFlag to display the legend along the cursor.

The cursor is enabled by default.

This property is in the Interaction property group.

drillDownSelectMode

Use this property to control how a drill down display is activated. Select one of the following:

Anywhere to activate a drill down display by double-clicking anywhere on the chart.

Element Only to enable a drill down display only when you double-click on an element of
the chart, that is, a trace point.

This property is in the Interaction property group.

drillDownTarget

To specify a drill down display, double click on drillDownTarget in the Property Name field to
bring up the Drill Down Properties dialog. See “Drill-Down Specification” on page 521.

Trend graphs support drill down from a trace point. If the trend graph has a drillDownTarget
specified, clicking on a trace point sets the following predefined substitutions:

$traceNumber: number of the trace (1 to 10) that contains the selected point

$traceLabel: label of selected trace

$pointValue: y value of point

Building and Using Apama Dashboards 10.11.2 495

13 Trend Objects

$pointTimestamp: timestamp of point

$pointLabel: data label (if any) of point

$pointIndex: position of point in trace data (0 to maxPointsPerTrace)

If the drillDownSelectMode property is set to Element Only, clicks on the graph that are not near
a trace point are ignored. If drillDownSelectMode is set to Anywhere, a click anywhere on the
graph triggers a drill down, but if the click is not near a trace point the substitutions listed above
are not set.

Thin client (display server) deployments support mouseover text and drill down from data points
on traces on the trend graph. If the trend graph's cursorFlag property is checked, this enables
mouseover on the trace points. If the mouse is over a trace point, a browser tooltip box appears
displaying the legend values that correspond to that point. Following are the limitations on this
feature:

If this feature is used on a graph with many trace points, the performance of the browser may
be sluggishwhen the display is loading or refreshing. To avoid this, set the timeRange property
so that only a portion of the trace points are visible at a time.

If a thin client display refresh occurs while positioning the mouse over a point, the browser
tooltip may not appear or it may appear in the wrong location.

When maxPointsPerTrace is exceeded on a trace (1000 by default), an old trace point is shifted
out of the trace for each new point that is added. If this occurs between the time that the thin
client display was last refreshed and the time that the user clicks on a point, the drilldown
substitutions reflect the new set of data points. For example, if two points are shifted out of
the trace, the drilldown substitutions are set as though the selected point were two positions
to the right of the point the user actually clicked.

This property is in the Interaction property group.

scrollbarMode

Sets whether and when the scroll bar appears in the chart. Select one of the following from the
drop down menu:

Never: Default setting

Always: Display a scroll bar at all times.

As Needed: Display the scroll bar when necessitated by zooming in the trace area, or when
more data is loaded into the chart than is displayed in the time range. For example, if the time
range of the data in your data attachment is greater than timeRange, setting scrollbarMode to
As Needed will enable a scroll bar, allowing the end user to view all data loaded into the
chart.

This property is in the Interaction property group.

496 Building and Using Apama Dashboards 10.11.2

13 Trend Objects

scrollbarSize

Specify the height of the horizontal scroll bar and the width of the vertical scroll bar, in pixels. The
default value is -1, which sets the size to the system default.

This property is in the Interaction property group.

zoomEnabledFlag

Select to enable zooming within the chart. Click in the chart's trace area and drag the
cursorColorcursor until a desired range is selected. While dragging, a rectangle is drawn to show
the zoom area. The rectangle's default color is yellow (this can be changed in the property). After
the zoom is performed, the chart stores up to four zoom operations in queue. To zoom out, press
the shift key and click in the chart's trace area.

This property is in the Interaction property group.

Trend graph: Label group

Properties in this group control the chart's main label (which defaults to Stock Chart), including
text, alignment, color, font, and size.

Label group properties

The group includes the following properties:

“label” on page 497

“labelTextAlignX” on page 497

“labelTextColor” on page 498

“labelTextFont” on page 498

“labelTextHeight” on page 498

label

Specifies the text for the chart label. Click the ellipsis for multi-line text.

The default is Single Variable Trend, Multiple Variable Trend, Filled Trend, Threshold Trend,
or Single Trend with Marks.

This property is in the Label property group.

labelTextAlignX

Sets the alignment of the chart label (see the label property). Select Left, Center, or Right from
the drop down list.

Building and Using Apama Dashboards 10.11.2 497

13 Trend Objects

This property is in the Label property group.

labelTextColor

Specifies the color of the chart label text (see the label property). Select the ... button and choose
a color from the palette. Close the Color Chooser window when you are done.

This property is in the Label property group.

labelTextFont

Specifies the font of the chart label text (see the label property). Select an item from drop down
list.

This property is in the Label property group.

labelTextHeight

Specifies the point size of the chart label text (see the label property).

This property is in the Label property group.

Trend graph: Legend group
Properties in this group control the visibility, appearance, and content of the chart legend.

Legend group properties

The group contains the following properties:

“legendBgColor” on page 498

“legendBgGradientFlag” on page 499

“legendPopupFlag” on page 499

“legendTimeFormat” on page 499

“legendValueMinSpace” on page 499

“legendVisFlag” on page 499

“legendWidthPercent” on page 499

legendBgColor

Select the ... button and choose a color from the palette to set the background color of the legend.
Close the Color Chooser window when you are done.

This property is in the Legend property group.

498 Building and Using Apama Dashboards 10.11.2

13 Trend Objects

legendBgGradientFlag

Select the legendBgGradientFlag to display a gradient in the legend background.

This property is in the Legend property group.

legendPopupFlag

When the cursorFlag property is enabled, select legendPopupFlag to display the legend along the
cursor.

This property is in the Legend property group.

legendTimeFormat

Sets the format for the time displayed in the legend. Use syntax from the Java SimpleDateFormat
class. For example, MMMM dd, yyyy hh:mm:ss results in the form August 30, 2003 05:32:12
PM. If no format is given, the timeFormat is used.

This property is in the Legend property group.

legendValueMinSpace

Specify the minimum distance in pixels between values and labels in the legend.

This property is in the Legend property group.

legendVisFlag

Select to display the legend.

This property is in the Legend property group.

legendWidthPercent

Sets the percent of the total width of the object used for the legend.

This property is in the Legend property group.

Trend graph: Marker group
Properties in this group control the size of trace markers.

Marker group properties

The group includes the following properties:

“markDefaultSize” on page 500

Building and Using Apama Dashboards 10.11.2 499

13 Trend Objects

“markScaleMode” on page 500

markDefaultSize

Sets the size of themarkers (see traceNMarkStyle) in pixels. Supply an integer value that is between
1 and 18, inclusive.

This property is in the Marker property group.

markScaleMode

Select one of the following from the drop down menu to set the scale mode:

No Scale: All makers, across and within traces, are the same size.

Scale by Trace: Scale markers according to the trace in which they reside, that is, markers in
the first trace are the largest, across all traces, and the markers in the last trace are the smallest.

Scale Within Trace: Scale markers according to the relative temporal order of the data within
each trace, that is, the marker for the earliest data in any given trace is the smallest in that trace
and the marker for the latest data in the trace is the largest in that trace.

This property is in the Marker property group.

Trend graph: Object group
Properties in this group control the visibility and transparency of the chart as a whole. They also
control (or reflect) the overall position and dimensions of the chart. In addition, a property in this
group reflects the generated name of this individual chart.

Object group properties

This group contains the following properties:

“anchor” on page 501

“dock” on page 501

“objHeight” on page 501

“objName” on page 501

“objWidth” on page 501

“objX” on page 501

“objY” on page 501

“transparencyPercent” on page 502

“visFlag” on page 502

500 Building and Using Apama Dashboards 10.11.2

13 Trend Objects

anchor

Select zero or more of Top, Left, Bottom, and Right in order to control the object's placement.
The anchorproperty is only appliedwhen the display is resized either by changing theBackground
Properties on the display or by resizing the window in Layout mode. If an object has the dock
property set, the anchor property is ignored. See “About resize modes” on page 30.

dock

Select None (default), Top, Left, Bottom, Right, or Fill in order to control the object's placement
in Layout resize mode. See “About resize modes” on page 30.

objHeight

Sets the height of a chart by entering a value for this property or by dragging a handle of the
bounding box that appears when the stock chart is selected. When you drag a handle of the
bounding box, the displayed value for this property changes to reflect the real-time height of the
chart.

This property is in the Object property group.

objName

An identifier that is generated by the Dashboard Builder. This name can be used by other objects'
properties in order to refer to the named stock chart.

This property is in the Object property group.

objWidth

Sets the width of a chart by entering a value for this property or by dragging a handle of the
bounding box that appears when the stock chart is selected. When you drag a handle of the
bounding box, the displayed value for this property changes to reflect the real-time width of the
chart.

This property is in the Object property group.

objX

Sets the X coordinate of the center of this visualization object, relative to the lower left corner of
the current dashboard. This value is set automaticallywhen you position the objectwith themouse.

This property is in the Object property group.

objY

Sets the Y coordinate of the center of this visualization object, relative to the lower left corner of
the current dashboard. This value is set automaticallywhen you position the objectwith themouse.

Building and Using Apama Dashboards 10.11.2 501

13 Trend Objects

This property is in the Object property group.

transparencyPercent

Sets the transparency of this chart.

This property is in the Object property group.

visFlag

Deselect to make this visualization object invisible in the current dashboard.

This property is in the Object property group.

Trend graph: Plot Area group
Properties in this group control the appearance of the plot area, the rectangular area that serves
as background for the traces (but not for the legend or axis labels; see “Trend graph: Background
group” on page 489). There is also a property that controls the color of the horizontal grid line or
lines.

Plot Area group

This group contains the following properties:

“gridColor” on page 502

“traceBgColor” on page 502

“traceBgGradientFlag” on page 502

“traceBgImage” on page 503

gridColor

Sets the color of the dotted, horizontal midline of the plot area. Select the ... button and choose a
color from the palette. Close the Color Chooser window when you are done.

This property is in the Plot Area property group.

traceBgColor

To set the color of the plot area, select the ... button and choose a color from the palette to set the
background color. Close the Color Chooser window when you are done.

This property is in the Plot Area property group.

traceBgGradientFlag

Select to display a gradient in the plot area.

502 Building and Using Apama Dashboards 10.11.2

13 Trend Objects

This property is in the Plot Area property group.

traceBgImage

Specify an image (.gif, .jpg, or .png file) to display in the plot area. Select the name of the image
file from the drop down menu, or enter the pathname of the file. The drop down menu contains
the names of image files located in the current directory (by default, the dashboards directory of
your Apama installation's work directory), as well as image files located in the first level of
subdirectories. If you enter a pathname, use an absolute pathname or a pathname that is relative
to the current directory.

This property is in the Plot Area property group.

Trend graph:Trace group
Properties in this group control the number of traces that the chart contains, as well as the trace
fill style. They can also specify the trace data, if a single data table is used for multiple traces.

Trace group properties

The group contains the following properties:

“multiTraceCurrentValueTable” on page 503

“multiTraceHistoryValueTable” on page 504

“multiTraceTableFlag” on page 504

“traceCount” on page 504

“traceFillStyle” on page 505

multiTraceCurrentValueTable

To display current data for multiple traces by using a single attachment, attach a table to this
property. The first column in the data table must be a timestamp column. The remaining columns
are expected to be Y data values to be plotted. TheNth data column is used for traceN's data, and
the column name is used for traceNLabel (if not already assigned).

If the multiTraceTableFlag is checked, the number of traces whose properties are shown in the
Builder's property sheet is determined by the number of data columns in the data table attachments
or by the traceCount property, whichever is larger. However, the number of traces that are plotted
on the graph is determined by the number of data columns in the data table attachments.

Typically, the data attachment for multiTraceHistoryValueTable provides the initial data points
to be plottedwhile multiTraceCurrentValueTableprovides the newdata points to be plottedwhile
the display is viewed. If a trace plots only historical or only current data, only one of the properties
needs to be attached to data. However if both properties are attached to data, be sure that the
tables applied to both have the same number and type of columns.

Building and Using Apama Dashboards 10.11.2 503

13 Trend Objects

When multiTraceTableFlag is checked, the properties traceNValueTable and traceNValue (for N
between 1 and 10, inclusive) are not shown in the property sheet, since all trace data is expected
to be provided via multiTraceCurrentValueTable or multiTraceHistoryValueTable.

This property is in the Trace property group.

multiTraceHistoryValueTable

To display historical data for multiple traces by using a single attachment, attach a table to this
property. The first column in the data table must be a timestamp column. The remaining columns
are expected to be Y data values to be plotted. TheNth data column is used for traceN's data, and
the column name is used for traceNLabel (if not already assigned).

If multiTraceTableFlag is checked, the number of traceswhose properties are shown in the Builder's
property sheet is determined by the number of data columns in the data table attachments or by
the traceCount property, whichever is larger. However, the number of traces that are plotted on
the graph is determined by the number of data columns in the data table attachments.

Typically, the data attachment for multiTraceHistoryValueTable provides the initial data points
to be plottedwhile multiTraceCurrentValueTableprovides the newdata points to be plottedwhile
the display is viewed. If a trace plots only historical or only current data, only one of the properties
needs to be attached to data. However if both properties are attached to data, be sure that the
tables applied to both have the same number and type of columns.

When multiTraceTableFlag is checked, the properties traceNValueTable and traceNValue (for N
between 1 and 10, inclusive) are not shown in the property sheet, since all trace data is expected
to be provided via multiTraceCurrentValueTable or multiTraceHistoryValueTable.

This property is in the Trace property group.

multiTraceTableFlag

Controls whether data for multiple traces can be attached to the graph with a single table. When
checked, the properties multiTraceCurrentValueTable and multiTraceHistoryValueTable, are
shown in the Trace category.

When multiTraceTableFlag is checked, the properties traceNValueTable and traceNValue (for N
between 1 and 10, inclusive) are not shown in the property sheet, since all trace data is expected
to be provided via multiTraceCurrentValueTable or multiTraceHistoryValueTable.

If multiTraceTableFlag is checked, the number of traceswhose properties are shown in the Builder's
property sheet is determined by the number of data columns in the data table attachments or by
the traceCount property, whichever is larger. However, the number of traces that are plotted on
the graph is determined by the number of data columns in the data table attachments.

This property is in the Trace property group.

traceCount

Sets the number of traces. The maximum is ten. For each overlay, the Dashboard Builder
automatically creates a set of properties in the Object Properties window.

504 Building and Using Apama Dashboards 10.11.2

13 Trend Objects

This property is in the Trace property group.

traceFillStyle

Specifies the effect with which to fill the area from the trace line to the bottom of the graph. The
color is determined by traceNLineColor. Select one of the following fill styles from the drop down
menu:

Solid

Transparent

Gradient

Transparent Gradient

None (default)

This property is in the Trace property group.

Trend graph:TraceN group
The properties in this group control the visibility and appearance of the price trace, as well as the
data to which it is attached (unless multiTraceTableFlag is enabled). They also control y-axis
visibility, scaling, and labeling. In addition, there are properties to which you can attach a data
table that indicates the alarm status of plotted data; see “Trend graph: Alert group” on page 483.

TraceN group properties

The group includes the following properties:

“traceNLabel” on page 506

“traceNLineColor” on page 506

“traceNLineStyle” on page 506

“traceNLineThickness” on page 506

“traceNMarkColor” on page 507

“traceNMarkStyle” on page 507

“traceNType” on page 507

“traceNValue” on page 508

“traceNValueAlarmStatus” on page 508

“traceNValueAlarmStatusTable” on page 509

“traceNValueDivisor” on page 510

“traceNValueHistoryFlag” on page 510

Building and Using Apama Dashboards 10.11.2 505

13 Trend Objects

“traceNValueTable” on page 510

“traceNVisFlag” on page 510

“traceNYAxisAutoScaleMode” on page 510

“traceNYAxisFlag” on page 511

“traceNYAxisGridVisFlag” on page 511

“traceNYAxisMinLabelWidth” on page 511

“traceNYAxisValueLabels” on page 511

“traceNYAxisValueMax” on page 511

“traceNYAxisValueMin” on page 512

traceNLabel

Enter a label for the trace line. This label appears in the chart's legend.

This property is in the TraceN property group.

traceNLineColor

Sets the trace line color. Select the ... button and choose a color from the palette. Close the Color
Chooser window when you are done.

This property is in the TraceN property group.

traceNLineStyle

Select one of the following line styles for the trace line from the drop down menu:

No Line

Solid

Dotted

Dashed

Dot Dashed

This property is in the TraceN property group.

traceNLineThickness

Select one of the following thickness specifications for the price trace line from the drop down
menu:

Thin

506 Building and Using Apama Dashboards 10.11.2

13 Trend Objects

Medium

Thick

This property is in the TraceN property group.

traceNMarkColor

Select the ... button and choose a color from the palette to set the trace marker color. Close the
Color Chooser window when you are done.

This property is in the TraceN property group.

traceNMarkStyle

Sets the style of themarker used on the trace. Select one of the following items from the drop down
menu:

No Marker

Dot

+

*

o

x

Filled Circle

Filled Diamond

Filled Triangle

Filled Square

Filled Star

This property is in the TraceN property group.

traceNType

Sets the trace type. The valid values are Line (the default), Bar, and Event.

A Bar type trace draws a vertical bar for each data point, from zero to the point's Y value. The bar
is just a vertical line whose width is determined by traceNLineThickness. The traceNLineColor
and traceNLineStyle also control the appearance of the bar. If the point exceeds an alarm limit
specified on the graph, the alarm color is used for the bar color. If traceNMarkStyle is set to any
value other than None, the mark is drawn at the end of the bar.

For anEvent type trace, no line is drawn. Instead, a small rectangle containing a single text character
is drawn for each data point. The character is the first character of the corresponding data label if

Building and Using Apama Dashboards 10.11.2 507

13 Trend Objects

any, otherwise it is the first character of the trace label. The traceNColor property determines the
color of edges of the box and the text character, unless the point exceeds an alarm limit specified
on the graph, in which case the corresponding alarm color is used. The box's fill color is set to
traceNMarkColor or the appropriate alarm mark color, if any. However, if the mark color is the
same as the color used for the box edge and text, traceBgColor is used as the box fill color instead.

Each event box is positioned vertically according to the Y data value for the corresponding data
point. However, if traceN is attached to a data table that provides data labels but no Y data values,
an Event trace is plotted regardless of the traceNType setting. The event boxes are all drawn near
the bottom of the trace area.

This property is in the TraceN property group.

traceNValue

To display current data, attach to this property. When you attach data to this property, the time
displayed on the trend graph is automatically updated each time data is received. The table in
your data attachment can contain either a single point of data, two columns of data, or three
columns of data. If it contains a single point of data, the dashboard assigns the time stamp when
the graph receives the data.

If it contains two columns of data, the first columnmust be the time value and the second column
the value to plot.

Following are supported formats for the time value column:

mm/dd/yyyy hh:mm:ss (for example, 01/16/2004 12:30:03)

yyyy-mm-dd hh:mm:ss (for example, 2004-01-16 12:30:03)

Number of milliseconds since midnight, January 1, 1970 UTC

In order to view all available data, you must set the properties timeRange to -1 and timeShift to a
negative value. This negative value will be used to round the start and end times for the Y Axis.
For example, if you specify -15 for the timeShift property, the start and end times for the Y Axis
will be rounded to the nearest 15 seconds.

If the attachment contains three columns of data, the third columnmust be a string column, which
is used as the data label for the corresponding data point. The data label for a point is shown in
the fixed legend and in the popup legend, between the trace value and the trace label, and is
enclosed in parentheses. If the cursorFlag property is checked, the data label shown in the legend
is for the data point that is directly under or to the left of the cursor.

This property is in the TraceN property group.

traceNValueAlarmStatus

To apply an alarm status to traceN, enter an alarm status index, which indicates how to determine
the marker color and style for each new plotted point derived from traceNValue. Enter one of the
following integers:

508 Building and Using Apama Dashboards 10.11.2

13 Trend Objects

0: Normalmarker color and style. See “traceNMarkColor” on page 507 and “traceNMarkStyle” on
page 507.

1: Low alarm marker color and style: See “valueLowAlarmMarkColor” on page 487 and
“valueLowAlarmMarkStyle” on page 487.

2: Low warning marker color and style. See “valueLowWarningMarkColor” on page 488 and
“valueLowWarningMarkStyle” on page 488.

3: High warning marker color and style. See “valueHighWarningMarkColor” on page 486 and
“valueHighWarningMarkStyle” on page 486.

4: High alarm marker color and style. See “valueHighAlarmMarkColor” on page 485 and
“valueHighAlarmMarkStyle” on page 485.

-1: Determinemarker color and style by comparing the value to the enabled alarm thresholds. See
“valueHighAlarm” onpage 484, “valueHighWarning” onpage 485, “valueLowAlarm”onpage 486,
and “valueLowWarning” on page 488.

The default is -1.

This property is in the TraceN property group.

traceNValueAlarmStatusTable

Attach an alarm table containing status indexes to tracenValueAlarmStatusTable to enable rule
based alarm statuses for trace markers. This table must have a time column (formatted like the
time value in the traceNValueTable) and a value column where the value column contains alarm
status values 0-4. The table must also have the same number of rows as the corresponding
tracenValueTable. For each data element in traceNValueTable, the status index at the corresponding
position in tracenvalueAlarmStatusTable is used to set the alarm status of the marker.

Valid indexes are:

0: Normalmarker color and style. See “traceNMarkColor” on page 507 and “traceNMarkStyle” on
page 507.

1: Low alarm marker color and style. See “valueLowAlarmMarkColor” on page 487 and
“valueLowAlarmMarkStyle” on page 487.

2: Low warning marker color and style. See “valueLowWarningMarkColor” on page 488 and
“valueLowWarningMarkStyle” on page 488.

3: High warning marker color and style. See “valueHighWarningMarkColor” on page 486 and
“valueHighWarningMarkStyle” on page 486.

4: High alarm marker color and style. See “valueHighAlarmMarkColor” on page 485 and
“valueHighAlarmMarkStyle” on page 485.

-1: Determinemarker color and style by comparing the value to the enabled alarm thresholds. See
“valueHighAlarm” onpage 484, “valueHighWarning” onpage 485, “valueLowAlarm”onpage 486,
and “valueLowWarning” on page 488.

Building and Using Apama Dashboards 10.11.2 509

13 Trend Objects

If no data is attached to tracenValueAlarmStatusTable, then the alarm status for a trace marker is
determined by comparing the marker's value to the enabled thresholds. See valueHighAlarm,
valueHighWarning, valueLowAlarm, and valueLowWarning.

This property is in the TraceN property group.

traceNValueDivisor

All trace values are divided by the number entered into the tracenValueDivisor.

This property is in the TraceN property group.

traceNValueHistoryFlag

Do not use this property.

This property is in the TraceN property group.

traceNValueTable

To display historical data, attach to tracenValueTable, where n is the trace number, and include
two columns in your attachment. The first columnmust be the time value and the second column
the value to plot. Following are supported formats for the time value column:

mm/dd/yyyy hh:mm:ss (for example, 01/16/2004 12:30:03)

yyyy-mm-dd hh:mm:ss (for example, 2004-01-16 12:30:03)

Number of milliseconds since midnight, January 1, 1970 UTC

In order to view all available data, you must set the properties timeRange to -1 and timeShift to a
negative value. This negative value will be used to round the start and end times for the Y Axis.
For example, if you specify -15 for the timeShift property, the start and end times for the Y Axis
will be rounded to the nearest 15 seconds.

This property is in the TraceN property group.

traceNVisFlag

Select to control trace visibility. Mouse over a trace's entry in the legend and hold down the left
mouse button in order to temporarily hide all other traces in the graph.

This property is in the TraceN property group.

traceNYAxisAutoScaleMode

Controls how the y-axis range is calculated for this trace, if yAxisMultiRangeMode is set toMultiple
Axis or Strip Chart. Select one of the following from the drop down menu:

Off: The traceNYAxisValueMin and traceNYAxisValueMax properties determine the range
of the y-axis.

510 Building and Using Apama Dashboards 10.11.2

13 Trend Objects

On: The dashboard calculates the y-axis range according to data values being plotted.

On - Include Min/Max: The dashboard calculates the smallest range (with rounding) that
includes traceNYAxisValueMin and traceNYAxisValueMax as well as all plotted points.

This property is in the TraceN property group.

traceNYAxisFlag

Controls the visibility of the labels and ticks for traceN, if yAxisMultiRangeMode is set toMultiple
Axis or Strip Chart.

This property is in the TraceN property group.

traceNYAxisGridVisFlag

Set to display a horizontal line for eachmajor y-axis division for traceN, if yAxisMultiRangeMode
is set to Multiple Axis or Strip Chart.

This property is in the TraceN property group.

traceNYAxisMinLabelWidth

Specifies the minimum width of the y-axis labels in pixels, if yAxisMultiRangeMode is set to
Multiple Axis or Strip Chart.

This property is in the TraceN property group.

traceNYAxisValueLabels

Set to display a text label or tick mark on the y-axis in place of a numerical value, if
yAxisMultiRangeMode is set to Multiple Axis or Strip Chart. Include a value with no label to
display a tick mark without a label. Use this format:

value1=label1,value2,value3=label2

Here is an example:

0=Off,1,2=On

This property is in the TraceN property group.

traceNYAxisValueMax

Controls the range of y-axis if the traceNYAxisAutoScaleMode is set to Off. Select On for the
traceNYAxisAutoScaleMode to calculate the y-axis range according to data values being plotted.
To calculate a y-axis range that always includes traceNYAxisValueMin and traceNYAxisValueMax,
select On - Include Min/Max.

This property is used only if yAxisMultiRangeMode is set to Multiple Axis or Strip Chart.

Building and Using Apama Dashboards 10.11.2 511

13 Trend Objects

This property is in the TraceN property group.

traceNYAxisValueMin

Controls the range of y-axis if the traceNYAxisAutoScaleMode is set to Off. Select On for the
traceNYAxisAutoScaleMode to calculate the y-axis range according to data values being plotted.
To calculate a y-axis range that always includes traceNYAxisValueMin and
“traceNYAxisValueMax” on page 511, select On - Include Min/Max.

This property is used only if yAxisMultiRangeMode is set to Multiple Axis or Strip Chart.

This property is in the TraceN property group.

Trend graph:Trace Groups group
The properties in this group allow you to form trace groups. A trace group is a collection of two
or more traces, and is useful for the following:

Identifyingmultiple traces that should share one vertical axis, in strip chart ormulti-axismodes

Identifying three traces to be combined as a banded trace

By default, the category contains a single property, traceGroupCount, with a default value of zero.
Legal values are 0 through 5. If nonzero, the traceGroupNTraceNumbers and traceGroupNBandedFlag
properties appear in the Trace Group category, for each groupN, where N is between 1 and
traceGroupCount, inclusive.

Follow these steps to construct an example:

1. Set traceCount = 3.

2. Set traceGroupCount = 1 (this makes the next 2 properties appear).

3. Set traceGroup1TraceNumbers = 1, 2, 3.

4. Set traceGroup1BandedFlag = true (checked).

5. Attach trace 1, 2, and 3 to data.

Note also the following:

For each trace that is in a group, the y axis for the group is visible unless traceNYAxisVisFlag
or traceVisFlag is false (unchecked) for all traces in the group. Similarly, the group's y axis
grid is visible unless the traceNYAxisGridVisFlag property is false for all traces in the group.

If traceN is in a group, these properties are hidden: traceNYAxisAutoScaleMode,
traceNYAxisValueMax, traceNYAxisValueMin. The graph's yAXisAutoScaleMode, yValueMax, and
yValueMin properties are used to scale each group's y axis range.

If yAxisMultiRangeMode is Multiple Axis, the color of the axis for a group is determined by
traceNLineColor of the first visible trace in the group. In Multiple Axis mode it may not be
visually obvious which traces belong to which groups, unless you assign a similar line color
or style, or mark color or style, to all the traces in a group.

512 Building and Using Apama Dashboards 10.11.2

13 Trend Objects

Trace Groups group properties

The group includes the following properties:

“traceGroupNBandedFlag” on page 513

“traceGroupNTraceNumbers” on page 513

“traceGroupCount” on page 513

traceGroupNBandedFlag

If this property is checked, the group is expected to have three traces. The plot area beneath the
first trace in the group (the low band trace) is filled, the second trace in the group (the value trace)
is not filled, and the area above the third trace (the high band trace) is filled.

This property is in the TraceGroups property group.

traceGroupNTraceNumbers

Specifies a comma-separated list of the traces that belong to the group. If the trend graph is in
strip chart mode or multi-axis mode, all the traces in the group share the same axis or strip.

This property is in the TraceGroups property group.

traceGroupCount

Sets the number of trace groups. The default is 0. Allowable values are 0 through 5. If nonzero,
the properties traceGroupNTraceNumbers and traceGroupNBandedFlag appear in the Trace Group
category, for each groupN, where N is between 1 and the value of traceGroupCount, inclusive.

This property is in the TraceGroups property group.

Trend graph: X-Axis group
Properties in this group control the range and labeling of the x-axis.

X-Axis group properties

The group includes the following properties:

“timeFormat” on page 514

“timeRange” on page 514

“timeRangeBegin” on page 514

“timeRangeEnd” on page 515

“timeRangeOfHistory” on page 515

Building and Using Apama Dashboards 10.11.2 513

13 Trend Objects

“timeShift” on page 515

“xAxisFlag” on page 515

“xAxisGridVisFlag” on page 515

“xAxisLabelTextHeight” on page 515

“xAxisMajorDivisions” on page 516

“xAxisMinorDivisions” on page 516

timeFormat

Sets the format for the time displayed in the x-axis using syntax from the Java SimpleDateFormat
class.

For example,MMMM dd, yyyy hh:mm:ss a results in dates of the formAugust 30, 2003 05:32:12
PM. If no format is given, the date and time are not displayed on the x-axis.

Include a new line character ('\n') to displaymultiple-line text in the time axis labels. For example,
MM\dd'\n'hh:mm:ss results in the following form:
08\30
05:32:12

If left blank, the axis is labeled with a default format based on the range.

This property is in the X-Axis property group.

timeRange

Sets the total amount of time, in seconds, plotted on the chart.

If timeRange is set to -1, the time range is determined by the first and last timestamp found in the
traceNValue and traceNValueTable. If both tables are empty, the chart uses the first and last
timestamp of the first overlay trace that has a non-empty traceNValueTable or traceNValue.

Note:timeRange is ignored if both timeRangeBegin and timeRangeEnd are set.

The default is -1.0.

This property is in the X-Axis property group.

timeRangeBegin

Sets the start time value of the data to be plotted on the chart. Following are the supported formats:

mm/dd/yyyy hh:mm:ss (for example, 01/16/2004 12:30:03)

yyyy-mm-dd hh:mm:ss (for example, 2004-01-16 12:30:03)

The number of milliseconds since midnight, January 1, 1970 UTC

514 Building and Using Apama Dashboards 10.11.2

13 Trend Objects

Note:
If only the time is specified, the current date is used.

This property is in the X-Axis property group.

timeRangeEnd

Sets the end time value of the data to be plotted on the chart. Following are the supported formats
are:

mm/dd/yyyy hh:mm:ss (for example, 01/16/2004 12:30:03)

yyyy-mm-dd hh:mm:ss (for example, 2004-01-16 12:30:03)

The number of milliseconds since midnight, January 1, 1970 UTC

Note:
If only the time is specified, the current date is used.

This property is in the X-Axis property group.

timeRangeOfHistory

Do not use this property

This property is in the X-Axis property group.

timeShift

Used to round the start and end times for the Y Axis. For example, if you specify -15 for the
timeShift property, the start and end times for the Y Axis are rounded to the nearest 15 seconds.

The default value is -1.0.

This property is in the X-Axis property group.

xAxisFlag

Select to display the x-axis.

This property is in the X-Axis property group.

xAxisGridVisFlag

Set to display a vertical line for each major x-axis division.

This property is in the X-Axis property group.

xAxisLabelTextHeight

Specifies the height in pixels of the x-axis labels.

Building and Using Apama Dashboards 10.11.2 515

13 Trend Objects

This property is in the X-Axis property group.

xAxisMajorDivisions

Specify the number of major divisions (long ticks) on the x-axis.

This property is in the X-Axis property group.

xAxisMinorDivisions

Specify the number of minor divisions (short ticks) on the x-axis.

This property is in the X-Axis property group.

Trend graph:Y-Axis group
Properties in this group control the visibility and scaling of the y-axis or y-axes, as well as y-axis
labeling and y-axis divisions. They also control the visibility of y-axis grid lines (but see also “Trend
graph: TraceN group” on page 505).

Y-Axis group properties

The group includes the following properties:

“yAxisAutoScaleMode” on page 516

“yAxisAutoScaleVisTracesOnlyFlag” on page 517

“yAxisFlag” on page 517

“yAxisGridVisFlag” on page 517

“yAxisLabelTextHeight” on page 517

“yAxisMajorDivisions” on page 517

“yAxisMinLabelWidth” on page 517

“yAxisMinorDivisions” on page 518

“yAxisMultiRangeMode” on page 518

“yAxisPosition” on page 518

“yAxisValueLabels” on page 518

yAxisAutoScaleMode

Controls how the y-axis range is calculated. Select one of the following from the drop downmenu:

Off: The yValueMin and yValueMax properties determine the range of y-axis.

516 Building and Using Apama Dashboards 10.11.2

13 Trend Objects

On: The dashboard calculates the y-axis range according to data values being plotted.

On - Include Min/Max: The dashboard calculates the smallest range (with rounding) that
includes yValueMin and yValueMax as well as all plotted points.

This property is in the Y-Axis property group.

yAxisAutoScaleVisTracesOnlyFlag

Specifies that only visible traces should be used in scaling the y-axis when yAxisAutoScaleMode
is not OFF. See traceNVisFlag.

This property is in the Y-Axis property group.

yAxisFlag

Controls the visibility of the labels and ticks for trace01, if yAxisMultiRangeMode is set to Off or
Classic.

This property is in the Y-Axis property group.

yAxisGridVisFlag

Set to display a horizontal line for eachmajor y-axis division for trace01, if yAxisMultiRangeMode
is set to Off or Classic.

This property is in the Y-Axis property group.

yAxisLabelTextHeight

Specifies the height of the y-axis labels in pixels, if yAxisMultiRangeMode is set to Off or Classic

This property is in the Y-Axis property group.

yAxisMajorDivisions

Specifies the number of major divisions (wide ticks) on the y-axis, if yAxisMultiRangeMode is set
to Off or Classic.

This property is in the Y-Axis property group.

yAxisMinLabelWidth

Specifies the minimum width of the y-axis labels in pixels, if yAxisMultiRangeMode is set to Off
or Classic.

This property is in the Y-Axis property group.

Building and Using Apama Dashboards 10.11.2 517

13 Trend Objects

yAxisMinorDivisions

Specifies the number of minor divisions (narrow ticks) on the y-axis, if yAxisMultiRangeMode is
set to Off or Classic.

