
Deploying and Managing Apama Applications

Version 10.11.0

October 2021

This document applies to Apama 10.11.0 and to all subsequent releases.

Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 2013-2021 Software AG, Darmstadt, Germany and/or Software AG USA, Inc., Reston, VA, USA, and/or its subsidiaries
and/or its affiliates and/or their licensors.

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or
Software AGUSA Inc. and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product namesmentioned
herein may be trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
https://softwareag.com/licenses/.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product
documentation, located at https://softwareag.com/licenses/ and/or in the root installation directory of the licensed product(s).

This software may include portions of third-party products. For third-party copyright notices, license terms, additional rights or
restrictions, please refer to "License Texts, Copyright Notices and Disclaimers of Third Party Products". For certain specific third-party
license restrictions, please refer to section E of the Legal Notices available under "License Terms and Conditions for Use of Software
AG Products / Copyright and Trademark Notices of Software AG Products". These documents are part of the product documentation,
located at https://softwareag.com/licenses/ and/or in the root installation directory of the licensed product(s).

Document ID: PAM-DEP-10110-20211015

https://www.softwareag.com/licenses/default.html
https://www.softwareag.com/licenses/default.html
https://www.softwareag.com/licenses/default.html

Table of Contents

About this Guide..5
Documentation roadmap..6
Online Information and Support...7
Data Protection...8

1 Security Requirements for Apama..9

2 Overview of Deploying Apama Applications...13
About deploying components with Command Central...14
About deploying Apama applications with an Ant script...14
About deploying Apama applications with Docker...14
About deploying Apama applications with Kubernetes..14
About Apama command line utilities...14
About deploying dashboards...14
About tuning applications for performance...15
Setting up the environment using the Apama Command Prompt...15

3 Deploying Apama Components with Command Central...19
Overview of deploying components with Command Central..20
Getting started with Command Central...20
Administering Apama in Command Central...22
Monitoring Apama from Command Central...48
Deploying a Designer project to Command Central...56

4 Deploying and Managing Queries..59
Overview of deploying and managing query applications...60
Query application architecture...60
Deploying query applications..61
Running queries on correlator clusters...62
Managing parameterized query instances..68
Monitoring running queries...68

5 Deploying Apama Applications with Docker...71
Introduction to Apama in Docker..72
Licensing Apama in Docker..73
Quick start to using an Apama image...74
Building an Apama image from the current installation..76
Deploying an Apama application in Docker..77
Developing an Apama application using the Docker image...78
Building Apama projects during the Docker build...79
Using Docker Compose with Apama..81
Apama samples for Docker...82

Deploying and Managing Apama Applications 10.11.0 iii

Using the Apama image with the Docker stack...83

6 Deploying Apama Applications with Kubernetes...85
Introduction to Apama in Kubernetes..86
Quick start to using Apama in Kubernetes..86
Deploying an Apama application using Kubernetes..87
Apama samples for Kubernetes...89

7 Tuning Correlator Performance..91
Scaling up Apama..92
Partitioning strategies..92
Engine topologies...96
Correlator pipelining...97
Using jemalloc to optimize memory usage..105

8 Restricting Correlator Resource Usage with Control Groups..107

9 Managing and Monitoring over REST..109

10 Monitoring with Prometheus...113

11 Correlator Utilities Reference...115
Starting the correlator..116
Configuring the correlator..139
Injecting code into a correlator...157
Creating and managing an Apama project from the command line......................................159
Deploying a correlator...163
Deleting code from a correlator..168
Packaging correlator input files..171
Sending events to correlators..174
Receiving events from correlators..176
Watching correlator runtime status...178
Inspecting correlator state...195
Shutting down and managing components...197
Using the command-line debugger...224
Generating code coverage information about EPL files...234
Replaying an input log to diagnose problems...240
Event file format...243
Using the Data Player command-line interface...248

iv Deploying and Managing Apama Applications 10.11.0

Table of Contents

About this Guide

■ Documentation roadmap .. 6

■ Online Information and Support ... 7

■ Data Protection ... 8

Deploying and Managing Apama Applications 10.11.0 5

Deploying and Managing Apama Applications describes how to deploy components with Software
AGCommandCentral, how to deploy andmanage queries, and how to deployApama applications
using Docker and Kubernetes. It also provides information for improving Apama application
performance by using multiple correlators, for managing and monitoring Apama components
over REST (Representational State Transfer), and for using correlator utilities and configuration
files.

Documentation roadmap

Apama provides documentation in the following formats:

HTML (available from both the documentation website and the doc folder of the Apama
installation)

PDF (available from the documentation website)

Eclipse help (accessible from Software AG Designer)

You can access the HTML documentation on your machine after Apama has been installed:

Windows. Select Start > All Programs > Software AG > Tools > Apama n.n > Apama
Documentation n.n. Note that Software AG is the default group name that can be changed
during the installation.

UNIX. Display the index.html file, which is in the doc/apama-onlinehelp directory of your
Apama installation directory.

The following guides are available:

DescriptionTitle

Describes new features and changes introducedwith the current
Apama release as well as earlier releases.

Release Notes

Summarizes all important installation information and is
intended for use with other Software AG installation guides
such as Using Software AG Installer.

Installing Apama

Provides a high-level overviewofApama, describes theApama
architecture, discussesApama concepts and introduces Software
AG Designer, which is the main development tool for Apama.

Introduction to Apama

Explains how to develop Apama applications in Software AG
Designer, which is an Eclipse-based integrated development
environment.

Using Apama with Software AG
Designer

Describes the different technologies for developing Apama
applications: EPL monitors, Apama queries, and Java. You can

Developing Apama Applications

use one or several of these technologies to implement a single
Apama application. In addition, there are C++ and Java APIs
for developing components that plug in to a correlator. You can
use these components from EPL.

6 Deploying and Managing Apama Applications 10.11.0

DescriptionTitle

Describes how to connect Apama applications to any event data
source, database, messaging infrastructure, or application.

Connecting Apama Applications to
External Components

Describes how to build and use an Apama dashboard, which
provides the ability to view and interact with DataViews. An

Building and Using Apama
Dashboards

Apama project typically uses one or more dashboards, which
are created in the Dashboard Builder. The Dashboard Viewer
provides the ability to use dashboards created in theDashboard
Builder. Dashboards can also be deployed as simpleweb pages.
Deployed dashboards connect to one or more correlators by
means of a dashboard data server or display server.

Describes how to deploy components with Software AG
Command Central, how to deploy and manage queries, and

Deploying and Managing Apama
Applications

how to deploy Apama applications using Docker and
Kubernetes. It also provides information for improvingApama
application performance by using multiple correlators, for
managing and monitoring Apama components over REST
(Representational State Transfer), and for using correlator
utilities and configuration files.

In addition to the above guides, Apama also provides the following API reference information:

API Reference for EPL (ApamaDoc)

API Reference for Java (Javadoc)

API Reference for C++ (Doxygen)

API Reference for .NET

API Reference for Python

API Reference for Component Management REST APIs

Online Information and Support

Software AG Documentation Website

You can find documentation on the Software AG Documentation website at https://
documentation.softwareag.com.

Software AG Empower Product Support Website

If you do not yet have an account for Empower, send an email to empower@softwareag.comwith
your name, company, and company email address and request an account.

Deploying and Managing Apama Applications 10.11.0 7

https://documentation.softwareag.com
https://documentation.softwareag.com
mailto:empower@softwareag.com

Once you have an account, you can open Support Incidents online via the eService section of
Empower at https://empower.softwareag.com/.

You can find product information on the Software AG Empower Product Support website at
https://empower.softwareag.com.

To submit feature/enhancement requests, get information about product availability, and download
products, go to Products.

To get information about fixes and to read early warnings, technical papers, and knowledge base
articles, go to the Knowledge Center.

If you have any questions, you can find a local or toll-free number for your country in our Global
Support Contact Directory at https://empower.softwareag.com/public_directory.aspx and give us
a call.

Software AG Tech Community

You can find documentation and other technical information on the SoftwareAGTechCommunity
website at https://techcommunity.softwareag.com. You can:

Access product documentation, if you have Tech Community credentials. If you do not, you
will need to register and specify "Documentation" as an area of interest.

Access articles, code samples, demos, and tutorials.

Use the online discussion forums, moderated by Software AG professionals, to ask questions,
discuss best practices, and learn how other customers are using Software AG technology.

Link to external websites that discuss open standards and web technology.

Data Protection

SoftwareAGproducts provide functionalitywith respect to processing of personal data according
to the EU General Data Protection Regulation (GDPR). Where applicable, appropriate steps are
documented in the respective administration documentation.

8 Deploying and Managing Apama Applications 10.11.0

https://empower.softwareag.com/
https://empower.softwareag.com
https://empower.softwareag.com/Products/default.asp
https://empower.softwareag.com/KnowledgeCenter/default.asp
https://empower.softwareag.com/public_directory.aspx
https://techcommunity.softwareag.com

1 Security Requirements for Apama

Security model

The Apama security model for correlator and IAF components is that untrusted users must not
be given access to any related files or to send or receive data on any of the correlator or IAF network
ports. For dashboards, the same applies to the display server's management and data ports, and
the data server's management port - although the data server's data port might need to be exposed
to end-users if the thick Dashboard Viewer client is used. It is assumed that any user able to access
these files or ports is trusted and has permission to make arbitrary changes and read arbitrary
data. Such users are also permitted to inject arbitrary code into a correlator and execute it with
the permissions of the correlator process.

Security requirements

You must use standard operating system and network tools/configuration to restrict access to the
IAF and correlator components to only trusted users. For the dashboard servers, this applies except
to the data server's data port.

You must use standard operating system tools to restrict access to all configuration and data files
to only trusted users.

You must restrict access to changing the process environment when starting the server processes
to only trusted users.

You must not set the correlator, IAF or dashboard server logging to a level higher than INFO to
have all security-relevant events logged to the log files.

Setting the correlator, IAF or dashboard server logging to a level lower than INFO could include
security-sensitive information in the log files.

Remember to also fully configure all connected systems to perform adequate authentication and
authorization. Select connectivity plug-ins that support authentication and authorization where
possible, and make sure these settings are enabled. For example:

If using the Universal Messaging connectivity plug-in, set appropriate permissions on all
channels, and use authentication and a certification authority. For more information, see
"Configuring the connection toUniversalMessaging (dynamicChainManagers)" inConnecting
Apama Applications to External Components.

Deploying and Managing Apama Applications 10.11.0 9

If using the HTTP server connectivity plug-in, note that it exposes an additional port on the
correlator. If deployed in any context where access is not restricted to only trusted users, the
HTTP server connectivity plug-inmust be configured to use TLS andHTTPbasic authentication.
It should not be directly connected to the internet. If internet access is required, then the plug-in
must be deployed in a DMZ behind a reverse proxy such as Apache or Nginx. For more
information, see "Configuring the HTTP server transport" in Connecting Apama Applications to
External Components.

If using the HTTP client connectivity plug-in, configure it to use TLS and HTTP basic
authentication. Formore information, see "Configuring theHTTP client transport" inConnecting
Apama Applications to External Components.

If using the MQTT connectivity plug-in, configure it to use SSL/TLS. For more information,
see "Configuring the connection to MQTT" in Connecting Apama Applications to External
Components.

If using the Kafka connectivity plug-in, configure the Kafka clients to use SSL. For more
information, see "Configuring the connection toKafka (dynamicChainManagers)" inConnecting
Apama Applications to External Components and the Kafka documentation at https://
kafka.apache.org/.

If using the Digital Event Services connectivity plug-in, see Using Digital Event Services to
Communicate between Software AG Products for information on how to use SSL with Digital
Event Services.

If components must connect across an untrusted network, then either use a standard overlay tool
such as a VPN or use a plug-in that supports TLS and authentication.

Important:
Ensure that you regularly install the latest Apama fixes, and keep your operating system fully
patched to ensure the latest security fixes are present.

Dashboards

For access from untrusted hosts, you should deploy your dashboards to the web server using the
display server deployment option. The dashboard server or display server processes should be
running behind a firewall, just like the correlators. When accessing the dashboard server by using
a standalone Dashboard Viewer outside the firewall, make sure to run the dashboard server with
the --ssl option, which will ensure secure sockets for client communication using the data port.
You must also ensure that the management ports of both servers are not exposed to end users.

The following diagram depicts the recommended dashboard deployment options:

10 Deploying and Managing Apama Applications 10.11.0

1 Security Requirements for Apama

https://kafka.apache.org/
https://kafka.apache.org/

Authentication for the display server is done via JAAS and your authentication mechanism of
choice.

Important:
Youmust customize your own JAASmodules. The out-of-the-box authentication/authorization
modules for dashboards cannot be used. This means that there is no authentication by default,
and the basic authorization mechanism is shipped. For details on how to configure your own
JAASmodules, see "AdministeringDashboard Security" inBuilding andUsingApamaDashboards.

For a dashboard audit trail, you must load the Dashboard Support bundle into the correlator
processing audit events and handle the DashboardClientConnected and
DashboardClientDisconnected events, logging them in an appropriate manner.

Docker and Kubernetes

Both Docker and Kubernetes offer methods of passing secrets to the correlator. This can be used
to securely provide credentials to the correlator. For more information, see the corresponding
samples that are mentioned in “Apama samples for Docker” on page 82 and “Apama samples
for Kubernetes” on page 89.

Personal data

You need to secure log files, input logs and the persistence database, especially if they contain
personal data. On Windows, this would mean setting an inheritable Access Control List (ACL)
limiting read access to the contained files. On UNIX systems, this would involve restricting read
and execute permissions to only the owning user (that is, "700") and if possible also setting a umask
of 0077 on the correlator process to ensure files created by the correlator also have locked down
permissions.

Deploying and Managing Apama Applications 10.11.0 11

1 Security Requirements for Apama

See "Protecting Personal Data in Apama Applications" in Developing Apama Applications for
suggestions to helpwith identifying howpersonal data can be protectedwhen building applications
on the Apama platform.

12 Deploying and Managing Apama Applications 10.11.0

1 Security Requirements for Apama

2 Overview of Deploying Apama Applications

■ About deploying components with Command Central .. 14

■ About deploying Apama applications with an Ant script ... 14

■ About deploying Apama applications with Docker .. 14

■ About deploying Apama applications with Kubernetes ... 14

■ About Apama command line utilities .. 14

■ About deploying dashboards .. 14

■ About tuning applications for performance ... 15

■ Setting up the environment using the Apama Command Prompt 15

Deploying and Managing Apama Applications 10.11.0 13

About deploying components with Command Central

Software AG Command Central can be used to configure, deploy and monitor various Apama
components acrossmultiple hosts. See “DeployingApamaComponentswithCommandCentral” on
page 19 for detailed information.

About deploying Apama applications with an Ant script

The recommended approach for script-based deployment of Apama is to use anAnt script,making
use of the Ant macro definitions provided in the apama-macros.xml file. You can find this file in
the etc directory of your Apama installation. See the comments in that file for more detailed
information about the available macros.

SoftwareAGDesigner has anAnt exportwizard that can generate a simpleAnt script for deploying
your Apama project. See "Exporting to a deployment script" in Using Apama with Software AG
Designer for more information.

Instead of using Ant to inject the EPL, you can also do this using a YAML configuration file (see
“Deploying Apama applications with a YAML configuration file” on page 155). If a YAML
configuration file is used for this purpose, then Ant should not inject the EPL.

About deploying Apama applications with Docker

You can use Docker to deploy your Apama applications. See “Deploying Apama Applications
with Docker” on page 71 for detailed information.

About deploying Apama applications with Kubernetes

You can use Kubernetes for container orchestration, that is, for automating the deployment of
your Apama applications. See “Deploying Apama Applications with Kubernetes” on page 85 for
detailed information.

About Apama command line utilities

Apamaprovides a variety of command line tools formanaging andmonitoringApama correlators.
For information and instructions on using these tools to monitor and manage correlators, see
“Correlator Utilities Reference” on page 115.

About deploying dashboards

Dashboard deployment and administration involves the following activities:

Deployment package installation and configuration. See "Deploying Dashboards" in Building
and Using Apama Dashboards.

Data server and display server management. See "Managing the dashboard data server and
display server" in Building and Using Apama Dashboards.

14 Deploying and Managing Apama Applications 10.11.0

2 Overview of Deploying Apama Applications

Security administration. See "Administering Dashboard Security" in Building and Using Apama
Dashboards.

Before you perform these tasks, you should familiarize yourself with the deployment and
administration concepts described in "Dashboard Deployment Concepts" in Building and Using
Apama Dashboards.

Deployment options

Dashboards can be deployed as simple thin-client web pages or as files that can be loaded into a
locally-installed desktop application, the Dashboard Viewer. These deployment options are
described and compared in "Deployment options" in Building and Using Apama Dashboards.

Data server and display server

Scalability and security of dashboard deployment are supported by the use of the data server and
display server, whichmediate dashboard access to runningDataViews. The data server and display
server are introduced in "Data server and display server" in Building and Using Apama Dashboards.

Process architecture

Simple thin-clientweb-page dashboards communicatewith the display server via servlets running
on your application server. Locally-deployed dashboards communicate directly with the data
server. The structure of deployed configurations is detailed in "Process architecture" in Building
and Using Apama Dashboards.

Builders and administrators

Dashboard deployment involves the use of a dashboard deployment package that was generated
byApama's DashboardDeployment Configuration Editor in SoftwareAGDesigner. In some cases,
the user that generated the deployment package is different from the user that installs and
configures the deployment and administers the data server. The information that must be
transferred between these two types of users is discussed in "Builders and administrators" in
Building and Using Apama Dashboards.

About tuning applications for performance

The performance of Apama applications can be enhanced by employing multiple correlators. For
information about strategies for deploying multiple correlators and the Apama tools available for
accomplishing this, see “Tuning Correlator Performance” on page 91. The section also contains
information about preserving a correlator's runtime state.

Setting up the environment using the Apama Command Prompt

Before you can run any of the Apama tools (such as engine_send or engine_inject) or any of the
Apama servers (such as the correlator or the Integration Adapter Frameworkwhich is also known
as the IAF) from a normal command prompt, you have to set up your environment correctly. This
includes setting the paths to the Apama installation directory, the Apama work directory, the

Deploying and Managing Apama Applications 10.11.0 15

2 Overview of Deploying Apama Applications

location of the libraries, the Java location, and other environment variables. Apama provides a
batch file (Windows) or shell script (UNIX) for this purpose, which is called the “ApamaCommand
Prompt”.

OnWindows, you invoke theApamaCommand Prompt by choosing the following command
from the Start menu:

Software AG > Tools > Apama n.n > Apama Command Prompt n.n

Keep in mind that “Software AG” is the default group name that you can change during the
installation.

Alternatively, if you are already in a regular Windows command prompt, you can run the file
apama_env.batwhich is located in the bin directory of your Apama installation.

On UNIX, you invoke the shell script from a Bash shell. Please note csh (C Shell) is not
supported. Use the following command from within your Apama installation directory:
source bin/apama_env

It is important that you use source because invoking apama_env directly will not work.

You can add the above command to your shell initialization script (which is .bashrc in the
case of the Bash shell). If you do so, every shell you use will be an Apama Command Prompt.

Running a single Apama command

Alternatively, you can just run a single Apama command on either Windows or UNIX by using
the apama_env script as a wrapper. This will not change the environment for your shell and you
have to use the apama_envwrapper each time you run a command. This is particularly useful if
you are invoking Apama commands from another program which has not had the environment
set up.

OnWindows, you can see the syntax with:
apama_env.bat /?

To run a single Apama command, provide the command name and arguments after the file
name, for example:
apama_env.bat correlator --config myproject

On UNIX, you can see the syntax with:
apama_env --help

To run a single Apama command, provide the command name and arguments after the script
name, for example:
apama_env correlator --config myproject

16 Deploying and Managing Apama Applications 10.11.0

2 Overview of Deploying Apama Applications

Using an alternative CA bundle

You can use your own SSL certificate within the Apama Command Prompt. This will affect all
processeswithin the prompt. If you do not specify an alternative certificate file, the default Apama
SSL certificate is used.

To use your own SSL certificate, set the environment variable SSL_CERT_FILE to the file path of
your certificate before starting the Apama command prompt.

OnWindows, set the environment variable as follows:
set SSL_CERT_FILE=path-to-certificate-file

On UNIX, set the environment variable as follows:
export SSL_CERT_FILE=path-to-certificate-file

If you explicitly wish to not use a CA bundle, set SSL_CERT_FILE=none.

Deploying and Managing Apama Applications 10.11.0 17

2 Overview of Deploying Apama Applications

18 Deploying and Managing Apama Applications 10.11.0

2 Overview of Deploying Apama Applications

3 Deploying Apama Components with Command

Central

■ Overview of deploying components with Command Central .. 20

■ Getting started with Command Central .. 20

■ Administering Apama in Command Central ... 22

■ Monitoring Apama from Command Central .. 48

■ Deploying a Designer project to Command Central ... 56

Deploying and Managing Apama Applications 10.11.0 19

Overview of deploying components with Command Central

Software AG Command Central is a tool that release managers, infrastructure engineers, system
administrators, and operators can use to perform administrative tasks from a single location.
CommandCentral can assistwith the following configuration,management, andmonitoring tasks:

Infrastructure engineers can see at a glance which products and fixes are installed, andwhere.
Engineers can also easily compare installations to find discrepancies.

System administrators can configure environments using a single web UI, command line tool,
or API so maintenance can be performed with a minimum effort of risk.

Release managers can prepare and deploy changes to multiple servers using command-line
scripting for simpler, safer lifecycle management.

Operators can monitor server status and health, as well as start and stop servers from a single
location. They can also configure alerts to be sent to them in case of unplanned outages.

For Apama components, Command Central supports the following features:

Installing Apama product and fixes using Command Central. For more information, see
Installing Apama.

Creating, deleting, starting, stopping, and configuringApama component instances (correlator,
Integration Adapter Framework (IAF), dashboard data server, and dashboard display server
instances).

Monitoring whether component instances are started or stopped.

Getting started with Command Central

Ensure that you have installed both the Apama Server (PAMServer) and the Apama Platform
Manager Plug-in (PAMspm) on every machine on which you wish to start Apama components, and
have also installed the Command Central server on at least one machine. For more information,
see "Installing Apama using Command Central" in Installing Apama. For more information about
using Command Central, see Software AG Command Central Help.

Perform any required post installation tasks as described in the "Performing Post Installation
Configuration" section in Software AG Command Central Help.

The following topics provide information about creating and configuring instances in Command
Central:

“Creating and deleting instances using the Command Central web user interface” on page 22

“Creating and deleting instances using the Command Central command line interface” on
page 24

“Configuration types that Apama components support” on page 28

“Lifecycle actions for Apama component instances” on page 46

20 Deploying and Managing Apama Applications 10.11.0

3 Deploying Apama Components with Command Central

Using the Command Central web interface
You can use the CommandCentral web interface to install Apama product and fixes, create, delete,
and configure Apama component instances. For information about installing Apama product and
fixes using Command Central, see Installing Apama. To use the Command Central web interface:

1. Log on to the Command Central server. The default credentials are:

Username: Administrator (case-sensitive)

Password: manage

2. In the Installations tab, select the installation in which you want to create an instance.

3. In the Instances tab, create the instances for the Apama components.

Using the Command Central command line interface
To use the Command Central command line interface:

Optional. Define environment variables so that you can invokeCommandCentral and Platform
Manager commands from any location on the machine. To do so:

1. Set the CC_CLI_HOME environment variable to the following directory: Software AG_
directory\CommandCentral\client.

Examples:

Windows: set CC_CLI_HOME=C:\SoftwareAG\CommandCentral\client

UNIX: export CC_CLI_HOME="/opt/SoftwareAG/CommandCentral/client"

2. Add $CC_CLI_HOME/bin to the PATH environment variable.

Examples:

Windows: set PATH=%PATH%;%CC_CLI_HOME%\bin

UNIX: export PATH="$PATH:$CC_CLI_HOME/bin"

Define the CC_USERNAME and CC_PASSWORD environment variables to a user name and password.
The default username is Administrator and password is manage.

Examples:

Windows: set CC_USERNAME=Administrator

Windows: set CC_PASSWORD=manage

UNIX: export CC_USERNAME="Administrator"

UNIX: export CC_PASSWORD="manage"

Deploying and Managing Apama Applications 10.11.0 21

3 Deploying Apama Components with Command Central

Open the commandprompt. Change the directory to Software AG_directory\CommandCentral\
client\bin (you do not have to change the directory if you have defined the CC_CLI_HOME
environment variable). The bin folder contains all the executable files for the CommandCentral
commands.

Most tasks can be performed using the Command Central web interface or command line
interface. For more information about using the Command Central command line interface,
see Software AG Command Central Help.

The following examples illustrate how the Command Central command line interface can be
used to perform some of themost common operations for Apama component instances. These
examples assume that you have set the CC_PASSWORD environment variable and you are running
the command line tool on the machine where Command Central is installed, and configuring
the components to run on the Platform Manager node with the default node alias of local.

In the following example commands, <nodeAlias> is local.

runtimeComponentID is the ID of an instance in the format Apama-ComponentType-InstanceName,
where

ComponentType is one of the supported Apama components correlator, iaf, displayserver,
or dataserver.

myCorrelator, myIAF, myDisplayServer, and myDataServer are the InstanceNamewhen the instance
was created.

configurationTypeId is one of the supported configuration types. Formore information on supported
configuration types, see “Configuration types that Apama components support” on page 28.

For information about all the options for the sagcc command, see Software AG Command Central
Help.

Administering Apama in Command Central

This section describes the details specific to Apama integration with Command Central. Apama
supports the following component types:

Correlator

Integration Adapter Framework (IAF)

Dashboard display server

Dashboard data server

For more information about using Command Central, see Software AG Command Central Help.

Creating and deleting instances using the Command Central
web user interface
By default, the working directory of an instance is APAMA_HOME/command-central/
instances/ComponentType/instance_name. All the log files including stdout and stderr are located

22 Deploying and Managing Apama Applications 10.11.0

3 Deploying Apama Components with Command Central

in the instance_name/logs folder. The environment variables ${APAMA_WORK} and ${APAMA_HOME}
can be used inside extraArgs, iafConfigFile and log files, and this will be replaced with the
location of those directories.

To create an instance

1. In the Environments pane, select the environment in which you want to configure a product
instance.

2. Click the Installations tab.

3. Select the installation to create an instance. For example, Local.

4. Click the Instances tab.

5. Click and select the Apama component.

6. Enter the instance properties and click Next.

7. Click Finish.

Click to view the instance under the Instances tab.

To delete an instance

1. In the Instances tab, select the instance and click .

2. Click Finish.

Configuring instances using the Command Central web user
interface

On the Configuration tab of an instance, you can add, edit, or delete items for a product instance
configuration type over Command Central.

To configure an instance

1. In the Environments pane, select the environment in which you want to configure a product
instance.

2. Select the Instances tab.

3. Click the name of the instance you want to configure.

4. Select the Configuration tab.

Deploying and Managing Apama Applications 10.11.0 23

3 Deploying Apama Components with Command Central

5. From the list of available configuration types, select a configuration type.

Command Central displays the default or available values for the configuration data for the
selected instance.

6. Configure the selected instance as follows:

ClickTo

Add new data

To edit an item for a configuration type, click on
the item that you want to update and click Edit.

Edit data

Delete data

TestTest whether data is added or edited
successfully.

For example, you can test new
configuration data to perform a field-level
validation before you save the
configuration data.

7. Click Save to save the configuration data.

Creating and deleting instances using the Command Central
command line interface
By default, the working directory of an instance is APAMA_HOME/command-central/
instances/ComponentType/instance_name. All the log files including stdout and stderr are located
in the instance_name/logs folder. The environment variables ${APAMA_WORK} and ${APAMA_HOME}
can be used inside extraArgs, iafConfigFile and log files, and this will be replaced with the
location of those directories.

For all configuration instances that use a properties file as input, the contents of these files are
interpreted using the rules of the standard Java Properties File Format, and therefore any
backslashes should be escaped (as \\). In most cases, no special escaping should be performed
when editing the equivalent values in the web interface, except for the environment variables text
box which does need escaping of backslashes, as it contains the raw contents of a .properties file.

You can create and delete Apama component instances using the Command Central command
line interface as well.

Use the following command to create an instance of an Apama component:
sagcc create instances nodeAlias productId
[param1=value1 param2=value2 ...]

24 Deploying and Managing Apama Applications 10.11.0

3 Deploying Apama Components with Command Central

Where nodeAlias specifies the alias name of the installation inwhich to create theApama component
instance, and productID is always PAMServerwhen administering Apama components.

For example:
sagcc create instances local PAMServer
instance.name=myCorrelator instance.type=correlator instance.port=15993

Where productID is PAMServer, and [param1=value1 param2=value2 ...] is
instance.name=myCorrelator instance.type=correlator instance.port=15993.Here, instance.type
indicates the Apama component type correlator, iaf, displayserver, or dataserver.

Use the following command to delete an instance of an Apama component:
sagcc delete instances nodeAlias runtimeComponentId

The runtimeComponentID is the ID of an instance in the formatApama-ComponentType-InstanceName,
where:

ComponentType is one of the supported Apama components correlator, iaf, displayserver,
or dataserver.

myCorrelator, myIAFmyDisplayServer, and myDataServer are the InstanceNamewhen the instance
was created.

For example:
sagcc delete instances local Apama-correlator-myCorrelator

Where the runtimeComponentID is Apama-correlator-myCorrelator.

For more information on using the commands, see Software AG Command Central Help.

The following table lists the properties required to create and update an Apama component
instances. You do not have to specify any properties to delete an instance.

Required PropertiesComponent

instance.namecorrelator

instance.type

instance.port

instance.nameIAF

instance.type

instance.port

iafConfigFile

instance.nameDashboard display server

instance.type

Deploying and Managing Apama Applications 10.11.0 25

3 Deploying Apama Components with Command Central

Required PropertiesComponent

instance.nameDashboard data server

instance.type

Examples when executing on Command Central

To create an instance of IAF with the name "myIAF" in the installation with alias "local". The
instance uses connection port 15993 and a configuration file with the name "iaf-config.xml":
sagcc create instances local PAMServer instance.name=myIAF
instance.type=iaf instance.port=15993 iafConfigFile=iaf-config.xml

To create an instance of display server with the name "myDisplayServer" in the installation
with alias "local". The instance uses connection port 3279 and management port 28889:
sagcc create instances local PAMServer instance.name=myDisplayServer
instance.type=displayserver dataPort=3279
managementPort=28889

To create an instance of data server with the name "myDataServer" in the installation with
alias "local". The instance uses data port 3278 and management port 28888:
sagcc create instances local PAMServer instance.name=myDataServer
instance.type=dataserver dataPort=3278
managementPort=28888

Todelete an instance of correlatorwith runtime component ID "Apama-correlator-myCorrelator"
from the installation with alias "local":
sagcc delete instances local Apama-correlator-myCorrelator

To delete an instance of IAF with runtime component ID "Apama-iaf-myIAF" from the
installation with alias "local":
sagcc delete instances local Apama-iaf-myIAF

To delete an instance of display server with runtime component ID
"Apama-displayserver-myDisplayServer" from the installation with alias "local":
sagcc delete instances local
Apama-displayserver-myDisplayServer

To delete an instance of data server with runtime component ID
"Apama-dataserver-myDataServer" from the installation with alias "local":
sagcc delete instances local
Apama-dataserver-myDataServer

After an instance is created, the instance is referred to in the other commands by the component
identifier Apama-instance.type-instance.name.

26 Deploying and Managing Apama Applications 10.11.0

3 Deploying Apama Components with Command Central

Configuring Apama components to use custom C++ plug-ins
For correlator and IAF components, the environment variables PATH and LD_LIBRARY_PATHwill be
set as in a normal Apama command prompt. Any .dll and .so files placed in the ${APAMA_WORK}/
libdirectorywill be automatically included in the PATH and LD_LIBRARY_PATH variables for correlator
and IAF components.

For the correlator, the environment variables PATH and LD_LIBRARY_PATHwill also include the lib/
directory of your deployed project. Therefore, if you are using the engine_deploy tool to deploy
a project that makes use of a custom C++ plug-in (connectivity plug-in or EPL plug-in), ensure
that the plug-in and its dependencies are in the lib/ directory of the project directory that is used
as the input to the engine_deploy tool.

For more information, see "Using plug-ins written in C++" in Developing Apama Applications and
"Deploying plug-in libraries" in Connecting Apama Applications to External Components.

Commands that Apama components support
You can use the following commands with Apama components:

For more information, see...Command

For general information about the command, see
Software AG Command Central Help. For

sagcc create instances

component-specific information about using the
command, see “Creating and deleting instances
using the Command Central command line
interface” on page 24.

For general information about the command, see
Software AG Command Central Help.

sagcc delete instances

For general information about the command, see
Software AG Command Central Help.

sagcc update configuration data

Applies to the correlator only. For general
information about the command, see Software AG

sagcc update configuration license

Command Central Help. For component-specific
information about using the command, see
“Configuration types that the Apama correlator
supports” on page 28.

For general information about the command, see
Software AG Command Central Help. For

sagcc create configuration data

component-specific information about using this
command, see “Commands thatApamacomponents
support” on page 27.

Deploying and Managing Apama Applications 10.11.0 27

3 Deploying Apama Components with Command Central

For more information, see...Command

For general information about the command, see
Software AG Command Central Help.

sagcc exec lifecycle

For general information about the command, see
Software AG Command Central Help. For

sagcc list diagnostics logs

component-specific information about using this
command, see “Viewing log files” on page 54.

For general information about the command, see
Software AG Command Central Help. For

sagcc get diagnostics logs

component-specific information about using this
command, see “Viewing log files” on page 54.

For general information about the command, see
Software AG Command Central Help. For

sagcc get monitoring runtimestate

component-specific information about using this
command, see “Monitoring the KPIs for the
correlator” on page 48.

Configuration types that Apama components support
You can update the configuration type of an instance from the Command Central web interface
and command line interface. You can use various configuration types that Command Central
provides to configure Apama component instances. The configuration types include properties
that are used to create and update Apama component instances.

For information about how to update a configuration type using the command line interface, see
Software AG Command Central Help.

Configuration types that the Apama correlator supports

The following table lists the configuration types that are specific to theApama correlator component:

Use to configure...Configuration Type

Use to configure command line arguments that are not
represented by any other configuration type. For the correlator,
the following properties are available:

APAMA-ARGS

extraArgs. Formore information, see “Extra arguments” on
page 38.

Loggingproperties. Formore information, see “Component
logging” on page 40.

Persistence properties. For more information, see “The
correlator persistence properties” on page 30.

28 Deploying and Managing Apama Applications 10.11.0

3 Deploying Apama Components with Command Central

Use to configure...Configuration Type

Use to configure ports for Apama component instances. The
available property for the correlator is port. For more
information, see “Component ports” on page 41.

COMMON-PORTS

Use to set the license key file assigned to the license key alias
of the correlator run-time component. For more information,
see “The correlator license key” on page 31.

COMMON-LICENSE

This configuration type contains the location of the license key
file. After you set the license key file using the COMMON-LICENSE

COMMON-LICLOC

configuration type, the license key file information is available
at APAMA_HOME/command-central/instances/correlator/
instancename/ApamaCorrelatorLicense.xml. This license key
location is stored in COMMON-LICLOC configuration type. This
configuration type is read-only. This configuration type is not
available in the web interface.

Use to define the environment variables. The defined variables
are set when you start the instances. You must define the

APAMA-ENVVAR

environment variables in the properties file. For more
information, see “Apama environment variables” on page 42.

Use to connect a source correlator (the sender) to a target
correlator (the receiver). The target correlator will receive

APAMA-ENGINE-CONNECT

events from the specified channels of the source correlator.
Formore information, see “Correlator connections” onpage 44.

Use to create, and monitor status and KPIs of an EPL
application. The configuration values are a comma separated

APAMA-CORRELATOR-APP-MONITORING

list of SUBCOMPONENT_ID strings. The SUMCOMPONENT_ID strings
represent the EPL application names. The EPLfiles are injected
into the correlator to publish the status andKPIs in Command
Central. For more information, see “Monitoring the KPIs for
EPL applications and connectivity plug-ins” on page 49.

Use to override the properties that are set in correlator
configuration files such as YAML configuration and properties

APAMA-PROP-OVERRIDES

files, JMS configuration files or distributed store configuration
files.

For more information on YAML configuration, see “Using
YAML configuration files” on page 139.

For more information on using properties files, see “Using
properties files” on page 146.

For more information on distributed store configuration files,
see "Configuration files for distributed stores" in Developing
Apama Applications.

Deploying and Managing Apama Applications 10.11.0 29

3 Deploying Apama Components with Command Central

Use to configure...Configuration Type

For more information on JMS configuration files, see
"Configuration files for JMS" inDevelopingApamaApplications.