This property is in the Y-Axis property group.

yAxisMultiRangeMode

To specify the appearance of the y-axis when this chart has multiple traces, select one of the
following from the drop down menu:

Off: Only a single set of labels and ticks appears on the y-axis. The label range is based on the
following properties: yAxisAutoScaleMode, yValueMin, and yValueMax.

Classic: Ticks and labels for trace01 appear on the left, outside of the plot area. Labels for the
remaining traces appear on the left, inside of the plot area. With this setting for
yAxisMultiRangMode, the “yAxisPosition” on page 518 property is ignored. The label range for
each trace is based on the following properties: yAxisAutoScaleMode, yValueMin, and
yValueMax.

Multiple Axis: A set of labels and ticks appears for each trace. The label range is determined
independently for each trace, based on the following properties: traceNYAxisAutoScaleMode,
traceNYAxisValueMin, traceNYAxisValueMax.

Strip Chart: The y-axis is divided into sections, one for each trace. The traces are not overlaid,
but rather appear one on top of the other. A set of labels and ticks appears for each trace. The
label range is determined independently for each trace, based on the following properties:
traceNYAxisAutoScaleMode, traceNYAxisValueMin, traceNYAxisValueMax.

This property is in the Y-Axis property group.

yAxisPosition

Specify the position of the y-axis ticks and labels. This property is ignored if yAxisMultiRangeMode
is Multiple Axis or Strip Chart.

This property is in the Y-Axis property group.

yAxisValueLabels

Set to display a text label or tick mark on the y-axis in place of a numerical value, if
yAxisMultiRangeMode is set to Off or Classic. Include a value with no label to display a tick
mark without a label. Use this format:
value1=label1,value2,value3=label2

Here is an example:
0=Off,1,2=On

518 Building and Using Apama Dashboards 10.11.2

13 Trend Objects

This property is in the Y-Axis property group.

Building and Using Apama Dashboards 10.11.2 519

13 Trend Objects

520 Building and Using Apama Dashboards 10.11.2

13 Trend Objects

14 Drill-Down Specification

■ Using the Drill Down Properties dialog ... 522

■ Activating drill downs .. 524

■ About drilldown displays opened in Dashboard Builder ... 524

Building and Using Apama Dashboards 10.11.2 521

TheDashboard Builder allows you to build customized display hierarchies by assigning drill-down
targets to a dashboard's visualization objects. A given object's drill-down target is a dashboard
that is displayed when the end user activates the drill down, typically by clicking on the given
object.

Using the Drill Down Properties dialog
In the Object Properties window, double-click on drillDownTarget in the Property Name field to
bring up the Drill Down Properties dialog.

The Drill Down Properties dialog has the following fields and buttons:

Apply Drill Down To: Choose one of the following from the drop down menu:

New Window: Open the targeted display file in a new display window. A new window
is created each time this drill down is activated.

Current Window: Open the targeted display file in same window as the source object.
With tabbed panels, open the targeted display in another tab if the display is already open;
otherwise open in the selected tab.

Named Window: Open the targeted display file in a separatewindowdefined by a specific
name. The same window is reused each time this drill down is activated or if the end user
activates another drill down with the same window name. If you choose this option, you
must also enter a Window Name.

Window Name: Enter a name for the window. The same window is reused for all drill down
targets that reference this window name.

Entering main as a Window Name opens the targeted display in the top-level window. With
multiple display panels, main opens the drill down in panelcenter.

Note:
This field is valid only if the drill down is applied to a Named Window.

Drill Down Display Name: Select the name of the targeted display (.rtv) file. The drop down
menu contains the names of files located in the current directory (typically, the dashboards
directory of your project directory, under your Apama installation's work directory), as well
as files located in first level of subdirectories. If a display is not listed, enter the name (including
relative path) of the file. If the file path is a URL and it contains spaces, the spaces must be
replaced with %20.

SelectCurrent Display to target the display that is currently in the target window. This ismost
usefulwhenCurrent Display is used in conjunctionwithCurrent Window orNamed Window.
Only substitutions specified in the Drill Down Properties dialogwill be appliedwhen the drill
down is activated, and this allows you to use the source object to control data displayed by all
objects in the window.

Drill Down Branch Function Name: Enter the name of a function (in your current display)
that returns the text string you want appended to the end of the Drill Down Display Name.
This enables to you drill down to different displays based on the result of the function.

522 Building and Using Apama Dashboards 10.11.2

14 Drill-Down Specification

If the Drill Down Display Name is set to Current Display this option is not enabled.

Remove Existing Substitutions: Select the Remove Existing Substitutions checkbox to
remove existing drill down substitutions on the drill down window. This option is enabled
only when you drill down to the Current Window or a Named Window.

Window Position: Set the position of a new drill-down window. This option applies only
when the drill down opens in a new window. Choose one of the following:

Default: Positioned by your operating system's window manager.

Center of Screen: Centered on the screen.

Center of Parent: Centered relative to the parent window.

Relative to Screen: Offset horizontally and vertically from the top left corner of the screen
by the number of pixels specified in Pixels from left and Pixels from top.

Relative to Parent: Offset horizontally and vertically from the top left corner of the parent
window by the number of pixels specified in Pixels from left and Pixels from top.

Window Title: Specify text in the title bar. If this field is left blank, then the title bar will display
a default title. This option applies only when the drill down opens in a new window.

Window Mode: Specify modality and stacking order of drill down windows. This option
applies only when the drill down opens in a new window.

There are three Window Mode options:

Normal: Allow user interaction in all windows. Stacking order is determined by the Drill
Down Windows Always on Top setting in the General tab of the Application Options
dialog.

Modal: Allow user interaction only in this drill down window while it is open. Stacking
order is on top of all other dashboards.

Topmost: Allow user interaction in any dashboard. Stacking order is on top of all other
dashboards.Additionally, allwindows targeted fromaTopmostwindowwill automatically
assume the topmost position.

Note:
Some platforms do not support this functionality. If more than one window is set to be
in the Topmost position, stacking order is platform dependent.

Drill Down Substitutions: Direct the dashboard to assign values to specified dashboard
substitution variables when the end user activates a drilldown on this object.

Note:
Some drill down substitutions are automatically added for displays targeted from table
objects.

Building and Using Apama Dashboards 10.11.2 523

14 Drill-Down Specification

Add: In the String field, enter a substitution variable. In the Value field, enter the value
that you want assigned to the substitution variable. Click Add to insert the assignment
into the listing.

Note:
Substitution strings cannot contain the following:

| . tab space , ; = < > ' " & / \ { } [] ()

Remove: Select a substitution from the list and click Remove.

OK: Applies values and closes the dialog.

Clear: Clears all fields. Removes drill down target (once OK is selected).

Cancel: Closes the dialog with last values applied.

Help: Opens the Help dialog.

Activating drill downs
Once a drill down target has been assigned to an object, you can activate the drill down from a
deployed dashboard or from the Dashboard Builder:

Dashboard Builder: Double click on the object, or else right-click on it and select Drill Down
from the popup menu.

Web-based deployment: Single click on the object or else right click on it and selectDrill Down
from the popup menu.

Local deployment: By default, single-click on the object or else right-click on it and select Drill
Down from the popup menu. To override the default, select Tools | Options in the Builder
(do this before you generate the deployment package), and uncheck Single-Click for Drill
Down and Commands in the General tab. This allows the end user to use either a double
click or a right click.

Note:
If a command has been assigned to an object, then you must right-click and select Drill Down
from the popup menu to activate the drill down.

About drilldown displays opened in Dashboard
Builder
With the Dashboard Builder, when you open a drill-down display in a New Window or a Named
Window, the window is subject to the following restrictions:

The window does not have menus or a toolbar.

524 Building and Using Apama Dashboards 10.11.2

14 Drill-Down Specification

You cannot edit the properties of objects in the that are in these drill down displays, although
you can view these properties.

You cannot paste objects into such drill-down displays, although you can copy objects from
such drill-down displays and paste them into the top-level display.

It is possible to double-click on objects within drill-down windows in order to activate further
drill down displays.

Building and Using Apama Dashboards 10.11.2 525

14 Drill-Down Specification

526 Building and Using Apama Dashboards 10.11.2

14 Drill-Down Specification

III Dashboard Function Reference

15 Introduction to Dashboard Functions ... 529

16 Scalar Functions ... 533

17 Tabular Functions ... 549

18 Expression Syntax in Dashboard Functions ... 601

Building and Using Apama Dashboards 10.11.2 527

528 Building and Using Apama Dashboards 10.11.2

III Dashboard Function Reference

15 Introduction to Dashboard Functions

■ Working with functions ... 530

Building and Using Apama Dashboards 10.11.2 529

This part provides reference information on dashboard functions which allow you to perform
calculations, filtering, formatting, and other operations on correlator data. Instead of attaching a
visualization object directly to a correlator data table or variable, you can specify data tables and
variables as arguments to a dashboard function, and then attach the visualization object to the
function. Objects that are attached to functions update dynamically as the function arguments are
updated, just as visualization objects that are attacheddirectly to correlator data update dynamically
as correlator data is updated.

Working with functions
Follow these steps to add, edit, remove, or examine functions:

1. Open the dashboard file that contains (or will contain) the visualization object that you want
to attach to a function.

2. In the Dashboard Builder, select Functions from the Tools menu. The Functions panel
appears.

The Functions panel has the following buttons:

Add: Adds a new function. Brings up the Edit Function dialog.

Copy: Copies the selected function. Brings up the Edit Function Name dialog.

Edit: Allows you to edit the selected function. Brings up the Edit Function dialog.

Remove: Removes the selected function.

Result: Brings up a dialog that displays the result of executing the selected function.

References: Brings up a dialog that lists all the objects that directly reference the selected
function. When you choose an object in that list, it is selected according to its type. When
you select a display object, Builder highlights the object in the drawing area. When you
select a function, Builder brings up the dialog with the designated object selected.

3. To add or edit a function, click Add or Edit In the Functions panel. The Edit Function dialog
appears.

4. Fill in the fields of the Edit Function dialog, and click OK (to apply the values and close the
dialog) or Apply (to apply the values and leave the dialog open).

The Edit Function dialog has the following fields:

Function Name: Specify a name that is unique among functions that have been added to
the current dashboard file. The name must not contain spaces. The name function is not
allowed.

Function Type: Select the function that you want to add and specify arguments for. The
dropdown list includes built-in functions as well as user-defined functions (see “Using
Dashboard Functions” on page 115).

530 Building and Using Apama Dashboards 10.11.2

15 Introduction to Dashboard Functions

Argument fields: Once you select a function for the Function Type field, the dialog is
populated with the argument fields that are appropriate to the selected function. For each
argument field, you can either enter a value or attach the argument to data. To attach the
argument to data, right-click in the argument field, selectAttach to Data, and select a data
source. An argument that has been attached to data is displayed in green. Double-click to
edit the data attachment. Right-click and select Attach to Data to change the data source.
Right-click and select Detach from Data to remove the attachment.

Description: Include a description of any length. This description will be visible in the
Attach to Function Data dialog.

In theEdit Function dialog, when you are editing a functionwhose argument refers to another
function, you can edit the referenced functionwithout leaving the dialog.When you right-click
an argument that contains a reference to a function, an additional item,Edit Function, appears
in the popup menu. If you select it, the Edit Function dialog for that function replaces the
currentEdit Functiondialog. If you have unsaved changes you are prompted to save or discard
them, or cancel the operation. In addition a button, Back, appears in the Edit Function dialog
that takes you back to the function you were previously editing.

Once a function has been added in this way (with arguments specified), you can use the Attach
to Function Data dialog in order to attach it to properties of visualization objects in the current
dashboard file. Objects that are attached to functions update dynamically as the function arguments
are updated, just as visualization objects that are attached directly to correlator data update
dynamically as correlator data is updated.

Note that the added functions can be edited only from within the dashboard file that was opened
when the functions were added. In addition, a function is only available for use within the
dashboard file that was opened when the function was added, or (for public functions) within a
file that includes the dashboard file that was opened when the function was added.

The reference documentation on dashboard functions is divided into two sections:

“Scalar Functions” on page 533: Describes built-in dashboard functions that operate on and
return numerical values or text strings.

“Tabular Functions” on page 549: Describes built-in dashboard functions that operate on or
return tabular data.

See also “Using Dashboard Functions” on page 115.

Building and Using Apama Dashboards 10.11.2 531

15 Introduction to Dashboard Functions

532 Building and Using Apama Dashboards 10.11.2

15 Introduction to Dashboard Functions

16 Scalar Functions

■ Add ... 535

■ Average .. 535

■ Boolean Expression ... 535

■ Concatenate ... 536

■ Correlator Time Format .. 536

■ Date Add .. 537

■ Date Ceiling .. 537

■ Date Compare .. 538

■ Date Difference .. 538

■ Date Floor ... 539

■ Date Format ... 539

■ Date Now .. 540

■ Delta ... 540

■ Divide ... 540

■ Duration .. 541

■ Evaluate Expression As Double ... 541

■ Evaluate Expression As String ... 542

■ Format Number .. 542

■ Get Substitution .. 543

Building and Using Apama Dashboards 10.11.2 533

■ Init Local Variable ... 543

■ isWindowsOS ... 543

■ Max ... 543

■ Min .. 544

■ Modulo .. 544

■ Multiply ... 544

■ Percent ... 545

■ Quick Set Sub .. 545

■ Replace All ... 545

■ Replace Value .. 546

■ Set Substitution .. 546

■ Set Substitutions By Lookup .. 547

■ Subtract .. 547

■ Validate Substitutions ... 547

534 Building and Using Apama Dashboards 10.11.2

16 Scalar Functions

This section lists the Dashboard functions that operate on and return numerical values or text
strings.

Add
Returns the result of adding the two arguments.

Arguments

This function has the following arguments:

Argument1: Numeric value to be added.

Argument2: Numeric value to be added.

The function returns a numeric value.

Average
Returns the average of the two arguments.

Arguments

This function has the following arguments:

Argument1: Numeric value.

Argument2: Numeric value.

The function returns a numeric value.

Boolean Expression
Returns 1 (true) if the result of performing a specified comparison is true; returns 0 (false)
otherwise.

Arguments

The function has the following arguments:

Value 1: Text string that specifies the first value to compare.

Operator: Text string that specifies the comparison operator. Supply one of the following:

and

or

xor

Building and Using Apama Dashboards 10.11.2 535

16 Scalar Functions

=

!=

>

<

>=

<=

Value 2: Text string that specifies the second value to compare.

This function returns a numerical value.

Concatenate
Returns the result of combining the two arguments into a single text string.

Arguments

This function has the following arguments:

Value1: Numeric value or text string.

Value2: Numeric value or text string.

The function returns a text string.

Correlator Time Format
Converts a correlator timestamp to either epoch time in milliseconds or the specified date/time
format.

Arguments

Correlator Time: Correlator timestamp that you want to convert. This argument is required.
If it is not specified or if the specified value is invalid the string "0" is returned and any specified
formatting is not applied.

Format: Optional. Leave this field blank to convert the correlator timestamp to epoch time.
The returned value is in milliseconds. Or, specify a date/time pattern to use to format the
correlator timestamp. You can specify any pattern format supported by the Java class
SimpleDateFormat. If you specify an invalid value the string "0" is returned.

A correlator timestamp is in seconds with a decimal point before the milliseconds, for example,
1043189336.2.

This function returns a string.

536 Building and Using Apama Dashboards 10.11.2

16 Scalar Functions

Date Add
Returns the result of adding the specified number (which may be negative) of date part intervals
to the specified date, and returns a string representing the resulting date/time.

Arguments

This function has the following arguments:

Date: Text string specifying the date to which is added the specified number of date parts.
This must be either a formatted date/time string or a Java standard date/time argument in
milliseconds from Jan 1, 1970.

Number: Numeric value. The number of date parts to add to the specified date.

Date Part: Text string specifying the date part, the specified number of which are to be added
to the specified date. Specify s, m, h, d, w, M, q or y for seconds, minutes, hours, days, weeks,
months, quarters, or years.

Date Format: Text string specifying the format of the function result. Specify a pattern string
suitable for use with the Java SimpleDateFormat class. For example, the format MMMM dd,
yyyy hh:mm:ss a results in dates of the form exemplified by August 30, 2003 05:32:12 PM.
If no Date Format is given, the string is returned in the form exemplified by 08/30/03 05:32
PM. Use q, qqq or qqqq for short, medium or long versions of quarter notation. For example,
qqq-yyyy results in a string of the form exemplified by Qtr 1-2005.

The function returns a text string.

Date Ceiling
Returns the ceiling of Date with respect to Date Part. In other words, the function determines
which Date Part interval contains the Date, and returns a string representing the start value of
the next Date Part interval.

Arguments

This function has the following arguments:

Date: Text string specifying the date whose ceiling is to be returned. This must be either a
formatted date/time string or a Java standard date/time argument in milliseconds from Jan 1,
1970.

Date Part: Text string specifying the date part with respect towhich the specified date's ceiling
is to be returned. Specify s, m, h, d, w, M, q or y for seconds, minutes, hours, days, weeks,
months, quarters, or years.

Date Format: Text string specifying the format of the function result. Specify a pattern string
suitable for use with the Java SimpleDateFormat class. For example, the format MMMM dd,
yyyy hh:mm:ss a results in dates of the form exemplified by August 30, 2003 05:32:12 PM.

Building and Using Apama Dashboards 10.11.2 537

16 Scalar Functions

If no Date Format is given, the string is returned in the form exemplified by 08/30/03 05:32
PM. Use q, qqq or qqqq for short, medium or long versions of quarter notation. For example,
qqq-yyyy results in a string of the form exemplified by Qtr 1-2005.

The function returns a text string.

Date Compare
Compares Date 1 and Date 2, each rounded down to the nearest Date Part.

Return Value

IfDate 1 (rounded down to the nearestDate Part) is less thanDate 2 (rounded down to the nearest
Date Part), the function returns -1. If Date 1 (rounded down to the nearest Date Part) is greater
than Date 2 (rounded down to the nearest Date Part), the function returns 1. If Date 1 (rounded
down to the nearestDate Part) equalsDate 2 (roundeddown to the nearestDate Part), the function
returns 0.

For example, comparing 08/30/03 05:32 PM to 08/30/03 04:47 PM with Date Part set to m (for
minute resolution) returns 1, while setting Date Part to d (for day resolution) causes this function
to return 0.

Arguments

This function has the following arguments:

Date 1: Text string specifying one of the dates to be compared. It must be either a formatted
date/time string or a Java standard date/time argument in milliseconds from Jan 1, 1970.

Date 2: Text string specifying the other date to be compared. It must be either a formatted
date/time string or a Java standard date/time argument in milliseconds from Jan 1, 1970.

Date Part: Text string that controls the resolution of the comparison. Specify s, m, h, d, w, M,
q or y for seconds, minutes, hours, days, weeks, months, quarters or years.

The function returns a number.

Date Difference
Returns the integer number of Date Part intervals by which Date 1 (rounded down to the nearest
Date Part) is less thanDate 2 (rounded down to the nearestDate Part). For example, the difference
between 05/12/05 05:32 PM and 05/15/05 04:47 PM with Date Part set to d (for day) returns 3.

Arguments

This function has the following arguments:

Date 1: Text string specifying the earlier date. It must be either a formatted date/time string
or a Java standard date/time argument in milliseconds from Jan 1, 1970.

538 Building and Using Apama Dashboards 10.11.2

16 Scalar Functions

Date 2: Text string specifying the later date. It must be either a formatted date/time string or
a Java standard date/time argument in milliseconds from Jan 1, 1970.

Date Part: Text string that specifies the date part with respect to which the difference is to be
calculated. Specify s, m, h, d, w, M, q or y for seconds, minutes, hours, days, weeks, months,
quarters or years.

The function returns a number.

Date Floor
Returns the floor ofDatewith respect toDate Part. In otherwords, the function determineswhich
Date Part interval contains Date, and returns a string representing the starting date/time value
of that interval.

Arguments

This function has the following arguments:

Date: Text string specifying the date whose floor is to be returned. This must be either a
formatted date/time string or a Java standard date/time argument in milliseconds from Jan 1,
1970.

Date Part: Text string specifying the date part with respect to which the specified date's floor
is to be returned. Specify s, m, h, d, w, M, q or y for seconds, minutes, hours, days, weeks,
months, quarters, or years.

Date Format: Text string specifying the format of the function result. Specify a pattern string
suitable for use with the Java SimpleDateFormat class. For example, the format MMMM dd,
yyyy hh:mm:ss a results in dates of the form exemplified by August 30, 2003 05:32:12 PM.
If no Date Format is given, the string is returned in the form exemplified by 08/30/03 05:32
PM. Use q, qqq or qqqq for short, medium or long versions of quarter notation. For example,
qqq-yyyy results in a string of the form exemplified by Qtr 1-2005.

The function returns a text string.

Date Format
Returns a string representing the specified date in the specified format.

Arguments

This function has the following arguments:

Date: Text string specifying the date to be formatted. Thismust be either a formatted date/time
string or a Java standard date/time argument in milliseconds from Jan 1, 1970.

Date Format: Text string specifying the format of the function result. Specify a pattern string
suitable for use with the Java SimpleDateFormat class. For example, the format MMMM dd,

Building and Using Apama Dashboards 10.11.2 539

16 Scalar Functions

yyyy hh:mm:ss a results in dates of the form exemplified by August 30, 2003 05:32:12 PM.
If no Date Format is given, the string is returned in the form exemplified by 08/30/03 05:32
PM.

The function returns a text string.

Date Now
Returns a string representing the current date and time in the specified format.

Arguments

This function has the following argument:

Date Format: Text string specifying the format of the function result. Specify a pattern string
suitable for use with the Java SimpleDateFormat class. For example, the format MMMM dd,
yyyy hh:mm:ss a results in dates of the form exemplified by August 30, 2003 05:32:12 PM.
If no Date Format is given, the string is returned in the form exemplified by 08/30/03 05:32
PM.

The function returns a text string.

Delta
Returns the rate of change of Value over the specified time interval.

Arguments

This function has the following arguments:

Value: The numeric value whose rate of change is to be returned.

Interval: Numeric value specifying the time interval, in seconds, for which the rate of change
is to be calculated. If no value is given, the absolute delta is returned.

The function returns a number.

Divide
Returns the result of dividing the first argument by the second.

Arguments

This function has the following arguments:

Argument1: Numeric value specifying the dividend.

Argument2: Numeric value specifying the divisor.

540 Building and Using Apama Dashboards 10.11.2

16 Scalar Functions

The function returns a number.

Duration
Returns a string representing the specified duration in the specified format.

Arguments

This function has the following arguments:

Duration: Numeric value specifying the duration, in milliseconds, to be formatted.

Duration Format: Text string specifying the format of the function result. This string may
contain 0 or more of the characters d, s, and . (for example ds) indicating that days, seconds,
or milliseconds are to be included, in addition to hours and minutes, in the returned string. If
no Duration Format is specified, the string is returned in the form exemplified by 15:32
(hours:minutes).

The function returns a text string.

Evaluate Expression As Double
Returns the result of evaluating a specified expression that contains variables, each of which has
an associated function argument. The result is returned as a double. Boolean true or false values
are returned as 1.0 and 0.0 respectively.

Arguments

The function has the following arguments:

Expression: Text string that specifies the expression to evaluate. Prefix variable nameswith%.
Use standard arithmetic and logical operators. You can also use a variety of mathematical and
string functions, as well as numeric and string constants. Enclose string constants in double
quotes.

Expression variable arguments: When the Expression field of the Edit Function dialog is
activated (by pressing Enter or navigating to another field), the dialog displays a text field for
each variable. For each field, enter a numeric value or text string. Valueswhose form is numeric
are substituted into the expression as numbers; otherwise they are substituted into the
expression as strings.

If a valuewhose form is numeric needs to be treated as a string, for example to serve as an argument
to a string function, surround the variable in Expression with double quotes. Variables enclosed
in double quotes are always used as strings. An example of such an expression is length("%var1")
+ %var2.

This function returns a numerical value.

Building and Using Apama Dashboards 10.11.2 541

16 Scalar Functions

Evaluate Expression As String
Returns the result of evaluating a specified expression that contains variables, each of which has
an associated function argument. The result is returned as a text string. Boolean true or false
values are returned as 1.0 and 0.0 respectively.

Arguments

The function has the following arguments:

Expression: Text string that specifies the expression to evaluate. Prefix variable nameswith%.
Use standard arithmetic and logical operators. You can also use a variety of mathematical and
string functions, as well as numeric and string constants. Enclose string constants in double
quotes.

Expression variable arguments: When the Expression field of the Edit Function dialog is
activated (by pressing Enter or navigating to another field), the dialog displays a text field for
each variable. For each field, enter a numeric value or text string. Valueswhose form is numeric
are substituted into the expression as numbers; otherwise they are substituted into the
expression as strings.

If a valuewhose form is numeric needs to be treated as a string, for example to serve as an argument
to a string function, surround the variable in Expression with double quotes. Variables enclosed
in double quotes are always used as strings. An example of such an expression is length("%var1")
+ %var2.

This function returns a text string.

Format Number
Returns a string representing the specified number in the specified format.

For example, if Number To Format is 50, and Format is $, the function returns $50.00.

Arguments

This function has the following arguments:

Number To Format: Numeric value specifying the number to be formatted.

Format: Text string specifying the format of the function result. The format can be specified
based on the Java format specification, or with the following shorthand: $ for US dollar money
values, $$ for US dollar money values with additional formatting, or () for non-money values,
formatted similar to money. Both positive and negative formats can be supplied, for example:
#,###;(#,###).

The function returns a text string

542 Building and Using Apama Dashboards 10.11.2

16 Scalar Functions

Get Substitution
Returns the current value of the given Substitution String.

Arguments

This function has the following argument:

Substitution String: Text string specifying the substitution whose value is to be returned.

The function returns a text string.

Init Local Variable
Initializes the local variable to the specified value. If the variable already has a non-empty value,
this function does nothing.

Arguments

This function has the following arguments:

Variable Name: Text string specifying the variable whose value is to be initialized.

Initial Value: Numeric value or text string specifying the initial value to which the variable is
to be set.

This function is useful for initializing a local variable to a value supplied by a data attachment.

isWindowsOS
Returns 1 if the operating system the dashboard is running on is Windows; returns 0 otherwise.

Arguments

This function has no arguments.

The function returns a number.

Max
Returns larger of the two arguments.

Arguments

This function has the following arguments:

Argument1: Numeric value.

Building and Using Apama Dashboards 10.11.2 543

16 Scalar Functions

Argument2: Numeric value.

This function returns a number.

Min
Returns smaller of the two arguments.

Arguments

This function has the following arguments:

Argument1: Numeric value.

Argument2: Numeric value.

This function returns a number.

Modulo
Divides Value by Divisor and returns the remainder.

Arguments

This function has the following arguments:

Value: Numeric value to be divided by Divisor.

Divisor: Numeric value by which to divide Value.

This function returns a number.

Multiply
Returns the result of multiplying the first argument by the second.

Arguments

This function has the following arguments:

Argument1: Numeric value specifying one of the factors.

Argument2: Numeric value specifying the other factor.

The function returns a number.

544 Building and Using Apama Dashboards 10.11.2

16 Scalar Functions

Percent
Returns the percentage of Value, given the range defined by Min Value and Max Value.

Arguments

This function has the following arguments:

Value: Numeric value specifying one of the factors.

Min Value: Numeric value specifying one of the factors.

Max Value: Numeric value specifying the other factor.

The function returns a number between 0 and 100.

Quick Set Sub
Sets a substitution string to the specified value.

This function executes very quickly because, unlike the standard Set Substitution function, it
does not search for and modify data attachments that use the substitution, it does not apply the
change to child panels of the current panel, nor does it change the value of the local variable, if
any, that is mapped to the substitution.

Arguments

This function has the following arguments:

Substitution String: Text string specifying the substitution whose value is to be set.

Value: Numeric value or text string specifying the value to which Substitution String is to
be set.

This function is suitable for setting a substitution used only in a command or drilldown, but is
not suitable for setting a substitution used in data attachments.

Replace All
Replaces all occurrences of a given string which matches the pattern of the regular expression
with another string. This function is just a wrapper of the java.lang.String.replaceAll() function. For
detailed syntax, refer to the standard java.lang.String documentation.

If the Substitution argument is used, the replaced string is assigned to the substitution before it
is returned.

Building and Using Apama Dashboards 10.11.2 545

16 Scalar Functions

Arguments

String: String to be replaced.

Regular Expression: Regular expressionwhich defines the pattern of the string to be replaced.

Replacement: String to be used as the replacement for the found pattern.

Substitution: Optional. Name of the substitution (for example, $symbol) which is used for the
assignment of the replaced string.

This function returns a string.

Replace Value
Returns the replacement string that Replacement Values associates with Value.

For example, if Value is Windows NT and Replacement Values is 'Windows NT':winnt
Windows2000:win2k, the text string returned is winnt.

Arguments

This function has the following arguments:

Value: Text string whose associated replacement string is to be returned.

Replacement Values: Text string specifying value/replacement-string pairs. This is a
space-separated list of pairs of the form value:replacement-string. Use a colon to separate the
value from its associated replacement string. Use a space to separate one pair from another in
the list. If a value or replacement string contains a space or colon, enclose that value or
replacement string in single quotes.

Return Value if No Match: Numerical value that controls what is returned if none of the pairs
in Replacement Values has a value that matches Value. If Return Value if No Match is set
to 1, Value is returned when no match is found. If Return Value if No Match is set to 0, the
empty string is returned when no match is found.

The function returns a text string.

Set Substitution
Sets the given substitution string to the given value, and returns the value.

Arguments

This function has the following arguments:

Substitution String: Text string specifying the substitution whose value is to be set.

546 Building and Using Apama Dashboards 10.11.2

16 Scalar Functions

Value: Numeric value or text string specifying the value to which Substitution String is to
be set.

The function returns a text string.

Set Substitutions By Lookup
Sets multiple substitutions based on the values in a specified lookup table.

Arguments

The function has the following arguments:

Key: Text string or numeric value. This value identifies a row of Lookup Table, provided it
matches a value in Lookup Table's first column.

Lookup Table: Table whose first column contains key values and whose remaining columns
contain substitution values. These remaining columns have as names the names of substitution
variables (and, in particular, they start with $).

Key is compared against the values in the first column of Lookup Table in order to determine
which row of the lookup table to use to set substitution values. For each additional column in
Lookup Table (where the column name starts with $), a substitution is set. The substitution name
is the name of the column and the substitution value is the value from that column in the row
whose first column matches Key.

This function returns a table.

Subtract
Returns the result of subtracting the second argument from the first.

Arguments

This function has the following arguments:

Argument1: Numeric value to be subtracted from.

Argument2: Numeric value to subtract.

The function returns a number.

Validate Substitutions
Validates a substitution string against the given table of valid values. Returns a substitution string
with only valid values. The returned string is identical to the specified substitution string, except
that any values from the specified string that are not found in the first column of the given table
are replaced with the first value in the first column of the given table.

Building and Using Apama Dashboards 10.11.2 547

16 Scalar Functions

Arguments

The function has the following argument:

Substitution String: Text string consisting a semicolon-separated list of substitutions
(variable-name/value pairs) whose values are to be validated.

Valid Value Table: Table whose first column contains all values that are to be considered valid.

Clear If Invalid: If set to 1, the function returns an empty string if the substitution is not found
in the table.

Allow Multiple Values: If set to 1 this will allow the substitution to be a semicolon-separated
string of values; each value will be tested for validity and the final result will be assembled
from all the valid values (if any).

This function returns a text string.

548 Building and Using Apama Dashboards 10.11.2

16 Scalar Functions

17 Tabular Functions

■ Add All Rows Or Columns .. 552

■ Add Columns .. 553

■ Average All Rows Or Columns ... 554

■ Average Columns ... 555

■ Baseline Over Time .. 556

■ Buffer Table Rows ... 558

■ Combine ... 559

■ Concatenate Columns .. 560

■ Convert Columns .. 561

■ Copy ... 562

■ Count .. 562

■ Count By Bands ... 563

■ Count Unique Values .. 563

■ Count Unique Values By Time .. 564

■ Create Selector List .. 565

■ Delta And Rate Rows ... 566

■ Delta Rows ... 566

■ Distinct Values .. 567

■ Divide Columns .. 568

Building and Using Apama Dashboards 10.11.2 549

■ Ensure Columns ... 569

■ Ensure Timestamp Column .. 569

■ Evaluate Expression By Row ... 569

■ Filter And Extract Matches ... 572

■ Filter By Pattern .. 573

■ Filter By Row .. 573

■ Filter By Time Range .. 574

■ First Table Rows ... 574

■ Format Table Columns ... 575

■ Get data server connection status .. 575

■ Group By Time ... 576

■ Group By Time and Unique Values .. 577

■ Group by Unique Values ... 578

■ Join ... 582

■ Join Outer ... 583

■ Last Table Rows ... 584

■ Mark Time Gaps ... 585

■ Max All Rows or Columns .. 586

■ Max Columns ... 587

■ Min All Rows or Columns ... 588

■ Min Columns .. 588

■ Modulo Columns .. 589

■ Multiply Columns .. 590

■ Percent Columns .. 591

550 Building and Using Apama Dashboards 10.11.2

17 Tabular Functions

■ Pivot On Unique Values .. 592

■ Reference ... 594

■ Rename Columns ... 594

■ Select Column .. 595

■ Set Column Type .. 595

■ Sort Table ... 596

■ Split String .. 596

■ String to Table ... 597

■ Subtotal By Time .. 598

■ Subtotal By Unique Values ... 599

■ Subtract Columns ... 599

■ Table Contains Values .. 600

Building and Using Apama Dashboards 10.11.2 551

17 Tabular Functions

This section lists the Dashboard functions that operate on or return tabular data.

Add All Rows Or Columns
Calculates the sum across cells for each row or column of the specified Table.

Usage notes

If Return Column is 1, the function returns a table with one column. The nth cell of the returned
column contains the sumof the numerical cells in the nth rowof the table specified by the argument
Table. (If there are no numerical cells in the row, the returned cell contains 0.)

If Return Column is 0, the function returns a table with one row. The nth cell of the returned row
contains the sum of the numerical cells in the nth column of the table specified by the argument
Table. (If there are no numerical cells in the column, the returned cell containsN/A, by default—but
see the argument Result Label Column, below.) The nth column of the returned one-row table
is labeled with the label of the nth column of the table specified by the argument Table.

Arguments

This function has the following arguments:

Table: Table for which row or column sums are to be calculated.

Return Column: Numeric value that controls whether to return a column or a row of result
values. To get a column of result values, one value for each row, set Return Column to 1. To
get a row of result values, one value for each column, set Return Column to 0.

Result Label: Text string that specifies a label for the result row or column. If not specified,
the label text is Total. If Return Column is 0, the label appears only if Result Label Column
is set to a column of Table that has no numeric values. If Return Column is 1, the label text
always appears and Result Label Column is ignored.