These propertieswill take precedence over any other correlator
configuration properties. For more information, see
“Overriding correlator configuration” on page 44.

The correlator persistence properties

You can configure persistence properties when you create a correlator instance or update the
correlator instance.

For more information on correlator persistence, see "Using Correlator Persistence" in Developing
Apama Applications.

The correlator component supports the following persistence properties:

DescriptionProperty

Optional. Enables or disables correlator persistence.
Valid values are:

enableCorrelatorPersistence

true - enables correlator persistence.

false - disables correlator persistence.

The value of this property is not case-sensitive. The
default value is false.

Optional. Specifies the path to the file in which the
correlator stores persistent state. The correlator uses

persistenceDatastorePath

the file specified by this property to restore its state
on startup. The relative path of the file is resolved
from the instance directory. If you do not specify
this property, the correlator uses the persistence.db
file from the instance directory to store persistence
state. This property is ignored if correlator
persistence is disabled.

Optional. Specifies whether the contents of the
recovery datastore are cleared when the correlator
starts. Valid values are:

clearPersistenceStateOnStartup

true - the content of the recovery datastore is
cleared.

false - the content of the recovery datastore is
not cleared.

30 Deploying and Managing Apama Applications 10.11.0

3 Deploying Apama Components with Command Central

DescriptionProperty

The value of this property is not case-sensitive. The
default value is false.

Note:
If the clearPersistenceStateOnStartup option is disabled and the initializations fail during
correlator startup, the correlator instancewill be shut down. If initialization fails due to an issue
with the persisted state, youmustmanually enable the clearPersistenceStateOnStartup option
before restarting the correlator to clear the persisted state. Once the correlator is properly started,
be sure to disable the clearPersistenceStateOnStartup option to retain the state of the correlator
upon restart of the correlator.

To specify persistence properties when creating a correlator instance, enter the properties in
key-value pairs, as parameters of the sagcc create instances command, for example:
enableCorrelatorPersistence=true persistentDatastorePath=C:\myStore.db
clearPersistentStateOnStartup=false

To modify persistence properties when updating a correlator instance, specify the persistence
properties in key-value pairs in the properties file of that instance.

The correlator license key

Before you can set or update the license key file for a correlator instance, youmust add the license
key alias for the license key file. To add the license key alias, see the topic about adding license
keys in Software AG Command Central Help.

To set the license key file using the Command Central web interface, you must provide the file
path of the license key file to upload the license key file. See the topic about changing license keys
for a product instance in this help.

To set the license key file using the command line interface, youmust provide the license key alias
of the license key file for the Apama correlator run-time component. Use the sagcc update
configuration license command to set the license key file for a run-time component instance,
for example:
sagcc update configuration license nodeAlias runtimeComponentId
configurationInstanceId licenseKeyAlias

Examples when executing on Command Central
sagcc update configuration license local Apama-correlator-Correlator1
COMMON-LICENSE-Apama-correlator-Correlator1 CorrelatorLicenseAlias

After you set the license key file, the license key file information will be available at APAMA_HOME/
command-central/instances/correlator/instancename/ApamaCorrelatorLicense.xml. If you do
not provide a license key file to an instance, then the license key at APAMA_WORK/license/
ApamaServerLicense.xmlwill be used.

Deploying and Managing Apama Applications 10.11.0 31

3 Deploying Apama Components with Command Central

Configuration types that Apama IAF supports

The following table lists the configuration types that are specific to the Apama IAF component.

Use to configure...Configuration Type

Use to configure all the command line arguments
not represented by any other configuration type.
For IAF, the following types are available:

APAMA_ARGS

extraArgs - for more information, see “Extra
arguments” on page 38.

iafConfigFile - formore information, see “Extra
arguments” on page 38.

Logging properties - for more information, see
“Component logging” on page 40.

Use to configure ports for Apama component
instances. The available property for IAF is port.

COMMON-PORTS

For more information, see “Component ports” on
page 41.

Use to define the environment variables. The
defined variables are set when you start the

APAMA-ENVVAR

instances. You must define the environment
variables in the properties file. SeeUsageNotes. For
more information, see “Apama environment
variables” on page 42.

The IAF configuration file

The IAF configuration file refers to the location of the configuration file that the IAF process uses
while launching. The static files are also supported by the Command Central launch as long as
they are resolved in the similar manner as the command line launch. The location of the IAF
configuration file can be an absolute path or a relative path. The relative path is resolved from the
APAMA_HOME/commandcentral/ instances/iaf/instancename directory. This property is required.
For more information, see Connecting Apama Applications to External Components.

Configuration types that the Apama display server and Apama data server support

The following table lists the configuration types that are specific to the Apama display server and
Apama data server components.

Use to configure...Configuration Type

Use to configure all the command line arguments not
represented by any other configuration type. For the

APAMA-ARGS

32 Deploying and Managing Apama Applications 10.11.0

3 Deploying Apama Components with Command Central

Use to configure...Configuration Type

display server and data server, the following types are
available:

extraArgs - for more information, see “Extra
arguments” on page 38.

Logging properties - for more information, see
“Component logging” on page 40.

Server modes - for more information, see “Server
modes” on page 34.

dashboardExtraJars - for more information, see
“Extra arguments” on page 38.

enhancedQuery - make SQL-based instance tables
available as data tables for visualization
attachments.

apama.extendedArgs - provides advanced options
to dashboard/display server processes. Use this
option only as directed by Apama Technical
Support.

inclusionFilter - set scenario inclusion filters. Use
this option to control scenario (for example,
DataView) discovery.

exclusionFilter - set scenario exclusion filters. Use
this option to exclude specific scenarios (for
example, DataViews) from being kept in the
memory of the dashboard processes. If an inclusion
filter is specified, any exclusion filters are ignored.

For more information on these properties, see
"Command line options for the data server and display
server" in Building and Using Apama Dashboards.

Use to configure ports forApama component instances.
The available properties are:

COMMON-PORTS

managementPort - this port is required to start the
server instance and is not specific to Command
Central integration. The default value for the
display server is 28889. The default value for the
data server is 28888.

dataPort - this port is required to start the server
instance and is not specific to Command Central

Deploying and Managing Apama Applications 10.11.0 33

3 Deploying Apama Components with Command Central

Use to configure...Configuration Type

integration. The default value for the display server
is 3279. The default value for the data server is 3278.

For more information about port configuration, see
“Component ports” on page 41.

Use to configure Java Virtual Machine (JVM) initial
memory,maximummemory, and advancedproperties.

COMMON-MEMORY

Fo more information, see “Memory configuration” on
page 35.

Use to configure a connection to another Apama
component instance. You can add, update, and delete

COMMON-COMPONENT-ENDPOINTS

endpoint configuration for the display server and data
server.

The available types of endpoints configurations are:

correlator - for connections to the correlator.

dataserver - for connections to the data server.

There can bemultiple endpoint configuration instances,
each connecting to a correlator or a data server
identified by the host and port.

Youmust specify these properties in the configuration
file. For more information, see “Component endpoint
configuration” on page 36.

Server modes

The following server modes are available:

DescriptionServer mode

Connection mode to the Apama correlator. Valid
values are:

connectMode

always - the data server or display server connects
to the correlator at startup.

asNeeded - the data server or display server
connects to the correlator as needed.

default - the data server or display server does
not connect to the correlator.

The default value is asNeeded.

34 Deploying and Managing Apama Applications 10.11.0

3 Deploying Apama Components with Command Central

DescriptionServer mode

Start as a named server. Applies only to the data
server. Valid values are:

namedServerMode

true - starts the server as a named server.

false

You must specify these properties in key-value pairs in the properties file. For an example of a
properties file, see “Extra arguments” on page 38.

For more information on server mode properties, see Building and Using Apama Dashboards.

Additional .jar files

The dashboardExtraJars property specifies the jar files for custom functions, custom commands
or any other 3rd party jars (for example, JDBC jar). Use a semicolon as separator to specifymultiple
jar files.

For more information on this property, see Building and Using Apama Dashboards.

Memory configuration

Use to configure Java Virtual Machine (JVM) initial memory, maximum memory, and advanced
properties in key-value pairs, in one of the following ways:

-XX:key=value

or

-Dkey=value

You must specify these properties in the configuration file.

Example format of the MemoryConfiguration.xml file:
<MemorySettings>

<InitSize>256</InitSize>
<MaxSize>1024</MaxSize>
<ExtendedProperties>

<Property name="-XX:MaxPermSize">128M</Property>
<Property name="-XX:MaxDirectMemorySize">1G</Property>
<Property name="-DProperty1">Value1</Property>

</ExtendedProperties>
</MemorySettings>

Examples when executing on Command Central

To update the memory settings for a display server:
sagcc update configuration data local Apama-displayserver-myDisplayServer
COMMON-MEMORY --input C:\MemoryConfiguration.xml

Deploying and Managing Apama Applications 10.11.0 35

3 Deploying Apama Components with Command Central

To update the memory settings for a data server:
sagcc update configuration data local Apama-dataserver-myDataServer
COMMON-MEMORY --input C:\MemoryConfiguration.xml

To fetch the memory settings of a display server:
sagcc get configuration data local Apama-displayserver-myDisplayServer
COMMON-MEMORY

To fetch the memory settings of a data server:
sagcc get configuration data local Apama-dataserver-myDataServer
COMMON-MEMORY

Component endpoint configuration

The following component endpoint configuration properties are available:

DescriptionProperty

Required. Specifies the logical name for the host, for
example: <Endpoint alias="${logicalName}">.

alias

Required. Specifies the host name of the correlator or data
server for a specified alias.

Host

Required. Specifies the port of the correlator or data server.Port

Required. Specifies the type of endpoint configuration.type

Specifies whether to use the raw channel for
communication. Valid values are:

isRaw

true

false

The default value is false. This property applies only to
the correlator endpoint type.

When you create a newendpoint configuration instance, youmust use COMMON-COMPONENT-ENDPOINTS
as the configuration type ID.

When you update or delete an endpoint configuration instance, you must use the following
configuration instance ID:

COMMON-COMPONENT-ENDPOINTS-endpointtype-alias

Examples when executing on Command Central

To create the endpoint configuration instance for a display server instance:
sagcc create configuration data local Apama-displayServer-myDisplayServer

36 Deploying and Managing Apama Applications 10.11.0

3 Deploying Apama Components with Command Central

COMMON-COMPONENT-ENDPOINTS -i AddDisplayServerEndpoint.xml

To update the endpoint configuration instance for a display server instance for endpoint type
correlator:
sagcc update configuration data local Apama-displayServer-myDisplayServer
COMMON-COMPONENT-ENDPOINTS-correlator-alias1
-i UpdateDisplayServerEndpoint.xml

To update the endpoint configuration instance for a display server instance for endpoint type
dataserver:
sagcc update configuration data local Apama-displayServer-myDisplayServer
COMMON-COMPONENT-ENDPOINTS-dataserver-alias1
-i UpdateDisplayServerEndpoint.xml

To delete the endpoint configuration instance for a display server instance for endpoint type
correlator:
sagcc delete configuration data local Apama-displayServer-myDisplayServer
COMMON-COMPONENT-ENDPOINTS-correlator-alias1

To delete the endpoint configuration instance for a display server instance for endpoint type
dataserver:
sagcc delete configuration data local Apama-displayServer-myDisplayServer
COMMON-COMPONENT-ENDPOINTS-dataserver-alias1

To create the endpoint configuration instance for a data server instance:
sagcc create configuration data local Apama-dataserver-myDataServer
COMMON-COMPONENT-ENDPOINTS -i AddDataServerEndpoint.xml

To update the endpoint configuration instance for a data server instance for endpoint type
correlator:
sagcc update configuration data local Apama-dataserver-myDataServer
COMMON-COMPONENT-ENDPOINTS-correlator-alias1 -i UpdateDataServerEndpoint.xml

To update the endpoint configuration instance for a data server instance for endpoint type
dataserver:
sagcc update configuration data local Apama-dataserver-myDataServer
COMMON-COMPONENT-ENDPOINTS-dataserver-alias1 -i UpdateDataServerEndpoint.xml

To delete the endpoint configuration instance for a data server instance for endpoint type
correlator:
sagcc delete configuration data local Apama-dataserver-myDataServer
COMMON-COMPONENT-ENDPOINTS-correlator-alias1

To delete the endpoint configuration instance for a data server instance for endpoint type
dataserver:
sagcc delete configuration data local Apama-dataserver-myDataServer
COMMON-COMPONENT-ENDPOINTS-dataserver-alias1

Deploying and Managing Apama Applications 10.11.0 37

3 Deploying Apama Components with Command Central

Note:
You cannot update alias and endpoint type.

Example format of the XML file for correlator type endpoint for the instance ID
COMMON-COMPONENT-ENDPOINTS-correlator-alias1:
<Endpoint alias="alias1">
<Transport>

<Host>localhost</Host>
<Port>15903</Port>

</Transport>
<Auth/>
<ExtendedProperties>
<Property name="isRaw">true</Property>
<Property name="type">correlator</Property>

</ExtendedProperties>
</Endpoint>

Example format of the XML file for dataserver type endpoint for the instance ID
COMMON-COMPONENT-ENDPOINTS-dataserver-alias1:
<Endpoint alias="alias1">
<Transport>
<Host>localhost</Host>
<Port>2888</Port>

</Transport>
<Auth/>
<ExtendedProperties>
<Property name="type">dataserver</Property>

</ExtendedProperties>
</Endpoint>

Usage notes

Extra arguments

In the web interface, the Extra Args is the text area that is used to provide any extra arguments
which are not supported through explicit property or configuration. You can use newlines in the
Extra args field, and the newlines are treated as a space character. If an argument value has spaces,
then the argument must be specified within quotes, for example: --name "Correlator Instance
1".

In the command line interface, the extraArgs is a property that must be updated in the properties
file.

If you are updating the configuration type using the command line interface, use the following
command to update the configuration of an instance:
sagcc update configuration data nodeAlias runtimeComponentId
configurationInstanceId -i properties file

Use the sagcc get configuration instances command to retrieve information about an instance
such as the instance ID, the display name for an instance, and the description for an instance. For
example, the following command displays the information of a correlator instance:

38 Deploying and Managing Apama Applications 10.11.0

3 Deploying Apama Components with Command Central

sagcc get configuration instances local Apama-correlator-myCorrelator

For more information on extra command line arguments for the correlator, see Deploying and
Managing Apama Applications.

For more information on extra command line arguments for the IAF, see Connecting Apama
Applications to External Components.

For more information on extra arguments for the display server and data server, see Building and
Using Apama Dashboards.

Examples when executing on Command Central

To update the configuration type for a correlator instance:
sagcc update configuration data local
Apama-correlator-myCorrelator APAMA-ARGS -i C:\CorrelatorProps.properties

To update the configuration type for an IAF instance:
sagcc update configuration data local
Apama-iaf-myIAF APAMA-ARGS -i C:\IafProps.properties

To update the configuration type for a display server instance:
sagcc update configuration data local
Apama-displayserver-myDisplayServer APAMA-ARGS
-i C:\DisplayServerProps.properties

To update the configuration type for a data server instance:
sagcc update configuration data local
Apama-dataserver-myDataServer APAMA-ARGS -i C:\DataserverProps.properties

Example format of a properties file for a correlator:
extraArgs= -V DEBUG
logLevel=CRIT
inputLog=default-correlator-input_testing.log
outputLog=testing.log
enableCorrelatorPersistence=true
persistentDatastorePath=C:\myStore.db
clearPersistentStateOnStartup=true

Example format of a properties file for an IAF:
extraArgs= -v INFO
iafConfigFile= C:\iaf-config.xml
logLevel=DEBUG
outputLog=C:\output.txt

Example format of a properties file for a display server:
extraArgs= -v INFO
logLevel=DEBUG
outputLog=C:\output.txt
connectMode=always
dashboardExtraJars=${APAMA_WORK}/extra1.jar;${APAMA_WORK}/extra2.jar

Deploying and Managing Apama Applications 10.11.0 39

3 Deploying Apama Components with Command Central

enhancedQuery=true
inclusionFilter=DV_StatisticalArbitrage

Example format of a properties file for a data server:
extraArgs= -v INFO
logLevel=DEBUG
outputLog=C:\output.txt
connectMode=always
namedServerMode=true
dashboardExtraJars=${APAMA_WORK}/extra1.jar;${APAMA_WORK}/extra2.jar
enhancedQuery=true
exclusionFilter=DV_Weather

Component logging

You can configure the log files and log level when you create or update an instance of Apama
component. These properties are optional. If you do not define these properties, the default values
are assigned. The default logging level for all components is -INFO. The default log files are:

Log locationComponent

logs/correlator-${INSTANCE_NAME}-${START_TIME}.logcorrelator

logs/iaf-${INSTANCE_NAME}-${START_TIME}.logIAF

logs/display-server-${INSTANCE_NAME}-${START_TIME}.logDisplay server

logs/data-server-${INSTANCE_NAME}-${START_TIME}.logData server

The default value for the inputLog property for correlator is <empty>

The location of log files can be absolute path or relative path. The relative path of the log files is
resolved from the APAMA_HOME/command-central/instances/ComponentType/instancename/logs/
directory.

To specify the log files and log level when you create an instance of an Apama component, you
must specify the logging properties in key-value pairs in the sagcc create instances command
as parameters. For example, logLevel=CRIT inputLog=default-correlator-input.log
outputLog=correlator-output.log.

To specify the log files and log level when you update an instance of an Apama component, you
must specify the logging properties in key-value pairs in the properties file.

The log files are located at APAMA_HOME/command-central/instances/ComponentType/instancename/
logs/.

For more information on logging properties, see “Setting EPL log files and log levels
dynamically” on page 219.

40 Deploying and Managing Apama Applications 10.11.0

3 Deploying Apama Components with Command Central

Component ports

You can update the port configuration of an Apama component instance using the web interface
and the command line interface. Port configuration can only be updated. It cannot be created or
deleted. The port number is validated when a request to update the port number is specified. The
update of the port number fails if the validation fails.

Examples when executing on Command Central

To update the port configuration for a correlator instance:
sagcc update configuration data local Apama-correlator-myCorrelator
COMMON-PORTS-port -i Correlator.xml

To update the port configuration for an IAF instance:
sagcc update configuration data local Apama-iaf-myIAF
COMMON-PORTS-port -i IAF.xml

To update the data port configuration for a display server instance:
sagcc update configuration data local Apama-displayserver-myDisplayServer
COMMON-PORTS-dataPort -i DataPort_displayServer.xml

To update the management port configuration for a display server instance:
sagcc update configuration data local Apama-displayserver-myDisplayServer
COMMON-PORTS-managementPort -i ManagementPort_displayServer.xml

To update the data port configuration for a data server instance:
sagcc update configuration data local Apama-dataserver-myDataServer
COMMON-PORTS-dataPort -i DataPort_dataServer.xml

To update the management port configuration for a data server instance:
sagcc update configuration data local Apama-dataserver-myDataServer
COMMON-PORTS-managementPort -i ManagementPort_dataServer.xml

Example format of the XML file for the IAF and correlator for the instance ID COMMON-PORTS-port:
<PortSettings>

<Port alias="port">
<Number>12345</Number>
<Protocol>HTTP</Protocol>

</Port>
</PortSettings>

Example format of the XML file for the dashboard management port with the instance ID
COMMON-PORTS-managementPort:
<PortSettings>

<Port alias="managementPort">
<Number>12345</Number>
<Protocol>HTTP</Protocol>

</Port>

Deploying and Managing Apama Applications 10.11.0 41

3 Deploying Apama Components with Command Central

</PortSettings>

Example format of XML file for the dashboard data port with the instance ID
COMMON-PORTS-dataPort:
<PortSettings>

<Port alias="dataPort">
<Number>12345</Number>
<Protocol>HTTP</Protocol>

</Port>
</PortSettings>

Note:
The protocol value HTTP is not optional. However, it will not be considered by Apama
configuration managers.

Apama environment variables

Use to define the environment variables for the Apama correlator and IAF instances. The defined
variables are set when you start the instances. You can define the environment variables using the
web interface and the command line interface. You can define the environment variables only
when you update the configuration of an instance. The environment variables must be defined in
key-value pairs syntax as a properties file. Use the sagcc update configuration data command
to define the environment variables. If an environment variable is already defined and if you
define that environment variable again, the old value is replaced by the new value.

Using existing environment variables

You can use an existing environment variable in the definition of a new environment variable
using the syntax ${env:EnvironmentVariableName}. The same syntax can also be used to update
the value of an existing environment variable, for example:
MY_HOME=C:\project1
PATH=C:\Program Files
Define MY_BIN environment variable using existing MY_HOME environment
variable
MY_BIN=${env:MY_HOME}/bin

Update PATH environment variable with MY_BIN value to existing PATH value
PATH=${env:MY_BIN};${env:PATH}

Where the value of the MY_BIN environment variable during runtime is C:\project1\bin. The value
of the PATH environment variable after the update is C:\project1\bin; C:\Program Files.
Environment variables are evaluated and defined when an instance is started. Any existing
environment variable used with the syntax ${env:EnvironmentVariableName} is replaced with its
current value known at the time of evaluation. If an environment variable is not defined and is
used in another environment variable, the undefined variable is replaced by an empty string. For
example:
MY_HOME is not defined
Define MY_BIN
MY_BIN=${env:MY_HOME}/bin

42 Deploying and Managing Apama Applications 10.11.0

3 Deploying Apama Components with Command Central

In the above example, the value of the MY_BIN environment variable is /bin, because ${env:MY_HOME}
is replaced by an empty string. The order of defining an environment variable is very important.
The environment variable used in the definition of another environment variable must be defined
before it is used. For example, if you want to use MY_HOME in the definition of MY_BIN, ensure that
you have defined MY_HOME before using it MY_BIN.

Using special substitution variables

You can also use special substitution variableswhen defining an environment variable. The special
substitution variablesmust be used in the syntax ${VARIABLE_NAME}. At present, only the following
special substitution variables are supported:

APAMA_HOME

APAMA_WORK

INSTANCE_NAME

START_TIME (date and time at which the instance is started)

$ (the value of this substitution variable $ is $)

Example for using special substitution variables:
MY_CONFIGS = ${APAMA_WORK}/project/${INSTANCE_NAME}/configs

Using the special substitution variable $

You can use the special substitution variable $ to escape any defined or undefined environment
variables, and special substitution variables. That is, if you want to use ${ENV_VAR} as a value and
do not want it to be expanded, you should use $ as ${$} so that ENV_VAR is not expanded and the
value will be ${ENV_VAR}. For example:
ENV1 = ${$}{env:PATH}:/bin
ENV2 = ${$}{env:SOME_ENV}:/example
ENV3 = ${$}{APAMA_HOME}/samples
ENV4 = ${$}{MY_VAR}/demo

The values of ENV1, ENV2, ENV3 and ENV4 are:
${env:PATH}:/bin
${env:SOME_ENV}:/example
${APAMA_HOME}/samples
${MY_VAR}/demo
Here, the environment variables are not expanded
because of the special substitution variable $,
and ${$} is replaced by $.

Example format of a properties file:
MY_HOME=C:\project1
MY_BIN=${env:MY_HOME}/bin
MY_CONFIG=${APAMA_WORK}/project/${INSTANCE_NAME}/configs

Deploying and Managing Apama Applications 10.11.0 43

3 Deploying Apama Components with Command Central

Examples when executing on Command Central

To define environment variables for a correlator instance:
sagcc update configuration data local Apama-correlator-myCorrelator
APAMA-ENVVAR -i Correlator.properties

To define environment variables for an IAF instance:
sagcc update configuration data local Apama-iaf-myIAF
APAMA-ENVVAR -i IAF.properties

Correlator connections

You can configure this correlator (the target) to receive events from a specified source correlator.
The source correlator is identified by its host and port. The target correlator will receive events
from the specified channels of the source correlator.

Examples when executing on Command Central

To create the APAMA-ENGINE-CONNECT configuration for a correlator instance:
sagcc create configuration data local Apama-correlator-myCorrelator
APAMA-ENGINE-CONNECT -i correlator-connection-config.xml

To update the APAMA-ENGINE-CONNECT configuration for a correlator instance:
sagcc update configuration data local Apama-correlator-myCorrelator
APAMA-ENGINE-CONNECT-localhost-15993 -i correlator-connection-config.xml

To delete the APAMA-ENGINE-CONNECT configuration for a correlator instance:
sagcc delete configuration data local Apama-correlator-myCorrelator
APAMA-ENGINE-CONNECT-localhost-15993

Example format of the XML file for a correlator instance:
<Endpoint alias="">
<Transport>
<Host>localhost</Host>
<Port>15993</Port>
</Transport>
<Auth/>
<ExtendedProperties>
<Property name="channels">c1</Property>
<Property name="mode">legacy</Property>
<Property name="disconnectOnSlow">true</Property>

</ExtendedProperties>
</Endpoint>

Overriding correlator configuration

If there are any correlator configuration properties that are different between your development
environment and your production environment, you can set them here. Any configuration
properties from your Designer project that have inappropriate values for production can be

44 Deploying and Managing Apama Applications 10.11.0

3 Deploying Apama Components with Command Central

overridden. For example, you can override the hostname of a JMS broker, the authentication details
for the MQTT connectivity plug-in, or the port used by the HTTP server connectivity plug-in and
so on.

The properties to override must be defined in key-value pairs syntax as a properties file.

Examples when executing on Command Central

To update the APAMA-PROP-OVERRIDES configuration for a correlator instance:
sagcc update configuration data local Apama-correlator-myCorrelator
APAMA-PROP-OVERRIDES -i override-props.properties

Example format of a properties file for overriding the correlator configuration:
jndiContext.environment.provider.url.UniversalMessaging=nsp://umbroker.local:9000
MQTT_username=katrina
MQTT_password=cornwell
HTTPServer_port=8080

Configuring Digital Event Services for a correlator instance
You can configure the Digital Event Services subcomponent under a correlator instance in the
Command Central web user interface. For more information on using Digital Event Services, see
"The Digital Event Services Transport Connectivity Plug-in" in Connecting Apama Applications to
External Components.

To configure Digital Event Services for a correlator instance

1. In the Environments pane, select the environment in which you want to configure a product
instance.

2. Select the Instances tab.

3. Click the correlator instance for which you want to configure Digital Event Services.

4. Click the Digital Event Services subcomponent under the correlator instance in the left pane.

5. From the list of available configuration types for Digital Event Services, select a configuration
type.

Command Central displays the default or available values for the configuration data for the
selected instance.

6. Configure the selected instance as follows:

Deploying and Managing Apama Applications 10.11.0 45

3 Deploying Apama Components with Command Central

ClickTo

Add new data

To edit an item for a configuration type, click on the
item that you want to update and click Edit.

Edit data

Delete data

TestTest whether data is added or edited
successfully.

For example, you can test new
configuration data to perform a
field-level validation before you save
the configuration data.

7. Click Save to save the configuration data.

Retrieving configuration data for Apama component instances
Use the sagcc get configuration instances command to retrieve information about an instance
such as the instance ID, the display name for an instance, and the description for an instance.

Examples when executing on Command Central

To display information of a correlator instance:
sagcc get configuration instances local Apama-correlator-myCorrelator

To display information of an IAF instance:
sagcc get configuration instances local Apama-iaf-myIAF

To display information of a display server instance:
sagcc get configuration instances local Apama-displayserver-myDisplayServer

To display information of a data server instance:
sagcc get configuration instances local Apama-dataserver-myDataServer

Lifecycle actions for Apama component instances
Apama runtime components support the following lifecycle actionswith the sagcc exec lifecycle
command:

46 Deploying and Managing Apama Applications 10.11.0

3 Deploying Apama Components with Command Central

DescriptionAction

Starts an Apama component instance.start

Stops an Apama component instance. If an instance fails to
stop, it will be terminated after 60 seconds.

stop

Restarts an Apama component instance.restart

Apama runtime components do not support the following lifecycle actions:

start in debug mode

pause

resume

You can perform lifecycle actions in the web user interface using the drop-down list from the
Status icon of an instance.

Formore information about how to execute lifecycle actions using theCommandCentral command
line interface, see Software AG Command Central Help.

Examples when executing on Command Central

To start a correlator instance with runtime component ID "Apama-correlator-myCorrelator"
in the installation with alias "local":
sagcc exec lifecycle start local Apama-correlator-myCorrelator

To start an IAF instance with runtime component ID "Apama-iaf-myIAF" in the installaion
with alias "local":
sagcc exec lifecycle start local Apama-iaf-myIAF

To start a display server instance with runtime component ID
"Apama-displayserver-myDisplayServer" in the installation with alias "local":
sagcc exec lifecycle start local Apama-displayserver-myDisplayServer

To start a data server instancewith runtime component ID "Apama-dataserver-myDataServer"
in the installation with alias "local":
sagcc exec lifecycle start local Apama-dataserver-myDataServer

To stop a correlator instance with runtime component ID "Apama-correlator-myCorrelator"
in the installation with alias "local":
sagcc exec lifecycle stop local Apama-correlator-myCorrelator

To restart a correlator instance with runtime component ID "Apama-correlator-myCorrelator"
in the installation with alias "local":
sagcc exec lifecycle restart local Apama-correlator-myCorrelator

Deploying and Managing Apama Applications 10.11.0 47

3 Deploying Apama Components with Command Central

Monitoring Apama from Command Central

You can monitor the KPIs for the correlator, EPL applications, IAF and dashboard servers.

Monitoring the KPIs for the correlator
With CommandCentral you can view basic Key Performance Indicators (KPIs) for each correlator
instance that is online.

To view the KPIs in the command line interface, use the following command:
sagcc get monitoring runtimestate nodeAlias runtimeComponentId

Apama supports the KPIs listed in the following table:

DescriptionKPI

Use this KPI to monitor the number of events on the
input queue of the slowest context. This KPI is

Input queue size of slowest context

represented by the lcq field in the main correlator log
file. This KPI is also present in the status message
Slowest context queue size returned by the
engine_watch tool.

Marginal value - 2000 events.

Critical value - 10000 events.

Maximum value - 20000 events.

Use this KPI to monitor the number of events waiting
to be processed by the slowest receiver. This KPI is

Output queue size of slowest receiver

represented by the srq field in the main correlator log
file. This KPI is also present in the status message
Slowest receiver queue size returned by the
engine_watch tool.

Marginal value - 2000 events.

Critical value - 5000 evens.

Maximum value - 10000 events.

This KPI represents the resident memory in MB used
by the correlator process.

Resident memory usage

Marginal value - 75% of the maximum amount of
physical memory.

Critical value - 90% of the maximum amount of
physical memory.

48 Deploying and Managing Apama Applications 10.11.0

3 Deploying Apama Components with Command Central

DescriptionKPI

Maximum value - the total amount of physical
memory of the machine.

The maximum values of the input and output queue size KPIs are indicative. It is possible for the
actual queue size to be larger than the maximum value specified.

For more information about the correlator runtime status, see “Watching correlator runtime
status” on page 178.

Formore information about the status log fields, see “Descriptions of correlator status log fields” on
page 131.

Example when executing on Command Central

To retrieve the KPIs for a correlator instance with the runtime component ID
"Apama-correlator-myCorrelator" in the installation with alias name "local":
sagcc get monitoring runtimestate local Apama-correlator-myCorrelator

Monitoring the KPIs for EPL applications and connectivity plug-
ins
In CommandCentral, you canmonitor the status andKPIs of one ormore parts of your application,
each of which will be represented in Command Central as a subcomponent of the correlator
instance. Status can be reported by both EPL code and connectivity plug-ins. In CommandCentral,
each component can show status (for example, online/offline) and up to three numeric KPIs.

To monitor the KPIs of an application component:

1. Specify the components of your application to be monitored using the Application KPI
configuration type. Specify the subcomponent_identifier in the Monitor Applications field. You
can specify multiple names using a comma separator. Each subcomponent_identifier specified
here is represented as a subcomponent under the correlator instance. You can update the
Application monitoring configuration in theCommandCentralweb interface and command
line interface.

To update the configuration in the command line interface:
sagcc update configuration data local Apama-correlator-myCorrelator
APAMA-CORRELATOR-APP-MONITORING -i C:\EPLService.properties

Example format of a properties file for the Application KPI configuration type:
MyEPLService, MyEPLService1, MyEPLService2,
MyConnectivityChain1.MyConnectivityTransportPlugin

2. Update your application's EPL files to report status and KPIs for each component of your EPL
application by calling the EPL API com.apama.correlator.Component.setUserStatus.

Deploying and Managing Apama Applications 10.11.0 49

3 Deploying Apama Components with Command Central

For more information, see API Reference for EPL (ApamaDoc) and "Using the Management
interface" in Developing Apama Applications.

If using Software AG Designer, add the Correlator Management bundle to make this event
definition available to your project. For the EPL application subcomponent to report the status
orKPIs inCommandCentral, youmust follow certain conventions in the EPLfiles asmentioned
in the following list:

EPLconvention. com.apama.correlator.Component.setUserStatus(subcomponent_identifier
+".status", status);

Description. Provides an indication of the health of the component, for example, whether
it is still STARTING, has FAILED or is ONLINE and fully operational. The
subcomponent_identifier is a user-defined unique string prefix to identify a component of
an EPL application. This unique string is used to identify the components that aremonitored
in the correlator's Application KPI configuration in Command Central.

Values: STARTING,ONLINE, FAILED,UNKNOWN(the valueOFFLINE is also permitted
for backwards compatibility but no longer recommended for use)

Default value: UNKNOWN

Example:
constant string SUBCOMPONENT_ID := "MyEPLService";
com.apama.correlator.Component.setUserStatus(

SUBCOMPONENT_ID +".status", "ONLINE");

EPLconvention. com.apama.correlator.Component.setUserStatus(subcomponent_identifier
+".KPIs", KPI_list);

Description. The KPI_list is a comma-separated list of user status keys, identifying the
numerical KPIs that should be displayed for this subcomponent by monitoring tools such
as Command Central.

Example:
constant string KPI_USERS := "MyEPLService active users";
constant string KPI_ERRORS := "MyEPLService errors in last hour";
constant string KPI_MEMORY := "MyEPLService memory used";
constant string KPI_MESSAGE_RATE := "MyEPLService message rate";
com.apama.correlator.Component.setUserStatus(

SUBCOMPONENT_ID +".KPIs", ",".join([KPI_USERS, KPI_ERRORS,
KPI_MEMORY, KPI_MESSAGE_RATE]);

Only the first three KPIs are displayed in the Command Central web interface.

EPL convention. com.apama.correlator.Component.setUserStatus(KPI_identifier, "0");

Description. Publishes a KPI value for a monitored component of the EPL application.
The KPI_identifier is a user-defined unique identifier to identify the KPI which must be
specified in subcomponentid.KPIs for the subcomponent it applies to. It is recommended
that this string includes the subcomponent_identifier to differentiate from other
subcomponents. Also, define an EPL string constant for each KPI so that it is convenient
to add various suffixes if you wish to monitor optional information such as units and

50 Deploying and Managing Apama Applications 10.11.0

3 Deploying Apama Components with Command Central

maximum value of this KPI. The KPI value can be an integer or a float, represented as an
EPL string.

Default value: 0

Example:
string KPI_MESSAGE_RATE := SUBCOMPONENT_ID+" message rate";
com.apama.correlator.Component.setUserStatus(

KPI_MESSAGE_RATE, messageRate.toString());

EPL convention. com.apama.correlator.Component.setUserStatus(KPI_identifier
+".units", name);

Description. Name to be used for displaying the units against which the KPI numbers are
reported. Command Central displays these units in the graphs.

Example:
com.apama.correlator.Component.setUserStatus(

KPI_MESSAGE_RATE +".units", "evt/sec");

EPLconvention. com.apama.correlator.Component.setUserStatus(KPI_identifier +".max",
value);

Description. Represents the maximum value of the KPI that is published. This defines the
maximumpoint of the vertical axis onwhich the KPI value is displayed. The value attribute
must be a string representation of an integer or float.

Default value: VALUE +1

Example:
com.apama.correlator.Component.setUserStatus(

KPI_MESSAGE_RATE +".max", "1000");

EPL convention. com.apama.correlator.Component.setUserStatus(KPI_identifier
+".marginal", value);

Description. Represents the marginal value of the KPI that is published. When the KPI
value is above this level, the KPI will be shown with a warning alert. The value attribute
must be a string representation of an integer or float.

Default value: VALUE +1

Example:
com.apama.correlator.Component.setUserStatus(

KPI_MESSAGE_RATE +".marginal", "100");

EPL convention. com.apama.correlator.Component.setUserStatus(KPI_identifier
+".critical", value);.

Description. Represents the critical value of the KPI that is published.When the KPI value
is above this level, the KPI will be shown with an error alert. The value attribute must be
a string representation of an integer or float.