Result Label Column: Text string that specifies the column in which Result Label appears,
if Return Column is 0. The specified column must have no numeric values in order for the
label to appear. If Return Column is 1, this argument is ignored.

This function returns a table.

Example

The second table below is attached to the function defined by the following dialog. The first table's
data table is attached to the argument Table.

552 Building and Using Apama Dashboards 10.11.2

17 Tabular Functions

Add Columns
Returns a table that includes a column reflecting the sum of two specified columns of a specified
table, the sum of a specified value and a specified column, or the sum of two specified values.

Usage notes

Case 1: Sum of two specified columns of a specified table. This is the case if First Column
Name or Numeric Value andSecond Column Name or Numeric Value both specify a column
of Table.

Building and Using Apama Dashboards 10.11.2 553

17 Tabular Functions

Case 2: Sum of a specified value and a specified column. This is the case if one of First Column
Name or Numeric Value and Second Column Name or Numeric Value specifies a column
of Table and the other specifies a numeric value.

Case 3: Sum of two specified values. This is the case if First Column Name or Numeric Value
and Second Column Name or Numeric Value both specify a numeric value.

In case 1, the nth cell in the returned column corresponds to the nth cell of the table specified by
the argument Table. Each cell of the returned column contains the result of adding the
corresponding row's cell in First Column Name or Numeric Value to the cell in Second Column
Name or Numeric Value.

In case 2, the nth cell in the returned column corresponds to the nth cell of the table specified by
the argument Table. Each cell of the returned column contains the result of adding the
corresponding row's cell in the specified column to the specified numeric value.

In case 3, each cell of the returned column contains the sum of the two specified numeric values.

In the returned table, the sum column is preceded by copies of all the columns in Table.

Arguments

The function has the following arguments:

Table: Table that contains the columns to be summed.

First Column Name or Numeric Value: Text string specifying the first column to be included
in the sum, or numerical value to be included in the sum.

Second Column Name or Numeric Value: Text string specifying the second column to be
included in the sum, or numerical value to be included in the sum.

Result Column Name: Text string that specifies the name of the column containing the sums.
You must supply a value for this argument.

This function returns a table.

Average All Rows Or Columns
Calculates the average across cells for each row or column of the specified Table.

Usage notes

If Return Column is 1, the function returns a table with one column. The nth cell of the returned
column contains the average of the numerical cells in the nth row of the table specified by the
argument Table. (If there are no numerical cells in the row, the returned cell contains 0.)

If Return Column is 0, the function returns a table with one row. The nth cell of the returned row
contains the average of the numerical cells in the nth column of the table specified by the argument
Table. (If there are no numerical cells in the column, the returned cell containsN/A, by default—but

554 Building and Using Apama Dashboards 10.11.2

17 Tabular Functions

see the argument Result Label Column, below.) The nth column of the returned one-row table
is labeled with the label of the nth column of the table specified by the argument Table.

Arguments

This function has the following arguments:

Table: Table for which row or column averages are to be calculated.

Return Column: Numeric value that controls whether to return a column or a row of result
values. To get a column of result values, one value for each row, set Return Column to 1. To
get a row of result values, one value for each column, set Return Column to 0.

Result Label: Text string that specifies a label for the result row or column. If not specified,
the label text isAverage. IfReturn Column is 0, the label appears only ifResult Label Column
is set to a column of Table that has no numeric values. If Return Column is 1, the label text
always appears and Result Label Column is ignored.

Result Label Column: Text string that specifies the column in which Result Label appears,
if Return Column is 0. The specified column must have no numeric values in order for the
label to appear. If Return Column is 1, this argument is ignored.

This function returns a table.

Average Columns
Returns a table that includes a column reflecting the average of two specified columns of a specified
table, the average of a specified value and a specified column, or the average of two specified
values.

Usage notes

Case 1: Average of two specified columns of a specified table. This is the case if First Column
Name or Numeric Value andSecond Column Name or Numeric Value both specify a column
of Table.

Case 2: Average of a specified value and a specified column. This is the case if one of First
Column Name or Numeric Value and Second Column Name or Numeric Value specifies
a column of Table and the other specifies a numeric value.

Case 3: Average of two specified values. This is the case if First Column Name or Numeric
Value and Second Column Name or Numeric Value both specify a numeric value.

In case 1, the nth cell in the returned column corresponds to the nth cell of the table specified by
the argument Table. Each cell of the returned column contains the result of computing the average
of the corresponding row's cell in First Column Name or Numeric Value and the cell in Second
Column Name or Numeric Value.

Building and Using Apama Dashboards 10.11.2 555

17 Tabular Functions

In case 2, the nth cell in the returned column corresponds to the nth cell of the table specified by
the argument Table. Each cell of the returned column contains the result of computing the average
of the corresponding row's cell in the specified column and the specified numeric value.

In case 3, each cell of the returned column contains the average of the two specified numeric values.

In the returned table, the average column is preceded by copies of all the columns in Table.

Arguments

The function has the following arguments:

Table: Table that contains the columns to be averaged.

First Column Name or Numeric Value: Text string specifying the first column to be included
in the average, or numerical value to be included in the average.

Second Column Name or Numeric Value: Text string specifying the second column to be
included in the average, or numerical value to be included in the average.

Result Column Name: Text string that specifies the name of the column containing the
averages. You must supply a value for this argument.

This function returns a table.

Baseline Over Time
Calculates a baseline average of the values in the specified table over the specified number of
specified date part intervals, and offsets the timestamp to a specified reference time.

Arguments

The function has the following arguments:

Table: Data table for which the baseline is to be calculated. The specified table must contain
a time column and a number column.

Date Part: Text string specifying the date unit to use. Enter s,m, h, d,w,M, q, or y, for seconds,
minutes, hours, days, weeks, months, quarters, or years. If left blank, the argument defaults
to seconds.

Date Parts Per Interval: Number of date parts in each interval over which the baseline is to
be calculated.

Number Of Intervals: Number of intervals over which the baseline is to be calculated. If this
argument is set to 0, the baseline is calculated over all the data in the table.

Reference Time: After the baseline average has been calculated over the range of data specified,
all values in the resulting time column are offset to start at the given reference time. This
provides an easy way for the baseline to be plotted in a trend graph against a current set of
values.

556 Building and Using Apama Dashboards 10.11.2

17 Tabular Functions

The function returns a table.

Example

The trend graph below is attached to the function defined by the following dialog. In the trend
graph, the thin, light blue line is the baseline, the average of the data over three one-week periods.
The dark blue line is the current data. The first table's data table is attached to the argument Table.
The second table shows the baseline data. Note that the current data for Sunday is lower than the
rest of the current data. The graph shows that this is not anomalous, since the baseline data for
Sunday is also lower than the rest of the baseline data.

Building and Using Apama Dashboards 10.11.2 557

17 Tabular Functions

Buffer Table Rows
Appends all rows of the input table to a buffer table that contains rows from previous updates.
Returns the buffer table.

Usage notes

This function is useful for buffering a table argument to another function in caseswhere the updates
to the table may arrive rapidly (for example, from an event-driven data source), in order to ensure
that the other function receives all rows.

Arguments

The function has the following arguments:

Table: Table whose rows are to be appended to the buffer table.

Number Of Rows: Numeric value that specifies the number of rows in the returned buffer
table. If necessary, older rows are removed to maintain this value.

Note:
If the result of this function is used as the input to another function, all rows are removed from
the buffer table after the other function is updated, regardless of value of Number of Rows.

This function returns a table.

558 Building and Using Apama Dashboards 10.11.2

17 Tabular Functions

Combine
Returns the result of combining two specified tables into a single table.

Usage notes

WhenCombine Rows is 0, the result contains the columns from Table 1 followed by the columns
from Table 2. Each result row consists of the nth row from Table 1 followed by the nth row from
Table 2. If Table 1 and Table 2 have a different number of rows, trailing result rows are padded
with cells that are contain 0 or the empty string.

When Combine Rows is 1 and Ignore Column Names is 0, the result contains the rows from
Table 1 followed by the rows from Table 2. The result table contains the column labels from Table
1 followed by the column labels that appear only in Table 2. In the result table, 0 or the empty
string appears in cells that are in rows from one table and in a column that appears only in the
other table.

When Combine Rows is 1 and Ignore Column Names is 1, the result contains the rows from
Table 1 followed by the rows from Table 2. The result table contains only columns that appear
in both Table 1 and Table 2.

Arguments

This function has the following arguments:

Table 1: Table to be included in the combination operation.

Table 2: Table to be included in the combination operation.

Combine Rows: Numerical value that determines whether rows or columns are merged.
When Combine Rows is 0, the result contains the columns from Table 1 followed by the
columns from Table 2. When Combine Rows is 1, the result contains the rows from Table 1
followed by the rows from Table 2.

Ignore Column Names: Numerical value that determines which columns are included in the
result. When Combine Rows is 1 and Ignore Column Names is 1, the result table contains
only columns that appear in both Table 1 and Table 2. When Combine Rows is 1 and Ignore
Column Names is 0, the result table contains the column labels from Table 1 followed by the
column labels that appear only in Table 2. This argument is ignored when Combine Rows
is 0.

This function returns a table.

Example

The third table below is attached to the function defined by the following dialog. The first table's
data table is attached to the argument Table 1, and the second table's data table is attached to the
argument Table 1.

Building and Using Apama Dashboards 10.11.2 559

17 Tabular Functions

Concatenate Columns
Creates a string concatenation of the values in the given table columns separated by the given
character(s), and returns the results in a new table column. The column names are specified as a
semicolon-separated string. The separator can be a single character such as . or / but it can also be
a string such as and.

560 Building and Using Apama Dashboards 10.11.2

17 Tabular Functions

Arguments

This function has the following arguments:

Table: Table whose column values are to be concatenated

Names of Columns to Concatenate: Columns whose values are to be concatenated

Separating Character(s): Separator character, such as . or /, or separator string, such as and

Result Column Name: Name of the result column

This function returns a table.

Convert Columns
Returns a copy of the specified table that is modified by converting the specified columns to the
specified types.

Usage notes

When converting from numeric types (other than Long) to the Time type, columns are first
converted to Long and then to Time. If a String column entry cannot be parsed as a Time, the
resulting entry is blank.

Arguments

The function has the following arguments:

Table: Table that contains the columns to convert.

Columns To Convert: Text string that specifies the columns to convert. Supply a single column
name or a semi-colon delimited list of column names.

Columns To Type: Text string that specifies the target types of the conversion. Supply a single
type name or a semi-colon delimited list of type names. Use the following type names:Boolean,
Integer, Long, Float, Double, String, or Time. Type names may be abbreviated to the first
letter.

This function returns a table.

The second table below is attached to the function defined by the following dialog. The first table's
data table is attached to the argument Table.

Building and Using Apama Dashboards 10.11.2 561

17 Tabular Functions

Copy
Copies the specified Table.

Arguments

The function has the following argument:

Table: Table to be copied.

This function returns a table.

Count
Returns the number of rows in the specified table.

562 Building and Using Apama Dashboards 10.11.2

17 Tabular Functions

Arguments

The function has the following argument:

Table Column: Table whose rows are to be counted.

This function returns a numeric value.

Count By Bands
Divides a specified range of values into a specified number of bands and counts the number of
rows in a specified data table column that contain a value that lies within each band.

Usage notes

If Return Cumulative Percents is set to 0, this function returns a table containing one column
that holds the midpoint values of each band (one row for each band), as well as one column
containing the counts.

If Return Cumulative Percents is set to 1, the returned columns will contain the cumulative
percentage of the total count in each cell, rather than the individual counts.

Arguments

The function has the following arguments:

Table: Data table column.

Number of Bands: Numerical value that specifies the number of bands into which to divide
the specified range.

Include Min/Max: Numerical value (0 for false and 1 for true) that determines whether the
range of values is specified by Min Value and Max Value, or by the values in Table.

Min Value: Numerical value that, together with Max Value, specifies the range of values that
is divided into the bands, if Include Min/Max is 1.

Max Value: Numerical value that, together with Min Value, specifies the range of values that
is divided into the bands, if Include Min/Max is 1.

Return Cumulative Percent: Numerical value (0 or 1) that determines whether counts or
cumulative percentages are returned. If set to 1, he function returns the cumulative percentage
of the total count in each cell, rather than the individual counts.

This function returns a table.

Count Unique Values
Returns a table that lists unique values and their counts from the specified table column.

Building and Using Apama Dashboards 10.11.2 563

17 Tabular Functions

Arguments

The function has the following arguments:

Table Column: Data table column whose values are to be counted.

Value List: Table column that specifies values for which a count is to be performed. If you do
not supply this argument, counts are returned only for values present in Table Column. Use
this argument to include rows in the returned table for values that are not always present in
Table Column. If you specify this argument, the returned table includes a row for each specified
value, even if the count for some values is 0.

Restrict to Value List: Numerical value (0 or 1) that determines whether a count is performed
only for values in Value List. If Restrict to Value List is set to 0, all unique values from the
Table Column are included in the returned table. IfRestrict to Value List is set to 1 andValue
List is specified, only rows from the Value List are included.

Use Column Names: Numerical value (0 or 1) that determineswhether original columnnames
are retained in the returned table. If Use Column Names is set to 1, then original column
names are retained. If set to 0, columns are given generic names (for example, Subtotal1 and
Total1). Generic column names are useful when the data attachment for the Table argument
uses a substitution that causes the column names to change when the substitution changes.

This function returns a table.

Count Unique Values By Time
Returns a table that lists unique values and their counts from a specified table, sorted by a specified
number of specifieddate part Intervals. The Tablemust contain a time column and a value column.
The returned table contains an interval column, a column for each unique value, and counts for
number of intervals specified or for all data in the Table if the Number of Intervals is 0.

Arguments

The function has the following arguments:

Table: Data table column whose values are to be counted.

Date Parts Per Interval: Number of date parts in each interval by which the counts are to be
sorted.

Number Of Intervals: Number of intervals by which the counts are to be sorted.

Date Part: Text string that specifies the date unit to use. Enter s, m, h, d, w, M, q, or y, for
seconds, minutes, hours, days, weeks, months, quarters, or years.

Date Format: Text string that specifies the format of the function result. Specify a pattern
string suitable for use with the Java SimpleDateFormat class.

564 Building and Using Apama Dashboards 10.11.2

17 Tabular Functions

Value List: Table column that specifies values for which a count is to be performed. If you do
not supply this argument, counts are returned only for values present in Table. Use this
argument to include rows in the returned table for values that are not always present in Table.
If you specify this argument, the returned table includes a row for each specified value, even
if the count for some values is 0.

Restrict to Value List: Numerical value (0 or 1) that determines whether a count is performed
only for values in Value List. If Restrict to Value List is set to 0, all unique values from the
Table Column are included in the returned table. If Restrict to Value List is set to 1 and
Value List is specified, only rows from the Value List are included.

Use Column Names: Numerical value (0 or 1) that determineswhether original columnnames
are retained in the returned table. If Use Column Names is set to 1, original column names
are retained. If set to 0, columns are given generic names (for example, Subtotal1 and Total1).
Generic column names are useful when the data attachment for the Table argument uses a
substitution that causes the column names to change when the substitution changes.

This function returns a table.

Create Selector List
Returns a two column table containing selector names and their corresponding values to be
presented in a dropdown list. The first column contains selector names and the second column
contains their values. The returned table consists of the first two columns of a specified table,
optionally modified by sorting, and with the optional addition of a row that contains a specified
selector name in the first column and the value * in the second column. If the input table has only
one column its contents are used for both the selector names and values.

Arguments

This function has the following arguments:

Selector Table: Table whose data is to be presented in a dropdown list.

All Selector Name: Text string that controls whether an initial row is added to the returned
table that contains. If you specify a value, a row is added whose first column contains the
specified value and whose second column contains the value *.

Sort Values: Numeric value that controls whether the returned rows are sorted. Set this
argument to 1 in order to sort the returned rows by selector name. The sort is numerical, if all
the selector names are numbers; otherwise the sort is alphabetical.

Sort Descending: Numeric value that controlswhether returned rows are sorted in descending
order, if the argumentSort Values is set to 1. SetSort Descending to 1 in order to sort selector
names in descending order. Set the argument to 0 (or leave it blank)) in order to sort selector
names in ascending order.

This function returns a table.

Building and Using Apama Dashboards 10.11.2 565

17 Tabular Functions

Delta And Rate Rows
Returns a table that includes a rate-of-change column as well as a delta column for each specified
data column. The function returns a table including, for the specified columns, new values for the
difference between this update and the previous, along with the rate of change per second. The
new values may be appended to the input table in columns named by prefixing Delta and Rate
to the column name, or the delta columns may replace the corresponding input columns (the rate
columns will still be appended to the table).

This function has the following arguments:

Table: Table of interest

Delta Column Names: Names of one or more columns for which deltas will be calculated. At
least one name must be given.

Index Column Names: Names of one or more columns that uniquely identify a row in the
table. If left blank, the default is to calculate deltas for all rows as if they had the same value.
The values contained in each index column are concatenated to form a unique index used to
organize the resulting summary data..

Time Column Name: Name of a timestamp column that will be used to calculate the rate of
change. A namemust be given. If the specified column is not found in the data it will be added,
and its values will be taken from the current time on each update.

Replace Data With Deltas: If set to 1, the delta values replace the original values in the same
column in the returned table; otherwise they are in new columns appended to the table.

Display Negative values: If set to 1, the delta values less than zero will be displayed with a
negative sign and the value; otherwise they will be displayed as zero.

This function returns a table.

Delta Rows
Computes the delta between incoming rows of tabular data. This function returns a table that
includes, for the specified columns, new values for the difference between the current update and
the previous update.

Arguments

The function has the following arguments:

Table: Table for which

Delta Column Names: Text string that specifies the name of one or more columns for which
deltas are to be calculated. Separate column names by a semicolon. This field cannot be left
blank.

566 Building and Using Apama Dashboards 10.11.2

17 Tabular Functions

Index Column Names: Text string that specifies the name of one ormore columns that uniquely
identify a row in the table. Separate column names by a semicolon. If left blank, the function
calculates deltas for all rows as if they had the same value. The values contained in each index
column are concatenated to form a unique index that is used to organize the resulting summary
data.

Replace Data With Deltas: Numerical value (0 or 1) that determines whether the returned
table includes columns with the original values from Table. If set to 1, delta values replace
original values in columns with the original names. If set to 0, new columns are added. The
new columns use the original columns names with Delta prefixed.

Display Negative Values: If set to 1, delta values less than zero are displayed with a negative
sign. If set to 0, delta values less than zero are displayed as zero.

This function returns a table.

Distinct Values
Returns a table with a single column that lists all unique values from a specified column of a
specified table.

Arguments

This function has the following arguments:

Table: Table that contains the column whose unique values are to be returned.

Column Name: Name of the column whose unique values are to be returned.

Sort Values: Numeric value that controls whether the returned values are sorted. Set this to
1 in order to sort the values. Values are sorted in numerical order, if all values are numbers;
otherwise they are sorted alphabetically.

Sort Descending: Numeric value that controls whether the returned values are sorted in
descending order, if Sort Values is set to 1. Set Sort Descending to 1 in order to sort the
values in descending order. Set the argument to 0 (or leave it blank) in order to sort the values
in ascending order.

Use Column Name: Numeric value that controls the label of the returned column. Set this
argument to 1 in order to use the original column name (the value of the Column Name
argument). Set the argument to 0 (or leave it blank) in order to use the name Values. Use a
generic name when you want a display that is independent of the value of Table, for example,
because the value of Table uses a substitution that causes column names to change when the
substitution changes.

This function returns a table.

Building and Using Apama Dashboards 10.11.2 567

17 Tabular Functions

Divide Columns
Returns a table that includes a column reflecting the quotient of specified columns of a specified
table, the quotient of a specified value and a specified column, or the quotient of two specified
values.

Usage notes

Case 1: Quotient of specified columns of a specified table. This is the case if First Column
Name or Numeric Value andSecond Column Name or Numeric Value both specify a column
of Table.

Case 2: Quotient of a specified value and a specified column. This is the case if one of First
Column Name or Numeric Value and Second Column Name or Numeric Value specifies
a column of Table and the other specifies a numeric value.

Case 3: Quotient of two specified values. This is the case if First Column Name or Numeric
Value and Second Column Name or Numeric Value both specify a numeric value.

In case 1, the nth cell in the returned column corresponds to the nth cell of the table specified by
the argument Table. Each cell of the returned column contains the result of dividing the
corresponding row's cell in First Column Name or Numeric Value by the cell inSecond Column
Name or Numeric Value.

In case 2, the nth cell in the returned column corresponds to the nth cell of the table specified by
the argument Table. Each cell of the returned column contains the result of dividing the
corresponding row's cell in the specified column by the specified numeric value.

In case 3, each cell of the returned column contains the quotient of the two specified numeric
values.

In the returned table, the quotient column is preceded by copies of all the columns in Table.

Arguments

The function has the following arguments:

Table: Table that contains the columns to be divided.

First Column Name or Numeric Value: Text string specifying the column to whose values
are to be used as dividends, or numerical value to be as dividends.

Second Column Name or Numeric Value: Text string specifying the column to whose values
are to be used as divisors, or numerical value to be as divisors.

Result Column Name: Text string that specifies the name of the column containing the
quotients. You must supply a value for this argument.

This function returns a table.

568 Building and Using Apama Dashboards 10.11.2

17 Tabular Functions

Ensure Columns
Returns a copy of a specified table, modified where necessary to guarantee that given columns
have specified types.

Arguments

The function has the following arguments:

Table: The specified table.

Column Name(s): Text string that specifies the columns to be modified if necessary. Supply
a single column name or a semicolon-separated list of column names.

Column Type(s): Text string that specifies the types. Supply a single name or a
semicolon-separated list of names. The nth element of Column Type(s) is the type to be
guaranteed for the column specified by the nth element of Column Name(s).

Values: Semicolon-separated list of values to substitute when a value must be modified. The
nth element of Values is used for the column named by the nth element of Column Name(s).

This function returns a table.

Ensure Timestamp Column
Returns a copy of a specified table, supplemented if necessary to include a timestamp column
with a specified name. The added column is filled with the current time.

Arguments

The function has the following arguments:

Table: The specified table.

Column Name: Name to be used for the timestamp column, if one is added.

Append Column: If set to 1, the timestamp column is appended to the end of the table;
otherwise it is inserted as the first column.

This function returns a table.

Evaluate Expression By Row
Returns the result of evaluating a specified expression for each row of a specified table. The
specified expression contains variables, each of which has an associated column of the specified
table.

Building and Using Apama Dashboards 10.11.2 569

17 Tabular Functions

Usage notes

The returned table has all the columns of the specified table, followed by a column that contains
the evaluation results. The nth row of the results column contains the result evaluating the
expressionwith values from the nth row of the specified table substituted for expression variables.

Boolean true and false values are returned as 1.0 and 0.0 respectively.

Arguments

The function has the following arguments:

Expression: Text string that specifies the expression to evaluate. Prefix variable nameswith%.
Use standard arithmetic and logical operators. You can also use a variety of mathematical and
string functions, as well as numeric and string constants. Enclose string constants in double
quotes.

Table: The table whose data is to be substituted into the Expression for evaluation.

Result Column Name: Text string that specifies the name of the result column.

Result Column Type: Text string that specifies the type of values in the result column. Specify
either double or string (or the abbreviations d or s).

Expression variable arguments: When the Expression field of the Edit Function dialog is
activated (by pressing Enter or navigating to another field), the dialog displays a text field for
each variable. For each field, enter a text string that names a column of Table. Column values
are substituted for the corresponding variables in Expression. The types of the values are
taken from the types of the columns. Numeric and boolean values are converted to double.
Date columns are not supported.

If a valuewhose form is numeric needs to be treated as a string, for example to serve as an argument
to a string function, surround the variable in Expression with double quotes. Variables enclosed
in double quotes are always used as strings. An example of such an expression is length("%var1")
+ %var2.

This function returns a text string.

Example

The second table below is attached to the function defined by the following dialog. The first table's
data table is attached to the argument Table.

570 Building and Using Apama Dashboards 10.11.2

17 Tabular Functions

Building and Using Apama Dashboards 10.11.2 571

17 Tabular Functions

Filter And Extract Matches
Returns a table containing all rows from a specified table in which the value of a specified column
matches a specified pattern. For each matching row, each token from the specified column that
matches a group in the pattern is extracted to a new column.

Arguments

This function has the following arguments:

Table: Table from which matching rows are to be extracted.

Filter Column Name: Text string specifying the column of Table to be searched for matches.

Pattern: Text string that is either a simple string that optionally uses * as a wildcard, or a
regular expression as described in the Java API documentation for java.util.regex.Pattern.

Pattern Is Reg Expr: Numerical value (0 or 1) that determineswhether the pattern is interpreted
as a simple string (that optionally uses * as a wildcard) or as a regular expression. If this
argument is 0 (the default), Pattern is interpreted as a simple string. Otherwise, Pattern is
interpreted as a regular expression.

Number of New Columns: Numerical value that specifies the number of new columns to be
added to the result table to contain the matching groups extracted from the filter column.

New Column Names: Text string that specifies the name of each new column. Separate column
names with a semicolon.

This function returns a table.

Example

Consider the following arguments:

Table: Table that includes a Customer Name column.

Filter Column Name: CustomerName.

Pattern: * *

Pattern Is Reg Expr: 0

Number of New Columns: 2

New Column Names: FirstName;LastName

In this case, if a rowofTable contains Joe Smith in theCustomerName column, the corresponding
row in the result table contains Joe in theFirstName column andSmith in theLastName column.

572 Building and Using Apama Dashboards 10.11.2

17 Tabular Functions

Filter By Pattern
Returns a table containing all rows from a specified table in which the value of a specified column
matches a specified pattern.

Arguments

This function has the following arguments:

Table: Table from which matching rows are to be extracted.

Filter Column Name: Text string specifying the column of Table to be searched for matches.

Pattern: Text string that is either a simple string that optionally uses * as a wildcard, or a
regular expression as described in the Java API documentation for java.util.regex.Pattern.

Pattern Is Reg Expr: Numerical value (0 or 1) that determineswhether the pattern is interpreted
as a simple string (that optionally uses * as a wildcard) or as a regular expression. If this
argument is 0 (the default), Pattern is interpreted as a simple string. Otherwise, Pattern is
interpreted as a regular expression.

This function returns a table.

Filter By Row
Returns a table containing all rows from a specified table in which the values of specified columns
matches the values in specified lists of values.

Arguments

This function has the following arguments:

Table: Table from which matching rows are to be extracted.

Filter Column Name: Text string that specifies a list of column names, the columns of Table
to be searched for matches. Separate column names with

Filter Value: Text string that specifies a list of lists of values to be matched. Separate values
with a coma. Separate lists with a semicolon (for example, val1,val2;val3,val4;val5,val6).
Enter * for Filter Value in order to display all rows in the table. To use * as a literal comparative
value, enclose it in single quotes. To use ; as a literal comparative value, enclose it in single
quotes. If a filter value contains a space or a semicolon, enclose the entire value in single quotes.

A row from Table is included in the returned table if and only if the nthFilter Column Name
matches a value in FilterValue's nth list, for all n from 1 to the number of specified column names.

This function returns a table.

Building and Using Apama Dashboards 10.11.2 573

17 Tabular Functions

Filter By Time Range
Returns a copy of a specified table that contains only those rows in which the value of a specified
column falls within a specified time range.

Arguments

The function has the following arguments:

Table: Table whose rows are to be copied.

Date/Time Column Name: Text string that specifies a column of Table that contains a
timestamp. If this argument is not supplied, the first column of Table is assumed to contain a
timestamp.

Time Range Start: Text string that specifies the start of the desired time range. If this argument
is not supplied, the time range is unbounded at the lower end.

Time Range End: Text string that specifies the end of the desired time range. The time range
itself does not include this value, but does include a value that is one second less than Time
Range End. If this argument is not supplied, the time range is unbounded at the upper end.

This function returns a table.

First Table Rows
Returns a table containing one of the following:

First n rows of a specified table, for a specified number, n.

First n rows for each unique combination of values in a specified set of columns in a specified
table, for a specified number, n.

Arguments

This function has the following arguments:

Table: Table some of whose rows are to be returned.

Index Column Names: Text string that specifies the column or columns to be used to form
indexes. Separate columnnameswith a semicolon. If this argument is not supplied, the function
returns the first Number of Rows of Table. If this argument is supplied, the function forms
indexes by concatenating the values contained in each index column, and returns Number of
Rows for each index.

Number of Rows: Numerical value that specifies the number rows to be returned, or the
number of rows with each index value to be returned.

The function returns a table.

574 Building and Using Apama Dashboards 10.11.2

17 Tabular Functions

Format Table Columns
Returns a copy of a specified table with specified formats applied to specified columns.

Arguments

This function has the following arguments:

Table to Format: Table whose columns are to be formatted.

Column Format(s): Text string that specifies the columns to format and the formats to use.
The string consists of column-name:column-format. Separate pairs with a semicolon. Separate
column name from column format with a colon. Enclose a column name in single quotes if it
contains a space.

Specify the column format based on the Java format specification, orwith the following shorthand:
$ for money values, $$ for money values with additional formatting, or () for non-money values,
formatted similar to money. For example, if Column Format(s) contains the pair 'Units
Completed':$, the Units Completed column in the returned table is formatted for money. Both
positive and negative formats can be supplied, for example: #,###;(#,###).

The function accepts date/time patterns for formatting columns of typeDate. For example consider
a column Timestamp with the value Sep 06, 2008 7:27:36 AM. If it is formatted with
'Timestamp':'MM/dd/yyyy' the result is09/06 /2008. If it is formattedwith 'Timestamp':'hh:mm:ss'
the result is 07:27:36. For the full list of formatting codes, see the Java documentation for the class
SimpleDateFormat.

The function returns a table.

Get data server connection status
Returns a table that contains status information for the data server being used by the current
dashboard.

Columns

The table has the following columns:

Name: __default for the default data server, or the name of a named data server

Connected: True if the server connection is operational; False otherwise

Status: OK if connection is operational, no connection if there is no connection to the server,
or no service if there is an HTTP connection to the rtvdata servlet but the servlet has no
connection to its data server

ConnectionString: URL for an HTTP connection to the rtvdata servlet or hostname:port for a
direct socket connection to a data server

Building and Using Apama Dashboards 10.11.2 575

17 Tabular Functions

ReceiveCount: Number of data transmissions (pushes) received from the server

ReceiveTime: Time of the most recent data transmission from the server

Config: String that identifies data server version

Arguments

The function has no arguments.

This function returns a table.

Group By Time
Returns a table that contains a summary of all the data in a given table, aggregated over time. The
summary data in the returned table is grouped into a specified number of specified time intervals
over a specified time range.

Arguments

The function has the following arguments:

Table: Table whose data is to be summarized.

Group Type: Text string that specifies the type of aggregation to perform. Enter one or more
of the following: sum, count, average, min, max. The default is sum. For multiple group
types, use a semicolon-separated list and set Use Column Names to 0.

Date/Time Column Name: Text string that specifies a column of Table that contains a
timestamp. If this argument is not supplied, the first column of Table is assumed to contain a
timestamp.

Date Part: Text string that specifies the date unit to use. Enter s, m, h, d, w, M, q, or y, for
seconds, minutes, hours, days, weeks, months, quarters, or years. The default unit is seconds.

Date Parts Per Interval: Numerical value that specifies he size of each interval in Date Parts.

Number Of Intervals: Numerical value that specifies the number of intervals to include in the
summary table. The returned table contains one row for each interval. If set to 0, the number
of intervals is determined from the range of data in Table, or by the specified time range.

Time Range Start: Text string that specifies the start of the desired time range. If this argument
is not supplied, the time range is unbounded at the lower end.

Time Range End: Text string that specifies the end of the desired time range. The time range
itself does not include this value, but does include a value that is one second less than Time
Range End. If this argument is not supplied, the time range is unbounded at the upper end.

Restrict To Time Range: Numerical value (0 or 1) that determines whether Time Range
Start and Time Range End are ignored. If set to 1, the resulting summary table includes only
those time intervals within the specified range. If set to 0, the specified time range is ignored.

576 Building and Using Apama Dashboards 10.11.2

17 Tabular Functions

Use Column Names: Numerical value (0 or 1) that determineswhether original columnnames
are retained in the returned table. If Use Column Names is set to 1, original column names
are retained. If set to 0, columns are given generic names. Set this to 0 if you specify multiple
groups types.

This function returns a table.

Group By Time and Unique Values
Returns a table that contains a summary of all the data in a given table, aggregated over both time
and index columns. The summary data in the returned table is grouped into specified time intervals,
with a further breakdown by unique values in specified index columns.

Arguments

The function has the following arguments:

Table: Table whose data is to be summarized.

Group Type: Text string that specifies the type of aggregation to perform. Enter one or more
of the following: sum, count, average, min, max. The default is sum. For multiple group
types, use a semicolon-separated list and set Use Column Names to 0. The default is sum.

Date/Time Column Name: Text string that specifies a column of Table that contains a
timestamp. If this argument is not supplied, the first column of Table is assumed to contain a
timestamp.

Date Part: Text string that specifies the date unit to use. Enter s, m, h, d, w, M, q, or y, for
seconds, minutes, hours, days, weeks, months, quarters, or years. The default unit is seconds.

Date Parts Per Interval: Numerical value that specifies he size of each interval in Date Parts.

Number Of Intervals: Numerical value that specifies the number of intervals to include in the
summary table. The returned table contains one row for each interval. If set to 0, the number
of intervals is determined from the range of data in Table, or by the specified time range.

Time Range Start: Text string that specifies the start of the desired time range. If this argument
is not supplied, the time range is unbounded at the lower end.

Time Range End: Text string that specifies the end of the desired time range. The time range
itself does not include this value, but does include a value that is one second less than Time
Range End. If this argument is not supplied, the time range is unbounded at the upper end.

Restrict To Time Range: Numerical value (0 or 1) that determines whether Time Range
Start and Time Range End are ignored. If set to 1, the resulting summary table includes only
those time intervals within the specified range. If set to 0, the specified time range is ignored.

Index Column Names: Text string that specifies the column or columns to be used to form
indexes. Separate columnnameswith a semicolon. If this argument is not supplied, the function
aggregates only by time interval. If this argument is supplied, the function forms indexes by

Building and Using Apama Dashboards 10.11.2 577

17 Tabular Functions

concatenating the values contained in each index column, and aggregates by index valuewithin
time-interval aggregations.

Value List: Table column that contains a set of values to be included in the set of values for
the first index column. This is useful if you want the summary table to include values that
may or may not be in the Table data.

Restrict To Value List: Numerical value (0 or 1) that determines whether the table includes
only rows that include the values of Value List. If set to 1, only such values are included.

Use Column Names: Numerical value (0 or 1) that determineswhether original columnnames
are retained in the returned table. If Use Column Names is set to 1, original column names
are retained. If set to 0, columns are given generic names. Set this to 0 if multiple group types
are specified.

Restrict To Data Combinations: Numerical value (0 or 1) that determines whether the
returned table is restricted to only those combinations of values found in the specified index
columns that occur in the data. If set to 0, the returned table contains all possible combinations
of unique values found in the specified index columns.

This function returns a table.

Group by Unique Values
Returns a table that contains a summary of all the data in a given table. The summary data in the
returned table is grouped by unique values in specified index columns.

Arguments

The function has the following arguments:

Table: Table whose data is to be summarized.

Group Type: Text string that specifies the type of aggregation to perform. Enter one or more
of the following: sum, count, average, min, max. The default is sum. For multiple group
types, use a semicolon-separated list and set Use Column Names to 0..

Index Column Names: Text string that specifies the column or columns to be used to form
indexes. Separate columnnameswith a semicolon. If this argument is not supplied, the function
uses the first column of Table as the index column. If this argument is supplied, the function
forms indexes by concatenating the values contained in each index column, and aggregates
by index value.

Value List: Table column that contains a set of values to be included in the set of values for
the first index column. This is useful if you want the summary table to include values that
may or may not be in the Table data.

Restrict To Value List: Numerical value (0 or 1) that determines whether the table includes
only rows that include the values of Value List. If set to 1, only such values are included.

578 Building and Using Apama Dashboards 10.11.2

17 Tabular Functions

Use Column Names: Numerical value (0 or 1) that determineswhether original columnnames
are retained in the returned table. If Use Column Names is set to 1, original column names
are retained. If set to 0, columns are given generic names.

Restrict To Data Combinations: Numerical value (0 or 1) that determines whether the
returned table is restricted to only those combinations of values found in the specified index
columns that occur in the data. If set to 0, the returned table contains all possible combinations
of unique values found in the specified index columns. Set this to 0 if multiple group types
are specified.

This function returns a table.

Example 1 - Group By Unique Values

The pie graph and the second table below are attached to the function defined by the following
dialog. The first table's data table is attached to the argument Table.

Building and Using Apama Dashboards 10.11.2 579

17 Tabular Functions

Example 2 - Group By Unique Values

The bar graph and the second table below are attached to the function defined by the following
dialog. The first table's data table is attached to the argument Table.

580 Building and Using Apama Dashboards 10.11.2

17 Tabular Functions

Building and Using Apama Dashboards 10.11.2 581

17 Tabular Functions

Join
Returns the result of performing an inner join of two specified tables on specified columns. The
result contains all columns fromLeft Table followed by all columns fromRight Table, and contains
all rows for which the value in Left Column exactly matches the value in Right Column. Left
Column Name and Right Column Name can each specify a semicolon-separated list of n column
names, in which case a match occurs if the ith value in Left Column Name exactly matches the
ith value in Right Column Name, for all i between 1 and n, inclusive.

Arguments

The function has the following arguments:

Left Table: Table on which the join is to be performed.

Right Table: Table on which the join is to be performed.

Left Column Name: Text string that specifies the columnor columns fromLeft Table onwhich
the join is to be performed. If left blank, the row name, up to the first colon (if it contains a
colon), is used instead of a column value.

Right Column Name: Text string that specifies the column or columns from Right Table on
which the join is to be performed. If left blank, the row name, up to the first colon (if it contains
a colon), is used instead of a column value.

This function returns a table.

582 Building and Using Apama Dashboards 10.11.2

17 Tabular Functions

Example

The third table below is attached to the function defined by the following dialog. The first table's
data table is attached to the argument Left Table and the second table's data table is attached to
the argument Right Table.

Join Outer
Performs an outer join of the Left Table and the Right Table on the columns specified in the Left
Column Name and the Right Column Name fields. The joined table contains all columns from

Building and Using Apama Dashboards 10.11.2 583

17 Tabular Functions

the Left Table followed by all columns from the Right Table, and contains all rows where the
value in the Left Column exactly matches the value in the Right Column, plus additional rows
according to the Outer Join Type, which may be left, right, or full.

Usage notes

In a left outer join, the result table includes all the rows from the left table; in a right outer join it
includes all the rows from the right table, and in a full outer join it includes all the rows from both
tables. In any rowwhere there is no match for the join column value, the cells from the other table
contain null values. (Null values are represented as blank for strings, 0 for integers and longs, NaN
for floats and doubles, and NULL_DATE for dates.)

Left Column Name and Right Column Name can each specify a semicolon-separated list of n
columnnames, inwhich case amatch occurs if the ith value inLeft Column Name exactlymatches
the ith value in Right Column Name, for all i between 1 and n, inclusive.

For a full join or right join, if the Left Table is null, the result is Right Table. For a full join or left
join, if Right Table is null, the result is Left Table. In all other cases the result is null.

Arguments

The function has the following fields:

Left Table: The first table to be joined.

Right Table: The second table to be joined.

Left Column Name: (Optional) The column or columns in the left table to be joined with the
column or columns specified in the Right Column Name field. If this field is left blank, the
row name, up to the first : if it contains a :, is used instead of a column value.

Right Column Name: (Optional) The column or columns in the right table to be joined with
the column or columns specified in the Left Column Name field. If this field is left blank, the
row name, up to the first : if it contains a :, is used instead of a column value.

Outer Join Type: Specified as left, right, or full, whichmay be abbreviated to their first letters.
If this field is left blank a full outer join is performed.

This function returns a table.

Last Table Rows
Returns a table containing one of the following:

Last n rows of a specified table, for a specified number, n.

Last n rows for each unique combination of values in a specified set of columns in a specified
table, for a specified number, n.

584 Building and Using Apama Dashboards 10.11.2

17 Tabular Functions

Arguments

This function has the following arguments:

Table: Table some of whose rows are to be returned.

Index Column Names: Text string that specifies the column or columns to be used to form
indexes. Separate columnnameswith a semicolon. If this argument is not supplied, the function
returns the last Number of Rows of Table. If this argument is supplied, the function forms
indexes by concatenating the values contained in each index column, and returns Number of
Rows rows for each index.

Number of Rows: Numerical value that specifies the number rows to be returned, or the
number of rows with each index value to be returned.

The function returns a table.

Mark Time Gaps
Returns a table that results from supplementing a given trend table with special rows that indicate
longer-than-expected time intervals between timestamps of adjacent rows of the given trend table.
For a trend graph attached to the returned table, the trend line will contain a break (or a specified
character) wherever time gaps occurred.

Usage Notes

The table is constructed as follows: If the time interval between any two rows in the table is greater
than the expected interval, insert 2 new rows between those rows in which the value of each
column to be marked is set to NaN or other specified value. (NaN indicates "not a number". A
trend graph will break a trace line when a NaN is encountered). The timestamp of the first new
row is set to a value of 1 msec more than the timestamp of the last row before the graph and the
timestamp of the second new row is set to a value of 1 msec less than the timestamp of the next
row after the gap. It is assumed that the table is sorted by timestamp in ascending order. On the
second and subsequent updates of this function, the timestamp of the first row in the table is
compared to the timestamp of the last row from the previous update.

Arguments

This function has the following arguments:

Table: Table to be checked for time gaps. The table must have a timestamp column and must
be sorted by timestamp in ascending order.

Name of Timestamp Column: Name of the table's timestamp column

Expected Interval: The maximum time interval that should occur between consecutive rows
in the table. If this interval is exceeded, it is considered a gap. Specify the interval in seconds
or specify a value followed by m, h, d, for minutes, hours, or days.

Building and Using Apama Dashboards 10.11.2 585

17 Tabular Functions

Names of Columns to Mark: Names of the columns to be marked with the specified value
when rows are added to mark a gap. Separate multiple column names with semicolons. If no
column names are specified then all columns with floating point values will be marked.

Mark Columns Width: The value to be assigned when marking columns in the rows added
to mark a gap. The default is NaN, but any numeric value can be used.

The function returns a table.

Max All Rows or Columns
Determines the maximum cell value for each row or column of the specified Table.

Usage notes

If Return Column is 1, the function returns a table with one column. The nth cell of the returned
column contains the maximum of the numerical cells in the nth row of the table specified by the
argument Table. (If there are no numerical cells in the row, the returned cell contains 0.)

If Return Column is 0, the function returns a table with one row. The nth cell of the returned row
contains the maximum of the numerical cells in the nth column of the table specified by the
argument Table. (If there are no numerical cells in the column, the returned cell contains N/A, by
default—but see the argument Result Label Column, below.) The nth column of the returned
one-row table is labeled with the label of the nth column of the table specified by the argument
Table.

Arguments

This function has the following arguments:

Table: Table for which row or column maximums are to be determined.

Return Column: Numeric value that controls whether to return a column or a row of result
values. To get a column of result values, one value for each row, set Return Column to 1. To
get a row of result values, one value for each column, set Return Column to 0.

Result Label: Text string that specifies a label for the result row or column. If not specified,
the label text is Maximum. If Return Column is 0, the label appears only if Result Label
Column is set to a column of Table that has no numeric values. If Return Column is 1, the
label text always appears and Result Label Column is ignored.

Result Label Column: Text string that specifies the column in which Result Label appears,
if Return Column is 0. The specified column must have no numeric values in order for the
label to appear. If Return Column is 1, this argument is ignored.

This function returns a table.

586 Building and Using Apama Dashboards 10.11.2

17 Tabular Functions

Max Columns
Returns a table that includes a column reflecting the larger of two specified columns of a specified
table, the larger of a specified value and a specified column, or the larger of two specified values.

Usage notes

Case 1: Larger of two specified columns of a specified table. This is the case if First Column
Name or Numeric Value andSecond Column Name or Numeric Value both specify a column
of Table.

Case 2: Larger of a specified value and a specified column. This is the case if one of First
Column Name or Numeric Value and Second Column Name or Numeric Value specifies
a column of Table and the other specifies a numeric value.

Case 3: Larger of two specified values. This is the case if First Column Name or Numeric
Value and Second Column Name or Numeric Value both specify a numeric value.

In case 1, the nth cell in the returned column corresponds to the nth cell of the table specified by
the argument Table. Each cell of the returned column contains the larger of the corresponding
row's cell in First Column Name or Numeric Value and the cell in Second Column Name or
Numeric Value.

In case 2, the nth cell in the returned column corresponds to the nth cell of the table specified by
the argument Table. Each cell of the returned column contains the larger of the corresponding
row's cell in the specified column and the specified numeric value.

In case 3, each cell of the returned column contains the larger of the two specified numeric values.

In the returned table, the column that reflects the larger value is preceded by copies of all the
columns in Table.

Arguments

The function has the following arguments:

Table: Table that contains the columns to be compared.

First Column Name or Numeric Value: Text string specifying the first column to be compared,
or numerical value to be compared.

Second Column Name or Numeric Value: Text string specifying the second column to be
compared, or numerical value to be compared.

Result Column Name: Text string that specifies the name of the column containing the
maximums. You must supply a value for this argument.

This function returns a table.

Building and Using Apama Dashboards 10.11.2 587

17 Tabular Functions

Min All Rows or Columns
Determines the minimum cell value for each row or column of the specified Table.

Usage notes

If Return Column is 1, the function returns a table with one column. The nth cell of the returned
column contains the minimum of the numerical cells in the nth row of the table specified by the
argument Table. (If there are no numerical cells in the row, the returned cell contains 0.)

If Return Column is 0, the function returns a table with one row. The nth cell of the returned row
contains theminimumof the numerical cells in the nth columnof the table specified by the argument
Table. (If there are no numerical cells in the column, the returned cell containsN/A, by default—but
see the argument Result Label Column, below.) The nth column of the returned one-row table
is labeled with the label of the nth column of the table specified by the argument Table.

Arguments

This function has the following arguments:

Table: Table for which row or column minimums are to be determined.

Return Column: Numeric value that controls whether to return a column or a row of result
values. To get a column of result values, one value for each row, set Return Column to 1. To
get a row of result values, one value for each column, set Return Column to 0.

Result Label: Text string that specifies a label for the result row or column. If not specified,
the label text is Minimum. If Return Column is 0, the label appears only if Result Label
Column is set to a column of Table that has no numeric values. If Return Column is 1, the
label text always appears and Result Label Column is ignored.

Result Label Column: Text string that specifies the column in which Result Label appears,
if Return Column is 0. The specified column must have no numeric values in order for the
label to appear. If Return Column is 1, this argument is ignored.

This function returns a table.

Min Columns
Returns a table that includes a column reflecting one of the smaller of two specified columns of a
specified table, the smaller of a specified value and a specified column, or the smaller of two
specified values.

Usage notes

Case 1: Smaller of two specified columns of a specified table. This is the case if First Column
Name or Numeric Value andSecond Column Name or Numeric Value both specify a column
of Table.

588 Building and Using Apama Dashboards 10.11.2

17 Tabular Functions

Case 2: Smaller of a specified value and a specified column. This is the case if one of First
Column Name or Numeric Value and Second Column Name or Numeric Value specifies
a column of Table and the other specifies a numeric value.

Case 3: Smaller of two specified values. This is the case if First Column Name or Numeric
Value and Second Column Name or Numeric Value both specify a numeric value.

In case 1, the nth cell in the returned column corresponds to the nth cell of the table specified by
the argument Table. Each cell of the returned column contains the smaller of the corresponding
row's cell in First Column Name or Numeric Value and the cell in Second Column Name or
Numeric Value.

In case 2, the nth cell in the returned column corresponds to the nth cell of the table specified by
the argument Table. Each cell of the returned column contains the smaller of the corresponding
row's cell in the specified column and the specified numeric value.

In case 3, each cell of the returned column contains the smaller of the two specified numeric values.

In the returned table, the column that reflects the smaller value is preceded by copies of all the
columns in Table.

Arguments

The function has the following arguments:

Table: Table that contains the columns to be compared.

First Column Name or Numeric Value: Text string specifying the first column to be compared,
or numerical value to be compared.

Second Column Name or Numeric Value: Text string specifying the second column to be
compared, or numerical value to be compared.

Result Column Name: Text string that specifies the name of the column containing the
minimums. You must supply a value for this argument.

This function returns a table.

Modulo Columns
Returns a table that includes a column reflecting the remainder of division performed on specified
columns of a specified table, the remainder of division performed on a specified value and a
specified column, or the remainder of division performed on two specified values.

Usage notes

Case 1: Remainder of division performed on specified columns of a specified table. This is the
case if First Column Name or Numeric Value andSecond Column Name or Numeric Value
both specify a column of Table.

Building and Using Apama Dashboards 10.11.2 589

17 Tabular Functions

Case 2: Remainder of division performed on a specified value and a specified column. This is
the case if one of First Column Name or Numeric Value and Second Column Name or
Numeric Value specifies a column of Table and the other specifies a numeric value.

Case 3: Remainder of division performed on two specified values. This is the case if First
Column Name or Numeric Value andSecond Column Name or Numeric Value both specify
a numeric value.

In case 1, the nth cell in the returned column corresponds to the nth cell of the table specified by
the argument Table. Each cell of the returned column contains the remainder of dividing the
corresponding row's cell in First Column Name or Numeric Value by the cell inSecond Column
Name or Numeric Value.

In case 2, the nth cell in the returned column corresponds to the nth cell of the table specified by
the argument Table. Each cell of the returned column contains the remainder of dividing the
corresponding row's cell in the specified column by the specified numeric value.

In case 3, each cell of the returned column contains the remainder of dividing the first value by
the second.

In the returned table, the remainder column is preceded by copies of all the columns in Table.

Arguments

The function has the following arguments:

Table: Table that contains the columns to be divided.

First Column Name or Numeric Value: Text string specifying the column to whose values
are to be used as dividends, or numerical value to be as dividends.

Second Column Name or Numeric Value: Text string specifying the column to whose values
are to be used as divisors, or numerical value to be as divisors.

Result Column Name: Text string that specifies the name of the column containing the
remainders. You must supply a value for this argument.

This function returns a table.

Multiply Columns
Returns a table that includes a column reflecting the product of two specified columns of a specified
table, the product of a specified value and a specified column, or the product of two specified
values.

Usage notes

Case 1: Product of two specified columns of a specified table. This is the case if First Column
Name or Numeric Value andSecond Column Name or Numeric Value both specify a column
of Table.

590 Building and Using Apama Dashboards 10.11.2

17 Tabular Functions

Case 2: Product of a specified value and a specified column. This is the case if one of First
Column Name or Numeric Value and Second Column Name or Numeric Value specifies
a column of Table and the other specifies a numeric value.

Case 3: Product of two specified values. This is the case if First Column Name or Numeric
Value and Second Column Name or Numeric Value both specify a numeric value.

In case 1, the nth cell in the returned column corresponds to the nth cell of the table specified by
the argument Table. Each cell of the returned column contains the result of multiplying the
corresponding row's cell in First Column Name or Numeric Value by the cell inSecond Column
Name or Numeric Value.

In case 2, the nth cell in the returned column corresponds to the nth cell of the table specified by
the argument Table. Each cell of the returned column contains the result of multiplying the
corresponding row's cell in the specified column by the specified numeric value.

In case 3, each cell of the returned column contains the product of the two specified numeric values.

In the returned table, the product column is preceded by copies of all the columns in Table.

Arguments

The function has the following arguments:

Table: Table that contains the columns to be summed.

First Column Name or Numeric Value: Text string specifying the first column to be included
in the product, or numerical value to be included in the product.

Second Column Name or Numeric Value: Text string specifying the second column to be
included in the product, or numerical value to be included in the product.

Result Column Name: Text string that specifies the name of the column containing the
products. You must supply a value for this argument.

This function returns a table.

Percent Columns
Returns a table that includes a column reflecting the quotient of specified columns of a specified
table, the quotient of a specified value and a specified column, or the quotient of two specified
values. Values are expressed as percentages.

Usage notes

Case 1: Quotient of specified columns of a specified table, expressed as a percentage. This is
the case if First Column Name or Numeric Value and Second Column Name or Numeric
Value both specify a column of Table.

Building and Using Apama Dashboards 10.11.2 591

17 Tabular Functions

Case 2: Quotient of a specified value and a specified column, expressed as a percentage. This
is the case if one of First Column Name or Numeric Value and Second Column Name or
Numeric Value specifies a column of Table and the other specifies a numeric value.

Case 3: Quotient of two specified values, expressed as a percentage. This is the case if First
Column Name or Numeric Value andSecond Column Name or Numeric Value both specify
a numeric value.

In case 1, the nth cell in the returned column corresponds to the nth cell of the table specified by
the argumentTable. Each cell of the returned column contains the result, expressed as a percentage,
of dividing the corresponding row's cell in First Column Name or Numeric Value by the cell in
Second Column Name or Numeric Value.

In case 2, the nth cell in the returned column corresponds to the nth cell of the table specified by
the argumentTable. Each cell of the returned column contains the result, expressed as a percentage,
of dividing the corresponding row's cell in the specified column by the specified numeric value.

In case 3, each cell of the returned column contains the quotient, expressed as a percentage, of the
two specified numeric values.

In the returned table, the percent column is preceded by copies of all the columns in Table.

Arguments

The function has the following arguments:

Table: Table that contains the columns to be divided.

First Column Name or Numeric Value: Text string specifying the column to whose values
are to be used as dividends, or numerical value to be as dividends.

Second Column Name or Numeric Value: Text string specifying the column to whose values
are to be used as divisors, or numerical value to be as divisors.

Result Column Name: Text string that specifies the name of the column containing the
percentages. You must supply a value for this argument.

This function returns a table.

Pivot On Unique Values
Returns a table in which row data from a specified table is rotated into columns.

Arguments

The function has the following arguments:

Pivot Name Column: Text string that specifies the column containing values that become new
column names in the returned table.

592 Building and Using Apama Dashboards 10.11.2

17 Tabular Functions

Key Column: Text string that specifies the column used to group rows containing unique
names in Pivot Name Column into a single row.

Pivot Value Column: Text string that specifies the column containing the data of interest. All
consecutive rows that contain the same value in Key Column have the data in the Pivot Value
Column subtotaled into the same row of the resulting table, in the appropriate column.

Name List: Text string that specifies values for which columns should be included in the
returned table. To include columns in the returned table for names that are not present inPivot
Name Column, specify a semicolon-separated list of names.

Restrict to Name List: Numerical value that determines whether the returned table contains
columns only for items in Name List. If set to 0 or if Name List is not specified, all unique
values from Pivot Name Column are included in the returned table; otherwise only values
from the Name List are included.

This function returns a table.

Example

The bar chart and the second table (labeled Pivot Customer), below, are attached to the function
defined by the following dialog. The first table's data table is attached to the argument Table.

Building and Using Apama Dashboards 10.11.2 593

17 Tabular Functions

Reference
Returns a reference to the specified table without copying the contents.

Arguments

The function has the following argument:

Table: The table for which a reference is to be returned.

This function returns a table.

Rename Columns
Returns a copy of a specified table with specified columns renamed with specified new names.

594 Building and Using Apama Dashboards 10.11.2

17 Tabular Functions

Arguments

The function has the following arguments:

Table: The table whose columns are to be renamed.

Column Name(s): Text string that specifies the columns to be renamed. Supply a single column
name or a semicolon-separated list of column names.

New Name(s): Text string that specifies the new column names. Supply a single name or a
semicolon-separated list of names. The nth element of New Name(s) is the new name of the
column specified by the nth element of Column Name(s). The number of names in Column
Name(s) must be less than or equal to the number of names in New Name(s).

This function returns a table.

Select Column
Returns a one-column table containing only a specified column from a specified table.

Arguments

The function has the following arguments:

Table: Table from which the column is to be selected.

Select Column Name: Text string that specifies the name of the column to select.

This function returns a table.

Set Column Type
Returns a copy of a specified table, with specified columns modified to use specified types.

Arguments

The function has the following arguments:

Table: Table from which the column is to be selected.

Column Types: Text string that specifies column-name/type pairs. Separate pairs with spaces.
Within each pair, separate column-name from type with a colon, that is, each pair has the
following form:

column-name:type

For type, supply one of the following:

STRING

Building and Using Apama Dashboards 10.11.2 595

17 Tabular Functions

INTEGER

LONG

DOUBLE

FLOAT

BOOLEAN

DATE

If column-name contains a space or a colon, it must be enclosed in single quotes. Here is an
example:

apama.timestamp:DATE 'Max Value':INTEGER Active:BOOLEAN

This function returns a table.

Sort Table
Returns a table with the same rows as a specified table but with the rows sorted according to the
values in a specified column or columns.

If you specify multiple columns, the returned table is sorted on the first column specified, and
then on the second column, and so forth.

Arguments

This function has the following arguments:

Table: Table to sort.

Sort Column Name: Text string that specifies the column or columnswhose values determine
the sort order. Separate column names with a semicolon. If the columns contain text, the sort
order is alphabetic, unless the text consists entirely of numbers, in which case the sort order
is numeric.

Sort Descending: Numerical value (0 or 1) that determineswhether the sort order is ascending
or descending. If set to 1, the sort order is descending; otherwise, the sort order is ascending.

Note:
If an invalid column name is entered, the original table is returned.

This function returns a table.

Split String
Returns a table with the result of splitting a given string using a specified separator. The returned
table contains one column, with a row for each resulting substring.

596 Building and Using Apama Dashboards 10.11.2

17 Tabular Functions

Arguments

The function has the following arguments:

String: Text string to be split.

Separator: Text string consisting of a regular expression that specifies the separator. Use the
regular expression form suitable for use with the Java Pattern class. See the Java API
documentation for java.util.regex.Pattern.

Results Column Name: Text string that specifies the name of the returned column.

This function returns a table.

String to Table
Returns a table whose cell values are specified by a string that uses specified row and column
delimiters.

Arguments

The function has the following arguments:

String: Text string to be converted into a table.

Row Delimiter: Text string that specifies the delimiter bywhich the data for one row is separated
(in String) from the data for the next row.

Note, if you specify a delimiter that consists of more than one character, those characters are
treated as a sequence of delimiters and a new row is created when any one of them is
encountered.

Column Delimiter: Text string that specifies the delimiter by which the data for one cell in a
row is separated (in String) from the data for the next cell in that row. If the table is to contain
only one column, do not specify a value for Column Delimiter.

Note, if you specify a delimiter that consists of more than one character, those characters are
treated as a sequence of delimiters and a new column is created when any one of them is
encountered.

Column Name Mode: Text string that specifies how the function should determine column
names for the returned table. Specify one of the following:

AUTO: Use the generated names col0, col1, col2, and so forth.

STATIC: Use the names specified in Column Names.

STRING: Use the values specified in the first row of String.

AUTO is the default setting; leaving this unset or set to a value other than AUTO, STATIC, or STRING
defaults to AUTO.

Building and Using Apama Dashboards 10.11.2 597

17 Tabular Functions

Column Names: Text string that specifies the column names to use in the returned table, if
Column Name Mode is Static.

Allow Empty Rows/Columns: Specifies whether or not empty cells will be created when
empty tokens in the string are encountered. Setting this argument to "true" or "1"means empty
cells will be created. For example, in a string that uses "," (comma) as a delimiter, a row
represented by 1, , ,4will result in a row with 1 in the first column followed by two empty
cells, followed by 4. Setting this to "false", "0", or leaving it unset (the default) means that
empty tokens will be ignored. In this case the "1, , ,4" example will create a row with 1 in
the first column, followed by 4 in the second column, followed by two blank columns.

This function returns a table.

Subtotal By Time
Returns a table that contains subtotals for the data in a given table. Subtotals are provided for a
specified number of specified time intervals.

Arguments

The function has the following arguments:

Table: Table for which subtotals are to be provided. The Table must contain a time column
and a number column.

Date Parts Per Interval: Numerical value that specifies he size of each interval in Date Parts.

Number Of Intervals: Numerical value that specifies the number of intervals to include in the
summary table. The returned table contains one row for each interval. If set to 0, one subtotal
row is provided for the entire table.

Date Part: Text string that specifies the date unit to use. Enter s, m, h, d, w, M, q, or y, for
seconds, minutes, hours, days, weeks, months, quarters, or years. The default unit is seconds.

Date Format: Text string that specifies the format of times in the returned table. Specify a
pattern string suitable for use with the Java SimpleDateFormat class. For example, the format
EEE, hh:mm a results in a string of the form exemplified by Wed, 05:32 PM. Use q, qqq or
qqqq for short, medium or long versions of quarter notation. For example, qqq-yyyy results
in a string of the form exemplified by Qtr 1-2005. If no Date Format is given, dates are
expressed in the form exemplified by 08/30/03 05:32 PM. If noDate Format is given, the type
of the first column in the returned table is Date; otherwise it is String.

Use Column Names: Numerical value (0 or 1) that determineswhether original columnnames
are retained in the returned table. If Use Column Names is set to 1, original column names
are retained. If set to 0, columns are given generic names. Generic column names are useful
when the data attachment for the Table argument uses a substitution that causes the column
names to change when the substitution changes.

This function returns a table.

598 Building and Using Apama Dashboards 10.11.2

17 Tabular Functions

Subtotal By Unique Values
Returns a table that lists all of the unique values found in the first column of a specified table,
along with the sum of the values in the corresponding fields of the remaining columns.

Arguments

The function has the following arguments:

Table Columns: Table for which subtotals are to be provided. The function uses the first
column of Table Columns as the index column. Subtotals are provided for the remaining
columns of Table Columns.

Value List: Table column that contains a set of values to be included in the set of values for
the index column. This is useful if you want the returned table to include values that may or
may not be in the Table Columns index column.

Restrict To Value List: Numerical value (0 or 1) that determines whether the table includes
only rows that include the values of Value List. If set to 1, only such values are included.

Use Column Names: Numerical value (0 or 1) that determineswhether original columnnames
are retained in the returned table. If Use Column Names is set to 1, original column names
are retained. If set to 0, columns are given generic names. Generic column names are useful
when the data attachment for the Table argument uses a substitution that causes the column
names to change when the substitution changes.

This function returns a table.

Subtract Columns
Returns a table that includes a column reflecting the difference between two specified columns of
a specified table, the difference between a specified value and a specified column, or the difference
between two specified values.

Usage notes

Case 1: Difference between two specified columns of a specified table. This is the case if First
Column Name or Numeric Value andSecond Column Name or Numeric Value both specify
a column of Table.

Case 2: Difference between a specified value and a specified column. This is the case if one of
First Column Name or Numeric Value and Second Column Name or Numeric Value
specifies a column of Table and the other specifies a numeric value.

Case 3: Difference between two specified values. This is the case if First Column Name or
Numeric Value and Second Column Name or Numeric Value both specify a numeric value.

In case 1, the nth cell in the returned column corresponds to the nth cell of the table specified by
the argument Table. Each cell of the returned column contains the result of subtracting the

Building and Using Apama Dashboards 10.11.2 599

17 Tabular Functions

corresponding row's cell in Second Column Name or Numeric Value from the cell in First
Column Name or Numeric Value.

In case 2, the nth cell in the returned column corresponds to the nth cell of the table specified by
the argumentTable. Each cell of the returned column contains the result of subtracting the specified
numeric value from the corresponding row's cell in the specified column.

In case 3, each cell of the returned column contains the subtracting the second specified value from
the first.

In the returned table, the sum column is preceded by copies of all the columns in Table.

Arguments

The function has the following arguments:

Table: Table that contains the columns to be used in the subtraction operations.

First Column Name or Numeric Value: Text string specifying minuend, the column to be
subtracted from, or numerical value to be subtracted from.

Second Column Name or Numeric Value: Text string specifying subtrahend, the column to
be subtracted, or numerical value to be subtracted.

Result Column Name: Text string that specifies the name of the column containing the
differences. You must supply a value for this argument.

This function returns a table.

Table Contains Values
Returns a copy of the specified Table with a new boolean column containing a value of true for
each row where the value in the Comparison Column is contained in the one and only column
of the Comparison Table.

This function has the following arguments:

Table: Table to be supplemented with the new boolean-valued column of comparison results.

Comparison Column Name: Name of the column in Table whose values are searched for in
Comparison Table

Result Column Name: Name of the boolean result column to add to Table. If no name is
specified, the column is named Result.

Comparison Table: Single-column table inwhich to look for values fromComparison Column
of Table

This function returns a table.

600 Building and Using Apama Dashboards 10.11.2

17 Tabular Functions

18 Expression Syntax in Dashboard Functions

■ Operators in dashboard function expressions .. 602

■ Arithmetic functions in dashboard function expressions .. 602

■ String functions in dashboard function expressions ... 605

Building and Using Apama Dashboards 10.11.2 601

The following topics describe the syntax you can use when you specify an expression in the
following dashboard functions:

Evaluate Expression As Double

Evaluate Expression As Row

Evaluate Expression As String

The syntax for expressions in dashboard functions follows standard Java syntax and includes the
operators and functions described in the topics below.

Operators in dashboard function expressions
A dashboard function that contains an expression can use the following operators:

PrecedenceOperator

+ - !unary

* / %multiplicative

+ -additive

< > <= =>relational

== !=equality

&& ||logical

The following operators are not supported:

Bitwise NOT, AND, OR, XOR

Arithmetic shift

Supported operators may be applied to double type variables. In addition, the relational and
equality operators may be applied to string variables, and the addition operator may be used to
concatenate strings.

Arithmetic functions in dashboard function
expressions
The following arithmetic functions are supported in dashboard function expressions:

abs()

double abs(double a)

Returns the absolute value of a double value.

acos()

602 Building and Using Apama Dashboards 10.11.2

18 Expression Syntax in Dashboard Functions

double acos(double a)

Returns the arc cosine of an angle, in the range of 0.0 through pi.

asin()

double asin(double a)

Returns the arc sine of an angle, in the range of -pi/2 through pi/2.

atan()

double atan(double a)

Returns the arc tangent of an angle, in the range of -pi/2 through pi/2.

atan2()

double atan2(double y, double x)

Converts rectangular coordinates (x, y) to polar (r, theta).

ceil()

double ceil(double a)

Returns the smallest (closest to negative infinity) double value that is greater than or equal to
the argument and is equal to a mathematical integer.

cos()

double cos(double a)

Returns the trigonometric cosine of an angle.

exp()

double exp(double a)

Returns Euler's number e raised to the power of a double value.

floor()

double floor(double a)

Returns the largest (closest to positive infinity) double value that is less than or equal to the
argument and is equal to a mathematical integer.

IEEEremainder()

double IEEEremainder(double f1, double f2)

Computes the remainder operation on two arguments as prescribed by the IEEE 754 standard.

log()

double log(double a)

Building and Using Apama Dashboards 10.11.2 603

18 Expression Syntax in Dashboard Functions

Returns the natural logarithm (base e) of a double value.

max()

double max(double a, double b)

Returns the greater of two double values.

min()

double min(double a, double b)

Returns the smaller of two double values.

pow()

double pow(double a, double b)

Returns the value of the first argument raised to the power of the second argument.

random()

double random()

Returns a double value with a positive sign, greater than or equal to 0.0 and less than 1.0.

rint()

double rint(double a)

Returns the double value that is closest in value to the argument and is equal to amathematical
integer.

round()

long round(double a)

Returns the closest long value to the argument.

sin()

double sin(double a)

Returns the trigonometric sine of an angle.

sqrt()

double sqrt(double a)

Returns the correctly rounded positive square root of a double value.

tan()

double tan(double a)

Returns the trigonometric tangent of an angle.

toDegrees()

604 Building and Using Apama Dashboards 10.11.2

18 Expression Syntax in Dashboard Functions

double toDegrees(double angrad)

Converts an angle measured in radians to an approximately equivalent angle measured in
degrees.

toRadians()

double toRadians(double angdeg)

Converts an angle measured in degrees to an approximately equivalent angle measured in
radians.

String functions in dashboard function expressions
The following string functions can be in expressions in dashboard functions:

charAt()

char charAt(int index)

Returns the char value at the specified index.

compareTo()

int compareTo(String anotherString)

Compares two strings lexicographically.

compareToIgnoreCase()

int compareToIgnoreCase(String str)

Compares two strings lexicographically, ignoring case differences.

concat()

String concat(String value1, String value2)

Returns the concatenation of value1 and value2.

condExpr()

String condExpr(String expression, String value1, String value2)

Evaluated as true or false, returns value1 if true or value2 if false.

endsWith()

boolean endsWith(String suffix)

Tests if this string ends with the specified suffix.

equals()

boolean equals(Object anObject)

Compares this string to the specified object.

Building and Using Apama Dashboards 10.11.2 605

18 Expression Syntax in Dashboard Functions

equalsIgnoreCase()

boolean equalsIgnoreCase(String anotherString)

Compares this string to another string, ignoring case considerations.

indexOf()

int indexOf(String str, int fromIndex)

Returns the index within this string of the first occurrence of the specified substring, starting
at the specified index.

lastIndexOf()

int lastIndexOf(int ch, int fromIndex)

Returns the index within this string of the last occurrence of the specified character, searching
backward starting at the specified index.

length()

int length()

Returns the length of this string.

replace()

String replace(char oldChar, char newChar)

Returns a new string resulting from replacing all occurrences of oldChar in this string with
newChar.

startsWith()

boolean startsWith(String prefix, int toffset)

Tests if this string starts with the specified prefix beginning at a specified index.

substring()

String substring(int beginIndex, int endIndex)

Returns a new string that is a substring of this string.

toLowerCase()

String toLowerCase()

Converts all of the characters in this String to lowercase by using the rules of the default locale.

toUpperCase()

String to UpperCase()

Converts all of the characters in this String to uppercase by using the rules of the default locale.

trim()

606 Building and Using Apama Dashboards 10.11.2

18 Expression Syntax in Dashboard Functions

String trim()

Returns a copy of the string with leading and trailing whitespace trimmed.