Deploying and Managing Apama Applications 10.11.0 51

3 Deploying Apama Components with Command Central

Default value: VALUE +1

Example:
com.apama.correlator.Component.setUserStatus(

KPI_MESSAGE_RATE +".critical", "500");

EPL convention. com.apama.correlator.Component.setUserStatus(KPI_identifier
+".display", name);.

Description. Represents the name to be used as a display name inCommandCentralwhen
KPI names are longer.

Default value: KPI_identifier

Example:
com.apama.correlator.Component.setUserStatus(

KPI_MESSAGE_RATE +".display", "Message Rate");

3. Connectivity plug-ins can be written to report status and KPIs using the StatusReporter
interface, typically using the plug-in's chainId+"."+pluginName as the subcomponent_identifier.
The conventions listed above should be followed.

For more information, see "User-defined status reporting from connectivity plug-ins" in
Connecting Apama Applications to External Components.

Note:
The status keys, subcomponent identifiers, and the suffixes .status, .KPIs, .max, .min and
.display are case sensitive.

Monitoring the KPIs for the IAF
WithCommandCentral, you can view basic Key Performance Indicators (KPIs) for an IAF instance
that is online.

To view the KPIs in the command line interface, use the following command:
sagcc get monitoring runtimestate nodeAlias runtimeComponentId

Apama supports the KPIs listed in the following table:

DescriptionKPI

Use this KPI tomonitor the rate at which the adapter
is receiving Apama events from the correlator

Receive rate

(towards the transport). There are no threshold alerts
for this KPI.

Use this KPI tomonitor the rate at which the adapter
is sending Apama events to the correlator (from the
transport). There are no threshold alerts for this KPI.

Sent rate

52 Deploying and Managing Apama Applications 10.11.0

3 Deploying Apama Components with Command Central

DescriptionKPI

This KPI represents the residentmemory inMBused
by the IAF process.

Resident memory usage

Marginal value - 75% of the maximum amount
of physical memory.

Critical value - 90% of the maximum amount of
physical memory.

Maximum value - the total amount of physical
memory of the machine.

Example when executing on Command Central

To retrieve the KPIs for an IAF instance with the runtime component ID "Apama-iaf-myIAF" in
the installation with alias name "local":
sagcc get monitoring runtimestate local Apama-iaf-myIAF

Monitoring the KPIs for the dashboard servers
WithCommandCentral you can view basic Key Performance Indicators (KPIs) for each dashboard
server instance while its status is online.

To view the KPIs in the command line interface, use the following command:
sagcc get monitoring runtimestate nodeAlias runtimeComponentId

Apama supports the KPIs listed in the following table:

DescriptionKPI

Use this KPI tomonitor the average number of seconds
taken to retrieve the values across all instance tables

Average instance table query (seconds)

(which hold the current values for each instance) over
the last 10 minutes. This gives a measure of the
responsiveness of the dashboard to end-users.

Marginal value - 2 seconds

Critical value - 10 seconds

Maximum value - 15 seconds

Use this KPI tomonitor the average number of seconds
taken to retrieve the values across all trend tables

Average trend table query (seconds)

(which hold the history of recent values for each
instance) over the last 10minutes. This gives ameasure
of the responsiveness of the dashboard to end-users.

Deploying and Managing Apama Applications 10.11.0 53

3 Deploying Apama Components with Command Central

DescriptionKPI

Marginal value - 2 seconds

Critical value - 10 seconds

Maximum value - 15 seconds

Use this KPI to monitor the amount of memory the
dashboard server is using as a percentage of the
maximumheap size allocated inmemory configuration.

Memory

Marginal value - 75%

Critical value - 90%

Maximum value - 100%

For more information about the instance table and trend table, see "Dashboard data tables" in
Building and Using Apama Dashboards.

You can also monitor these and other dashboard statistics using the Generic Management REST
API. See “Managing and Monitoring over REST” on page 109.

Example when executing on Command Central

To retrieve the KPIs for the dashboard server instance with the runtime component ID
"Apama-displayserver-myDisplayServer" and "Apama-dataserver-myDataServer" in the installation
with alias name "local":
sagcc get monitoring runtimestate local Apama-displayserver-myDisplayServer

sagcc get monitoring runtimestate local Apama-dataserver-myDataServer

Viewing log files
In Command Central, you can view the following log files for Apama component instances:

Log files from the instanceDir/logs directory and its subdirectories that have the following
extensions:

.log

.out

.err

OutputLog of any Apama component instance.

InputLog for the correlator instance (if available).

If two log files have the same file names, the logAlias of the second log file is prefixed with (1).
For example:

54 Deploying and Managing Apama Applications 10.11.0

3 Deploying Apama Components with Command Central

outputLog=C:\output.log
inputLog=C:\input\output.log
The log files are in different directories but have the
same file name.
The logAlias for these log files will be:
output.log for C:\output.log
(1)output.log for C:\input\output.log

You can view and download the log files in theweb user interface using theLogs tab of an instance.

For information about viewing log files and log entries using the Command Central command
line interface, see Software AG Command Central Help.

Examples when executing on Command Central

To list the log files of a correlator instance with the runtime component ID
"Apama-correlator-myCorrelator" from the installation with alias name "local":
sagcc list diagnostics logs local Apama-correlator-myCorrelator

To list the log files of an IAF instance with the runtime component ID "Apama-iaf-myIAF"
from the installation with alias name "local":
sagcc list diagnostics logs local Apama-iaf-myIAF

To list the log files of a display server instance with the runtime component ID
"Apama-displayserver-myDisplayServer" from the installation with alias name "local":
sagcc list diagnostics logs local Apama-displayserver-myDisplayServer

To list the log files of a data server instance with the runtime component ID
"Apama-dataserver-myDataServer" from the installation with alias name "local":
sagcc list diagnostics logs local Apama-dataserver-myDataServer

To retrieve log entries from a log file of a correlator instance:
sagcc get diagnostics logs local Apama-correlator-myCorrelator Correlator.err

To retrieve log entries from the log file with file name "Apama-iaf-myIAF IAF.err" of the IAF
instancewith runtime component ID "Apama-iaf-myIAF" from the installationwith alias name
"local":
sagcc get diagnostics logs local Apama-iaf-myIAF IAF.err

To retrieve log entries from the log file with file name "DisplayServer.err" of the display server
instancewith runtime component ID "Apama-dataserver-myDataServer" from the installation
with alias name "local":
sagcc get diagnostics logs local Apama-displayserver-myDisplayServer
DisplayServer.err

To retrieve log entries from the log file with file name "DataServer.err" of the data server
instancewith runtime component ID "Apama-dataserver-myDataServer" from the installation
with alias name "local":

Deploying and Managing Apama Applications 10.11.0 55

3 Deploying Apama Components with Command Central

sagcc get diagnostics logs local Apama-dataserver-myDataServer DataServer.err

To export a zip file with the log files of a correlator instance with runtime component ID
"Apama-correlator-myCorrelator" from the installation with alias name "local". The zip file
includes log files with the names "Correlator.err" and "Correlator.out":
sagcc get diagnostics logs local Apama-correlator-myCorrelator
Correlator.err+Correlator.out export -o CorrelatorLog.zip

To export log files of a zip file with the log files of an IAF instance with runtime component
ID "Apama-iaf-myIAF". The zip file includes log files with the names "IAF.err" and "IAF.out":
sagcc get diagnostics logs local Apama-iaf-myIAF IAF.err+IAF.out
export -o IAFLog.zip

To export log files of a zip file with the log files of a display server instance with runtime
component ID "Apama-displayserver-myDisplayServer" from the installationwith alias name
"local". The zip file includes log fileswith the names "DisplayServer.err" and "DisplayServer.out":
sagcc get diagnostics logs local Apama-displayserver-myDisplayServer
DisplayServer.err+DisplayServer.out -o DisplayServerLog.zip

To export log files of a zip file with the log files of a data server instance with runtime
component ID "Apama-dataserver-myDataServer" from the installationwith alias name "local".
The zip file includes log files with the names "DataServer.err" and "DataServer.out":
sagcc get diagnostics logs local Apama-dataserver-myDataServer
DataServer.err+DataServer.out -o DataServerLog.zip

Deploying a Designer project to Command Central

To deploy a working Apama project in Command Central, you must configure the Apama
component instances in Command Central:

For the correlator:

1. Create a Zip file of your Designer project using the engine_deploy tool with the
--outputDeployDir action. Formore information on the engine_deploy tool, see “Deploying
a correlator” on page 163.

If your project makes use of a custom C++ plug-in (connectivity plug-in or EPL plug-in),
see “ Configuring Apama components to use custom C++ plug-ins” on page 27.

2. Copy the Zip file to the Apama/command-central/instances/correlator/instance_name/
directory. You could do this by uploading the Zip file in the configuration of your correlator
instance, using the Command Central web user interface. Alternatively, you could use
composite templates as described below.

TheDesigner project (Zip file) is launchedwhen the correlator instance is started, including
all the EPL files and configurations.

3. Optionally, you can override the correlator configuration properties (YAML, JMS,
distributed store) using the APAMA-PROP-OVERRIDES configuration type. Formore information,

56 Deploying and Managing Apama Applications 10.11.0

3 Deploying Apama Components with Command Central

see “Overriding correlator configuration” on page 44. You can perform these steps using
the web user interface or command line interface.

Command Central composite templates can be used to transform deployment of Apama
applications to a correlator into a single automated step. The samples for this are available at
the Apama/samples/command_central/ directory.

Note:
The project contents are reset by Command Central each time the instance is started.
Therefore, do not configure the correlator to write any valuable state within the project
directory itself, for example, supplementary log files or some other application output.

For the IAF, create the IAF instance in Command Central. You should copy the IAF
configuration file from the project directory at /adapters/iaf_config.xml to the same system
as the instance, and specify the path to that file at instance creation time.

For the dashboard servers, if your configuration needs to access any resources from theApama
project, youmust make the dashboards folder from the project directory available on the same
system as the instance.

Deploying and Managing Apama Applications 10.11.0 57

3 Deploying Apama Components with Command Central

58 Deploying and Managing Apama Applications 10.11.0

3 Deploying Apama Components with Command Central

4 Deploying and Managing Queries

■ Overview of deploying and managing query applications .. 60

■ Query application architecture ... 60

■ Deploying query applications ... 61

■ Running queries on correlator clusters ... 62

■ Managing parameterized query instances ... 68

■ Monitoring running queries ... 68

Deploying and Managing Apama Applications 10.11.0 59

Asmentioned elsewhere, scaling, both vertically (samemachine) and horizontally (acrossmultiple
machines), is inherent in Apama query applications. Scaled deployments on multiple machines
use distributed cache technology tomaintain and share application state. Consequently, deployment
of Apama query applications includes setting up a distributed cache (the so-called distributed
MemoryStore) as well as some kind of messaging. The topics in this section provide instructions
for doing this with the recommended platforms.

Overview of deploying and managing query applications

Typically, query application deployments script the start up andmanagement of all Apama query
application components outside of theApamadevelopment environment in SoftwareAGDesigner.
Apama recommends the use of the following to aid in this:

The Ant export facility of Software AG Designer, or

Command Central

Queries can also be run from Software AG Designer. However, Software AG Designer can run
only a single correlator deployment. To run multiple correlator deployments, use either Apama
macros for Ant or Command Central.

Queries can be deployed on a single node, but typicallywould be deployed acrossmultiple nodes,
forming a cluster. While involving more components, a cluster provides:

Scale out across multiple hosts.

Resiliency against failures.

Continued availability if some nodes fail.

Using a cluster will involve the following:

Some number of correlators that are executing queries.

AdistributedMemoryStore for storing event history. Terracotta's TCStore is the recommended
MemoryStore driver for Apama queries.

Note:
Support for using BigMemory Max for Apama queries is deprecated and will be removed
in a future release.

A JMS bus for distributing events to correlators.

Query application architecture

In a query deployment, incoming events are delivered to correlators, typically via a JMS message
bus, such that every event is delivered to one correlator. The correlators store the event history
for each query in the distributed MemoryStore. On every event, one correlator reads the latest
history for the partition or partitions to which the event belongs, and writes that event to the
distributed MemoryStore for access by other correlators. The entire window history is then
evaluated against the query patterns.

60 Deploying and Managing Apama Applications 10.11.0

4 Deploying and Managing Queries

Queries can make use of the following technologies to provide a scalable platform:

JMS queues— these are used to distribute events to multiple correlators, which automatically
spreads the load across a number of servers.

TCStore, which is the recommended distributed MemoryStore — this allows state (event
history) to be accessed quickly across multiple servers, and replicated to safeguard against
hardware failures. This should be configured to give the desired amount of resiliency and
scaled appropriately to the deployment.

It is possible to use Apama queries in a standalone mode on a single correlator. This allows easy
testing by means of event files. However, all state is stored in-memory, and is lost when the
correlator is stopped. Thus, thismode is only recommended for development, not for deployments.

When an event is sent to a cluster of correlators over a JMS queue, the following happens:

1. Each event goes to one correlator.

2. A received event is handled by one of several processing threads within that correlator.

3. The key of the event is extracted based on the definitions of running queries that use that event.

4. The window of events for that key value is retrieved from the distributed MemoryStore.

5. The current event is added to the retrieved window, which is written back to the distributed
MemoryStore.

6. The event pattern of interest (what you are looking for) is evaluated against the storedwindow
to determine whether there is a match.

Because events are sent to multiple threads in different correlators, small differences in timing
across hosts can result in events being processed out of order. If there is a large number of events
in the window, the cost of reading and writing the historic window will be excessive. Events for
the same key may be processed by different correlators. Consequently, between events, the only
state kept by the system is the window of historic event data.

Uponmatching an event pattern, queries may send events to other monitors or to adapters. These
can be shared adapters across the cluster, or more typically, adapters local to each correlator.

Deploying query applications

Apama recommends that you use the Ant export facility in Software AG Designer to help you
deploy your query application. The general steps for deploying an Apama query application
include:

1. In Software AG Designer, enable JMS support and distributed MemoryStore support. See
"Correlator arguments" in Using Apama with Software AG Designer.

2. In Software AG Designer, generate an Ant deployment script. The generated files are placed
in a directory that you specify. See "Exporting to a deployment script" in Using Apama with
Software AG Designer.

3. Copy the resultant directory onto each host that will run a correlator.

Deploying and Managing Apama Applications 10.11.0 61

4 Deploying and Managing Queries

4. If necessary, edit the environment.properties file on each correlator host.

5. Ensure that the distributed MemoryStore and JMS servers are running.

6. On each correlator host, run the Ant deployment script to start the correlator.

If the project does not contain a distributed MemoryStore configuration, a local in-process
MemoryStore will be used to store events. This is not shared or persistent, so only supports a
single correlator deployment. If this correlator stops, it will drop all event history data. Apama
recommends Terracotta's TCStore and a corresponding configuration for production use. See
“Deploying a Terracotta Server Array (TSA)” on page 63 and “Configuring the TCStore driver” on
page 63.

Apama does not recommend running multiple correlators on a single machine. The assumption
is that each correlator can use all of the CPU resources available. Also, runningmultiple correlators
on one host does not provide any extra resilience. However, it is possible to runmultiple correlators
on a single machine. To do so:

1. Copy the exported deployment directory to separate directories on the correlator hostmachine.

2. Edit the environment.properties file to specify a different port number for each correlator and
for each (if any) adapter in your project.

Running queries on correlator clusters

The following topics describe how to run queries on correlator clusters.

Deploying queries on multiple correlators
When using multiple correlators to deploy an Apama query application, it is the administrator's
responsibility to keep the resources of the exported project up to date. If changes are made to a
query, if queries are added or removed from a project, then all correlators should be updated to
reflect the new state. It is possible to inject queries into a live running correlator, or delete queries
from a correlator. Make sure that the injections and deletions are performed on all correlators in
the cluster. Use engine_delete -F query-name to delete a query (see also “Deleting code from a
correlator” on page 168). Note that thiswill also delete any queries using that query's output event
(see also "Using the output of another query as query input" in Developing Apama Applications).

The queries runtime assumes that all members of a cluster:

Share access to the same distributed MemoryStore state - by using a TCStore or BigMemory
Terracotta Server Array.

Note:
Terracotta's TCStore is the recommendedMemoryStore driver for Apama queries. Support
for using BigMemoryMax for Apama queries is deprecated andwill be removed in a future
release.

Can connect freely between nodes.

62 Deploying and Managing Apama Applications 10.11.0

4 Deploying and Managing Queries

Run with clocks synchronized to within 1 second of each other. Apama recommends the use
of the Network Time Protocol (NTP) to synchronize clocks.

The queries runtimewill nominate a singlemember of the cluster to be primary, whichwill handle
book keeping tasks such as garbage collecting nodes or handling failed cluster nodes.

If a correlator member of a cluster is using external clocking, then some functionality may not be
available. The members will be able to share the same data, but an externally clocked node cannot
be the primary node and timers will not be failed over from an externally clocked node. In normal
operation, external clocking should only be used for testing purposes on a single node (where
failover and scalability is not required).

A production deployment ofmultiple nodeswould not use external clocking for routine processing
of events. Use the source timestamp feature if the events may be delayed or delivered out of order.
For more information, see "Using source timestamps of events" in Developing Apama Applications.

Deploying a Terracotta Server Array (TSA)
To deploy a TCStore Terracotta Server Array, see the Terracotta documentation. To deploy a
BigMemory Terracotta Server Array, see the BigMemory Max documentation which is part of the
Terracotta 4 documentation. Both documentation sets are available from http://
documentation.softwareag.com/terracotta/index.htm.

For resilient operations, Apama recommends at least one backup on a separate host. You may
want to consider using multiple stripes in order to improve performance. Ensure that the
BigMemory Max or Terracotta server is accessible from all cluster members.

Note:
Terracotta's TCStore is the recommended MemoryStore driver for Apama queries. Support for
using BigMemoryMax for Apama queries is deprecated andwill be removed in a future release.

Configuring the TCStore driver
If you want to use TCStore for queries, you need to configure the TCStore driver as described
below.

To configure the TCStore driver

1. In Software AG Designer, add the Distributed MemoryStore adapter bundle to your Apama
project. In theDistributedMemoryStore ConfigurationWizard, selectApama Queries (using
TCStore) as the store provider; ApamaQueriesStore is then automatically provided as the
store name. See "Configuring a distributed store" in Developing Apama Applications for more
detailed information.

2. Adapt the list of Terracotta servers in the storeName-spring.xml file. See "TCStore (Terracotta)
driver details" in Developing Apama Applications for more information.

Important:

Deploying and Managing Apama Applications 10.11.0 63

4 Deploying and Managing Queries

http://documentation.softwareag.com/terracotta/index.htm
http://documentation.softwareag.com/terracotta/index.htm

You must leave the useCompareAndSwap property in its default (true) setting for correct
behavior of Apama queries.

Configuring the BigMemory Max driver

Note:
Support for using BigMemory Max for queries is deprecated and will be removed in a future
release. It is recommended that you now use Terracotta's TCStore for queries.

If you still want to use BigMemory Max for queries in new projects, you can add a BigMemory
Max driver to the project as described below. Existing deployments using BigMemory Max for
queries are unaffected; this only covers developing new projects in Software AG Designer. Keep
inmind that you can no longer select the optionApama Queries (using BigMemory). This option
has been replaced by the Apama Queries (using TCStore) option.

To configure the BigMemory Max driver in a new project

1. In Software AG Designer, add the Distributed MemoryStore adapter bundle to your Apama
project. In the DistributedMemoryStore ConfigurationWizard, selectBigMemory Max as the
Store provider and specify “ApamaQueriesStore” as the store name. See "Configuring a
distributed store" in Developing Apama Applications for more detailed information.

Note:
If you specify a different store name or do not specify a name at all, an in-process only
memory store will be used.

2. Check that the cluster name is set correctly for the host/port pairs of all of the BigMemory
Terracotta Server Array.

3. Set the providerDir property to the Terracotta installation directory.

4. Optionally, edit the on-heap and off-heap storage and other parameters as needed (see
"BigMemory Max driver details" in Developing Apama Applications).

Important:
You must leave the useCompareAndSwap property in its default (true) setting for correct
behavior of Apama queries.

Using JMS to deliver events to queries running on a cluster
When running queries acrossmultiple correlators in a cluster, aswell as configuring all correlators
to access the same distributed MemoryStore, Apama recommends that all events are delivered
into the cluster using a JMS queue. By using a JMS queue, each correlator will pull events from
the JMS queue unless it has a full input queue (that is, it is behind on processing events) or has
stopped running (for example, shut down for maintenance or suffered a hardware failure). In
either case, events will continue to be processed by other correlators in the cluster. Correlators can
also be added to or removed from the cluster to scale the cluster capacity if desired. It is also
possible to use per-correlator adapters for incoming events, but the adapters must co-ordinate so

64 Deploying and Managing Apama Applications 10.11.0

4 Deploying and Managing Queries

that every event is sent to only one correlator, and should one adapter/correlator pair fail, then
other adapters process events that the failed node would have processed. Each event should only
be delivered to one correlator, else multiple correlators will store the event in the shared cache,
which can result in erroneous matches. Using JMS queues, this happens automatically, giving an
“elastic” system that can be scaled and continues running in the face of failure.

To run queries across multiple correlators in a cluster:

Configure each correlator to access the same distributed MemoryStore. This is a requirement.

Use a JMS queue to deliver events into the cluster. This is a recommendation.

When the cluster uses a JMS queue, each correlator pulls events from the queue. If the input queue
of one correlator in the cluster becomes full and it cannot pull events from the JMS queue, the
other correlators continue to do so and continue to process events. A correlator may stop pulling
events because the correlator is behind on processing events or because it has stopped running,
perhaps for maintenance or because of a hardware failure.

Using a JMS queue makes it easy to scale the cluster capacity by adding or removing correlators.

An alternative to using a JMS queue is to use an adapter for each correlator. For example, by having
an IAF-based adapter connected to each correlator, it is possible to send messages to and from a
query application without using JMS. A disadvantage of using per-correlator adapters is that the
adapters must coordinate the following:

Each event goes to only one correlator in the cluster. If an event goes tomore than one correlator,
thenmultiple correlators store the same event in the shared cache. This can result in erroneous
matches.

Should one adapter/correlator pair fail, then the other adapters process the events that the
failed node would have processed.

Use of a JMS queue automatically ensures that an event goes to only one correlator and that all
received events are processed. The result is an “elastic” system that can be scaled and that continues
to run even if a node fails.

Similar to using multiple contexts in a correlator, delivering events through JMS can result in
events that occur close together in time being processed in an order that is different than the order
in which they were created or sent to the JMS message bus.

Messages may be lost in the event of node failure, unless you have configured JMS for reliable
message delivery (see also “Handling node failure and failover” on page 66).

Configure your JMS bus to have one ormore queues, and configure a static JMS receiver connection.
See "Getting started with simple correlator-integrated messaging for JMS" in Connecting Apama
Applications to External Components. You will also need to provide mapping for all event types that
flow into the queries. See "Mapping Apama events and JMS messages" also in Connecting Apama
Applications to External Components.

The queries runtime ensures that after all queries have been injected into the correlator and started,
they automatically start to receive events from JMS queues. There is no need to explicitly call
jms.onApplicationInitialized() as described in "Using EPL to send and receive JMS messages"
in Connecting Apama Applications to External Components.

Deploying and Managing Apama Applications 10.11.0 65

4 Deploying and Managing Queries

For all applications that do not consist entirely of queries, for example, applications that contain
additional EPL monitors or Java monitors, then it may be required to delay starting JMS until the
application and queries are both ready to process events. The auto-starting of JMS behavior of
queries can be controlled by sending a QueriesShouldNotAutoStartJMS() event to themain context.
This event can be routed by an application's onload()method. If this is done, then a monitor in
the main context should listen for a QueriesStarted() event and should wait until both the
application and queries have started. The monitor can then call jms.onApplicationInitialized()
directly. For example, the following monitor delays starting JMS until queries are started and a
StartMyApp() event has been processed:
using com.apama.queries.QueriesShouldNotAutoStartJMS;
using com.apama.queries.QueriesStarted;
event StartMyApp {
}
monitor MyApp {

import "JMSPlugin" as jms;
action onload() {

route QueriesShouldNotAutoStartJMS();
on QueriesStarted() and StartMyApp() {

jms.onApplicationInitialized();
}

}
}

Mixing queries with monitors
It is possible to have both monitors and queries in a project.

Events that are to be processed by queries should be sent to the com.apama.queries channel from
monitors. Queries may send events to any channel which EPL monitors may be subscribed to.

While querieswill automatically scale and share state across a cluster, EPLmonitorswill not. Thus,
be aware that a query may process subsequent events matching a pattern on different nodes. On
different nodes, monitors with potentially different state will be executing. Similarly, the state of
EPL monitors is not automatically stored in the distributed MemoryStore.

Both EPLmonitors andApama queries canmake use of actions defined on events, subject to some
limitations on the use of spawn, die, and event listeners. See "Restrictions in queries" inDeveloping
Apama Applications.

Handling node failure and failover
Anodemay stop processing events from time to time. Thismay be because it is stopped for planned
maintenance, or the node failed in some way. In these cases:

Events that have been delivered to the node but not yet processedwill be lost. Thiswill typically
be a small window of events.

This does not apply if you are sending and receiving events via JMSwhere you have configured
JMS for reliable messaging. See “Avoiding message loss with JMS” on page 67 for more
information.

66 Deploying and Managing Apama Applications 10.11.0

4 Deploying and Managing Queries

If using JMS, then events continue to be delivered to and processed by other correlators in the
cluster. The failed correlator will not hold up processing on other nodes. Other nodes continue
processing events, including matching against events that the failed node had previously
received (if they had been processed).

Any clients connected to the failed correlator will need to re-connect to another correlator. The
same set of parameterized query instances is kept in synchronization across the cluster. See
“Managing parameterized query instances” on page 68.

Similarly, nodes running a Terracotta ServerArraymay fail. For this reason, TCStore or BigMemory
Max should be configured with sufficient backups to ensure no data is lost in this case. Consult
the Terracotta documentation.

Avoiding message loss with JMS

If all of your incoming and outgoing events are received/sent via correlator-integrated JMS (see
also "Correlator-Integrated Support for the Java Message Service (JMS)" in Connecting Apama
Applications to External Components) and if this has been configured with APP_CONTROLLED receivers
and BEST_EFFORT senders (see also "Sending and receiving reliably without correlator persistence"
in Connecting Apama Applications to External Components), then no events are lost in the event of a
node failure. Any events that have been delivered from JMS to queries on that node are then
handled by another node if they had not been fully processed before the failure. Any events sent
to JMS by queries on that node are delivered by another node if they had not been successfully
delivered before the failure.

This only works if the queries (or a chain of queries) are receiving events directly from JMS
receivers and are sending their output directly to JMS senders. There are no guarantees if EPL
monitors are processing query input or output, interposing themselves between the queries
and JMS.

No EPL monitors in the same correlator should be performing acknowledgments to
APP_CONTROLLED receivers themselves, as those receivers are entirely under the control of the
queries runtime.

Incoming events may be delivered twice or be delivered out of order during the failover
window. This is the time between the node failure and the cluster (including the JMS broker)
detecting the failure/disconnection. It is your responsibility to make sure that your queries are
not sensitive to duplicates or re-ordering within this failover window.

Outgoing events may also be delivered in duplicate during the failover window.

Queries using source timestamps (see "Using source timestamps of events" inDevelopingApama
Applications) cannot make use of JMS reliable messaging.

You should also ensure that the JMS broker does not lose messages in the case of a broker failure.
Make sure that all JMS senders have their messageDeliveryMode property set to PERSISTENT, as well
as doing any necessary broker-specific configuration on the broker itself.

Note:
Reliable messaging will not take effect unless your queries are exclusively using
correlator-integrated JMS as theirmessage source and destination. It does not applywhen using

Deploying and Managing Apama Applications 10.11.0 67

4 Deploying and Managing Queries

http://documentation.softwareag.com/terracotta/index.htm

connectivity plug-ins as your event source or destination (even if they support reliable
messaging).

Managing parameterized query instances

When using parameterized queries, Apama recommends that you use one Scenario Service client
at a time tomanage parameterizations. Use ofmore than one client can result in undefined behavior
if they both attempt to edit a parameterized instance concurrently. You can connect to any correlator
in the cluster, and Apama will automatically synchronize the state of parameterized instances
across the cluster. This assumes that the same query definitions have been injected into the
correlators on all cluster nodes. If a node fails, you will need to connect to another correlator in
the cluster.

Creating new query instances by setting parameter values
Use the Scenario Browser to set parameter values for a parameterized query and thus create new
parameterized query instances, also referred to as parameterizations. See also "Using the Scenario
Browser view" in Using Apama with Software AG Designer.

Changing parameter values for queries that are running
Use the Scenario Browser to change the parameter values for a running parameterized query
instance, also referred to as a parameterization. See also "Using the Scenario Browser view" in
Using Apama with Software AG Designer.

Monitoring running queries

To help you monitor queries that are running on a given correlator, Apama provides data about
active queries in DataViews. To display the information provided by these DataViews, you can
create a dashboard in which an end user can:

Monitor query runtime performance.

Determine whether a query is behaving as intended. For example, you can see how incoming
events are distributed across partitions. If you are expecting a particular send and match rate,
you can see if you are getting the results you expect.

Ensure that the window size (the number of events in the window) is not too large. The
expectation is that your application is designed so that partitioning keeps any given window
size as small as possible.

The Queries_Statistics_Sample that is provided with Apama (located in the \samples\queries
directory of your Apama installation) contains such a dashboard. It shows you how to build a
dashboard that allows you to monitor the performance of running queries.

For information about exposing DataViews in dashboards, see "Building Dashboard Clients" in
Building and Using Apama Dashboards.

68 Deploying and Managing Apama Applications 10.11.0

4 Deploying and Managing Queries

A running query is either a non-parameterized query instance or a parameterization. For each
running query, there is a DataView for each of its input event types. For example, if a query instance
has two input event types, then there are two DataViews that provide statistics for that query, one
for each input event type.

Each DataView:

Contains data about the activity during the last second of one running query and one of its
input event types.

Contains the fields described in the table below. The value contained in each field is an
exponentially weighted moving average (EWMA).

Is updated every 10 seconds by default if the information has changed since the last update.

By sending a SetQueryStatisticsPeriod event, you can control the frequency of the statistics
gathering or disable query statistics entirely. For example, to update the query statistics every
second:
com.apama.queries.SetStatisticsUpdatePeriod(1,1)

To disable query statistics entirely:
com.apama.queries.SetStatisticsUpdatePeriod(0,0)

DescriptionStatistical Field

Apama uses multiple threads to process a given
query. This is the percentage of those threads that

% Threads Active EWMA

were usedwithin the last second to process the input
event type that this DataView provides information
for.

While there is not a linear correlation, as this
percentage goes down, the reliability of the rest of
the statistics becomes weaker. This is because a
smaller proportion of threads are contributing
information.

The average rate per second at which events of this
type are being processed.

Avg. Inbound Event Rate/s EWMA

The average percentage of the number of received
events that cause a match.

Avg. % of Successful Matches EWMA

The number of unique query partitions that were
accessed for this event type within the past second.

No. Unique Keys Processed EWMA

The average window size (number of events that it
contains) of each unique partition that was accessed
within the past second.

Avg. Window Size/Key EWMA

The display name of these DataViews is Correlator Query Statistics.

Deploying and Managing Apama Applications 10.11.0 69

4 Deploying and Managing Queries

After a non-parameterized query is injected into the correlator, Apama provides a DataView for
each input event type and begins writing data to it. After a non-parameterized query is deleted,
Apama no longer makes the DataViews for that query instance available.

For a parameterized query, after a parameterization is created, then Apama adds new DataViews
and begins populating them.When a parameterization is deleted, thenApama no longer provides
theDataViews that correspond to that parameterization. If the definition of a parameterized query
is deleted, then Apama no longer provides DataViews for any parameterization of that query.

To help you monitor queries that are running across multiple correlators in a cluster, Apama also
provides the same type of performance statistics provided for a given correlator but where the
underlying data has been aggregated across all the clustered correlators running those queries.

The display name of these DataViews is Cluster-Wide Query Statistics.

Thismeans that for each query running on a correlator, two types ofmonitoring data are provided:

Statistics generated from data from only that correlator.

Statistics generated fromdata aggregated across all correlators in the cluster running that same
query.

70 Deploying and Managing Apama Applications 10.11.0

4 Deploying and Managing Queries

5 Deploying Apama Applications with Docker

■ Introduction to Apama in Docker .. 72

■ Licensing Apama in Docker .. 73

■ Quick start to using an Apama image .. 74

■ Building an Apama image from the current installation .. 76

■ Deploying an Apama application in Docker .. 77

■ Developing an Apama application using the Docker image ... 78

■ Building Apama projects during the Docker build ... 79

■ Using Docker Compose with Apama .. 81

■ Apama samples for Docker .. 82

■ Using the Apama image with the Docker stack .. 83

Deploying and Managing Apama Applications 10.11.0 71

Introduction to Apama in Docker

Below is a brief overview of Docker, however, no familiarity with Docker commands is assumed
in this part of the documentation. You need to install Docker before you can make use of the
Apama images. See https://docs.docker.com/get-started/ for a more detailed overview of Docker
and how to use it.

Images

Images are the base units of the Docker system, providing templates that are used to create the
containers, which in turn form the running applications. Docker software runs on various operating
systems and can run containers built from the Apama images.

Note:
Apama supports building images on Linux only.

Docker

Docker is a technology that allows an organization to remove the complexity of configuring and
deploying software applications within the infrastructure it uses. The Docker platform achieves
this by running the applications in what are called containers, which isolate the environment of an
application from the deployment environment and provide tools for portability and scalability.
As long as the organization infrastructure can run the Docker software, it can run the containers
and consequently any applications contained in them. Use cases for Docker containers include
modernization of legacy applications,migration to a cloud infrastructure, services, and continuous
integration and deployment.

Docker Compose

Docker handles single containers and getting them built and deployed. It is best practice for a
container to perform one role, but often systems or services are composed ofmultiple applications
interacting with each other. Docker Compose is the method for handling multiple containers and
their interdependencies. It is an application that marshals the build, deployment, and runtime
characteristics of one or more containers using a configuration file to control the process.

Docker swarm

Docker allows clusters of machines running Docker to be grouped into swarms. Swarms allow the
containers to be distributed and load-balanced seamlessly using the Docker command line.

Docker stack

ADocker stack deals with deployment, runtime characteristics, containers and their dependencies.
This is called orchestration. ADocker stack is a group of interrelated services that share dependencies
and can be orchestrated and scaled together. Similar to the swarm, aDocker command line provides
a way to manage and interact with stacks.

72 Deploying and Managing Apama Applications 10.11.0

5 Deploying Apama Applications with Docker

https://docs.docker.com/get-started/

Apama and Software AG images

Software AG has a presence on the Docker Hub image repository. Several images are available
for Software AG products. The offering from Apama is an image which will run an instance of
the correlator application. See https://hub.docker.com/publishers/softwareag for the published
images.

Alternatively, images for several products, including Apama, may be built from an installation
using scripts included in the installation.

Licensing Apama in Docker

For on-premise installations of Apama, license files are typically added at installation time.
However, the Docker image does not come with a license file by default. You have to provide it
by yourself. There are severalways to accomplish this, depending on your deployment architecture
andwhether youmay have different license files or may need to update themwhile the correlator
is running.

The Docker server mounts the license file at runtime

The simplest method is to provide the license file on the Docker server when it launches correlator
containers. To do this, you mount a copy of the license file into the correlator container at the
standard location of /apama_work/license/ApamaServerLicense.xml. You can either do this from
a local file or using a cluster-wide shared file system.

To do this with a simple docker run command from a node-local file system, run:
docker run \
-v/path/to/ApamaServerLicense.xml:/apama_work/license/ApamaServerLicense.xml \
imagename

Mounts can also be provided in Docker Compose, Docker Stack or Kubernetes orchestration files.
See the documentation for your orchestrator for more details.

The Docker server provides the license file via a configuration object

Both Docker Stack and Kubernetes support creating configuration objects in the stack, whose
contents can be provided as a file mounted into the container at runtime.

Using Docker Stack, you need to create a stack configuration file which defines configuration. For
example:
configs:

apama_license:
file: ./ApamaServerLicense.xml

Then you need to load the configuration to a particular location in your container:
services:

apama:
image: imagename
configs:

Deploying and Managing Apama Applications 10.11.0 73

5 Deploying Apama Applications with Docker

https://hub.docker.com/publishers/softwareag

- source: apama_license
target: /apama_work/license/ApamaServerLicense.xml

The application image contains the license file

Alternatively, if you do not need to provide different license files at runtime (for example, while
developing or testing), you can compile the license file into your application image. To do this,
add a COPY line to your project Dockerfile which copies the license file to the standard location.
For example:
COPY --chown=sagadmin:sagadmin ApamaServerLicense.xml \
$APAMA_WORK/license/ApamaServerLicense.xml

If you ever need to change the license file, you will need to rebuild your application image with
the new license file.