Building and Using Apama Dashboards 10.11.2 607

18 Expression Syntax in Dashboard Functions

608 Building and Using Apama Dashboards 10.11.2

18 Expression Syntax in Dashboard Functions

IV Dashboard Deployment

19 Dashboard Deployment Concepts ... 611

20 Generating Dashboards ... 617

21 Preparing Dashboards for Deployment .. 623

22 Deploying Dashboards ... 633

23 Managing the dashboard data server and display server .. 637

24 Administering Dashboard Security ... 659

Building and Using Apama Dashboards 10.11.2 609

610 Building and Using Apama Dashboards 10.11.2

IV Dashboard Deployment

19 Dashboard Deployment Concepts

■ Deployment options .. 612

■ Data server and display server ... 613

■ Process architecture ... 614

■ Builders and administrators .. 616

Building and Using Apama Dashboards 10.11.2 611

This part provides information and instructions for deploying dashboards. It discusses dashboard
deployment considerations, dashboard deployment options, steps for deploying dashboards, tasks
formanagingdashboarddata servers anddashboarddisplay servers, andhow tomanagedashboard
security.

Deployment options
There are two types of dashboard deployment:

Web-based: as a simple, thin-client web page.

Local: as a locally-installed desktop application (the Dashboard Viewer) together with
dashboard-specific files that the application can open.

The section on the “Data server and display server” on page 613 discusses some considerations
that are relevant to choosing among deployment options.

Application installation
Local deployments require the use of the Dashboard Viewer desktop application (available on
Windows platforms only). End users open locally-deployed dashboards in theDashboardViewer,
which must be pre-installed locally or on a shared file system. See Building and Using Apama
Dashboards for information about using the Dashboard Viewer.

With web-based deployment, the Dashboard Viewer does not need to be installed locally.
Dashboards are invoked through a web browser, and are installed on demand, as web pages, so
they can easily be deployed across a wide area network, including the internet.

Authentication
Web-based deployments provide web-based login functionality and use the authentication
mechanism provided by your application server. They support authentication customization by
allowing you to, for example, configure your application server to use the security realm and
authentication service of your choice.

Local deployments include data server login functionality, and support authentication by allowing
you to supply any JAAS-supported authentication module as a plug-in to the data server and to
the Dashboard Viewer.

Note:
In display server deployments, the user name is passed as an encrypted parameter in the URL.
The length of an encrypted user name is greater than that of an unencrypted user name. Given
the limits on the length of the URLs in browser GET requests, the effective limit on the length of
a user name in a dashboard is approximately 1000 characters.

612 Building and Using Apama Dashboards 10.11.2

19 Dashboard Deployment Concepts

Authorization
Web-baseddeployments support role-baseddashboard access control,which allows you to associate
a rolewith a deployed dashboard, and to authorize use of the dashboard only for application-server
users with the dashboard's associated role.

Local deployments support dashboard access control by allowing you to use the system security
mechanisms in order to restrict access to the deployed dashboard files.

Both types of deployment support DataView access control, which allows you to control who can
have which type of access to which DataViews.

Data protection
With web-based deployments you can secure inter-process communication by enabling HTTPS
in the application server. With local deployments you can secure inter-process communication by
enabling secure sockets (SSL) in the data server or display server.

With both types of deployment you can secure inter-process communication through the use of
secure channels (SSH) and virtual private networks (VPN).

Refresh latency
The display server's minimum refresh latency (5 seconds) is greater than that of the data server.
Use the data server for applications that require high-frequency screen updates.

Scalability
Both types of deployment are highly scalable, since both use the data server or display server to
mediate access to correlators.

Data server and display server
The dashboard data server and display server can each serve as the gateway through which
dashboards can access your applications running on the correlator. Use of these servers provides
scalability by obviating client management on the part of the correlator, and provides security by
not exposing the correlator directly to clients.

The data server mediates correlator access for local deployments; the display server mediates
correlator access for simple thin-client, web-page deployments.

The data server delivers raw data from which deployed dashboards construct the visualization
objects that they display. The display server, in contrast, delivers already-constructed visualization
objects in the form of image files and image maps.

The display server's minimum refresh latency (5 seconds) is greater than that of the data server.
Use the data server for applications that require high-frequency screen updates.

Building and Using Apama Dashboards 10.11.2 613

19 Dashboard Deployment Concepts

Managing the data server and display server is covered in “Managing the dashboard data server
and display server” on page 637.

Process architecture
Deployed dashboards connect to one or more correlators via a dashboard data server. As the
DataViews in a correlator run and their variables change, update events are sent to all connected
dashboards. When a dashboard receives an update event, it updates its display in real time to
show the behavior of the DataViews. User interactions with the dashboard, such as creating an
instance of a DataView, result in control events being sent via the data server to the correlator.

Simple, thin-client, web-page dashboards communicate with the display server via servlets that
run on your application server. These servlets are bundled with Apama. You must provide your
own Java web application server (servlet container). Typically, you install the dashboard servlets
in your existing web infrastructure.

The following image shows the process architecture for thin-client, web-page deployments.
Dashboards communicate with your application server, which communicates with the dashboard
display server. The display server mediates access to the correlator.

Locally-deployed dashboards communicate directly with the data server.

The following image shows the process architecture for local deployments. Dashboards
communicate with the dashboard data server, which in turn communicates with the correlator(s).

614 Building and Using Apama Dashboards 10.11.2

19 Dashboard Deployment Concepts

You can scale your application by adding data servers to your configuration. Each correlator can
communicate with multiple data servers, and each data server can communicate with multiple
correlators.

The following image shows the process architecture after you add data servers to your
configuration. Each correlator can communicate with multiple data servers and display servers.
Each data server and display server can communicate with multiple correlators.

Deployed dashboards have a unique associated default data server or display server, but advanced
users can associate non-default data serverswith specific attachments and commands. This provides
additional scalability by allowing loads to be distributed amongmultiple servers. This is particularly
useful for display server deployments. By deploying one or more data servers behind a display
server, the labor of display building can be separated from the labor of data handling. The display
server can be dedicated to building displays, while the overhead of data handling is offloaded to
data servers. See “Working with multiple data servers” on page 651 for more information.

Building and Using Apama Dashboards 10.11.2 615

19 Dashboard Deployment Concepts

Builders and administrators
There are two types of activity involved in making dashboards available to end users:

Dashboard development, which requires the use of the Apama Dashboard Builder, as well as
the use of theDashboardDeployment Configuration Editor to generate a deployment package.
See “Preparing Dashboards for Deployment” on page 623.

Dashboard deployment, which requires installing the deployment package, as well as
administering the data server or display server and managing dashboard security.

Sometimes these activities are performed by different individuals. In such a case, the dashboard
developermust be sure to communicate the following information to the dashboard administrator
regarding the dashboards to be deployed:

The location and file name of the .war file or .zip file that was generated by the Deployment
Configuration Editor when the developer prepared the dashboard for deployment.

For display server deployments, the location of the dashboard project directory (the directory
that contains the project's .rtv files).

For web-based deployments, the data server or display server host, port, and update rate that
the builder supplied to the Configuration Editor.

The logical name for each correlator as well as the host name and port for each deployment
correlator (if any) that was specified by the dashboard developer in the Apama tab of the
Tools Options dialog prior to the generation of the deployment package. See “Changing
correlator definitions for deployment” on page 625.

The trend-data caching requirements for the deployed dashboards. See “Configuring Trend-
Data Caching” on page 647.

616 Building and Using Apama Dashboards 10.11.2

19 Dashboard Deployment Concepts

20 Generating Dashboards

■ Starting the wizard ... 618

■ Using the wizard ... 619

■ Using the titlebar/toolbar .. 619

■ Using the Introduction form .. 620

■ Using the Main, Create, Edit, and Details Forms ... 620

■ Using the layout configuration forms .. 621

Building and Using Apama Dashboards 10.11.2 617

This section describes how to generate dashboards for a given query by using the Dashboard
Generation wizard.

Dashboards provide the ability to view and interact with queries, and DataViews. They contain
charts and other objects that dynamically visualize the values of query variables. Dashboards can
also contain control objects for creating, editing, and deleting query instances. You create
Dashboards either with the Dashboard Generation wizard or with the Dashboard Builder.

The wizard allows you to generate simple, default dashboards, customized by your choices
regarding layout, visualization objects to display, and query variables to usewith each visualization
object.

The Builder is a graphical composition tool that gives you control over a dashboard's appearance
and behavior. It also supports a wider array of visualization and control objects than does the
wizard. Advanced users can use the Builder instead of the wizard to create dashboards from
scratch, or they can use the Builder in conjunctionwith thewizard tomodify or augment generated
dashboards. See for more information on the Dashboard Builder.

The wizard allows you to:

Create and edit dashboard-generation configurations

Save configurations to an XML file

Generate dashboards from a configuration

Once you have finished generating your dashboards with the wizard (or finished building or
modifying them with the Builder), follow the steps described in “Preparing Dashboards for
Deployment” on page 623.

Note that if youmodify a dashboardwith the Builder, the changes youmake cannot be propagated
back to the configuration that generated the dashboard. So once youmodify a dashboardwith the
Builder, you cannot use the wizard for development of that dashboard.

Starting the wizard

To start the wizard

1. Open your project's config folder. If config or config\dashboard_generation.xml does not
exist (because your project was created with a prior Apama release), right click on the project
folder and select Add Dashboard Generation Configuration from the pop-up menu.

2. Double-click on dashboard_generation.xml, or else right click on it and select Open With >
Apama Dashboard Generation Editor from the pop-up menu. The wizard appears.

618 Building and Using Apama Dashboards 10.11.2

20 Generating Dashboards

Using the wizard
1. Use the toolbar to create a new dashboard-generation configuration, or to select a previously

saved configuration. See “Using the titlebar/toolbar” on page 619.

2. For each of the wizard's forms, type or modify the settings (or accept the default or previously
saved settings), and then click Next.

3. On the toolbar, click the tool icon in order to generate the dashboards. See “Using the
titlebar/toolbar” on page 619.

At any time, you can save configuration changes by selecting Save in the Software AG Designer
File menu.

The wizard's forms are discussed in the topics below.

“Using the Introduction form” on page 620

“Using the Main, Create, Edit, and Details Forms” on page 620

“Using the layout configuration forms” on page 621

Using the titlebar/toolbar
The titlebar/toolbar is located at the top of the wizard. It allows you to select a configuration to
edit. It also allows you to add, remove, and rename configurations.

The titlebar/toolbar includes the following elements:

Title: At the far left, Dashboard Generation: followed by the project name appears.

Config field: A drop down list of configurations appears next to the label Config:. These are
all the existing configurations for the current project.When you edit a configuration, or generate
dashboards for a configuration, you must first select the configuration from the list.

tool icon: Generates dashboards for the configuration specified in the Config field (see
above), and displays a dialog that indicates the location of the generated dashboards. Generated
dashboards are placed in your project's dashboards folder.

tool icon: Adds a new, named configuration

Building and Using Apama Dashboards 10.11.2 619

20 Generating Dashboards

tool icon: Renames the configuration specified in the Config field (see above).

tool icon: Removes the configuration specified in the Config field (see above).

Using the Introduction form
The Introduction form appears when the wizard first starts, as well as when you add a new
configuration. It allows you to specify a description for the dashboards, a query for which to
generate the dashboards, and a color scheme for the dashboards. It also allows you to specify the
types of dashboards to generate.

The Introduction form has the following editable components:

Description: Enter an optional text description of the current dashboard-generation
configuration.

Query: Select the query forwhich the dashboards are to be generated. The visualization objects
of the generated dashboards are attached to data from the specified query variables.

This drop down menu is disabled if your project has no queries. After you import or create a
a query, click on the icon next to the drop down menu to refresh the contents.

Scheme: Select an item from the drop down list in order to control either the dashboard
background color or the fill color of visualization objects and forms in the dashboards.

Select pages: Click the checkbox for each type of dashboard that you want to be generated.

Main: First dashboard page that the end user sees in each session. Contains buttons that allow
the end user to open other dashboards.

Create: Allows end users to create new query instances.

Edit: Allows end users to edit the selected query instance.

Details: Provides a detailed view of query instances.

Using the Main, Create, Edit, and Details Forms
You can specify information about each dashboard to be generated (as specified in the Select
pages section of the Introduction form), including height, width, titles, logo, and layout.

One of these forms appears when you click Next in the Introduction form, and when you click
Next in the layout configuration form for the previous dashboard page (main, create, or edit).

For each dashboard, the wizard includes a form with the following editable components:

Width: Specify the width of the dashboard window in pixels.

Height: Specify the height of the dashboard window in pixels.

620 Building and Using Apama Dashboards 10.11.2

20 Generating Dashboards

Title: Enter the title of the dashboard window. The title appears in the top, left portion of the
window. This field is optional; you can leave it empty.

Subtitle: Enter the subtitle of the dashboard window. The subtitle appears beneath the Title.
This field is optional; you can leave it empty.

Logo: Select a graphic file. The drop down list includes all supported graphic files in the
dashboard\images folder under your project folder. Supported formats include GIF, JPG, and
PNG.The logo appears in the top, right portion of the generated dashboard. After you import
or create a new graphic file, click on the icon next to the drop down menu in order to refresh
its contents. This field is optional; you can leave it empty.

Layout: Click the radio button for the desired layout. Each section of a dashboard's layout
contains one visualization object (table, bar graph, or pie chart) or one form, as specified in
the layout configuration forms.

Using the layout configuration forms
These forms allowyou to enter information about each section of each dashboard's layout, including
the visualization object to use in that section, and how to attach the object to query variables.

For each section of each dashboard (main, create, edit, or details), the wizard includes a formwith
the following editable elements:

Choose content: Select an object to appear in the current section of the layout. The current
section of the layout is indicated by the check mark in the layout diagram to the left of this
field.

Variables table: Use the buttons to ensure that the Selected variables column contains those
variables that you want attached to the object specified in the Choose content field.

To add variable, select the variable in the Available variables, and click Add. The variable
appears in the Selected variables column.

To remove a variable, select the variable in theSelected variables column, andClickRemove.

Summary tables contain one row for each query instance, and one column for each variable that
is included in theSelected variables column. A cell in a given column and row contains the value
of the column's corresponding variable for the row's corresponding query instance. Summary
table lists both input and output variables for queries.

Form panels contain one text-entry field for each query variable that is included in the Selected
variables column. Create and Edit dashboards use entered values to initialize or update the
variables.

Bar charts contain one group of bars for each numeric variable that is included in the Selected
variables column. Within each group, there is one bar for each instance. The size of a given bar
in a given group is proportional to the value of the group's corresponding numeric variable for
the bar's corresponding instance.

Building and Using Apama Dashboards 10.11.2 621

20 Generating Dashboards

Pie charts contain one slice for each instance. The size of a given slice is proportional to the value
of the first included, numeric variable for the slice's corresponding instance.

Note:
The layout for pie chart and bar chart does not list any parameters for queries as queries do not
have output variables.

If you select Summary Table for the Choose content field, the following elements are included:

Table header: Enter a label for the table

Column name: Select a variable in theSelected variables column of the query variables table.
Enter the header for the selected variable's corresponding table column. Leave this field blank
to use the variable name as the column header.

Format: Select a variable in the Selected variables column of the query variables table. Enter
a format string for the selected variable's corresponding table column. Specify numerical
formats based on the Java format specification, or with the following shorthand:

$ for US dollar money values

$$ for US dollar money values with additional formatting, () for non-money values,
formatted similar to money

for positive or negative whole values

Specify date formats based on the Java date specification.

If you select Form Panel for the Choose content field, the following element is included:

Display name: Select a variable in theSelected variables column of the variables table. Leave
the Display name field blank to use the variable name as the field label.

If you select Bar Chart or Pie Chart for the Choose content field, the following elements are
included:

Chart header: Enter a heading for the chart.

Show legend: Select to show a legend for the chart. The legend indicates the mapping from
bar or pie-slice color to value of the instance's first non-numeric variable for the bar or slice's
corresponding instance.

Filter by instance: Select to filter out all instances except the one that corresponds to the
selected row in a summary table on the current dashboard. This allows the end user (the user
of the generated dashboard) to select the instance to be visualized. In this case, the bar chart
has only a single bar for each numeric variable, rather than a group of bars for each numeric
variable.

622 Building and Using Apama Dashboards 10.11.2

20 Generating Dashboards

21 Preparing Dashboards for Deployment

■ Dashboard feature checklist ... 624

■ Changing correlator definitions for deployment .. 625

■ Choosing among deployment types ... 625

■ Using the Deployment Configuration editor .. 627

■ Generating a deployment package from the command line ... 631

■ Sharing information with the Dashboard Administrator .. 632

Building and Using Apama Dashboards 10.11.2 623

This section describes how to prepare a project's dashboards for deployment, including how to
create a deployment configurationwith the Dashboard Deployment Configuration Editor, as well
as how to use the Packaging wizard to generate a deployment package.

Once you have followed the steps described here, if you want to deploy on additional application
servers without using Software AGDesigner, you or another user must follow the steps described
in Deploying and Managing Apama Applications in the section "About deploying dashboards".

To prepare a project's dashboards for deployment, generate a deployment package

1. Ensure that the dashboards have the required functionality. See “Dashboard feature
checklist” on page 624.

2. Change your dashboard's correlator definitions so that they specify deployment correlators.
See “Changing correlator definitions for deployment” on page 625.

3. Decide which type or types of deployment to support for your project. See “Choosing among
deployment types” on page 625.

4. Create a deployment configuration or deployment configurations by using the Dashboard
Deployment Configuration Editor. See “Using the Deployment Configuration editor” on
page 627.

5. Generate a deployment package either with the Dashboard Package wizard or with the
dashboard_management command line tool. See “Using the Dashboard Package wizard” on
page 630 and “Generating a deployment package from the command line” on page 631.

6. If necessary, communicate the appropriate information to the individual who will complete
the deployment process. See “Sharing information with the Dashboard Administrator” on
page 632.

Dashboard feature checklist
This section contains a checklist of capabilities that you should include in a project's dashboards
in order to ensure that the dashboards provide all standard dashboard functions. Most projects
require all these capabilities, but some projects may not.

Summary view: Displays a listing of all the instances of all the items of a DataView.

Detail view: Provides detailed information about a selected DataView item.

Create: Allows creation of new DataView items.

Edit: Supports editing of existing DataView items.

Delete: Allows deletion of DataView items.

The Statistical Arbitrage demo included with Apama is an example of a dashboard that provides
all these capabilities.

624 Building and Using Apama Dashboards 10.11.2

21 Preparing Dashboards for Deployment

Changing correlator definitions for deployment
When you create a dashboard in Dashboard Builder, use a development correlator. When you
deploy a dashboard for use with a live correlator, change the correlator host and port so that they
reference the live correlator.

This can be done in two ways:

In the Dashboard Builder, select Tools > Options and use the Apama tab to specify the
deployment correlator or correlators. You must do this before you generate a deployment
package with the Dashboard Deployment Configuration Editor. See “Specifying data
sources” on page 28.

When you or another user starts a data server or display server that will serve event data to
your deployed dashboard, use the -c or --correlator option to override the host and port
specified in Dashboard Builder for a given correlator logical name. See “Managing the
dashboard data server and display server” on page 637.

If a user other than you will complete the deployment, you must communicate to this other user
the logical name for each correlator aswell as the host name and port for each deployment correlator
(if any) that you defined.

Choosing among deployment types
Apama supports two types of dashboard deployment:

Web-based: as a simple, thin-clientweb page (thin-client deployment is known as display server
deployment, because it uses the display server to mediate correlator access)

Local: as a locally-installed desktop application (the Dashboard Viewer) together with
dashboard-specific files that the application can open

The topics below compare web-based deployments with local deployments with regard to these
factors.

Note:
The valueHigh(Low)AlarmCommand property of Range Dynamic Objects only works for
non-display server deployments. For display server deployments, only the
valueHigh(Low)AlarmImage and the valueHigh(Low)Color properties will be honored.

Application installation
Local deployments require the use of the Dashboard Viewer desktop application (available on
Windows platforms only). End users open locally-deployed dashboards in theDashboardViewer,
which must be pre-installed locally or on a shared file system. See Building and Using Apama
Dashboards for information about using the Dashboard Viewer.

Building and Using Apama Dashboards 10.11.2 625

21 Preparing Dashboards for Deployment

With web-based deployment, the Dashboard Viewer does not need to be installed locally.
Dashboards are invoked through a web browser, and are installed on demand, as web pages, so
they can easily be deployed across a wide area network, including the internet.

Authentication
Web-based deployments provide web-based login functionality and use the authentication
mechanism provided by your application server. They support authentication customization by
allowing you to, for example, configure your application server to use the security realm and
authentication service of your choice.

Local deployments include data server login functionality, and support authentication by allowing
you to supply any JAAS-supported authentication module as a plug-in to the data server and to
the Dashboard Viewer.

Note:
In display server deployments, the user name is passed as an encrypted parameter in the URL.
The length of an encrypted user name is greater than that of an unencrypted user name. Given
the limits on the length of the URLs in browser GET requests, the effective limit on the length of
a user name in a dashboard is approximately 1000 characters.

Authorization
Web-baseddeployments support role-baseddashboard access control,which allows you to associate
a rolewith a deployed dashboard, and to authorize use of the dashboard only for application-server
users with the dashboard's associated role.

Local deployments support dashboard access control by allowing you to use the system security
mechanisms in order to restrict access to the deployed dashboard files.

Both types of deployment support DataView access control, which allows you to control who can
have which type of access to which DataViews.

Data protection
With web-based deployments you can secure inter-process communication by enabling HTTPS
in the application server. With local deployments you can secure inter-process communication by
enabling secure sockets (SSL) in the data server or display server.

With both types of deployment you can secure inter-process communication through the use of
secure channels (SSH) and virtual private networks (VPN).

Scalability
Both types of deployment are highly scalable, since both use the data server or display server to
mediate access to correlators.

626 Building and Using Apama Dashboards 10.11.2

21 Preparing Dashboards for Deployment

Choosing among web-based deployment types
Each web-based deployment is a thin-client web page.

The topics below compare the different types of deployment with regard to the following factors.

Served data

The data server mediates correlator access for local deployments; the display server mediates
correlator access for simple thin-client, web-page deployments.

The data server delivers raw data from which deployed dashboards construct the visualization
objects that they display. The display server, in contrast, delivers already-constructed visualization
objects in the form of image files and image maps.

Refresh latency

The display server's minimum refresh latency (5 seconds) is greater than that of the data server.
Use the data server for applications that require high-frequency screen updates.

Using the Deployment Configuration editor
TheDeploymentConfigurationEditor is a form-based interface that allows you to specify dashboard
deployment configurations and save them for future use. It also allows you to launch the Packaging
wizard, which you can use to generate deployment packages (.war files or .zip files) from
configurations.

Starting the Configuration editor

To start the Configuration Editor

1. If you are using the Project Explorer view, ensure that a project is selected.

2. In either the Project Explorer view or the Workbench Project view, select New > Dashboard
Deployment from the File menu. (You can also right-click in the navigation pane and select
Dashboard Deployment from the popup menu. In the Workbench Project view, you can also
click the New button that is above the navigation pane and select Dashboard Deployment
from the Apama folder, or click the down arrow that is next to the New button, and select
Dashboard Deployment from the popup menu.)

3. In the New Dashboard Deployment Configuration dialog, enter a name in the Configuration
field. The Dashboard Deployment Configuration Editor uses this as the name of the new
configuration.

Building and Using Apama Dashboards 10.11.2 627

21 Preparing Dashboards for Deployment

4. ClickFinish. TheDashboardDeploymentConfiguration Editor appears, anddisplays the new
dashboard configuration. In addition, a new dashboard-deployment configuration file
(dashboard_deploy.xml) appears under the current project's config folder, if onewasn't already
present.

Rename Deploy Configuration

This dialog allows you to rename the configuration specified in the Configurations field (which
is next to the toolbar). Enter the new name, and click OK.

Saving deployment configurations

Select Save in the Software AG Designer File menu to save configuration changes.

Title bar/Toolbar
The title bar/toolbar appears at the top of the Configuration Editor. It allows you to select a
configuration to edit. It also allows you to add, remove, and rename configurations, as well as to
start the Packaging wizard.

The title bar/toolbar includes the following elements:

Title: Dashboard Deploy: followed by the project name appears at the far left.

Configuration field: A drop down list of configurations appears next to the label
Configuration:. These are all the existing dashboard configurations for the current project.
When you edit a configuration, you must first select the configuration from the list.

Dashboard Package: Starts a wizard that can generate deployment packages for one or
more of the available configurations.

See “Using the Dashboard Package wizard” on page 630.

Add: Adds a new, named configuration

Rename: Renames the configuration specified in the Configurations field (see above).

Remove: Removes the configuration specified in the Configurations field (see above).

General Settings
This section allows you to specify a name, description and deployment type, as well as an
entry-point dashboard file or a panels configuration file.

628 Building and Using Apama Dashboards 10.11.2

21 Preparing Dashboards for Deployment

It has the following editable elements:

Deploy Name text field: Enter a name to be used as the file name of the generated deployment
package. This name is also used as the directory name for temporary deployment files. Do not
use spaces in this field.

Choose Deployment Type: Select the type of deployment for which you want to prepare
your dashboard: display server or local.

Dashboard Entry: Select the dashboard entry point, the file to be used as the initially-displayed
dashboard. If you are using multiple display panels, select a panels-initialization file.

If a user other than you will complete the deployment, you must communicate to this other user
the file name specified in the Deploy Name text field as well as the deployment type chosen from
the Choose Deployment Type drop-down list.

Startup and Server

If you selected a web-based deployment type (that is, display server deployment), the Startup
and Server section is visible.

This section contains the following editable fields:

Host text field: Specify the host of the data server or display server that will serve data to the
deployed dashboard.

Port text field: Specify the port of the data server or display server that will serve data to the
deployed dashboard.

Refresh rate text field: Specify the dashboard update rate, which is the rate at which the
dashboard updates its display to reflect new event data received from the correlator through
the data server or display server. If you know the maximum update rate used by the servers
to which the deployed dashboard might connect, ensure that the update rate that you specify
here is no greater than this maximum.

Hidden menu commands text field: Specify the contextmenu commands that are to be hidden
for the display server. This field appears only for the display server deployment.

If a user other than you will complete the deployment, you must communicate to this other user
the host, port, and refresh rate that you specified. For more information, see “Sharing information
with the Dashboard Administrator” on page 632.

Additional JAR Files
For backward compatibility, this section allows you to specify additional .jarfiles. These additional
files must be in the directory %APAMA_WORK%\dashboards_deploy\lib.

The JAR files table is for backward compatibility only; specify new .jar files in the Software AG
DesignerDashboard Properties (selectProperties from theProjectmenu). Click theAdd button
to display a list of .jar files that are found in the directory %APAMA_WORK%\dashboards_deploy\lib.

Building and Using Apama Dashboards 10.11.2 629

21 Preparing Dashboards for Deployment

Select the file or files that youwant to add. To remove files that have been added, select them from
the table and click Remove.

Using the Dashboard Package wizard

The Dashboard Package tool, (which is on the “Title bar/Toolbar” on page 628) brings up a
wizard that guides you through the process of generating a deployment package for specified
configurations.

To use the wizard

1. Click The Dashboard Package tool (which is on the “Title bar/Toolbar” on page 628) to
start the wizard.

The Dashboard Selection screen appears.

2. In the Available Configurations section, use the check boxes to select one or more
configurations on which to perform the specified operations and click Next. The Package
Dashboard Configurations appears.

The Package Dashboard Configurations screen appears.

3. In the Package Location field, enter or browse to the path name of the directory into which
you want Apama to place the generated deployment package. For local deployments, this is
a directory that is accessible to end users.

If the desired final destination of the deployment package is not accessible to you, the
deployment package can be installed by the dashboard administrator as part of the deployment
process. See “Deploying Dashboards” on page 633.

4. Your deployment can include .jar files that define custom classes and functions used by your
project's dashboards. The .jar files that are specified in Dashboard Properties (select
Properties from Software AG Designer's Project menu) are automatically included in the
generated deployment package. This screen allows you to direct Apama to sign .jar files
before including them in the deployment package.

Click the Default button, to specify the keystore shipped with Apama
(%APAMA_HOME%\etc\DashboardKeystore). Use the default unless you require a customkeystore.
If you require a custom keystore, use the following fields:

Signature file text field: Enter the full path name of (or click Browse... and navigate to)
the keystore to use for singing .jar files. Leave this field empty to skip signing the .jar
files.

Alias text field: Enter the private key to be used to sign the .jar files. If you are using the
keystore shippedwithApama, click theDefault button (which specifies the alias dashboard).

630 Building and Using Apama Dashboards 10.11.2

21 Preparing Dashboards for Deployment

Password text field: Enter the password for the private key specified in theAlias text field.
Or click the default button for default Alias/Password being used for the
DashboardKeystore.

5. Click Finish.

The operations are performed and then the Dashboard package/deploy/publish summary
appears. The summary indicates which operations succeeded for which configurations. A
green check mark indicates success. A red x indicates failure.

Generating a deployment package from the command
line
Once you have a defined a dashboard deployment configuration, use dashboard_management in
order to generate a deployment package. Use the following options:

-y or --deploy: Specify a dashboard configuration file, typically dashboard_deploy.xml in your
project's config folder.

-c or --config: Specify the name of a deployment configuration that is saved in the file specified
with -y or --deploy.

-r or --rtvPath: Specify the directory containing the dashboard (.rtv files) to use in order to
generate the deployment package.

-k or --keystoreFile: Specify the keystore to use in order to sign the .jar files to be included
in the deployment package. Supply this option only if the .jar files are not already signed.

-a or --alias: Specify the alias to use in order to sign the .jar files to be included in the
deployment package.

-j or --jar: Specify a third-party jar file to sign. You can specifymultiple -j | --jar arguments
if you have multiple jar files to sign.

-o or --password: Specify the password to use in order to sign the .jar files to be included in
the deployment package.

Here is an example:
dashboard_management --deploy "C:\workspace\Demo - Statistical
Arbitrage\config\dashboard_deploy.xml" --config "My Config"
--rtvPath "C:\workspace\Demo - Statistical Arbitrage\dashboards"
--keystoreFile "%APAMA_HOME%\etc\DashboardKeystore" --alias "dashboard"
--password "terra"

For more information on dashboard_management, see “Managing and stopping the data server and
display server” on page 655.

Building and Using Apama Dashboards 10.11.2 631

21 Preparing Dashboards for Deployment

Sharing information with the Dashboard
Administrator
There are two types of activity involved in making dashboards available to end users:

Dashboarddevelopment,which requires the use of theApamaDashboardBuilder orDashboard
Generation wizard, as well as the use of the Dashboard Deployment Configuration Editor to
generate a deployment package.

Dashboard deployment, which requires installing and configuring the deployment package,
as well as administering the data server or display server and managing dashboard security.

Sometimes these activities are performed by different individuals. In such a case, the dashboard
developermust be sure to communicate the following information to the dashboard administrator
regarding the dashboard to be deployed:

Location and file name of the .war file or .zip file that was generated by the Deployment
Configuration Editor when the developer prepared the dashboard for deployment.

For display server deployments, the location of the dashboard project directory (the directory
that contains the project's .rtv files).

For web-based deployments, the data server or display server host, port, and update rate that
the builder supplied to the Configuration Editor.

Logical name for each correlator aswell as the host name and port for each deployment correlator
(if any) thatwas specified by the dashboard developer in theApama tab of theTools > Options
dialog prior to the generation of the deployment package. See “Changing correlator definitions
for deployment” on page 625.

Trend-data caching requirements for the deployed dashboards. See “Configuring Trend-Data
Caching” on page 647.

Whether SQL-based instance tables are used by the dashboard for data attachments. See
“Attaching Dashboards to Correlator Data” on page 47.

632 Building and Using Apama Dashboards 10.11.2

21 Preparing Dashboards for Deployment

22 Deploying Dashboards

■ Generating the dashboard .war file .. 634

■ Installing a dashboard .war file ... 634

■ Inside a dashboard .war file ... 635

■ Additional steps for display server deployments ... 635

Building and Using Apama Dashboards 10.11.2 633

Apama dashboards can be deployed to supported application server environments. Use the
Dashboard Deployment wizard to generate a .war file that you then deploy manually using the
deployment tools of your application server. See “Generating Dashboards” on page 617.

There are additional considerations that are covered in the following topics in this section.

If you are a dashboard developer, see also “Preparing Dashboards for Deployment” on page 623.

For a current list of Apama-supported application servers, see Software AG's Knowledge Center
in Empower at https://empower.softwareag.com/KnowledgeCenter/default.asp.

Generating the dashboard .war file
Before deploying a dashboard, you need to first generate the .war file for that dashboard. The .war
file is the deployment package for a dashboard. It contains the webapp, servlets, and supporting
resources for deploying a dashboard.

You can generate the dashboard .war file from Software AG Designer using Apama's Dashboard
Deployment wizard. You can also generate the .war file using a command prompt or script with
the dashboard_management utility.

For more information on generating dashboard .war files , see “Preparing Dashboards for
Deployment” on page 623.

Installing a dashboard .war file
When deploying to an application server you need to manually install the dashboard .war file to
that application server using the tools provided by the server. The details of this vary by application
server.

To install a dashboard .war file

1. Ensure that you are installing to a supported application server. For an up-to-date listing of
supported application servers, see Software AG's Knowledge Center in Empower: (http://
empower.softwareag.com).

2. Copy the .warfile generated by theDashboardDeploymentwizard to the appropriate location
for your application server. For example it may have a webapps folder.

3. Configure your application server as desired to support this and to secure access to the
dashboard as required. The generated .war file will have form authentication enabled.

4. Use the deployment tools of your application server to install the dashboard .war file.

5. Test that you can access your dashboard and that access is secured as intended.

634 Building and Using Apama Dashboards 10.11.2

22 Deploying Dashboards

https://empower.softwareag.com/KnowledgeCenter/default.asp
http://empower.softwareag.com
http://empower.softwareag.com

Inside a dashboard .war file
Adashboard .war file contains thewebapp, servlets, and supporting resources necessary to deploy
your dashboard and for it to connect to your Apama dashboard data or display server. For the
most part you do not need to be aware of the contents of the .war file. However, there are several
points to consider if you encounter problems.

The generated .war file will have form authentication enabled. You must supply the login page
for this and configure your application server accordingly. A servlet in the dashboard .war file
needs the ability to determine the identity of the user displaying a dashboard. This is to enable
user based filtering. For this the servlet calls request.getRemoteUser(). Any problems calling this
will prevent access to the dashboard.

Additional steps for display server deployments
For thin client deployments you need to provide the Apama dashboard display server with access
to the resources used by the dashboard. When the display server builds the displays for users, it
requires the .rtv files, images, and other files used by the dashboards.

For display server deployments, copy your project's dashboarddirectory (the directory that contains
the project's .rtv files) to the system on which you want to deploy. By default, the display server
looks for the deployed project files from its current working directory or from the
APAMA_WORK/dashboards directory

You need to copy the dashboard project directory, as well as its contents. So, for example, if your
dashboard files on the development system are apama-work/dashboards/MyProject/*.rtv, they
might be located here on the deployment machine:
deploy-dir/MyProject/*.rtv

In this case, run the display server from deploy-dir, the parent of the dashboard project directory.
Do not run the display server from the directory MyProject.

You can also run the display server by using the command-line option --dashboardDir folder. If
this option is used, then the display server does not required to be run from the
APAMA_WORK/dashboards directory. The deployed project directory described abovewill be expected
under the folder argument.

Note that the Dashboard Deployment Configuration Editor automatically copies a project's
dashboard files to a directory named after the project under the APAMA_WORK\dashboards folder. By
default, the display_server process will be running in the APAMA_WORK\dashboards directory so
the project files will be picked up automatically.

Building and Using Apama Dashboards 10.11.2 635

22 Deploying Dashboards

636 Building and Using Apama Dashboards 10.11.2

22 Deploying Dashboards

23 Managing the dashboard data server and display

server

■ Prerequisites .. 638

■ Starting and stopping the data server or display server ... 638

■ Command-line options for the data server and display server 639

■ Rotating the log files of the data server and display server .. 645

■ Controlling the update frequency ... 646

■ Configuring Trend-Data Caching .. 647

■ Managing Connect and Disconnect Notification ... 650

■ Working with multiple data servers ... 651

■ Managing and stopping the data server and display server ... 655

Building and Using Apama Dashboards 10.11.2 637

Use of a deployed dashboard depends on a running data server or display server. You start, stop,
and manage these servers with the following executables, which are found in the bin directory of
your Apama installation:

dashboard_server

display_server

dashboard_management

OnWindows, you can also start the data server and display server from the Start menu. See
“Starting and stopping the data server or display server” on page 638.

Prerequisites
In order to start a data server or display server with all the necessary parameters to support a
given deployment, youmay need to obtain the following information from theDashboard Builder:

For web-based deployments, the data server or display server host and port that the builder
supplied to the Deployment Configuration Editor when preparing the dashboard for
deployment. See “Using the Deployment Configuration editor” on page 627.

The logical name for each correlator as well as the host name and port for each deployment
correlator (if any) that was specified by the Dashboard Builder in the Apama tab of the Tools
> Options dialog prior to the generation of the deployment package with the Deployment
Configuration Editor. See “Changing correlator definitions for deployment” on page 625.

The port of theApamadashboard data servermust be accessible to theApamaDashboardViewer.
If you are on a Windows system and the firewall is enabled, unblock network access for this port.
The default value for the port is 3278. For security reasons, never change firewall settings such
that this port is exposed to untrusted clients.

Starting and stopping the data server or display
server
Use the following procedure to start and stop the data server and display server.

To start and stop the data server and display server

Do one of the following:

On Windows, select one of the following commands:

Start > All Programs > Software AG > Start Servers > Start Apama dashboard
data server n.n

Start > All Programs > Software AG > Start Servers > Start Apama dashboard
display server n.n

638 Building and Using Apama Dashboards 10.11.2

23 Managing the dashboard data server and display server

Start > All Programs > Software AG > Stop Servers > Stop Apama dashboard
data server n.n

Start > All Programs > Software AG > Stop Servers > Stop Apama dashboard
display server n.n

The current directory for a display server that was started from the Start menu is the
dashboards directory of your Apama work directory.

Use the command line. See “Command-line options for the data server and display
server” on page 639.

Command-line options for the data server and display
server
The executable for the data server is dashboard_server and the executable for the display server
is display_server. They can be found in the bin directory of the Apama installation.

Synopsis

To start the data server, run the following command:
dashboard_server [options]

To start the display server, run the following command:
display_server [options]

When you run these commands with the -h option, the usage message for the corresponding
command is shown.

Start the display server from the dashboards directory of your Apama work directory. To do so,
proceed as follows:

1. Open an Apama Command Prompt as described in "Setting up the environment using the
Apama Command Prompt" in Deploying and Managing Apama Applications.

2. Change to the %APAMA_WORK%\dashboards directory.

3. Invoke the executable from the command line.

You can also start display server with the --dashboardDir folder option to specify a folder for
your deployed dashboards. When --dashboard folder is used, display server will be looking for
the deployed dashboards from the specified folder.

Description

The dashboard_server and display_server executables can be run without arguments, in which
case they start a server on port 3278 (for a data server) or 3279 (for a display server) on the local
host. Note that these are the default ports used by the Deployment Configuration Editor; see

Building and Using Apama Dashboards 10.11.2 639

23 Managing the dashboard data server and display server

“Using the Deployment Configuration editor” on page 627. You can specify a different port with
the -d or --dataPort option.

The -c or --correlator option allows you to specify the deployment host and port for a given
correlator logical name. See “Changing correlator definitions for deployment” on page 625.

You can enable loggingwith the -f and -v (or --logfile and --loglevel) options orwith the log4j
properties file.

Options

Both the dashboard_server and display_server executables take the following options:

DescriptionOption

Dashboard data server only. Send all data over the socket
regardless of whether or not it has been updated.

-A | --sendAllData

Specifies whether to enable user authentication. bool is one of
true and false. By default, authentication is enabled. Set

-a bool | --authUsers bool

--authUsers to false for web deployments for which
authentication is performed by the web layer.

Sets the correlator host and port for a specified logical correlator
name. raw-channel is one of true and false, and specifies

-c
logical-name:host:port:raw-channel

whether to use the raw channel for communication. This| --correlator
logical-name:host:port:raw-channel overrides the host, port, and raw-channel setting specified by

the Dashboard Builder for the given correlator logical name; see
“Changing correlator definitions for deployment” on page 625.
This option can occur multiple times in a single command. For
example:
-c default:localhost:15903:false
–c work1:somehost:19999:false

These options set the host and port for the logical names default
and work1.

Data server or display server port to which viewers (for local
deployments) or the data servlet (for web deployments) will

-d port | --dataPort port

connect in order to receive event data. If not specified, the default
port (3278 for data servers and 3279 for display servers) is used.

Specifies whether to purge all trend data when an instance is
edited. bool is one of true and false. If this option is not

-E | --purgeOnEdit bool

specified, all trend data is purged when an instance is edited.
In most cases this is the desired mode of operation.

Exclude instances which are not owned by user. This option
applies to all dashboard processes. Default is false for the
builder and true for the other dashboard processes.

-F arg | --filterInstance arg

640 Building and Using Apama Dashboards 10.11.2

23 Managing the dashboard data server and display server

DescriptionOption

Exception: when the Dashboard Viewer is connecting to a
dashboard server, the default is true and cannot be overridden.

Full pathname of the file inwhich to record logging. If this option
is not specified, the options in the log4j properties file are used.

-f file | --logfile file

See also "Text internationalization in the logs" in Deploying and
Managing Apama Applications.

Trend configuration file for controlling trend-data caching.-G file | --trendConfigFile
file

Emit usage information and then exit.-h | --help

Full pathname of the JAAS initialization file to be used by the
data server or display server. If not specified, the server uses the
file JAAS.ini in the lib directory of your Apama installation.

-J file | --jaasFile file

XML data source file. If file contains static data, append :0 to
the file name. This signals Apama to read the file only once.

-L file | --xmlSource file

Correlator-connect mode. mode is one of always and asNeeded. If
always is specified all correlators are connected to at startup. If

-m mode | --connectMode mode

asNeeded is specified, the data server or display server connects
to correlators as needed. If this option is not specified, the server
connects to correlators as needed.

Component name for identification in correlator-N name | --name name

Sets the host and port for a specified logical data server name.
This overrides the host and port specified by the Dashboard

-B logical-name:host:port |
--namedServer
logical-name:host:port Builder for the given server logical name. This option can occur

multiple times in a single command. See “Workingwithmultiple
data servers” on page 651 for more information.

Full path of OPTIONS.ini-O file | --optionsFile file

Maximum number of decimal places to use in numerical values
displayed by dashboards. Specify values between 0 and 10, or

-P n | --maxPrecision n

-1 to disable truncation of decimal places. A typical value for n
is 2 or 4, which eliminates long floating point values (for
example, 2.2584435234). Truncation is disabled by default.

Port on which this data server or display server will listen for
management operations. This is the port used for communication
between the server and the dashboard_management process.

-p port | --port port

Set the server output queue size to size. This changes the default
queue size for each client that is connected to the server.

-Q size | --queueLimit size

Building and Using Apama Dashboards 10.11.2 641

23 Managing the dashboard data server and display server

DescriptionOption

Configures SQL Data Source access. options has the following
form:

-q options | --sql options

[retry:ms | fail:n | db:name | noinfo |
nopererr | quote]

retry:: Specify the interval (inmilliseconds) to retry connecting
to a database after an attempt to connect fails. Default is -1,
which disables this feature.

fail: Specify the number of consecutive failed SQL queries after
which to close this database connection and attempt to reconnect.
Default is -1, which disables this feature.

db: Specify the logical name of the database as specified in the
builder's SQL options.

noinfo: Query database for available tables and columns in your
database. If a Database Repository file is found, it is used to
populate drop down menus in the Attach to SQL Data dialog.

nopererr: SQL errors with the word “permission” in them will
not be printed to the console. This is helpful if you have selected
the Use Client Credentials option for a database. In this case,
if your login does not allow access for somedata in their display,
you will not see any errors.

quote: Encloses all table and column names specified in the
Attach to SQL Datadialog in quoteswhen an SQLquery is run.
This is useful when attaching to databases that support quoted
case-sensitive table and column names. If a case-sensitive table
or column name is used in the Filter field, or you are entering
an advanced query in theSQL Queryfield, theymust be entered
in quotes, even if the -sqlquote option is specified.

Specifies whether to purge all instance data when an instance
is removed. bool is one of true and false. If this option is not

-R bool | --purgeOnRemove bool

specified, all instance data is purged when an instance is
removed.

Specifies whether to cache and reuse user authorization
information. bool is one of true and false. Specifying true can

-r bool | --cacheUsers bool

improve performance, because users are authorized only once
(per data server or display server session) for a particular type
of access to particular instance.

Dashboard data server only. Enable secure sockets for client
communication.When secure sockets are enabled, the data server

-s | --ssl

will encrypt data transmitted toDashboardViewers. Encryption
is done using the strongest cipher available to both the data

642 Building and Using Apama Dashboards 10.11.2

23 Managing the dashboard data server and display server

DescriptionOption

server and Viewer. SSL certificates are not supported. The
display server does not support this option.

Maximum depth for trend data, that is, the maximum number
of events in trend tables. If this option is not specified, the

-T depth | --maxTrend depth

maximum trend depth is 1000. Note that the higher you set this
value, the more memory the data server or display server
requires, and the more time it requires in order to display trend
and stock charts.

Cache and reuse instance authorizations. Caching authorizations
is enabled by default. When caching is enabled, authorization

-t bool |
--cacheAuthorizations bool

checks are performed only once per user for eachDataView they
access. Disabling caching allows the current state of the
DataView to be used in the authorization check, but can degrade
performance.

Data update rate in milliseconds. This is the rate at which the
data server or display server pushes new data to deployed

-u rate | --updateRate rate

dashboards in order to inform themof new events received from
the correlator. rate should be no lower than 250. If theDashboard
Viewer is utilizing too much CPU, you can lower the update
rate by specifying a higher value. If this option is not specified,
an update rate of 500 milliseconds is used.

Emit program name and version number and then exit.-V | --version

Logging verbosity. level is one of FATAL, ERROR, WARN, INFO, DEBUG,
and TRACE. If this option is not specified, the options in the log4j
properties file will be used.

-v level | --loglevel level

Full pathname of the extensions initialization file to be used by
the data server or display server. If not specified, the server uses

-X file | --extensionFile file

the file EXTENSIONS.ini in the lib directory of your Apama
installation.

Add an index for the specified SQL-based instance table with
the specified compound key. table-name is the name of a

-x table-name:key-list |
--queryIndex
table-name:key-list DataView. key-list is a comma-separated list of variable names

or field names. If the specified DataView exists in multiple
correlators that are connected to the dashboard server, the index
is added to each corresponding data table. Example:
--queryIndex Products_Table:prod_id,vend_id

You can only add one index per table, but you can specify this
optionmultiple times in a single command line in order to index
multiple tables.

Building and Using Apama Dashboards 10.11.2 643

23 Managing the dashboard data server and display server

DescriptionOption

Make SQL-based instance tables available as data tables for
visualization attachments. See “Attaching Dashboards to
Correlator Data” on page 47.

-Y | --enhancedQuery

Default time zone for interpreting and displaying dates. zone is
either a Java time zone ID or a custom ID such as GMT-8:00.

-z zone | --timezone zone

Unrecognized IDs are treated as GMT. See “Time Zone ID
Values” on page 695 for the complete listing of permissible values
for zone.

Set instance inclusion filters. Use this option to control scenario
(for example, DataView) discovery. If not specified, all scenarios

--inclusionFilter value

that have output fields will be discovered and kept in the
memory of the dashboard processes, which can be expensive.
For example, to include only the DV_Weather DataView, specify
--inclusionFilter DV_Weather. The value can be a
comma-separated list of scenario IDs. If you specify an inclusion
filter, any specified exclusion filters are ignored.

Set instance exclusion filters. Use this option to exclude specific
scenarios (for example, DataViews) from being kept in the

--exclusionFilter value

memory of the dashboard processes. If neither exclusion filters
nor inclusion filters are specified, all scenarios that have output
fields will be discovered and kept in the memory of the
dashboard processes, which can be expensive. The value can be
a comma-separated list of scenario IDs. If an inclusion filter is
specified, any exclusion filters are ignored.

Set the directory where display_serverwill be using to look for
the deployed dashboards. If not specified, then display_server

--dashboardDir folder

must be started from %APAMA_WORK%\dashboardsdirectory in order
for it to locate the deployed dashboards.

A semi-colon separated list of jar files for custom functions,
custom commands or any other 3rd party jars (e.g. JDBC jar). If

--dashboardExtraJars jarFiles

not specified, then the environment variable
APAMA_DASHBOARD_CLASSPATHmust be defined prior to running
the dashboard processes. Each entry in jarFiles can be an
absolute path of the jar file, or when --dashboardDir option is
used, relative to the folder argument.

Dashboard data server only. Specify this option when you start
a data server that is used as a named server by a display-server

--namedServerMode

deployment. See “Working with multiple data servers” on
page 651 for more information.

644 Building and Using Apama Dashboards 10.11.2

23 Managing the dashboard data server and display server

DescriptionOption

Specifies the name of the file that contains the process ID. This
file is created at process startup and can be used, for example,
to externally monitor or terminate the process.

--pidfile file

It is recommended that the file name includes the port number
to distinguish different servers. For example, correlator-
3278.pid for a data server and correlator-3279.pid for a display
server.

Rotating the log files of the data server and display
server
Rotating a log file refers to closing a log file being used by a running data server or display server
and opening a new log file to be used instead from that point onwards. This lets you archive log
files and avoid log files that are too large to easily view.

Each site should decide on and implement its own log rotation policy. You should consider the
following:

How often to rotate log files.

How large a log file for a data server or display server can be.

What log file naming conventions to use to organize log files.

There is a lot of useful header information in the log file being usedwhen the data server or display
server starts. If you need to provide log files to Apama technical support, you should be able to
provide the log file that was in use when the data server or display server started, as well as any
other log files that were in use before and when a problem occurred.

Note:
Regularly rotating log files and storing the old ones in a secure location may be important as
part of your personal data protection policy. For more information, see "Protecting and erasing
data from Apama log files" in Developing Apama Applications.

Logging for data servers and display servers is configured using standard Log4j configuration
files. You can find them in the etc directory of your Apama installation:

log4j-dashboard-server.xml is the configuration file for the data server.

log4j-display-server.xml is the configuration file for the display server.

By default, the above files configure the servers to rotate the log files when they reach a certain
file size. If you want to enable time-based rotation instead (for example, to rotate the log files on
a monthly basis), see the Log4j 2 documentation at https://logging.apache.org/log4j/2.x/.

Building and Using Apama Dashboards 10.11.2 645

23 Managing the dashboard data server and display server

https://logging.apache.org/log4j/2.x/

There are many external resources which can be found online regarding how to configure Log4j
for different purposes. In the case of more advanced configurations, you may consider consulting
these.

Note:
Some people use the term “log rolling” instead of “log rotation”.

Controlling the update frequency
The correlator sends update events to the data server, display server, or any clients using the
Scenario Service API (see also "Scenario Service API" in Connecting Apama Applications to External
Components) for all scenarioswith output variables (for example,DataViews, includingMemoryStore
tables that exposeDataViewsusing the exposeMemoryView or exposePersistentView schemaoptions).
These updates are sent whenever the values of fields or output variables in your scenarios change.
If you have scenarios that update frequently, you might need to reduce the frequency of update
events sent by the correlator.

You can adjust the settings per scenario definition or globally. The global value is used where a
given scenario definition has no specific setting. The per-definition values always take precedence
over the global values.

A ConfigureUpdates event consists of the following:

scenarioId (type string): May be the empty string tomodify the global values, or a definition's
scenarioId.

Configuration (type dictionary (string, string)): Configuration key and values. Key can
be one of:

sendThrottled (type boolean): Whether to send throttled updates (on the scenarioId.Data
channel). The default is true.

sendRaw (type boolean):Whether to send every update (on the scenarioId.Data.Raw channel).
The default is true.

throttlePeriod (type float): Throttle period in seconds.A zero value indicates no throttling.
The default is 0.0.

routeUpdates (type boolean): Whether to route Update events for the benefit of EPL files
running in the correlator. The default is false.

sendThrottledUser: (boolean): Whether to send throttled updates on a per-user channel.
The default is false.

sendRawUser (type boolean): Whether to send raw updates on a per-user channel. The
default is false.

Those with a User suffix are suitable for using with only custom clients that use
ScenarioServiceConfig.setUsernameFilter() on their service configuration.

For example, consider the following:

646 Building and Using Apama Dashboards 10.11.2

23 Managing the dashboard data server and display server

com.apama.scenario.ConfigureUpdates("DV_scenario1",
{"sendRaw":"true"})

com.apama.scenario.ConfigureUpdates("",{"sendRaw":"false",
"throttlePeriod":"0.1"})

com.apama.scenario.ConfigureUpdates("DV_scenario2",
{"sendRaw":"true"})

com.apama.scenario.ConfigureUpdates("DV_scenario3",
{"throttlePeriod":"1.0"})

The above examples configure DV_scenario1 and DV_scenario2 to send rawupdates; DV_scenario3
to use a throttle period of 1 second; and all other scenarios to not send raw updates, and to use a
throttle period of 0.1 seconds.

Earlier releases used the com.apama.scenario.SetThrottlingPeriod(x) event. Note that the use of
the ConfigureUpdates events allows greater flexibility than the SetThrottlingPeriod event (which
only controlled sending of throttled updates for all scenarios).

The use of com.apama.scenario.SetThrottlingPeriod(x) should be replaced with:
com.apama.scenario.ConfigureUpdates("", {"throttlePeriod":"x"})

Note that by default, routeUpdates is false, so any EPL that relies on Update (and other scenario
control events) to be routed should route a ConfigureUpdates event for the scenarioIds it is
interested in to route Updates.

The latest values are always used— thus it is not advisable for a client to send an event requesting
(for example) raw updates and then undo this when it disconnects, as that will affect other clients.
The recommendation is that the administrator should configure settings at initialization time.

Runtime performance of scenarios can be improved by setting sendRaw and routeUpdates to false
and throttlePeriod to a non-zero value. In this case, the cost of an update is reduced (as the Update
events are only generatedwhen needed, and if throttling, they are only needed at most once every
throttlePeriod).

Configuring Trend-Data Caching
By default, dashboard servers (data servers and display servers) collect trend data for all numeric
output variables of DataViews running in their associated correlators. This data is cached in
preparation for the possibility that it will be displayed as historical data in a trend chart when a
dashboard starts up. Without the cache, trend charts would initially be empty, with new data
points displaying as time elapses.

Advanced users can override the default caching behavior on a given server, and control caching
in order to reduce memory consumption on that server, or in order to cache variables that are not
cached by default, such as non-numeric variables.

Important:
Inmany cases, Server performance can be improved by overriding the default caching behavior,
and suppressing the caching of those output variables for which trend-chart historical data is
not required.

Important:

Building and Using Apama Dashboards 10.11.2 647

23 Managing the dashboard data server and display server

Caching trend data for string variables is very costly in terms of memory consumption.

You control caching with a trend configuration file, which allows you to specify the following:

Individual variables to cache

Classes of variables to cache

Default caching rules

Trend depths (number of data points to maintain) for each DataView

You do not need to provide a trend configuration file. If you provide no trend configuration file,
dashboard servers use the default caching behavior described above.

Trend charts can include variableswhose trend data is not cached, but theywill display no historical
(pre-dashboard-startup) data for those variables.

When a data server or display server starts, it uses the trend configuration file specified with the
-G option, if supplied. Otherwise it uses the file trend.xml in the dashboards directory of your
Apamawork directory, if there is one. (Note that Apama provides an example trend configuration
file, APAMA_HOME\etc\dashboard_onDemandTrend.xml, that you can copy to
APAMA_WORK\dashboards\trend.xml as a basis for a trend configuration file.) Otherwise, it uses the
default caching behavior described above.

Here is a sample configuration file:
<?xml version="1.0" encoding="UTF-8"?>
<config>

<trend>
<item type="DATAVIEW" correlator="*" name="*"

vars="ALL_NUMERIC_OUTPUT" depth="10000"/>
<item type="DATAVIEW" correlator="*" name="DV_scenario1"

vars="LIST" depth="5000">
<var name="A"/>
<var name="B"/>
</item>

<item type="DATAVIEW" correlator="production" name="DV_dataview1"
vars="LIST" depth="5000">
<var name="A"/>
<var name="B"/>

</item>
</trend>
</config>

This file specifies the following:

For DV_scenario1 in all correlators, cache trend data for variables A and Bwith a maximum
trend depth of 5000.

For all other queries, cache all numeric output variableswith amaximum trend depth of 10,000.

For DV_dataview1 in correlator production, cache variables A and Bwith a maximum trend
depth of 5000.

648 Building and Using Apama Dashboards 10.11.2

23 Managing the dashboard data server and display server

For all other DataViews, cache no trend data.

In general, a trend configuration file is an XML file that includes of one or more item elements
with the following attributes:

type:DATAVIEW

correlator: Logical name of correlator. Use * for if the item applies to all correlators

name: DataView ID. Use * if the item applies to all DataViews.

vars: Class of variables to cache trend data for. Specify one of the following:

LIST: Cache the individual variables that are listed in var sub-elements.

ALL: Cache all input and output variables.

ALL_OUTPUT: Cache all output variables.

ALL_NUMERIC_OUTPUT: Cache all numeric output variables.

depth: Maximum depth of trend data to cache.

If the vars attribute of an item element is LIST, the element has zero or more var sub-elements.
Each var element has single attribute, name, which specifies the name of a DataView field.

The item elements are nested in a trend element, which is nested within a config element.

If a particular DataView on a given correlator matches multiple item elements in a server's trend
configuration file, the server chooses the best-matchingitem and caches the variables specified in
that item. Following are the ways, in order from best to worst, in which an item can match a
DataView on a given correlator:

1. Fully resolved: Exact match for both correlator name and DataView name

2. Wildcard correlator: Wildcard correlator and exact match for DataView name

3. Wildcard DataView: Exact match for correlator name and wildcard DataView

4. Fully wildcarded: Wildcard correlator and wildcard DataView

If there are multiple best matches, the last match is used.

Consider, for example, scenarios named DV_scenario1 and DV_scenario2, correlators named
production and development, and the following item elements:
1 <item type="DATAVIEW" correlator="production" name="DV_scenario1"

vars="LIST" depth="5000">
2 <item type="DATAVIEW" correlator="*" name="DV_scenario1" vars="LIST"

depth="5000">
3 <item type="DATAVIEW" correlator="production" name="*" vars="LIST"

depth="5000">
4 <item type="DATAVIEW" correlator="*" name="*" vars="LIST"

depth="5000">

DV_scenario1 running on production best matches item1.

Building and Using Apama Dashboards 10.11.2 649

23 Managing the dashboard data server and display server

DV_scenario1 on development best matches item2.

DV_scenario2 on production best matches item3.

DV_scenario2 on development best matches item4.

Below are some additional sample configuration files. The following file caches trend data for all
input and output variables:
<?xml version="1.0" encoding="UTF-8"?>
<config>

<trend>
<item type="DATAVIEW" correlator="*" name="*" vars="ALL"
depth="10000"/>

</trend>
</config>

The following caches trend data for all numeric output variables, the default behavior:
<?xml version="1.0" encoding="UTF-8"?>
<config>

<trend>
<item type="DATAVIEW" correlator="*" name="*"

vars="ALL_NUMERIC_OUTPUT" depth="10000"/>
<item type="DATAVIEW" correlator="*" name="*"

vars="ALL_NUMERIC_OUTPUT" depth="10000"/>
</trend>
</config>

The following caches no data, which results in trend-data collection only on demand:
<?xml version="1.0" encoding="UTF-8"?>
<config>

<trend>
</trend>
</config>

The following caches a single variable for a single scenario:
<?xml version="1.0" encoding="UTF-8"?>
<config>

<trend>
<item type="DATAVIEW" correlator="*" name="DV_scenario1"

vars="LIST" depth="5000">
<var name="PRICE"/>

</item>
</trend>
</config>

Managing Connect and Disconnect Notification
Whenever a dashboard connects to or disconnects from a data server or display server, the server
sends a special notification event to all connected correlators that include the Dashboard Support
bundle.

The events are defined as follows:

650 Building and Using Apama Dashboards 10.11.2

23 Managing the dashboard data server and display server

event DashboardClientConnected {
string userName;
string sessionId;
dictionary<string,string> extraParams;

}event DashboardClientDisconnected {
string userName;
string sessionId;
dictionary<string,string> extraParams;

}

userName specifies the user name with which the dashboard was logged in to the server.

sessionID is a unique identifier for the dashboard's session with the server.

extraParamsmay be used in a future release.

Note that the circumstances under which a dashboard disconnects from a server include but are
not limited to the following:

End user exits the Dashboard Viewer or web browser in which a dashboard is loaded.

End user exits a web browser tab in which a dashboard is loaded.

Network failure causes loss of connectivity to viewer or web browser in which a dashboard
is loaded.

Note also that disconnect notification might be sent only after a timeout period rather than
immediately upon loss of connection.

Follow these steps to manage connect and disconnect notification:

1. Ensure that the Dashboard Support bundle is loaded into all relevant correlators.

2. Use EPLs to process DashboardClientConnected and DashboardClientDisconnected events.
Base processing on the values of the userName and sessionId fields.

Working with multiple data servers
Deployed dashboards have a unique associated default data server or display server. Forweb-based
deployments, this default is specified in the Startup and Server section of the Deployment
Configuration Editor. For Viewer deployments, it is specified upon Viewer startup. By default,
the data-handling involved in attachments and commands is handled by the default server, but
advanced users can associate non-default data servers with specific attachments and commands.
This provides additional scalability by allowing loads to be distributed among multiple servers.
This is particularly useful for display server deployments. By deploying one or more data servers
behind a display server, the labor of display building can be separated from the labor of data
handling. The display server can be dedicated to building displays, while the overhead of data
handling is offloaded to data servers.

Apama supports the following multiserver configurations:

Builder with multiple data servers. See “Builder with multiple data servers” on page 652.

Building and Using Apama Dashboards 10.11.2 651

23 Managing the dashboard data server and display server

Viewer with multiple data servers. See “Viewer with multiple data servers” on page 653.

Display server (thin client) deployment with multiple data servers. See “Display server
deployments with multiple data servers” on page 654.

The Attach to Apama and Define ... Command dialogs (except Define System Command)
include a Data Server field that can be set to a data server's logical name. To associate a logical
name with the data server at a given host and port, developers use the Data Server tab in the
General tab group of the Application Options dialog (select Tools Options in Builder).

For display server (thin client) deployments, youmust use the option --namedServerModewhenever
you start named data servers. See “Display server deployments with multiple data servers” on
page 654.

The logical data server names specified in the Builder's Application Options dialog are recorded
in the file OPTIONS.ini, and the deploymentwizard incorporates this information into deployments.
You can override these logical name definitions with the --namedServer name:host:port option to
the Builder, Viewer, data server or display server executable. Below is an example. This is a
sequence of command-line options which should appear on a single line as part of the command
to start the executable:

--namedServer Server1:ProductionHost_A:3278 --namedServer Server2:ProductionHost_B:4278
--namedServer Server3:ProductionHost_C:5278

Here Server1, Server2 and Server3 are the server logical names.

Builder with multiple data servers
Builder maintains connections with the data servers named in attachments and commands. Note
that it connects directly to the correlator (dotted lines in the figure below) in order to populate
dialogs with metadata. Correlator event data is handled by the data servers.

652 Building and Using Apama Dashboards 10.11.2

23 Managing the dashboard data server and display server

You can override the logical server names specified in the Application Options dialog with the
--namedServer name:host:port option to the Builder executable. Below is an example. This is a
sequence of command-line options which should appear on a single line as part of the command
to start the executable:

--namedServer Server1:ProductionHost_A:3278 --namedServer Server2:ProductionHost_B:4278
--namedServer Server3:ProductionHost_C:5278

Here Server1, Server2 and Server3 are the server logical names.

Viewer with multiple data servers
Viewer maintains connections with the data servers named in attachments and commands of
opened dashboards.

Building and Using Apama Dashboards 10.11.2 653

23 Managing the dashboard data server and display server

In the data server Login dialog (which appears upon Viewer startup), end users enter the host
and port of the default data server (or accept the default field values). If all attachments and
commands use named data servers, end users can check the Only using named data server
connections check box and omit specification of a default server.

The logical data server names specified in the Builder's Application Options dialog are recorded
in the file OPTIONS.ini, which is found in the deployed .war file along with dashboard .rtv files.
You can override these logical name definitions with the --namedServer name:host:port option to
the Viewer executable. Below is an example. This is a sequence of command-line options which
should appear on a single line as part of the command to start the executable:

--namedServer Server1:ProductionHost_A:3278 --namedServer Server2:ProductionHost_B:4278
--namedServer Server3:ProductionHost_C:5278

Here Server1, Server2 and Server3 are the server logical names.

Display server deployments with multiple data servers
The display server maintains connections with the data servers named in attachments and
commands of its client dashboards.

654 Building and Using Apama Dashboards 10.11.2

23 Managing the dashboard data server and display server

Important:
In a display server deployment, each named data server must be started with the
--namedServerMode option.

The logical data server names specified in the Builder's Application Options dialog are recorded
in the file OPTIONS.ini, which is used by the Deployment Wizard to define deployment logical
names. You can override these logical name definitions with the --namedServer name:host:port
option to the display server executable. Below is an example. This is a sequence of command-line
options which should appear on a single line as part of the command to start the executable:

--namedServer Server1:ProductionHost_A:3278 --namedServer Server2:ProductionHost_B:4278
--namedServer Server3:ProductionHost_C:5278

Here Server1, Server2 and Server3 are the server logical names.

Managing and stopping the data server and display
server
The dashboard_management tool is used to stop a data server or display server and perform certain
data server or display server management operations. The executable for this tool is located in the
bin directory of the Apama installation. Running the tool in the Apama Command Prompt or
using the apama_envwrapper (see "Setting up the environment using theApamaCommandPrompt"
in Deploying and Managing Apama Applications) ensures that the environment variables are set
correctly.

Note:

Building and Using Apama Dashboards 10.11.2 655

23 Managing the dashboard data server and display server

The component_management tool can also be used for many of these tasks. See "Shutting down
and managing components" in Deploying and Managing Apama Applications.

Synopsis

To manage and stop the data server or display server, run the following command:
dashboard_management [options]

When you run this command with the –h option, the usage message for this command is shown.

Description

You can use this tool to shut down, deep ping, or get the process ID of a data server or display
server on a specified host and port. A successful deep ping verifies that the server is responding
to requests. You can also use this tool to generate a dashboard deployment package, and to sign
.jar files as part of deployment-package generation.

When you invoke this tool, you can specify the host and port of the server you want to manage.
For the port, specify the port that was specified with the -p or --port option when the desired
server was started. If the -p or --port option was not specified, you do not need to supply this
option. It defaults to the default management port (28888).

Options

The dashboard_management tool takes the following options:

DescriptionOption

Use the alias in order to sign the .jar files to be included in
the deployment package specified by the -y or --deploy option

-a alias | --alias alias

and the -c or --config option. Specify the keystore and
password with the -k or --keystoreFile option and the -o or
--password option.

Generate a deployment package for the named configuration.
Specify the file that defines the configuration with the -y or

-c path | --config path

--deploy option. Specify the .rtv files to use with the -r or
--rtvPath option.

Run against display server.-D | --displayServer

Deep-ping the component.-d | --deepping

Generate an encrypted version of the password. This is useful
when you manually add an SQL data source by entering
information directly into OPTIONS.ini.

-e password | --encryptString
password

Full pathname of the file in which to record logging.-f file | --logfile file

Display usage information.-h | --help

656 Building and Using Apama Dashboards 10.11.2

23 Managing the dashboard data server and display server

DescriptionOption

Invalidate all user authentications.-I | --invalidateAll

Invalidate a user authentication.-i username | --invalidateUser
username

Name of a third-party jar file to sign. You can specify this
option multiple times if you have multiple jar files to sign.

-j jarfile | --jar jarfile

Use the keystore file designated by path in order to sign the
.jar files to be included in the deployment package specified

-k path | --keystoreFile path

by the -y or --deploy option and the -c or --config option.
Specify the alias and password with -a or --alias option and
the -o or --password option. Ensure that the environment
variable JAVA_HOME is set to a Java Development Kit (JDK).

The deploy destination.-l path | --deployLocation path

Connect to component on host. If not specified, localhost is
used.

-n host | --hostname host

Use the specified password in order to sign the .jar files to
be included in the deployment package specified by the -y or

-o password | --password
password

--deploy option and the -c or --config option. Specify the
keystore and alias with the -k or --keystoreFile option and
the -a or --alias option.

Connect to component on port. Specify the port that was
specified with the -p or --port option when the component

-p port | --port port

was started. If the -p or --port option was not specified, you
do not need to supply this option. It defaults to the default
management port (28888).