The project contains the license file

You can also store the license file inside your Software AG Designer project and load it via
configuration, rather than having it picked up automatically by the correlator. This also has the
disadvantage of not being able to have a different license file in production, but means that your
license file is automatically available wherever you run the project, whether in Docker or not, even
if you did not initially install Apama with the license file.

To do this, you need to add a section to theApama configuration file in your project, with a relative
path to the license file which has been added to your project. For example:
correlator:

licenseFile: ${PARENT_DIR}/../ApamaServerLicense.xml

With this option, the license file and configurationwill automatically be included in the application
image using the default Dockerfile provided by Software AG Designer.

For more details, see “YAML configuration file for the correlator” on page 140.

Quick start to using an Apama image

The Apama image that we are using here is available on Docker Hub (https://hub.docker.com/_/
apama-correlator). You must purchase it (free of charge) so that you can use it. After you have
done this, proceed as described below.

1. Log in to Docker Hub using your credentials:
docker login

2. Obtain the image from the repository so that it will be available to use:
docker pull store/softwareag/apama-correlator:version

where version is the current Apama version number (a two-digit number such as 10.7).

Note:

74 Deploying and Managing Apama Applications 10.11.0

5 Deploying Apama Applications with Docker

https://hub.docker.com/_/apama-correlator
https://hub.docker.com/_/apama-correlator

If you logged in successfully but get an error during the docker pull command, it is likely
that there is a spelling mistake or that the image you specified is missing.

3. List the images available to you:
docker images

You should see the image that you pulled in the output of the above command (keep in mind
there may be many images if you are using a shared machine).

4. Create a container using the image and run it in Docker:
docker run -d --name container --rm store/softwareag/apama-correlator:version

The above command will “detach” after running the container. You can see it running using
the following command:
docker ps

You can interact with the running image in many ways (see the Docker documentation for the
appropriate commands), but we will now retrieve the logs from the running container and
then stop the container.

5. To examine the log of the running container, enter the following command using the name
that was set with the --name container argument of the docker run command.
docker logs container

When the above command is executed, the container identifier or the name which you can
find in the output of the docker ps command is taken as a parameter.

6. You can now stop the container:
docker stop container

This also removes the container since it was started with the --rm option.

Apama image for Cumulocity IoT microservices

If you are building a microservice for use within Software AG's Cumulocity IoT, then we provide
a smaller base image designed for use in that environment (https://hub.docker.com/_/softwareag-
apama-cumulocity-jre). You can use the store/softwareag/apama-cumulocity-jre:version image
anywhere that you could use apama-correlator. ExistingDockerfileswhich use apama-correlator
but provide APAMA_IMAGE as a build argument can be built using apama-cumulocity-jre instead,
using an argument to the docker build command:
docker build -t projectimage \
--build-arg APAMA_IMAGE=store/softwareag/apama-cumulocity-jre:version projectdir

The base image for Cumulocity IoT only provides a JRE and not a full JDK. It does not have Python
support built-in and it only provides connectivitywith Cumulocity IoT and not any other Software
AG product.

Deploying and Managing Apama Applications 10.11.0 75

5 Deploying Apama Applications with Docker

https://hub.docker.com/_/softwareag-apama-cumulocity-jre
https://hub.docker.com/_/softwareag-apama-cumulocity-jre

Running as the sagadmin user within a container

Software AG images are configured not to run processes as root by default within containers. This
is standard container practice. All images create a user sagadminwith the user identifier and group
identifier of 1724. By default, all processes run in the container, and all RUN commands inDockerfiles
using these images as a base run with that user identifier.

COPY commands may need to specify writing as the sagadmin user via the --chown argument. It is
recommended to continue using this user for all of your commands within Docker.

If you need to run as another user, you need to add USER statements to your Dockerfile or the
appropriate options to your docker run command.

Building an Apama image from the current installation

As an alternative to using the image fromDockerHub, theApama installation provides aDockerfile
which enables you to build an image. You can find it in the samples/docker/image directory of
your Apama installation. See the README.txt file in the samples/docker directory for detailed
instructions.

1. To build the image, run the following command from your Software AG installation directory
(by default, this is /opt/SoftwareAG):
docker build --tag registrytag -f ./Apama/samples/docker/image/Dockerfile .

If you wish to publish the image to a registry, then registrytag should be of the following
form:

registryhost/organization/imagename:tag

Note that the image will be stored locally, but it can be published to your registry as described
below.

2. Enter the following command to publish the image:
docker push registrytag

3. Enter the following commands to use the image:
docker pull registrytag

docker run -d --name container --rm registrytag

docker logs container

docker stop container

You can now use the image in the same way as described in “Quick start to using an Apama
image” on page 74, by referring to the registry name on the command line. You can also refer
to it in the Dockerfile; see “Apama samples for Docker” on page 82 for examples of how to
refer to images in Dockerfiles.

76 Deploying and Managing Apama Applications 10.11.0

5 Deploying Apama Applications with Docker

Deploying an Apama application in Docker

The examples below reference the image in Docker Hub. However, you can also use an image
built from your Apama installation; the results will be the same.

The base image simply provides an empty running correlator,with themanagement port exposed.
You can use the command line tools described in “Correlator Utilities Reference” on page 115 to
inject EPL and manage the correlator, or you can connect to the running container and use the
management commands within the container. The expected use case is the deployment of a user
application in an image derived from the base image.

1. Typically, the first step is to create the Dockerfile that references the required image of the
Apama correlator. The following is an example Dockerfile:
Reference the Apama image at store/softwareag/apama-correlator:<TAG>.
The tag refers to the version number of the Apama correlator.
FROM store/softwareag/apama-correlator:version

Copy files from the local app directory to /app in the resulting image.
COPY --chown=sagadmin:sagadmin app/* /app/

This is the command we run - it references the internal directory.
CMD ["correlator","--config","/app"]

The above example file produces an image that contains a root level directory called /app that
has copies of local files in it. These files will be owned by the user the correlator runs as, called
sagadmin.

2. When the correlator image runs, it is directed to read the configuration file init.yaml that is
present within the directory. An example of this from the Simple sample application is shown
below. It can be found in the samples/docker/applications/Simple directory of your Apama
installation, along with the HelloWorld.mon file that it references.

Example init.yaml:
correlator:

initialization:
list:

- ${PARENT_DIR}/HelloWorld.mon

At correlator startup, the above configuration file injects the monitor file HelloWorld.mon from
the same directory. The image build process will copy the HelloWorld.mon and init.yaml files
into the image. Thus, the application image can run without outside dependencies.

3. You build the image using the docker build command. The following example assumes that
the command is run from the directory containing theDockerfile. See theDocker documentation
for details on the available options.
docker build --tag organization/application .

4. Once the image is built, it is stored locally. You can view it using the docker images command.
Note that the image is not running at this point.
docker images | grep application

Deploying and Managing Apama Applications 10.11.0 77

5 Deploying Apama Applications with Docker

5. To run the image as a container, enter the following command:
docker run -d --rm --name container organization/application

The options -d and --rm are used to detach and remove the container after shutdown.

6. To examine the running process, enter the following command:
docker ps

7. To examine the logs, enter the following command:
docker logs container

8. To stop the container, enter the following command:
docker stop container

Now the docker ps command should no longer show your container.

9. To remove the image, enter the following command:
docker rmi organization/application

This untags and deletes the image.

Note that the application is “baked” into the image you create. The files copied into the imagewill
not change and any outputwill not persist outside the container. Themanagement port is exposed,
and therefore the correlator can be manipulated remotely through the Management interface (see
also "Using theManagement interface" inDevelopingApamaApplications). However, you can interact
with the running container in many ways, including starting a shell, examining logs, and running
commands in the container. See the Docker documentation for details on the available options.

Developing an Apama application using the Docker image

The Dockerfile that you created in “Deploying an Apama application in Docker” on page 77 fixes
or bakes in the app directory and its contents. Thus, you would have to recreate the image every
time the configuration file or the EPL files change, which is inconvenient during the development
phase of the application where the EPL changes frequently. You can address that by mapping in
a local directory when running the container and use that to hold your application. For example:
docker run -d --rm --name container -v /local/path:/app \
store/softwareag/apama-correlator:version correlator --config /app

Note:
The above command is broken over two lines via the \ escape character at the end of line. You
can either copy this line verbatim or construct it to be a single line command.

Keep in mind that you are using the official image and not creating your own. Because you are
mounting in a local directory containing the application, there is no need to build a custom image.
It will be read from the /local/pathwhich is mounted in instead.

Now you can make changes to the EPL or init.yaml file and simply restart the container to pick
up the changes. When you have completed your changes and want to deploy, you can add a

78 Deploying and Managing Apama Applications 10.11.0

5 Deploying Apama Applications with Docker

Dockerfile to bake the files into the image again. It is possible to define andmapmultiple volumes,
allowing flexible usage of the image.

Building Apama projects during the Docker build

Some Apama applications, particularly those developed using Software AG Designer or those
with customplug-ins, require additional build stepswhen creating aDocker image, such as running
the engine_deploy tool (see also “Deploying a correlator” on page 163). For those using the sample
packaging kit to create base images from an installation, this can be done directly in a standard
Dockerfile. For those using the official Docker Hub image, a second builder image can be used for
project build steps. This is in order to keep the runtime image as small as possible. The builder
image can be used as part of a Docker multi-stage build.

A typical multi-stage Dockerfile looks like this:
FROM buildbase as builder

COPY source /source
RUN buildstep

FROM runtimebase

COPY --from=builder /buildoutput /buildoutput

CMD ["/buildoutput"]

For a typical Software AG Designer-based Apama project, your Dockerfile looks something like
this:
ARG APAMA_VERSION=version
ARG APAMA_BUILDER=store/softwareag/apama-builder:${APAMA_VERSION}
ARG APAMA_IMAGE=store/softwareag/apama-correlator:${APAMA_VERSION}
FROM ${APAMA_BUILDER} as builder

COPY --chown=sagadmin:sagadmin MyProject ${APAMA_WORK}/MyProject
RUN engine_deploy --outputDeployDir ${APAMA_WORK}/MyProject_deployed \
${APAMA_WORK}/MyProject

FROM ${APAMA_IMAGE}

COPY --from=builder --chown=sagadmin:sagadmin ${APAMA_WORK}/MyProject_deployed \
${APAMA_WORK}/MyProject_deployed

WORKDIR ${APAMA_WORK}

CMD ["correlator", "--config", "MyProject_deployed"]

In Software AG Designer, you can add Docker support to your project as described in "Adding
Docker support to Apama projects" in Using Apama with Software AG Designer. When you do this,
a Dockerfile similar to the one above is automatically created in the project. Therefore, a project
with Docker support can be built into an image using the following command:
docker build MyProject

For most projects, the provided Dockerfile will be sufficient. If you have additional build steps
(such as building custom plug-ins), you can add them to the Dockerfile in your project. If your

Deploying and Managing Apama Applications 10.11.0 79

5 Deploying Apama Applications with Docker

project uses Digital Event Services, then you must ensure that your type repository is available at
build time. If you check it out to a TypeRepository folder within your project, then the provided
Dockerfile will work automatically. A default Dockerfile with the name Dockerfile.project is
provided in the etc directory of your Apama installation. You can copy this file manually into the
root of any project which can be deployed using the engine_deploy tool.

Also, note the use of build arguments in the Dockerfile. This allows you to use --build-arg to
specify the name of an alternative builder or runtime image. If you want to use the automatically
generated Dockerfile with your own image created from the packaging kit, you need to set the
build arguments appropriately:
docker build -t appimage --build-arg APAMA_BUILDER=apamaimage
--build-arg APAMA_IMAGE=apamaimage MyProject

Alternatively, you can just change the version of Apama that is used from Docker Hub:
docker build -t appimage --build-arg APAMA_VERSION=version

Note:
Each time you import an Apama project from a previous version into the current version, you
have to update the version in the Dockerfile, or you have to run docker buildwith the
appropriate build arguments to override the version. Software AG Designer will warn you if
your Dockerfile is not up to date with the current version.

The builder image provides the following additional tools:

engine_deploy - to convert a project (either from Software AG Designer, or a collection of
monitors created outside of Software AG Designer) into a configuration directory which can
be used to start a correlator. See also “Deploying a correlator” on page 163.

engine_package - to create CDP (correlator deployment package) files frommonitor and event
files. See also “Packaging correlator input files” on page 171.

Ant - to do other automated build steps. See also “About deploying Apama applications with
an Ant script” on page 14.

PySys - to run automated tests on your application before deployment. See also theAPI Reference
for Python.

The image also contains a Java compiler. It does not by default contain a C++ compiler. If youwant
to compile C++ code, then you need to install a C++ compiler as part of your build step using a
multi-stage build. This is only included while you are building, not in the final image, as long as
you do it in the build part of a multi-stage build.
ARG APAMA_BUILDER=store/softwareag/apama-builder:version
ARG APAMA_IMAGE=store/softwareag/apama-correlator:version
FROM ${APAMA_BUILDER} as builder

COPY --chown=sagadmin:sagadmin MyProject ${APAMA_WORK}/MyProject
RUN engine_deploy --outputDeployDir ${APAMA_WORK}/MyProject_deployed \
${APAMA_WORK}/MyProject
RUN yum install gcc make && make -C MyProject

FROM ${APAMA_IMAGE}

80 Deploying and Managing Apama Applications 10.11.0

5 Deploying Apama Applications with Docker

COPY --chown=sagadmin:sagadmin --from=builder \
${APAMA_WORK}/MyProject_deployed ${APAMA_WORK}/MyProject_deployed
COPY --chown=sagadmin:sagadmin --from=builder \
${APAMA_WORK}/MyProject/libMyLib.so ${APAMA_WORK}/lib/libMyLib.so

WORKDIR ${APAMA_WORK}

CMD ["correlator", "--config", "MyProject_deployed"]

The Queries sample (see “Apama samples for Docker” on page 82) in the samples/docker/
application/Queries directory of your Apama installation demonstrates the use of multi-stage
builds to create Docker images from Software AG Designer projects.

Using Docker Compose with Apama

Docker Compose uses a configuration file to define how to build and then how to run the one or
more images and containers it defines. Where you have previously used individual commands
for each image and container, you can now use Docker Compose to initiate the build or running
of systems of containers.

A simple sample is provided in the samples/docker/applications/Simpledirectory of yourApama
installation. Using that sample, you can see the basic workflow for all of the samples.

When run, the docker-compose command reads a configuration file that defines what it will build
and how it should behave. This configuration file is named docker-compose.yml by default. It is
recommended that you read the Docker documentation for the docker-compose command to get
details on what the entries in the configuration file are.

It is important to note that the correlator may read all configuration with the extension of .yaml
contained in a specified directory. You must take care over the placement and naming of any files
in YAML format with an extension of .yaml to avoid unexpected behavior in the correlator. The
following commanduses the docker-compose.ymlfile in the current directory to build all the images
needed for the containers defined in the docker-compose.yml file and then runs them as directed.
docker-compose up -d --rm

When run in the Simple sample directory, the above command builds and then runs the sample.
You can use the following command to see output from the correlator running a simple “Hello
world” application in the container:
docker-compose logs

To stop the container, enter the following command from the Simple sample directory:
docker-compose down

For more complex examples, see “Apama samples for Docker” on page 82. These examples
demonstrate communications between containers, persisting container data, sharing between
containers, and exposing the containers as services.

Deploying and Managing Apama Applications 10.11.0 81

5 Deploying Apama Applications with Docker

Apama samples for Docker

There are a number of samples that can be found in the samples/docker/applications directory
of your Apama installation. The Simple sample that is referenced in “Using Docker Composewith
Apama” on page 81 contains a “Helloworld” application. The other samples in the above directory
cover more complex use cases. These samples build upon the base image and demonstrate how
to use a dockerized Apama correlator to build your own application or service.

The README.txt files that are provided in the samples/docker/applications directory and in each
of the individual sample subdirectories guide you through the process of building and running.
The samples demonstrate variousways inwhichDocker can be used to deployApama and related
SoftwareAGproducts. They also demonstrate interactions betweenDocker containers and normal
applications such as dashboards.

Weather

This sample deploys Apama's Weather demo. It demonstrates that various Apama components
can be run in distinct containers. The sample creates a correlator container and a separate container
for the dashboard serverwhich connects to the correlator just as in the non-DockerWeather sample.
This sample also creates a Compose network called “front” which is used to allow both containers
to communicate.

You can view this network using the following command:
docker network ls

Adapter

This sample starts an IAF in a container, which connects to a correlator running in another container.
The IAF is running the File transport. An EPL application is deployed into the correlator, which
requests the contents of a file inputFile.txt from the File adapter, and then directs it to write
those contents back out to another file outputFile.txt.

The output file is stored within the container, but can be retrieved via Docker:
docker cp adapter_iaf_1:/apama_work/Adapter/outputFile.txt .

MemoryStore

Earlier samples showed how to use Dockerfiles to create derived images that give Apama
components from the base image access to configuration and EPL code. However, this approach
only suffices for static data that can be reproduced by copying in files from a canonical source.
For containers to share dynamic data, they need a live view on that data. This is provided by a
Docker feature called “volumes”, which allows containers to share parts of their file system with
each other.

This sample contains a toy application MemoryStoreCounter.mon thatmakes use of theMemoryStore
to lay down persistent state on disk in the form of a number that increments each time themonitor
is loaded. While the correlator container is the one reading and writing to the MemoryStore, the
persistent file is on a Docker volume which is persisted between container restarts.

82 Deploying and Managing Apama Applications 10.11.0

5 Deploying Apama Applications with Docker

You can view the created volume using the following command:
docker volume ls

Docker volumes give you the ability to manage data that has a different lifecycle to the container
that uses it. In an application like this, you can replace the other containers with equivalents that
are based on a newer version of Apama. After bringing them up again, the correlator will still
have access to the MemoryStore data that it wrote in a previous iteration, as this data is owned
by the volume.

Universal Messaging

This sample demonstrates twoApama correlators communicatingwith each other via a Universal
Messaging realm server, all in separate containers. This sample requires an installation of Universal
Messaging.

Queries

This sample demonstrates a use of Docker that tries to approximate a real world scenario and
requires Terracotta. It shows the use of replicas and handling dependencies on startup in the
docker-compose.yml configuration file. After starting the Terracotta container which provides the
store, the correlators are started. The user then sends through events to a correlator that processes
the events according to the query parameters. The results are then updated in the Terracotta store
and shared with all the correlators. This can be demonstrated by sending through events to a
second correlator container created by the deployment.