Generate a deployment package with the .rtv files in the
directory designated by path. Specify the deployment

-r path | --rtvPath path

configuration to use with the -y or --deploy option and the -r
or --rtvPath option.

Shut down the component with the specified reason.-s reason | --shutdown reason

Update the specified Release 2.4 .rtv file or files so that they
are appropriate for use with this Apama release. path is the

-U path | --update path

pathname of a file or directory. If path specifies a directory,
all .rtv files in the directory are updated.

Emit verbose output, including the startup settings (such as
dataPort and updateRate) of the dashboard server to connect
to.

-v | --verbose

Display program name and version number and then exit.-V | --version

Building and Using Apama Dashboards 10.11.2 657

23 Managing the dashboard data server and display server

DescriptionOption

Wait for component to be available.-W | --waitFor

Generate a deployment package for a configuration defined
in the dashboard configuration file designated by path. Specify

-y path | --deploy path

the configuration namewith the -c or --config option. Specify
the .rtv files to use with the -r or --rtvPath option.

658 Building and Using Apama Dashboards 10.11.2

23 Managing the dashboard data server and display server

24 Administering Dashboard Security

■ Administering authentication .. 660

■ Authentication for local and application server deployments .. 660

■ Administering authorization .. 664

■ Securing communications .. 671

■ Example: Implementing LoginModule .. 671

Building and Using Apama Dashboards 10.11.2 659

Deployed dashboards are protected by the authorization and authentication facilities provided
by Apama and your application server.

Apama's dashboard authentication facility prompts users for credentials before allowing any
access to deployed dashboards. It gives you the ability to customize authentication by either
configuring your application server to use the security realm and authentication service of your
choice or by supplying any JAAS-supported authenticationmodule as a plug-in to the data server
or display server. See “Administering authentication” on page 660.

Apama's authorization facility includes access control that gives you the ability to control who
can use a given dashboard. The facility also gives you the ability to control who can use dashboards
to gain a given type of access to a given DataView definition, or DataView item. And it gives the
ability to control who can send events from dashboards using the Send Event command. See
“Administering authorization” on page 664.

In addition to authenticating and authorizing users, you need to consider how you will protect
data sent to dashboards. This is discussed in “Securing communications” on page 671.

To protect the security of personal data, see "Protecting Personal Data in Apama Applications" in
Developing Apama Applications.

Administering authentication
For dashboards deployed as simplewebpages, authentication can be performedby your application
server.

For dashboards deployed as local applications, or dashboards using an application server,
authentication is performed both at the dashboard and by the data server or display server. When
a user starts the Dashboard Viewer, a login dialog appears, which prompts the user for a user
name and password (as well as for the host and port of the data server or display server to connect
to). The information entered is used to authenticate the user against the authentication service of
your choice. Authenticated users are allowed to connect to the server. See “Authentication for
local and application server deployments” on page 660 for more information.

Whenever a dashboard connects to or disconnects from a data server or display server, the server
sends a special notification event to all correlators that are connected to it, provided that your
project includes the Dashboard Support bundle. Your monitors can make use of these events to
implement further authentication-related administration. See “Managing Connect andDisconnect
Notification” on page 650 in “Managing the dashboard data server anddisplay server” on page 637.

Authentication for local and application server
deployments
Both the Dashboard Viewer and data server or display server provide authentication through the
Java Authentication and Authorization Service (JAAS). JAAS provides a pluggable framework
for user authentication and authorization.

The JRE provides authentication modules for use with common authentication services such as
LDAP andKerberos. It also supports the development of new authenticationmodules for usewith

660 Building and Using Apama Dashboards 10.11.2

24 Administering Dashboard Security

custom or proprietary authentication services. The data server, display server, and Viewer will
work with any authentication module that supports JAAS. This openness allows you to integrate
dashboards with your existing authentication service.

Important:
Default authentication for local deployments uses a no-op implementation that supports the
JAAS login module. All user name/password pairs are authenticated. You can customize
authentication for local deployments by supplying your own implementation of the interface
javax.security.auth.LoginModule.

Dashboard Login Modules Provided by Apama
Apamaprovides the following JAAS loginmodules in the package com.apama.dashboard.security:

NoOpLoginModule: Does no username or password validation. This is used by default for the
Dashboard Builder, Viewer, data server, and display server.

UserFileLoginModule: Loads user and role definitions from an XML file. See “Installing
UserFileLoginModule” on page 663 for more information.

LdapLoginModule: Authenticates against an LDAP service.

In addition, the Java Runtime Environment (JRE) includes several JAAS login modules:

JndiLoginModule: The module prompts for a username and password and then verifies the
password against the password stored in a directory service configured under JNDI.

KeyStoreLoginModule: Provides a JAAS login module that prompts for a key store alias and
populates the subject with the alias's principal and credentials.

Krb5LoginModule: This login module authenticates users based on Kerberos protocols.

Developing custom login modules
When developing your implementation of LoginModule, note that the data server and display
server's built-in CallbackHandler currently recognizes only the NameCallback and PasswordCallback.

See “Example: Implementing LoginModule” on page 671 for a sample implementation of
LoginModule, which you can also find under samples\dashboard_studio\tutorial\src in your
Apama installation.

Installing login modules
NoOpLoginModule is used by default for the Dashboard Builder, Viewer, data server, and display
server. To change this, youmust install the login module or modules that you want to use instead.
To install login modules, do both of the following:

Specify the login modules to use in the file JAAS.ini in the lib directory of your Apama
installation.

Building and Using Apama Dashboards 10.11.2 661

24 Administering Dashboard Security

Create a jar file that includes your LoginModule implementation or implementations, and add
the jar or its directory to APAMA_DASHBOARD_CLASSPATH (changes to this environment variable
are picked up by dashboard processes only at process startup) or else add the jar or its directory
to the list of External Dependencies in your project's Dashboard Properties (In Software
AG Designer, right click on your project and select Properties, expand Apama, select
Dashboard Properties, activate the External Dependencies tab, and click the Add External
button). You can also use the --dashboardExtraJars command line argument to specify this
jar file.

If your login module has dependencies on other .jar files, add these .jar files to the manifest of
the login module .jar file.

Software AG Designer allows you to sign your .jar files when you create a deployment package.
See “Preparing Dashboards for Deployment” on page 623.

Note:
The loginmodule you install can affect the data server or display server authorization behavior.
If you install UserFileLoginModule, for example, the default Scenario authority will provide
expanded access to users with the apama_admin role. For such users, it will grant view, edit, and
delete access to all instances (in addition to granting such access to Scenario-instance owners).
See “Providing a login module that supports an Event Authority” on page 670 for more
information.

If you are installing a loginmodule provided byApama (see “Dashboard LoginModules Provided
by Apama” on page 661), you do not need to create a jar file as described above, as this class is
provided with your Apama installation and is included in an existing jar.

JAAS.ini supports the standard JAAS configuration file format. Each entry in the file associates
an applicationwith a loginmodule togetherwith a specification of themodule's parameter values.
Here is a JAAS.ini that specifies the UserFileLoginModule for the Dashboard Viewer and data
server applications:
/*
* Dashboard Builder security configuration.
*/
builder {

com.apama.dashboard.security.NoOpLoginModule required
debug=false;

};
/*
* Dashboard Viewer security configuration.
*/
viewer {

debug=false;
com.apama.dashboard.security.UserFileLoginModule required

debug=false
userFile="<INSTALL_PATH>\\etc\\dashboard-users.xml"
refreshDelay="5000";

};
/*
* Dashboard DataServer security configuration.
*/
dataServer {

debug=false;
com.apama.dashboard.security.UserFileLoginModule required

662 Building and Using Apama Dashboards 10.11.2

24 Administering Dashboard Security

debug=false
userFile="<INSTALL_PATH>\\etc\\dashboard-users.xml"
refreshDelay="5000";

};

Important:
Do not change the login module associated with the Dashboard Builder.

Installing UserFileLoginModule
In a JAAS.ini file, you specify a module's parameter values with expressions of the form
formal-parameter=actual-parameter. The loginmodule UserFileLoginModule supports the following
parameters:

debug: true or false. Enable debug logging.

validateUser: true or false. Set to false to disable password validation. This is for use in web
deployments where authentication is provided by your application server; see “Providing a
loginmodule that supports an EventAuthority” on page 670. In such a case, configure userFile
to specify users for your application server. This results in the application server performing
authentication and the data server handling authorization, in such a way that the application
server and the data server obtain user-credentials information from the same file.

userFile: Fully resolved name of the file with user and role definitions

refreshDelay: Time in milliseconds to check for changes to the definition file (userFile). When
it changes it is reloaded. This allows new users to be added.

Note:
Installing UserFileLoginModulecan affect the data server's authorization behavior. In particular,
if you install UserFileLoginModule, the default Scenario authority will provide expanded access
to users with the apama_admin role. For such users, it will grant view, edit, and delete access to
all instances (in addition to granting such access to Scenario-instance owners).

Installing LdapLoginModule
The LdapLoginModule uses the Java Naming and Directory Interface (JNDI) to access naming and
directory services. Oracle's LDAP provider is supported, and hence the InitialContextmust be
set up based on Oracle's implementation. The environment settings must be specified in the
JAAS.ini file. Here is an example:
viewer {

com.apama.dashboard.security.LDAPLoginModule required
ProviderURL="ldap://your.own.ldap.server:389"
Authentication=simple
Anonymous=false
DN="uid=%,ou=City,ou=Region,ou=People,o=ACME Corporation"
TLS=false;

};

Building and Using Apama Dashboards 10.11.2 663

24 Administering Dashboard Security

Administering authorization
Apama's dashboard authorization facility includes access control that gives you the ability to
restrict who can use a given web-based dashboard.

The example above configures the Dashboard Viewer to use LdapLoginModule.

Following are the supported environment settings:

ProviderURL (required): Specifies the LDAP server and port, which are used to set the
java.naming.factory.initial property.

Authentication (required): Specifies the authenticationmechanism to use. Specify none, simple,
or sasl_mech. This value is used to set the java.naming.security.authentication property;

Anonymous (optional; defaults to true): Specifieswhether the userPrincipal and userCredential
should be used when creating the LdapContext.

DN (required): Specifies the user principal to be used when accessing the directory. This value
is used (after patchingwith the user name) to set the java.naming.security.principalproperty.
The user entered password is used in java.naming.security.credentials.

In the example above, DN is set to the following:
uid=%,ou=City,ou=Region,ou=People,o=ACME Corporation.

The % character is replaced by the login name entered by user.

TLS (required): This specifies whether the LDAP server should start the Transport Security
Layer extension. Supply true to specify that it should be started; supply false to specify that
it should not be started.

Extra (optional): Allows you to specify any extra parameters for setting the environment before
creating the LdapContext. The function of these extra parameters is specific to your LDAP
server, not the LdapLoginModule. Supply a semicolon-separated list of name/value pairs, where
each pair has the following form

name=value

Consider for example the following:
Extra=java.naming.referral=ignore;java.naming.security.protocol=ssl

This sets java.naming.referral to ignore and java.naming.security.protocol to ssl.

The facility also gives you the ability to control who can use dashboards for each of the following
types of DataView access:

Viewing a given DataView instance

Editing a given DataView instance

Deleting a given DataView instance

664 Building and Using Apama Dashboards 10.11.2

24 Administering Dashboard Security

Creating an instance of a given DataView

In addition, you can control who can use dashboards for view access to DataView items. See
“Default DataView access control” on page 665.

You can also control who can send events from dashboards using the Send Event command. See
“Send event authorization” on page 669

For web deployments, some aspects of authorization (in particular, dashboard access control) are
centered around the concepts of users and roles, which are introduced in “Users and roles” on
page 665.

Users and roles

A user is an individual in a company or organization, who proves their identity to the application
server by entering a password known only to them.

A role defines a capability to perform an operation or access to some entity on the application
server, and might typically be held by a number of users.

Each user has zero or more associated roles.

For web-based deployments, you create users and roles, and associate roles with users by using
your application server.

Predefined roles
There are three predefined Apama roles for web-based deployments which should be assigned
to users based on their level of responsibility, trust, and technical competence:

apama_customer

apama_author

apama_admin

The restrictions for these roles can be implemented based on your requirements.

Default DataView access control
By default, only the owner of a DataView item can access it, unless the owner is specified as "*",
in which case all users can access it.

Similarly, when a user attempts to access a DataView item by using a dashboard, view access is
authorized if and only if one of the following is true:

The user name supplied during application-server or data server login matches the
DataView-item owner.

The DataView-item owner is specified as "*".

Edit, create, and delete access do not apply to DataView items, but see Send Event Authorization.

Building and Using Apama Dashboards 10.11.2 665

24 Administering Dashboard Security

Customizing DataView access control
You can customize the DataView access control by supplying a Scenario Authority, an
implementation of the interface com.apama.security.IScenarioAuthority. This interface defines
the methods canView, canEdit, canDelete, and canCreate, which must be implemented to return
true or false for a given user andDataView item. See “Providing a ScenarioAuthority” onpage 666.

Youmight also need to supply a loginmodule, an implementation of javax.security.LoginModule,
in order to endow the instance of javax.security.Subject that represents the current end user
with the characteristics that the Event Authority requires. See “Providing a login module that
supports an Event Authority” on page 670.

Providing a Scenario Authority
You can provide an alternative to the default Scenario Authority by doing one of the following:

Develop and install a custom Scenario Authority. See “Developing a custom Scenario
Authority” on page 666 and “Installing a Scenario Authority” on page 668.

Install com.apama.dashboard.security.NoOpScenarioAuthority, which allows full access by
any user. This is useful for testing. See “Installing a Scenario Authority” on page 668.

Developing a custom Scenario Authority

In order to develop a custom Scenario Authority, you must implement each IScenarioAuthority
method (see “Implementing IScenarioAuthority methods” on page 666), which typically requires
the use of UserCredentials access methods (see “Using UserCredential accessor methods” on
page 669). When you compile your implementation, your classpathmust be set appropriately (see
“Compiling your Event Authority” on page 669).

Implementing IScenarioAuthority methods

Below is a description of each IScenarioAuthoritymethod that you must define, including the
following:

Signature of the method

When the method is called by the data server

What the method should return

When each method is called depends on whether authorization caching is on — see the -r or
--cacheUsers option.

This interface defines the following methods:
public boolean canView (
IUserCredentials credentials,
IScenarioInstance instance

);

666 Building and Using Apama Dashboards 10.11.2

24 Administering Dashboard Security

canView is called the first time (or, if authorization caching is off, every time) in a data server or
display server session that the server sends data from the specified scenario instance or DataView
item to an end user with the specified credentials. Your implementation should return true if the
user with the specified credentials is authorized to view the specified instance or item; it should
return false otherwise.

Note that if caching is off, canView is called very frequently, as specified by the update rate for the
data server (see the description of the -u or --updateRate option). If your implementation renders
calls to canView expensive, the performance of your dashboard will be significantly affected.
public boolean canEdit (
IUserCredentials credentials,
IScenarioInstance instance

);

canEdit is called the first time (or, if caching is off, every time) a dashboard attempts to edit an
instance. Your implementation should return true if the user with the specified credentials is
authorized to edit the specified instance; it should return false otherwise. Does not apply to
DataView items, but see “Send event authorization” on page 669.
public boolean canDelete (
IUserCredentials credentials,
IScenarioInstance instance

);

canDelete is called the first time (or, if caching is off, every time) a dashboard attempts to delete
an instance. Your implementation should return true if the user with the specified credentials is
authorized to delete the specified instance; it should return false otherwise. Does not apply to
DataView items, but see “Send event authorization” on page 669.
public boolean canCreate (
IUserCredentials credentials,
IScenarioDefinition scenario

);

canCreate is called the first time (or, if caching is off, every time) a dashboard attempts to create
a Scenario. Your implementation should return true if the user with the specified credentials is
authorized to create an instance of the specified Scenario; it should return false otherwise. Does
not apply to DataView items, but see “Send event authorization” on page 669.

Using UserCredential Accessor Methods

Your implementation of IScenarioAuthoritywill typically use the following public assessor
methods of com.apama.dashboard.security.IUserCredentials:
public String getUsername()
public String getPassword()
public Subject getSubject()

Your implementation may also use the following methods of
com.apama.services.scenario.IScenarioInstance:
public String getOwner()
public Object getValue(String parameterName)

Building and Using Apama Dashboards 10.11.2 667

24 Administering Dashboard Security

Compiling Your Scenario Authority

When you compile your implementation of IScenarioAuthority, be sure to put the following jar
files on your classpath:

ap-dashboard-client.jar

ap-client.jar

These jar files are in the lib directory of your Apama installation.

Installing a Scenario Authority

To install your authorization customization, do both of the following:

Replace "com.apama.dashboard.security.DefaultScenarioAuthority" with the fully qualified
name of your class in the file EXTENSIONS.ini, which is in the lib directory of your Apama
installation.

Create a jar file that contains your IScenarioAuthority implementation, and add the jar or
its directory to APAMA_DASHBOARD_CLASSPATH (changes to this environment variable are picked
up by dashboard processes only at process startup) or else add the jar or its directory to the
list of External Dependencies in your project's Dashboard Properties (In Software AG
Designer, right click on your project and select Properties, expandApama, selectDashboard
Properties, activate theExternal Dependencies tab, and click theAdd External button). You
can also use the --dashboardExtraJars jarFiles command line argument to specify this jar
file.

If your scenario authority has dependencies on other .jar files, add these .jar files to themanifest
of the scenario authority .jar file.

Software AG Designer allows you to sign your .jar files when you create a deployment package.
See “Preparing Dashboards for Deployment” on page 623.

If you are installing NoOpScenarioAuthority, you do not need to create a jar file as described above,
as this class is provided with your Apama installation and is included in an existing jar.

The EXTENSIONS.ini specifies the scenario authority to use. This file identifies all the user supplied
extension classes (including functions and commands). Here is a sample EXTENSIONS.ini:
function com.apama.dashboard.sample.SampleFunctionLibrary
command com.apama.dashboard.sample.SampleCommandLibrary
scenarioAuthority com.apama.dashboard.sample.SampleScenarioAuthority

This file installs a function library, a command library, and a Scenario authority.

If multiple authorities are specified, a user must be authorized by each.

Sample Custom Scenario Authority
You can find a sample implementation of IScenarioAuthority under
samples\dashboard_studio\tutorial\src:

668 Building and Using Apama Dashboards 10.11.2

24 Administering Dashboard Security

Send event authorization

By default, any user is authorized to send any event. However you can create a custom event
authority that determines whether a given user is authorized to send a given event. An event
authority is a Java class that implements the canSendmethod of the interface
com.apama.dashboard.security.IEventAuthority:
boolean canSend (IUserCredentials credentials, Event event);

If canSend() returns true the user is allowed to send the event. If it returns false the user is not
allowed to send the event and the attempt to send the event is treated as a command failure.
Dashboard object property settings determine if this error is displayed to the user.

Using UserCredential accessor methods

Your implementation of IEventAuthoritywill typically use the following public assessormethods
of com.apama.dashboard.security.UserCredentials:
public String getUsername()
public String getPassword()
public Subject getSubject()

Compiling your Event Authority

When you compile your implementation of IEventAuthority, be sure to put the following jar files
on your classpath:

ap-dashboard-client.jar

ap-client.jar

These jar files are in the lib directory of your Apama installation.

Installing your Event Authority

To install your authorization customization, do both of the following:

Replace com.apama.dashboard.security.NoOpEventAuthoritywith the fully qualified name of
your class in the file EXTENSIONS.ini, which is in the lib directory of your Apama installation.

create a jarfile that contains your IEventAuthority implementation, and place it in the directory
%APAMA_WORK%\dashboards_deploy\lib. If you have other custom classes (for example, a custom
login module — see “Developing custom login modules” on page 661), you can include them
in the same .jar file or in a different .jar file.

If your event authority has dependencies on other .jar files, add these .jar files to the manifest
of the event authority .jar file.

Software AG Designer allows you to sign your .jar files when you create a deployment package
— see “Preparing Dashboards for Deployment” on page 623.

Building and Using Apama Dashboards 10.11.2 669

24 Administering Dashboard Security

Two event authorities are provided with your installation:

com.apama.dashboard.security.NoOpEventAuthority: Permits all users to send any event.

com.apama.dashboard.security.DenyAllEventAuthority: Denies all users rights to send any
event.

NoOpEventAuthority is the default event authority. Use a custom event authority when deploying
your dashboards.

If you are installing DenyAllEventAuthority, you do not need to create a jar file as described above,
as this class is provided with your Apama installation and is included in an existing jar.

Here is a portion of EXTENSIONS.ini as shipped:
List of event authorities. An event authority is called to determine
if a user has rights to send an event to a correlator. Each must implement
the interface:
com.apama.dashboard.security.IEventAuthority
Multiple authorities can be specified. They will be called in the order
listed.
Format:
eventAuthority <classname>
NoOpEventAuthority - Allows all users to send events
eventAuthority com.apama.dashboard.security.NoOpEventAuthority
DenyAllEventAuthority - Allows no users to send events
#eventAuthority com.apama.dashboard.security.DenyAllEventAuthority
eventAuthority <your_class_name_here>

Providing a login module that supports an Event Authority
When you implement an EventAuthority, themethods that you implement have a UserCredentials
argument. Typical implementations retrieve an instance of javax.security.auth.Subject from
the UserCredentials object, and use the Subject's characteristics to determine whether to return
true or false (that is, whether to grant or deny access).

The characteristics of a particular Subject (for example its associated roles, as returned by
Subject.getPrinciples) are established by a JAAS login module that is called by the data server
or display server. It is this module's responsibility to establish those characteristics on which the
Event Authority will rely.

For local deployments, this login module is responsible for authenticating the current end user
(see “Authentication for local and application server deployments” on page 660) as well as for
setting the characteristics of the Subject. For web deployments, this login module is responsible
only for setting the characteristics of the Subject (since authentication is performed by application
server.

For both web and local deployments, the default data server and display server login module is
NoOpLoginModule, which does not set any characteristics of the Subject. With this module, the
Subject passed into IScenarioAuthoritymethods has no associated roles.

Typical implementations of LoginModule store the Subject passed into LoginModule.initialize
as local state, and set the Subject's characteristics in LoginModule.commit.

670 Building and Using Apama Dashboards 10.11.2

24 Administering Dashboard Security

Note that UserFileLoginModule supports Scenario Authorities by setting Subject roles at the time
of authentication. To use UserFileLoginModule in order to support Scenario Authorities for
web-based deployments (where authentication is performed by the application server), set
validateUser to falsewhen you install UserFileLoginModule; see “Installing
UserFileLoginModule” on page 663.

For web-based deployments, the data server and display server receive only user names (and not
passwords) from the application server. This means that you cannot use a JAAS loginmodule that
requires both user names and passwords in order to authenticate users and retrieve their roles.
To perform role based authorization for web-based deployments, use a JAAS login module that
can retrieve the roles for a user by using only the user name.

Securing communications
For local application deployments, where dashboards communicate directly with the data server,
your options for securing dashboard communications include:

Enabling secure sockets (SSL) in the data server.

Utilizing a secure channel (SSH) for all dashboard communication.

Utilizing a virtual public network (VPN) for all dashboard access.

For thin-client deployments, where dashboards communicate through an application server, your
options include the following:

Enabling HTTPS in the application server.

Utilizing a virtual public network (VPN) for all dashboard access.

As with all encryption technology, there is a cost in performing the encryption and decryption of
data. For applications with a very high frequency of data changes, you should account for this
cost when you determine how frequently a dashboard can be updated (see the description of the
-u or --update option).

Example: Implementing LoginModule
Below is a sample implementation of LoginModule, which you can find under
samples\dashboard_studio\tutorial\src. See “Authentication for local and application server
deployments” on page 660.
package com.apama.dashboard.sample;
import java.security.Principal;
import java.util.HashSet;
import java.util.Map;
import java.util.Set;
import javax.security.auth.Subject;
import javax.security.auth.callback.Callback;
import javax.security.auth.callback.CallbackHandler;
import javax.security.auth.callback.NameCallback;
import javax.security.auth.callback.PasswordCallback;
import javax.security.auth.callback.UnsupportedCallbackException;

Building and Using Apama Dashboards 10.11.2 671

24 Administering Dashboard Security

import javax.security.auth.login.FailedLoginException;
import javax.security.auth.login.LoginException;
import javax.security.auth.spi.LoginModule;
/**
* SampleLoginModule is an example of a custom JAAS login module for
* Dashboard Builder. Custom JAAS login modules allow you to extend Dashboard
* Builder to use the authentication mechanism of your choosing.
* <p>
* SampleLoginModule authenticates all users, regardless of username
* and password and adds the Principal "apama_customer" to each.
*
* $Copyright(c) 2013 Software AG, Darmstadt, Germany and/or its licensors$
*
*/
public class SampleLoginModule implements LoginModule {
// Option strings
private final static String OPT_DEBUG = "debug";
// Initial state
private Subject subject;
private CallbackHandler callbackHandler;
// True if debug logging turned on
private boolean debug = false;
// Authentication status
private boolean succeeded = false;
private boolean commitSucceeded = false;
// Username and password
private String username;
private char[] password;
/**
* Initialize this LoginModule.
*
* @param subject Subject to be authenticated
* @param callbackHandler CallbackHandler for communicating with the user to
* obtain username and password
* @param sharedState Shared LoginModule state
* @param options Options specified in the login Configuration for this
* LoginModule.
*/

public void initialize(
Subject subject, CallbackHandler callbackHandler, Map sharedState,
Map options) {
this.subject = subject;
this.callbackHandler = callbackHandler;
// Process options
debug = "true".equalsIgnoreCase((String) options.get(OPT_DEBUG));

// Add additional options and initialization here

// Must have a callback handler
if (callbackHandler == null) {

throw new IllegalArgumentException (
"Error. Callback handler must be specified.");

}
}
/**
* Authenticate the user by calling back for username and password.
*
* @return true in all cases
* @exception FailedLoginException if the authentication fails
* @exception LoginException if unable to perform the authentication

672 Building and Using Apama Dashboards 10.11.2

24 Administering Dashboard Security

*/
public boolean login() throws LoginException {

// Callback to get username and password
Callback[] callbacks = new Callback[2];
callbacks[0] = new NameCallback("username: ");
callbacks[1] = new PasswordCallback("password: ", false);
try {

// Perform the callbacks
callbackHandler.handle(callbacks);

// Get the user supplied name and password
username = ((NameCallback) callbacks[0]).getName();
password = ((PasswordCallback) callbacks[1]).getPassword();
if (password == null) {

// Treat a NULL password as an empty password
password = new char[0];

}

// Clear password
((PasswordCallback) callbacks[1]).clearPassword();

} catch (java.io.IOException e) {
throw new LoginException("UserFileLoginModule. Error performing
callbacks. " +

e.toString());
} catch (UnsupportedCallbackException e) {

throw new LoginException("UserFileLoginModule. Error performing
callbacks " +

e.getCallback().toString() + ".");
}
// verify the username/password
if (validateUser()) {

if (debug) {
System.err.println("UserFileLoginModule.
User authenticated: " + username);

}
succeeded = true;
return true;

} else {
if (debug) {

System.err.println("UserFileLoginModule. User authentication failed: " +
username);

}
succeeded = false;
clearState();
throw new FailedLoginException("UserFileLoginModule. Login failed.");

}
}
/**
* Called if the LoginContext's overall authentication succeeded
* (the relevant REQUIRED, REQUISITE, SUFFICIENT and OPTIONAL
* LoginModules succeeded).
* <p>
* Add the user's principals (roles) to the Subject
*
* @exception LoginException Commit failed
* @return true if commit attempts succeeded; false otherwise.
*/

public boolean commit() throws LoginException {
if (succeeded == false) {

return false;

Building and Using Apama Dashboards 10.11.2 673

24 Administering Dashboard Security

} else {

// Get the users roles from the user database and add each as a
// SimplePrincipal
subject.getPrincipals().addAll(getUserPrincipals());
clearState();
commitSucceeded = true;
return true;

}
}
/**
* Called if the LoginContext's overall authentication
* failed. (the relevant REQUIRED, REQUISITE, SUFFICIENT and OPTIONAL
* LoginModules did not succeed).
* <p>
* Cleans state information.
*
* @exception LoginException Abort failed
* @return true if abort successfule; false otherwise
*/

public boolean abort() throws LoginException {
if (succeeded == false) {

return false;
} else if (succeeded == true && commitSucceeded == false) {

// login succeeded but overall authentication failed
succeeded = false;
clearState();

} else {
// overall authentication succeeded and commit succeeded,
// but another LoginModule's commit failed
logout();

}
return true;

}
/**
* Logout the user.
*
* @return true in all cases
* @exception LoginException Logout failed
*/

public boolean logout() throws LoginException {
succeeded = false;
succeeded = commitSucceeded;
clearState();
return true;

}
/**
* Clear out temporary state used in a single login attempt.
*/

private void clearState () {
username = null;
if (password != null) {

for (int i = 0; i < password.length; i++)
password[i] = ' ';

password = null;
}

}
/**
* Validate current username/password pair.
*

674 Building and Using Apama Dashboards 10.11.2

24 Administering Dashboard Security

* @return true if validated.
*/

private boolean validateUser () {

//
// Add user validation here.
//
System.out.println("Validate username: " + username + " password: " +

new String(password));
return true;

}

/**
* Get the principals (roles) for the current username.
*
* @return Set of Principals
*/

private Set<Principal> getUserPrincipals () {
HashSet<Principal> set = new HashSet<Principal>();
//
// Add user principals here.
//

System.out.println("Add principal username: " + username +
" principal: apama_customer");

set.add (new SamplePrincipal("apama_customer"));
return set;

}
}package com.apama.dashboard.sample;
import java.security.Principal;
/**
* SamplePrincipal is an example of a Java security principal (role) for
* use with JAAS authentication.
* <p>
* SamplePrincipal provides a simple string based principal.
*
* $Copyright(c) 2013 Software AG, Darmstadt, Germany and/or its licensors$
*
*/

public class SamplePrincipal implements Principal {
// Principal name
private String name;
/**
* Constructor.
*
* @param name Principal name
*/

public SamplePrincipal(String name) {
this.name = name;

}
/**
* Get the name of the principal.
*/

public String getName() {
return name;

}
}

Building and Using Apama Dashboards 10.11.2 675

24 Administering Dashboard Security

676 Building and Using Apama Dashboards 10.11.2

24 Administering Dashboard Security

V Using the Dashboard Viewer

25 Concepts Underlying Dashboards .. 679

26 Using the Dashboard Viewer .. 683

27 Startup Options for the Dashboard Viewer ... 689

28 Time Zone ID Values .. 695

Building and Using Apama Dashboards 10.11.2 677

678 Building and Using Apama Dashboards 10.11.2

V Using the Dashboard Viewer

25 Concepts Underlying Dashboards

■ About Dashboards .. 680

■ Starting the Dashboard Viewer ... 681

■ DataView item ownership ... 681

Building and Using Apama Dashboards 10.11.2 679

This part describes how to use the Apama Dashboard Viewer, which is the runtime viewer for
local deployments of Apama dashboards. It provides the ability to view and interact with
dashboards that are receiving live data from an Apama dashboard server. Dashboard servers
serve dashboards for applications running in Apama correlators.

It is assumed that you have already installed the Dashboard Viewer. “Using the Dashboard
Viewer” on page 683 describes how to use the various visualization objects that are included in
dashboards. “Startup Options for the Dashboard Viewer” on page 689 provides advanced
information on starting the Dashboard Viewer.

About Dashboards
Dashboards provide the ability to view and interact with applications running in a correlator.
Dashboards contain charts and other objects that allow you to visualize the status, performance,
and attributes of Apama applications including any DataViews. Dashboards can also contain
control objects for creating, editing, and deleting instances, as well as for sending events to a
correlator.

Dashboard displays are stored in .rtv files. A dashboard project includes .rtv, image, and audio
files. A dashboard project is deployed in a single directory with one or more subdirectories
containing the files of the project. To use a dashboard, the Dashboard Viewer must have access to
all the files in the associated dashboard-project directory.

Deployed dashboards connect to a dashboard data server, which in turn connects to one or more
correlators. The dashboard data server is the middle-tier between users and the correlator. It
provides for both scalability and security. As the DataViews in a correlator run, and their variables
or fields change, update events are sent to dashboard data servers, which in turn send the data to
all connected dashboards. When a dashboard receives an update event, it updates its display in
real time to show the behavior of the application. User interactions with the dashboard, such as
creating an instance, result in control events being sent via the data server to the correlator.

The following diagram illustrates the runtime deployment of dashboards:

680 Building and Using Apama Dashboards 10.11.2

25 Concepts Underlying Dashboards

Starting the Dashboard Viewer
The simplest way to start the Dashboard Viewer is from the Windows Start menu. Select All
Programs > Software AG > Tools > Apama n.n > Apama Dashboard Viewer n.n.

When you start the Viewer, the data server login prompt appears.

By default, you can log in with any user name and password, but your user name must match the
owner of any DataView items that you want to view. Your dashboard administrator might have
implemented a non-default authentication and authorization scheme.

The recommended deployment for the Dashboard Viewer is through a dashboard data server.
TheConnect directly to correlator checkbox allows you to connect directly to a correlatorwithout
the use of a data server. This is not recommended for live deployments, as it is not secure and not
as scalable as connections via the data server.

If all attachments and commands use named data servers, you can check the Only using named
data server connections check box and omit specification of a default server.

The Dashboard Viewer can also be started by running the dashboard_viewer executable, located
in the Apama bin directory. This method of starting the viewer is useful when passing start-up
options on the command line. The start-up options supported by Dashboard Viewer are detailed
in “Startup Options for the Dashboard Viewer” on page 689.

DataView item ownership
The DataView items in a correlator include an attribute identifying the owner of the instance.
When an instance is created through Dashboard Builder, it provides the current user ID as the
owner of the instance.

Building and Using Apama Dashboards 10.11.2 681

25 Concepts Underlying Dashboards

When viewing DataView items in Dashboard Builder, you are by default only allowed to see and
operate on those instances or items that you own; that is, by default the current user IDmustmatch
the owner attribute of the instance or item. Your dashboard administratormight have implemented
a non-default authorization scheme.

682 Building and Using Apama Dashboards 10.11.2

25 Concepts Underlying Dashboards

26 Using the Dashboard Viewer

■ Opening and viewing dashboards .. 684

■ The Dashboard Viewer menu bar ... 685

■ Resizing the Dashboard Viewer ... 686

■ Working with Dashboard Objects ... 687

Building and Using Apama Dashboards 10.11.2 683

“Concepts Underlying Dashboards” on page 679 introduces the important concepts underlying
the Dashboard Viewer, and describes how to start the Viewer. This chapter illustrates how to use
the Dashboard Viewer.

By default, no dashboard is displayed. This chapter describes how to open and work with
dashboards.

Opening and viewing dashboards
The Dashboard Viewer main window can open and display one dashboard at a time.

To open a dashboard, select File > Open from the Viewer menu and select the .rtv file you want
to open.

Running the Statistical Arbitrage demo
The examples in this chapter use the Statistical Arbitrage demo dashboard. Although it is not
necessary to run the Statistical Arbitrage demo, you may find it useful to do so.

You can run the Statistical Arbitrage demo as follows:

1. Start Software AG Designer.

2. From the Help menu, choose Welcome.

3. Under the Apama heading, click Demos.

4. Select the Statistical Arbitrage demo.

5. Click the Open button.

6. Click the play button in the Launch Control Panel.

Once you have launched the Statistical Arbitrage demo, a Statistical Arbitrage dashboard appears
automatically (the dashboard to display was passed by Software AG Designer when the demo
was launched).

Displaying additional dashboards
A dashboard project can consist of more than one dashboard. In many cases, each dashboard is
displayed one at a time, in the Dashboard Viewermain window. In other cases, separate windows
are created to display additional dashboards.

Displaying dashboards in separate windows is common for dashboards that are used to create or
edit instances. For example, to see the separate dashboard used to create instances in the Statistical
Arbitrage demo, click the Create button in the Statistical Arbitrage dashboard. This displays a
separate dashboard in a new window.

684 Building and Using Apama Dashboards 10.11.2

26 Using the Dashboard Viewer

Anydashboard can be designed to display other dashboards in separatewindows. The dashboards
may even be nested; for example, theCreatewindow in the Statistical Arbitrage demo could itself
have been designed to display additionalwindows.Windowusage is specifiedwhen the dashboard
project is created in the Dashboard Builder.

Creating instances visualized by the Statistical Arbitrage main
dashboard

The Create dashboard in the Statistical Arbitrage dashboard project is subordinate to the main
dashboard; it is intended to be accessed only from the main dashboard. Although it is possible to
open the Create dashboard directly in Dashboard Viewer main window, you should not do so.
Subordinate dashboards are typically dependent on context created by the parent dashboard and
should only be accessed as intended by the creator of the dashboard project.

To create instances that are visualized by the Statistical Arbitrage main dashboard

1. Accept the defaults and click the Create button in the Create dashboard.

2. Click the Create button in the main dashboard again.

3. Enter MSFT in the Instrument1 field and ORCL in the instrument2 field.

4. Click on a row of the Summary of All Strategies table in the main dashboard.

The data used for charting is stored in the Dashboard Viewer. As the Viewer runs, it accumulates
historical data for display in charts. If you exit and restart the Dashboard Viewer, previously
displayed historical data is not available.

The Dashboard Viewer menu bar
There are four menus on the menu bar. Each has a number of nested menu options.

DescriptionMenu > Command

All operations related to opening, printing, and closing dashboardsFile

Open a dashboard.File > Open

Print the contents of a dashboard.File > Print

Exit the Dashboard Viewer.File > Exit

All operations that manipulate the dashboard view.View

Zoom in on a location in the dashboard. This switches the pointer
to zoom mode, as indicated by the pointer changing to a

View > Zoom In

crosshair (). In thismode, you can click on an area of the dashboard

Building and Using Apama Dashboards 10.11.2 685

26 Using the Dashboard Viewer

DescriptionMenu > Command

to zoom in on it and display it in greater detail. Right click to exit
zoom mode.

Zoom out on a location in the dashboard. This switches the pointer
to zoom mode, as indicated by the pointer changing to a

View > Zoom Out

crosshair (). In thismode you can click on an area of the dashboard
to zoomout on it and display it in less detail. Right click to exit zoom
mode.

Zoom in on an area of the dashboard. This switches the pointer to

zoommode, as indicated by the pointer changing to a crosshair ().
View > Zoom Rect

In thismode you can click and drag to select an area of the dashboard
to zoom in on. Right click to exit zoom mode.

Pan the dashboard to show areas not currently displayed. This
switches the pointer to pan mode, as indicated by the pointer

View > Pan

changing to the pan pointer (). In this mode you can click and
drag the dashboard to reveal areas not displayed. Right click to exit
pan mode. It is not possible to pan if 100% of the dashboard view is
visible.

Make the entire dashboard visible.View > 100%

Change preferencesTools

Pause the automatic updating of the dashboard. When not paused
the dashboard automatically updates as data changes; when paused,

Tools> Pause Display

updating does not occur. When paused, clicking on the dashboard
will cause it to update.

Displays the Apama documentation for your installation.Help > Help Contents

Displays a list of the Viewer options that you can supply at the
command line.

Help > Command Line
Options

Displays information about this version of the Dashboard Viewer.Help > About

Resizing the Dashboard Viewer
When a dashboard is created in the Dashboard Builder, the Builder specifies a width and height
for the dashboard. You can resize Dashboard Viewer windows, but the aspect ratio of width to
height cannot be altered. If you resize a window to a different aspect ratio, the window size will
automatically be adjusted in order to maintain the aspect ratio specified in the Builder.

When you resize a Dashboard Viewerwindow, the objects within it are scaled in order tomaintain
their size relative to the size of the window. Scaling allows dashboards to be enlarged in order to

686 Building and Using Apama Dashboards 10.11.2

26 Using the Dashboard Viewer

allow greater detail to be displayed, or reduced so that the dashboard occupies a smaller area of
the screen.

When a dashboard Window is reduced in size, objects such as charts will scale all their visual
elements in order to maintain proper appearance at the new size. Other objects, such as tables and
input controls, adjust their width and height but may not scale all their visual elements, such as
fonts in table column headers.

Working with Dashboard Objects
Many of the objects displayed in a dashboard are familiar user interface controls. Their operations
will not be covered in this guide. The topics below briefly introduce some of the objects that may
not be familiar and that are used for the visualization of complex data.

Trend charts
Trend charts provide the ability to view the performance of one or more DataViews items over
time.

If enabled in the Dashboard Builder, trend charts support the ability to zoom in on an area of the
chart. To zoom in on an area of a trend chart, click on the chart and drag the pointer to draw a box
around the area to be zoomed.

To zoom out of a chart, hold down the Shift key while clicking on the chart.

If enabled in theDashboard Builder, trend charts support scrolling to viewhistorical values outside
the scope of what fits in the trend chart window. Use the horizontal scroll bar to view older values.

The number of values stored in historical data is limited. The limit is defined in the OPTIONS.ini
file and can be overridden at startup by specifying options as detailed in “Startup Options for the
Dashboard Viewer” on page 689.

Building and Using Apama Dashboards 10.11.2 687

26 Using the Dashboard Viewer

When the maximum number of values is reached, the Dashboard Viewer begins to remove the
oldest values in order to make room for the newest values. When the maximum number of values
is reached, you see the oldest values being removed from the end of the trend chart.

Stock charts
Stock charts provide the ability to view open, high, low, and close values, at a specified time
interval, for a field of a DataView item. Stock charts support the same zooming, scrolling, and
maximum-number-of-values behavior as trend charts.

Tables
Tables provide the ability to view variable or field values for multiple DataView items. They are
often used for summary displays of DataView items.

Dashboard tables support many common table operations, such as sorting, column resizing, and
column ordering. If enabled in the Builder, a table may also support drilldown to display detailed
information about a DataView item. To drilldown on an instance or item that is displayed in a
table, click on it.

Pie and Bar charts
Pie and bar charts are typically used to display summary information about one ormore instances.

If enabled in the Builder, a pie or bar chart may also support drilldown to display detailed
information about an instance. To drill down on an instance or item that is displayed in a pie or
bar chart, click on it.

688 Building and Using Apama Dashboards 10.11.2

26 Using the Dashboard Viewer

27 Startup Options for the Dashboard Viewer

The Dashboard Viewer supports options that can be specified on the start-up command line to
override the default values used by the viewer. The executable for the Dashboard Viewer is
dashboard_viewer, which can be found in the bin directory of the Apama installation.

Synopsis

To pass start-up options to the Dashboard Viewer, run the following command:
dashboard_viewer [options] [rtv-file-path]

When you run this command with the -h option, the usage message for this command is shown.

Options

The dashboard_viewer executable takes the following options:

DescriptionOption

Specifies the panels-initialization file to use for displaying this
dashboard. file is the full pathname of the .ini file.

-C file | --panelConfig file

Sets the correlator host andport for a specified logical correlator
name. bool is one of true and false, and specifies whether to

-c logical-name:host:port:bool
| --correlator
logical-name:host:port:bool use the raw channel for communication. This overrides the

host, port, and raw-channel setting specified by theDashboard
Builder for the given correlator logical name; see “Changing
correlator definitions for deployment” on page 625. You can
specify connection details formultiple correlators by using the
optionmultiple times in a single command.Here is an example:

-c default:localhost:15903:false –c
work1:somehost:19999:true

These options set the host and port for the logical names
default and work1.

Suppress the check box in the login dialog that allows a direct
connection to the correlator.

-D | --nodirect

Building and Using Apama Dashboards 10.11.2 689

DescriptionOption

Connect directly to the correlator.-d | --direct

Specifies whether to purge all trend data when an instance is
edited. bool is one of true and false. If this option is not

-E bool | --purgeOnEdit bool

specified, all trend data is purged when an instance is edited.
In most cases, this is the desired mode of operation.

Exclude instanceswhich are not owned by the user. This option
applies to all dashboard processes. Default is false for builder
and true for the other dashboard processes.

-F arg | --filterInstance arg

Exception: when the Dashboard Viewer is connecting to a
dashboard server, the default is true and cannot be overridden.

Full pathname of the file in which to record logging. If this
option is not specified, the options in the log4j properties file

-f file | --logfile file

are used. See also "Text internationalization in the logs" in
Deploying and Managing Apama Applications.

Trend configuration file for controlling trend-data caching.-G file | --trendConfigFile file

Emit usage information and then exit.-h | --help

Redirect XML sources through data server.-I | --xmlRedirect

Full pathname of the JAAS initialization file to be used by the
data server. If not specified, the data server uses the file
JAAS.ini in the lib directory of your Apama installation.

-J file | --jaasFile file

Single click for drill down and actions.-j | --singleClick

Double click for drill down and actions.-k | --doubleClick

XML data source file. If file contains static data, append :0
to the file name. This signals Apama to read the file only once.

-L file | --xmlSource file

Correlator-connect mode. mode is one of always and asNeeded.
If always is specified, all correlators are connected to at startup.

-m mode | --connectMode mode

If asNeeded is specified, correlators are connected as needed.
If this option is not specified, the data server connects to
correlators as needed

When --connectMode always is specified, trend data starts
collecting upon correlator connection. When --connectMode
asNeeded is in effect, trend data starts collecting after you select
an attachment to the trend table in the Dashboard Viewer.

Set the component name for identification in the correlator.
The default name is Dashboard Viewer: username.

-N name | --name name

690 Building and Using Apama Dashboards 10.11.2

27 Startup Options for the Dashboard Viewer

DescriptionOption

Sets the host and port for a specified logical data server name.
This overrides the host and port specified by the Dashboard

-B logical-name:host:port |
--namedServer
logical-name:host:port Builder for the given server logical name. This option can occur

multiple times in a single command.

Do not display splash screen in startup.-n | --noSplash

Do not display menu bar.-e | --noMenus

Use the specified OPTIONS.ini file at startup.-O file | --optionsFile file

Maximumnumber of decimal places to use in numerical values
displayed by dashboards. Specify values between 0 and 10, or

-P n | --maxPrecision n

-1 to disable truncation of decimal places. A typical value for
n is 2 or 4, which eliminates long floating point values (for
example, 2.2584435234). Truncation is disabled by default.

Configures SQLData Source access. options has the following
form:

-q options | --sql options

[retry:ms | fail:n | db:name |
noinfo | nopererr | quote]

retry: Specify the interval (inmilliseconds) to retry connecting
to a database after an attempt to connect fails. Default is -1,
which disables this feature.

fail: Specify the number of consecutive failed SQL queries
after which to close this database connection and attempt to
reconnect. Default is -1, which disables this feature.

db: Specify the logical name of the database as specified in the
builder's SQL options.

noinfo: Query database for available tables and columns in
your database. If a Database Repository file is found, it is used
to populate drop down menus in the Attach to SQL Data
dialog.

nopererr: SQL errors with theword “permission” in themwill
not be printed to the console. This is helpful if you have selected
the Use Client Credentials option for a database. In this case,
if your login does not allow access for some data in their
display, you will not see any errors.

quote: Encloses all table and column names specified in the
Attach to SQL Data dialog in quotes when an SQL query is
run. This is useful when attaching to databases that support
quoted case-sensitive table and column names. If a
case-sensitive table or column name is used in the Filter field,

Building and Using Apama Dashboards 10.11.2 691

27 Startup Options for the Dashboard Viewer

DescriptionOption

or you are entering an advanced query in theSQL Queryfield,
they must be entered in quotes, even if the -sqlquote option
is specified.

Specifieswhether to purge all DataViewdatawhen an instance
or item is removed. bool is one of true and false. If this option

-R bool | --purgeOnRemove bool

is not specified, all DataView data is purged when an instance
or item is removed.

Specifies a value to substitute for a given dashboard variable.
This can be used to parameterize a dashboard at startup. This

-S variable:value | --sub
variable:value

option can occur multiple times in a single command. For
example:

-S $foo:hello -S $bar:can't -S $tom:"my oh my" -S
$jerry:"\"yikes\""

If the value contains a space, enclose the value in double quotes.
If the value contains a double quote, you must escape it by
using a backslash character (\).

Specifies the data server host and port that will appear as the
defaults in the Data Server Login dialog. The host and port

-s host:port[:modifiable] |
--dashboardServer
host:port[:modifiable] fields of the dialog will be modifiable only if you specify

modifiable. If you do not specify modifiable, the host and port
fieldswill be greyed out. If you use the -s option, theConnect
directly to correlator check box will not appear in the Data
Server Login dialog. The -s option overrides the -d option.

Maximumdepth for trend data, that is, the maximum number
of events in trend tables. If this option is not specified, the

-T depth | --maxTrend depth

maximum trend depth is 1000. Note that the higher you set
this value, the more memory the data server requires, and the
more time it requires in order to display trend and stock charts.

Text for the title bar of the Dashboard Viewer main window.-t value | --title value

Data update rate in milliseconds. This is the rate at which the
data server pushes new data to deployed dashboards in order

-u rate | --updateRate rate

to inform them of new events received from the correlator.
rate should be no lower than 250. If the Dashboard Viewer is
utilizing too much CPU, you can lower the update rate by
specifying a higher value. If this option is not specified, an
update rate of 500 milliseconds is used.

Emit program name and version number and then exit.-V | --version

692 Building and Using Apama Dashboards 10.11.2

27 Startup Options for the Dashboard Viewer

DescriptionOption

Logging verbosity. level is one of FATAL, ERROR, WARN, INFO, DEBUG,
and TRACE. If this option is not specified, the options in the log4j
properties file will be used.

-v | --loglevel level

Bydefault, theDashboardViewerwill display awarning dialog
when the connection to a correlator is lost. Specify false to
disable the display of this dialog.

-w bool | --disconnectWarning
bool

Full pathname of the JAAS initialization file to be used by the
data server. If not specified, the data server uses the file
EXTENSIONS.ini in the libdirectory of yourApama installation.

-X file | --extensionFile file

Add an index for the specified SQL-based instance table with
the specified compound key. table-name is the name of a

-x table-name:key-list |
--queryIndex
table-name:key-list DataView. key-list is a comma-separated list of variable names

or field names. If the specified DataView exists in multiple
correlators that are connected to the dashboard server, the
index is added to each corresponding data table. Example:
--queryIndex DV_StatisticalArbitrage:Id

You can only add one index per table, but you can specify this
option multiple times in a single command line in order to
index multiple tables. Use this option only when you connect
the viewer directly to a correlator.

Make SQL-based instance tables available as data tables for
visualization attachments. See “Attaching Dashboards to

-Y | --enhancedQuery

Correlator Data” on page 47. Use this option only when you
connect the viewer directly to a correlator.

Default time zone for interpreting and displaying dates. zone
is either a Java time zone ID or a custom ID such as GMT-8:00.

-z zone | --timezone zone

Unrecognized IDs are treated as GMT. See “Time Zone ID
Values” on page 695 for the complete listing of permissible
values for zone.

Set inclusion filters. This option can occur multiple times in a
single command.

--inclusionFilter val

Set exclusion filters. This option can occur multiple times in a
single command.

--exclusionFilter val

Building and Using Apama Dashboards 10.11.2 693

27 Startup Options for the Dashboard Viewer

694 Building and Using Apama Dashboards 10.11.2

27 Startup Options for the Dashboard Viewer

28 Time Zone ID Values

The following table lists the time zone ID values used when manually starting the Dashboard
Viewer as described in “Startup Options for the Dashboard Viewer” on page 689.

Africa/Khartoum
Africa/Mogadishu

PRT SystemV/AST4
SystemV/AST4ADT

Etc/GMT+12 Etc/GMT+11 MIT
Pacific/Apia Pacific/Midway

Africa/NairobiAmerica/St_Johns CNTPacific/Niue Pacific/Pago_Pago
Antarctica/Syowa Asia/AdenCanada/Newfoundland AGTPacific/Samoa US/Samoa
Asia/Baghdad Asia/BahrainAmerica/AraguainaAmerica/Adak America/Atka
Asia/Kuwait Asia/QatarAmerica/BelemEtc/GMT+10 HST
Asia/Riyadh EAT Etc/GMT-3America/Buenos_AiresPacific/Fakaofo
Europe/MoscowAmerica/CatamarcaPacific/Honolulu

Pacific/Johnston Indian/Antananarivo
Indian/Comoro
Indian/Mayotte

America/Cayenne
America/Cordoba
America/Fortaleza
America/Godthab
America/Jujuy

W-SU Asia/Riyadh87
Asia/Riyadh88 Asia/Riyadh89

America/Maceio
America/Mendoza

Pacific/Rarotonga Pacific/Tahiti
SystemV/HST10 US/Aleutian

Mideast/Riyadh87America/MiquelonUS/Hawaii Pacific/Marquesas
Mideast/Riyadh88America/MontevideoAST America/Anchorage
Mideast/Riyadh89 Asia/TehranAmerica/ParamariboAmerica/Juneau
Iran Asia/Aqtau Asia/BakuAmerica/RecifeAmerica/Nome
Asia/Dubai Asia/MuscatAmerica/RosarioAmerica/Yakutat Etc/GMT+9
Asia/Oral Asia/Tbilisi
Asia/Yerevan Etc/GMT-4

America/Sao_Paulo
Antarctica/Rothera BET
Brazil/East Etc/GMT+3

Pacific/Gambier SystemV/YST9
SystemV/YST9YDT US/Alaska
America/Dawson

America/Noronha
Atlantic/South_Georgia
Brazil/DeNoronha Etc/GMT+2
America/Scoresbysund

Europe/Samara Indian/Mahe
Indian/Mauritius

Atlantic/Azores
Atlantic/Cape_Verde

America/Ensenada
America/Los_Angeles

Indian/Reunion NETEtc/GMT+1 Africa/AbidjanAmerica/Tijuana
Asia/Kabul Asia/AqtobeAfrica/Accra Africa/BamakoAmerica/Vancouver
Asia/AshgabatAfrica/Banjul Africa/BissauAmerica/Whitehorse

Building and Using Apama Dashboards 10.11.2 695

Canada/Pacific Canada/Yukon
Etc/GMT+8 Mexico/BajaNorte

Asia/Ashkhabad Asia/Bishkek
Asia/Dushanbe Asia/Karachi

Africa/Casablanca
Africa/Conakry Africa/Dakar

PST PST8PDT Pacific/Pitcairn Asia/SamarkandAfrica/El_Aaiun
SystemV/PST8 Asia/TashkentAfrica/Freetown Africa/Lome
SystemV/PST8PDT US/Pacific Asia/Yekaterinburg Etc/GMT-5Africa/Monrovia
US/Pacific-New America/Boise Indian/KerguelenAfrica/Nouakchott
America/Cambridge_Bay Indian/Maldives PLTAfrica/Ouagadougou
America/Chihuahua Asia/Calcutta ISTAfrica/Sao_Tome
America/Dawson_Creek Asia/KatmanduAfrica/Timbuktu
America/Denver Antarctica/MawsonAmerica/Danmarkshavn
America/Edmonton Antarctica/Vostok Asia/AlmatyAtlantic/Canary
America/Hermosillo Asia/Colombo Asia/DaccaAtlantic/Faeroe
America/Inuvik Asia/Dhaka Asia/NovosibirskAtlantic/Madeira
America/Mazatlan Asia/Omsk Asia/QyzylordaAtlantic/Reykjavik
America/Phoenix Asia/Thimbu Asia/ThimphuAtlantic/St_Helena Eire
America/Shiprock BST Etc/GMT-6 Indian/ChagosEtc/GMT Etc/GMT+0
America/Yellowknife Asia/Rangoon Indian/CocosEtc/GMT-0 Etc/GMT0
Canada/Mountain Etc/GMT+7 Antarctica/Davis Asia/BangkokEtc/Greenwich Etc/UCT
MST MST7MDT Asia/Hovd Asia/JakartaEtc/UTC Etc/Universal
Mexico/BajaSur Navajo PNT Asia/KrasnoyarskEtc/Zulu Europe/Belfast
SystemV/MST7 Asia/Phnom_PenhEurope/Dublin Europe/Lisbon
SystemV/MST7MDT Asia/Pontianak Asia/Saigon

Asia/Vientiane Etc/GMT-7
Europe/London GB GB-Eire
GMT GMT0 Greenwich
Iceland Portugal UCT UTC

US/Arizona US/Mountain
America/Belize
America/Cancun
America/Chicago
America/Costa_Rica
America/El_Salvador
America/Guatemala
America/Managua
America/Menominee
America/Monterrey

Indian/Christmas VST
Antarctica/Casey Asia/Brunei

Universal WET Zulu
Africa/Algiers Africa/Bangui

America/Merida
America/Mexico_City

Asia/ChongqingAfrica/Brazzaville Africa/CeutaAmerica/North_Dakota/Center
Asia/Chungking Asia/HarbinAfrica/Douala Africa/KinshasaAmerica/Rainy_River
Asia/Hong_Kong Asia/IrkutskAfrica/Lagos Africa/LibrevilleAmerica/Rankin_Inlet
Asia/KashgarAfrica/Luanda Africa/MalaboAmerica/Regina
Asia/Kuala_LumpurAfrica/NdjamenaAmerica/Swift_Current
Asia/Kuching Asia/MacaoAfrica/NiameyAmerica/Tegucigalpa
Asia/Macau Asia/MakassarAfrica/Porto-NovoAmerica/Winnipeg CST
Asia/Manila Asia/ShanghaiAfrica/Tunis Africa/WindhoekCST6CDT Canada/Central
Asia/Singapore Asia/TaipeiArctic/LongyearbyenCanada/East-Saskatchewan
Asia/Ujung_PandangAtlantic/Jan_Mayen CET ECTCanada/Saskatchewan
Asia/UlaanbaatarEtc/GMT-1 Europe/AmsterdamChile/EasterIsland Etc/GMT+6
Asia/Ulan_Bator Asia/UrumqiEurope/AndorraMexico/General Pacific/Easter
Australia/Perth Australia/WestEurope/Belgrade Europe/BerlinPacific/Galapagos

696 Building and Using Apama Dashboards 10.11.2

28 Time Zone ID Values

SystemV/CST6
SystemV/CST6CDT US/Central

CTT Etc/GMT-8 Hongkong
PRC Singapore

Europe/Bratislava
Europe/Brussels

America/Bogota Asia/Choibalsan Asia/DiliEurope/Budapest
America/Cayman Asia/Jayapura Asia/PyongyangEurope/Copenhagen
America/Detroit Asia/Seoul Asia/TokyoEurope/Gibraltar
America/Eirunepe Asia/Yakutsk Etc/GMT-9 JSTEurope/Ljubljana
America/Fort_Wayne Japan Pacific/Palau ROK ACTEurope/Luxembourg
America/Grand_Turk Australia/AdelaideEurope/Madrid Europe/Malta
America/Guayaquil Australia/Broken_HillEurope/Monaco Europe/Oslo
America/Havana Australia/Darwin

Australia/North
Europe/Paris Europe/Prague
Europe/Rome
Europe/San_Marino

America/Indiana/Indianapolis
America/Indiana/Knox

Europe/SarajevoAmerica/Indiana/Marengo
Europe/SkopjeAmerica/Indiana/Vevay
Europe/Stockholm
Europe/Tirane Europe/Vaduz

America/Indianapolis
America/Iqaluit
America/Jamaica
America/Kentucky/Louisville
America/Kentucky/Monticello
America/Knox_IN
America/Lima
America/Louisville
America/Montreal
America/Nassau
America/New_York
America/Nipigon
America/Panama

Australia/South
Australia/Yancowinna AET

Europe/Vatican Europe/Vienna
Europe/Warsaw

America/Pangnirtung
America/Port-au-Prince

Antarctica/DumontDUrvilleEurope/Zagreb Europe/ZurichAmerica/Porto_Acre
Asia/SakhalinMET Poland ARTAmerica/Rio_Branco
Asia/VladivostokAfrica/BlantyreAmerica/Thunder_Bay
Australia/ACTAfrica/Bujumbura Africa/CairoBrazil/Acre Canada/Eastern
Australia/BrisbaneAfrica/Gaborone Africa/HarareCuba EST EST5EDT
Australia/CanberraAfrica/JohannesburgEtc/GMT+5 IET Jamaica
Australia/HobartAfrica/KigaliSystemV/EST5
Australia/LindemanAfrica/LubumbashiSystemV/EST5EDT
Australia/MelbourneAfrica/Lusaka Africa/MaputoUS/East-Indiana US/Eastern
Australia/NSWAfrica/Maseru Africa/MbabaneUS/Indiana-Starke
Australia/QueenslandAfrica/Tripoli Asia/AmmanUS/Michigan
Australia/SydneyAsia/Beirut Asia/DamascusAmerica/Anguilla
Australia/TasmaniaAsia/Gaza Asia/IstanbulAmerica/Antigua
Australia/Victoria Etc/GMT-10Asia/Jerusalem Asia/NicosiaAmerica/Aruba
Pacific/GuamAsia/Tel_Aviv CAT EETAmerica/Asuncion
Pacific/Port_MoresbyEgypt Etc/GMT-2America/Barbados
Pacific/Saipan Pacific/TrukEurope/AthensAmerica/Boa_Vista
Pacific/Yap Australia/LHIEurope/BucharestAmerica/Caracas

Building and Using Apama Dashboards 10.11.2 697

28 Time Zone ID Values

America/Cuiaba
America/Curacao

Australia/Lord_Howe
Asia/Magadan Etc/GMT-11

Europe/Chisinau
Europe/Helsinki

America/Dominica Pacific/EfateEurope/Istanbul
America/Glace_Bay Pacific/GuadalcanalEurope/Kaliningrad
America/Goose_Bay Pacific/Kosrae Pacific/NoumeaEurope/Kiev Europe/Minsk
America/Grenada Pacific/Ponape SSTEurope/Nicosia Europe/Riga
America/Guadeloupe Pacific/NorfolkEurope/Simferopol
America/Guyana Antarctica/McMurdoEurope/Sofia Europe/Tallinn
America/Halifax Antarctica/South_PoleEurope/Tiraspol

Europe/UzhgorodAmerica/La_Paz
America/Manaus

Asia/Anadyr Asia/Kamchatka
Etc/GMT-12 Kwajalein NST

America/Martinique NZ Pacific/Auckland
America/Montserrat Pacific/Fiji Pacific/Funafuti
America/Port_of_Spain Pacific/Kwajalein

Pacific/Majuro Pacific/NauruAmerica/Porto_Velho
America/Puerto_Rico
America/Santiago
America/Santo_Domingo
America/St_Kitts
America/St_Lucia
America/St_Thomas
America/St_Vincent

Pacific/Tarawa Pacific/Wake
Pacific/Wallis NZ-CHAT

Europe/Vilnius
Europe/Zaporozhye Israel

America/Thule
America/Tortola

Pacific/Chatham Etc/GMT-13Libya TurkeyAmerica/Virgin
Pacific/EnderburyAfrica/Addis_AbabaAntarctica/Palmer
Pacific/Tongatapu Etc/GMT-14
Pacific/Kiritimati

Africa/Asmera
Africa/Dar_es_Salaam
Africa/Djibouti
Africa/Kampala

Atlantic/Bermuda
Atlantic/Stanley Brazil/West
Canada/Atlantic
Chile/Continental Etc/GMT+4

698 Building and Using Apama Dashboards 10.11.2

28 Time Zone ID Values

	Table of Contents
	About this Guide
	Documentation roadmap
	Online Information and Support
	Data Protection

	I Building Dashboard Clients
	1 Introduction to Building Dashboard Clients
	Web client requirements
	About dashboards
	Starting the Dashboard Builder
	Scenario instance ownership
	Using the tutorial application

	2 Using Dashboard Builder
	Dashboard Builder layout
	Specifying data sources
	Setting the background properties
	About resize modes
	Working with objects
	Setting Builder options
	Setting dashboard options
	Command-line options for the Dashboard Builder
	Restrictions

	3 Attaching Dashboards to Correlator Data
	Dashboard data tables
	Scenario instance ownership
	Creating a data attachment
	Using table objects
	Using pie and bar charts
	Using trend charts
	Using stock charts
	Localizing dashboard labels
	Localizing dashboard messages

	4 Using Dashboard Functions
	Using built-in functions
	Creating custom functions

	5 Defining Dashboard Commands
	Defining commands
	Using dashboard variables in commands
	Defining commands for creating an instance
	Defining commands for editing an instance
	Supporting deletion of an instance
	Supporting deletion of all instances
	Defining commands for creating a query instance
	Defining commands for editing a query instance
	Supporting deletion of a query instance
	Supporting deletion of all instances of a query
	Using popup dialogs for commands
	Command options
	Associating a command with keystrokes
	Defining multiple commands
	Creating custom commands
	Apama set substitution command

	6 Reusing Dashboard Components
	Using Object Grids
	Using Composite objects
	Using Composite Grids
	Using include files
	Working with multiple display panels

	7 Sending Events to Correlators
	Using the Define Apama Command dialog
	Send event authorization

	8 Using XML Data
	XML data format
	Defining an XML data source
	Attaching objects to XML data

	9 Using SQL Data
	SQL system requirements and setup
	Attaching visualization objects to SQL data
	Defining SQL commands
	Specifying application options
	Setting up SQL database connections
	Setting SQL data source options

	II Dashboard Property Reference for Graphs, Tables and Trends
	10 Introduction to Dashboard Properties
	Objects for complex-data visualization
	About the Object Properties window
	Editing property values
	Copying and pasting property values

	11 Graph Objects
	Bar graphs
	Google map
	Heat map
	HTML5 Bar graph
	Legend
	Pie graph
	HTML5 Pie graph
	Radar graph
	XY graph

	12 Table Objects
	Standard tables
	Rotated tables
	HTML5 tables

	13 Trend Objects
	Sparkline charts
	Stock charts
	Trend graphs

	14 Drill-Down Specification
	Using the Drill Down Properties dialog
	Activating drill downs
	About drilldown displays opened in Dashboard Builder

	III Dashboard Function Reference
	15 Introduction to Dashboard Functions
	Working with functions

	16 Scalar Functions
	Add
	Average
	Boolean Expression
	Concatenate
	Correlator Time Format
	Date Add
	Date Ceiling
	Date Compare
	Date Difference
	Date Floor
	Date Format
	Date Now
	Delta
	Divide
	Duration
	Evaluate Expression As Double
	Evaluate Expression As String
	Format Number
	Get Substitution
	Init Local Variable
	isWindowsOS
	Max
	Min
	Modulo
	Multiply
	Percent
	Quick Set Sub
	Replace All
	Replace Value
	Set Substitution
	Set Substitutions By Lookup
	Subtract
	Validate Substitutions

	17 Tabular Functions
	Add All Rows Or Columns
	Add Columns
	Average All Rows Or Columns
	Average Columns
	Baseline Over Time
	Buffer Table Rows
	Combine
	Concatenate Columns
	Convert Columns
	Copy
	Count
	Count By Bands
	Count Unique Values
	Count Unique Values By Time
	Create Selector List
	Delta And Rate Rows
	Delta Rows
	Distinct Values
	Divide Columns
	Ensure Columns
	Ensure Timestamp Column
	Evaluate Expression By Row
	Filter And Extract Matches
	Filter By Pattern
	Filter By Row
	Filter By Time Range
	First Table Rows
	Format Table Columns
	Get data server connection status
	Group By Time
	Group By Time and Unique Values
	Group by Unique Values
	Join
	Join Outer
	Last Table Rows
	Mark Time Gaps
	Max All Rows or Columns
	Max Columns
	Min All Rows or Columns
	Min Columns
	Modulo Columns
	Multiply Columns
	Percent Columns
	Pivot On Unique Values
	Reference
	Rename Columns
	Select Column
	Set Column Type
	Sort Table
	Split String
	String to Table
	Subtotal By Time
	Subtotal By Unique Values
	Subtract Columns
	Table Contains Values

	18 Expression Syntax in Dashboard Functions
	Operators in dashboard function expressions
	Arithmetic functions in dashboard function expressions
	String functions in dashboard function expressions

	IV Dashboard Deployment
	19 Dashboard Deployment Concepts
	Deployment options
	Data server and display server
	Process architecture
	Builders and administrators

	20 Generating Dashboards
	Starting the wizard
	Using the wizard
	Using the titlebar/toolbar
	Using the Introduction form
	Using the Main, Create, Edit, and Details Forms
	Using the layout configuration forms

	21 Preparing Dashboards for Deployment
	Dashboard feature checklist
	Changing correlator definitions for deployment
	Choosing among deployment types
	Using the Deployment Configuration editor
	Generating a deployment package from the command line
	Sharing information with the Dashboard Administrator

	22 Deploying Dashboards
	Generating the dashboard .war file
	Installing a dashboard .war file
	Inside a dashboard .war file
	Additional steps for display server deployments

	23 Managing the dashboard data server and display server
	Prerequisites
	Starting and stopping the data server or display server
	Command-line options for the data server and display server
	Rotating the log files of the data server and display server
	Controlling the update frequency
	Configuring Trend-Data Caching
	Managing Connect and Disconnect Notification
	Working with multiple data servers
	Managing and stopping the data server and display server

	24 Administering Dashboard Security
	Administering authentication
	Authentication for local and application server deployments
	Administering authorization
	Securing communications
	Example: Implementing LoginModule

	V Using the Dashboard Viewer
	25 Concepts Underlying Dashboards
	About Dashboards
	Starting the Dashboard Viewer
	DataView item ownership

	26 Using the Dashboard Viewer
	Opening and viewing dashboards
	The Dashboard Viewer menu bar
	Resizing the Dashboard Viewer
	Working with Dashboard Objects

	27 Startup Options for the Dashboard Viewer
	28 Time Zone ID Values