Secrets

This sample demonstrates how to use Docker secrets to set variables in correlator configuration
files. These can then be loaded at runtime into a correlator.

Using the Apama image with the Docker stack

Current versions of Docker include swarmmode for nativelymanaging a cluster of Docker engines
called a swarm. You can use the Docker command line interface to create a swarm, deploy
application services, andmanage behavior. See theDocker documentation for available commands
and more detailed information regarding swarms and their management.

The top of the hierarchy of distributed applications is the stack. A stack is a group of interrelated
services that share dependencies, and can be orchestrated and scaled together. A single stack is
capable of defining and coordinating the functionality of an entire application (though very complex
applications may want to use multiple stacks).

Using stacks is an extension of creating a Compose file and then using the docker stack deploy
command. The majority of samples described in “Apama samples for Docker” on page 82 use
single service stacks running on a single host, which is not usually what takes place in production.
Apama's Queries sample demonstrates how the docker stack command can be used to create
multiple services related to each other, and run them on multiple machines. It uses resources
available to it, but specifically it is meant to utilize the swarm mode of a Docker installation.

Deploying and Managing Apama Applications 10.11.0 83

5 Deploying Apama Applications with Docker

1. Use the following command to enable swarm mode:
docker swarm init

The init command outputs a token which can be used to add extra processing workers to the
swarm using the following command:
docker swarm join --token token workeraddress

2. The docker-compose.yml configuration file is the key element to creating the deployment. To
use stack commands, the version of the configuration file must be greater than 3. The image
specified in the configuration file must exist because (unlike Docker Compose) the stack
commands ignore build sections in the configuration file. As a consequence, building the image
is a separate step and must be done before attempting to start the application.

An example docker-compose.ymlfile can be found in the samples/docker/applications/Queries
directory of your Apama installation. For details on the Queries sample, see “Apama samples
for Docker” on page 82.

3. Use the following command to run the application:
docker stack deploy stack --compose-file docker-compose.yml

The stack element in the above command is a name which will be prefixed to the elements of
the deployment that the above command creates. It is also used in the commands for
interrogating the running system, for example:
docker stack ps stack

docker stack services stack

4. Run the following command to cleanly shut down the running application when you are
finished:
docker stack rm stack

84 Deploying and Managing Apama Applications 10.11.0

5 Deploying Apama Applications with Docker

6 Deploying Apama Applications with Kubernetes

■ Introduction to Apama in Kubernetes ... 86

■ Quick start to using Apama in Kubernetes ... 86

■ Deploying an Apama application using Kubernetes ... 87

■ Apama samples for Kubernetes ... 89

Deploying and Managing Apama Applications 10.11.0 85

Introduction to Apama in Kubernetes

Kubernetes is an open-source system that provides an alternative for orchestrating containers.
The Apama images as described in “Deploying Apama Applications with Docker” on page 71
can be used within Kubernetes, allowing an alternative to deploying and controlling a user
application. See https://kubernetes.io/ for a more detailed overview of Kubernetes and how to use
it.

Images

Much likeDocker, images form the basis of the containers that are run and controlled byKubernetes.
Creating and obtaining images is identical to Docker. That is, you can either get the Apama image
fromDocker Hub as described in “Quick start to using an Apama image” on page 74 or you build
your own image as described in “Building an Apama image from the current installation” on
page 76.

The images are templates that are used to create the containers. Kubernetes software runs on
various operating systems and can run containers built from the Apama images.

Note:
Apama supports building images on Linux only.

Kubernetes

Kubernetes uses a different command line application and terminology fromDocker. For example,
the simplest unit is a pod. A pod corresponds to a running process on the cluster, but can be more
than one container. The command line interface is kubectl and should be used instead of docker.
See the Kubernetes documentation for more details on the various command-line options.

Quick start to using Apama in Kubernetes

For this quick start, you have to build the image from the Simple sample that can be found in the
samples/docker/applications/Simple directory of your Apama installation. See the README.txt
file in the samples/docker/applications directory for detailed instructions.

Once you have built the image, proceed as described below.

1. Define a deployment YAML file which references the image you wish to run as a container.
An example of this is the kubernetes.yml file which can be found in the samples/docker/
applications/Simple directory of your Apama installation.

This example YAMLfile creates a pod. However, Kubernetes can be used to definemuchmore
complex objects and behaviors; see the Kubernetes documentation for details of the possible
configurations.

2. Use the Kubernetes command line tool (kubectl) to create the container and run it (for example,
using the above example YAML file):
kubectl create -f kubernetes.yml

86 Deploying and Managing Apama Applications 10.11.0

6 Deploying Apama Applications with Kubernetes

https://kubernetes.io/

The create command starts the container under Kubernetes control. You can now use the
kubectl command line to interrogate the pod that has been created, see below.

3. To return the name of the pod that corresponds to running your Apama container:
kubectl get pods

4. To examine the logs from the container in the pod:
kubectl logs podname

5. Once you are finished, you can shut down everything and remove the containers. To do so,
you use the same YAML file that has been used to start the process:
kubectl delete -f kubernetes.yml

The power of Kubernetes comes with more complex setups involving multiple containers and
hosts. Some of these features are covered in more complex samples; see “Apama samples for
Kubernetes” on page 89 for further information.

Deploying an Apama application using Kubernetes

You will either need to create an image or you will already have images for the application you
wish to deploy using Kubernetes. To illustrate the concepts and basic process of getting the image
running and interrogating the running containers, this topic describes how to use the Adapter
sample which can be found the samples/docker/applications/Adapter directory of your Apama
installation. The README.txt files that are provided in the samples/docker/applications directory
and in the subdirectory for the Adapter sample guide you through the process of building and
running.

1. To create the images, enter the following commands from the samples/docker/applications/
Adapter directory (see also “Deploying Apama Applications with Docker” on page 71 for
details on building images):
cd deployment
docker build -t registrytag-correlator .
cd ../iaf
docker build -t registrytag-iaf .
cd ..
docker push registrytag-correlator
docker push registrytag-iaf

You must replace the tags registrytag-correlator and registrytag-iafwith tags that are
valid for a registry that you can write to, in the following form:

registryhost/organization/repository:image

To use Kubernetes, you must publish the images in a registry and not just in a local Docker
server. You must also include these tags in the Kubernetes configuration file that is used to
create the objects. If you are using the kubernetes.yml file from the Adapter sample (which is
mentioned below), youmust replace the correlator-image and iaf-image lineswith your tags.

2. Once you have determined which images you want to use, and know their location and tag
name, you can create the YAML configuration file for Kubernetes. This configuration file

Deploying and Managing Apama Applications 10.11.0 87

6 Deploying Apama Applications with Kubernetes

defines the state that you want from a running system, indicating the runtime characteristics
youwant Kubernetes to adhere to. This filemakes nomention ofwhere things run on a cluster,
but it can be used to determine behavior like restarting, replica containers, load balancing and
resource restrictions.

Apama provides the example configuration file kubernetes.ymlwhich can be found in the
samples/docker/applications/Adapter directory of your Apama installation. Detailed
descriptions of the possible contents of a Kubernetes configuration file can be found on the
Kubernetes website (https://kubernetes.io/).

The Adapter sample contains two pods and a service tying the running containers together. A
service in Kubernetes is an abstraction which enables a loose coupling between dependent
pods. Although each pod has a unique IP address, these IP addresses are not exposed outside
the cluster without a service. Services allow your applications to receive traffic.Whenever you
have a podwhich depends on another service, it is recommended that you use an init container
to ensure that the service is ready before starting the dependant pod.All the samples involving
multiple pods use this pattern.

3. To create the Kubernetes objects (pods and service):
kubectl create -f kubernetes.yml

After you have created the objects defined in the kubernetes.yml file, you can list the pods and
the service, and you can examine the details of the running objects, see below.

4. To list the pods:
kubectl get pods

5. To list the service:
kubectl get services

6. To examine the details of the running objects (image, container, volumes, and status events):
kubectl describe pod engine

7. To examine the logs in the correlator instance:
kubectl logs engine

8. To examine the IAF logs:
kubectl logs iaf

9. You can run commands in the pod. For example, to run a single command:
kubectl exec engine 'ls'

Or to open a shell on the running container:
kubectl exec -it engine bash

10. To shut down the application, you use the same YAML file that has been used to start the
process:

88 Deploying and Managing Apama Applications 10.11.0

6 Deploying Apama Applications with Kubernetes

https://kubernetes.io/

kubectl delete -f kubernetes.yml

For more samples of Kubernetes configurations applied to Apama images and applications, see
“Apama samples for Kubernetes” on page 89.

Apama samples for Kubernetes

There are a number of samples that can be found in the samples/docker/applications directory
of your Apama installation. The Simple sample has already been referenced in “Quick start to
using Apama in Kubernetes” on page 86. The other samples in the above directory cover more
complex use cases. These samples build upon the base image and demonstrate how to use an
Apama correlator in a Kubernetes environment to build your own applications.

The README.txt files that are provided in the samples/docker/applications directory and in each
of the individual sample subdirectories guide you through the process of building and running.
The samples demonstrate various ways in which Kubernetes can be used to deploy Apama and
related SoftwareAGproducts. They also demonstrate interactions between containers and normal
applications such as dashboards.

Weather

This sample deploys Apama's Weather demo. It demonstrates the use of separate pods and
connecting services to allow communication between them. A correlator pod and a dashboard
server pod connect just as in the non-Docker Weather sample. The engine and weather services
expose the required ports allowing connections to be made.

Adapter

This sample starts an IAF pod which connects to a correlator pod connected by a service. The IAF
is running the File transport. An EPL application is deployed into the correlator, which requests
the contents of a file inputFile.txt from the File adapter, and then directs it towrite those contents
back out to another file outputFile.txt.

The configuration for the correlator pod defines a readinessProbe that checks that the correlator
is running before the pod is marked ready. In a similar way, the IAF pod configuration defines
an initContainer to make sure the service it uses to connect to the correlator is present before
continuing.

See also “ Deploying an Apama application using Kubernetes” on page 87 which refers to this
sample.

MemoryStore

For containers to share dynamic data, they need a live view on that data. This is provided by a
Kubernetes feature called “volumes”, which allows containers to share parts of their file system
with each other.We use the Kubernetes PersistentVolume, PersistantVolumeClaim and Deployment
objects to implement the sample.

This sample contains a toy application MemoryStoreCounter.mon thatmakes use of theMemoryStore
to lay down persistent state on disk in the form of a number that increments each time themonitor

Deploying and Managing Apama Applications 10.11.0 89

6 Deploying Apama Applications with Kubernetes

is loaded. While the correlator container is the one reading and writing to the MemoryStore, the
persistent file is on a volume which is persisted between container restarts.

Kubernetes volumes give you the ability tomanage data that has a different lifecycle to the container
that uses it. In an application like this, you can replace the other containers with equivalents that
are based on a newer version of Apama. After bringing them up again, the correlator will still
have access to the MemoryStore data that it wrote in a previous iteration, as this data is owned
by the volume.

Universal Messaging

This sample demonstrates twoApama correlators communicatingwith each other via a Universal
Messaging realm server. Therefore, Universal Messaging must be installed to run. A service is
created that allows the correlators to communicate with the Universal Messaging pod, and the
correlator pod uses an initContainer element in the Kubernetes configuration to ensure that the
Universal Messaging service exists before continuing.

Queries

This sample introduces the StatefulSet as a method to allow scaling correlators using a common
resource. The structure of the sample ismeant to represent a real world scenario inwhich persistent
data is accessed by multiple correlators. Kubernetes Services, StatefulSets and pods are used to
set up and initialize the running system. The StatefulSet starts up a number of correlator pods that
process events. A Terracotta pod provides the store for the running correlators to share. There are
headless services binding the correlators and Terracotta, allowing the resultant pods to have
allocated hostnames that are used in the configuration.

When the sample is started, it starts up several correlators, where each correlator connects with
the Terracotta store. One pod uses the engine_send tool to send events to one of the correlators.
The event processing is then handled by that correlator. The processing updates the stored state,
making it available to all other correlator pods.

Secrets

This sample demonstrates how to useKubernetes secrets to set variables in correlator configuration
files. These can then be loaded at runtime into a correlator.

90 Deploying and Managing Apama Applications 10.11.0

6 Deploying Apama Applications with Kubernetes

7 Tuning Correlator Performance

■ Scaling up Apama .. 92

■ Partitioning strategies ... 92

■ Engine topologies ... 96

■ Correlator pipelining ... 97

■ Using jemalloc to optimize memory usage ... 105

Deploying and Managing Apama Applications 10.11.0 91

This section addresses how to scale up Apama to improve upon the performance of a single
correlator. It describes the Apama features you can use to send events to multiple correlators to
increase an application's capacity.

Scaling up Apama

Apamaprovides services for real-timematching on streams of events against hundreds of different
applications concurrently. This level of capacity is made possible by the advanced matching
algorithmsdeveloped forApama's correlator component and the scalability features of the correlator
platform.

Should it prove necessary, capacity can further be increased by using multiple correlators on
multiple hosts. To facilitate such multi-process deployments, Apama provides features to enable
connecting components to pass events between them. It is recommended that each correlator is
run on a separate host, to assist in the configuration of scaled-up topologies. However, it is possible
to run multiple correlators on a single host. There are two methods of configuration:

Using the configuration tools from the command line or Apama macros for Ant.

Programmatically through a client programming API.

This guide describes both approaches, but first discusses different ways in which Apama can be
distributed and what factors affect the choice of the distribution strategy.

Note:
This topic focuses on scaling Apama for applications written in EPL. JMon has less scaling
features as it does not support the use ofmultiple contexts. Java plug-ins can be used if invocation
of Java code is required onmultiple threads, either directly from EPL or by registering an event
handler. See "Using EPL plug-ins written in Java" inDeveloping Apama Applications. Knowledge
of aspects of EPL is assumed, specificallymonitors, spawning, listeners and channels. Definitions
of these terms can be found in "Getting Started with Apama EPL" in Developing Apama
Applications.

The core event processing and matching service offered by Apama is provided by one or more
correlator processes. In a simple deployment, Apama comprises a single correlator connected
directly to at least one input event feed and output event receiver. Although this arrangement is
suitable for a wide variety of applications (the actual size depending on the hardware in use,
networking, and other available resources), for some high-end applications it may be necessary
to scale up Apama by deploying multiple correlator processes on multiple hosts to partition the
workload across several machines.

Partitioning strategies

Using the patterns and tools described in this guide it is possible to configure the arrangement of
multiple contexts within a single correlator or multiple correlators within Apama (the engine
topology). It is important to understand that the appropriate engine topology for an application
is firmly dependent on the partitioning strategy to be employed. In turn, the partitioning strategy
is determined by the nature of the application itself, in terms of the event rate that must be
supported, the number of contexts, spawned monitors expected and the inter-dependencies
between monitors and events. The following examples illustrate this.

92 Deploying and Managing Apama Applications 10.11.0

7 Tuning Correlator Performance

The stockwatch sample application (in the samples\epl folder of yourApama installation directory)
monitors for changes in the values of named stocks and emits an event should a stock of interest
fall below a certain value. The stocks to watch for and the prices on which to notify are set up by
initialization events, which cause monitors that contain the relevant details to be spawned. In this
example, the need for partitioning arises from a very high event rate (perhaps hundreds of
thousands of stock ticks per second),which is too high a rate for a single context to serially process.

A suitable partitioning scheme here might be to split the event stream in the adapter, such that
different event streams are sent on different channels. The illustration below shows how this can
be accomplished:

This diagram shows an adapter sending events to different channels based on the symbol of the
stock tick. The adapter transport configuration file would specify a transportChannel attribute for
the stock event that named a field in the NormalisedEvent that specified the stock symbol. Either
a thread per symbol or a single thread (which could become a bottleneck)managed by the transport,
depending on what the system the transport is connecting to allows, is used to send
NormalisedEvents to the semantic mapper to be processed. The IAF thus sends the events on the
channel in the stock symbol value in the NormalisedEvent.

In this example, the stock symbol is either “IBM” or “XRX”. The IAF will send events to all sinks
(typically one) that are specified in the IAF's configuration file. In the correlator, all monitors
interested in events for a given symbol would need to set up listeners in a context where amonitor
has subscribed to that symbol. To achieve good scaling, the application is arranged so that each
context is subscribed to only one symbol. For the stockwatch application, a separate context per
symbol would be created, and the stockwatchmonitor spawns a new monitor instance to each
context. In each context, the monitor instance would execute monitor.subscribe(stockSymbol);
where stockSymbolwould have the value "IBM" or "XRX" corresponding to the stock symbol it is
interested in. This applicationwill scalewell, as each event stream (for the different stock symbols)
can run in parallel on the same host; this is referred to as scale-up.

Listeners in each context would listen for events matching a pattern, such as on all
Tick(symbol="IBM", price < 90.0) .

If the number of stock symbols is very large and the amount of processing for each stock symbol
is large, then it may be required to run correlators on more than one host to use more hardware
resources than are available in a single machine. This is referred to scale-out. To achieve scale-out,
connections per channel need to bemade between theApama components using the engine_connect

Deploying and Managing Apama Applications 10.11.0 93

7 Tuning Correlator Performance

tool (or the equivalent call fromAntmacros or the client API). The engine_connect tool can connect
any two Apama components, either correlator to correlator, or IAF to correlator. For best scaling,
multiple connections are required between components, which engine_connect provides in the
parallel mode. The following image shows a scaled out configuration.

This configuration allows many contexts to run on two hosts and requires use of engine_connect
to set up the topology.

Now consider a portfolio monitoring application that monitors portfolios of stocks, emitting an
eventwhenever the value of a portfolio (calculated as the sumof stock price * volume held) changes
by a percentage. A single spawned monitor manages each portfolio and any stock can be added
to/removed from a portfolio at any time by sending suitable events.

This application potentially calls for significant processing with each stock tick, as values of all
portfolios containing that stockmust be re-calculated. If the number of portfolios beingmonitored
grows very large, it may not be possible for a single context to perform the necessary recalculations
for each stock tick, thus requiring the application to be partitioned across multiple contexts.

Unlike the stockwatch application, it is not possible to achieve scaling to larger numbers of portfolios
by splitting the event stream. Each portfolio can contain multiple stocks, and stocks can be
dynamically added and removed, thus one event may be required by multiple contexts. In this

94 Deploying and Managing Apama Applications 10.11.0

7 Tuning Correlator Performance

case, a suitable partitioning scheme is to partition the monitor instances across contexts (as with
stockwatch) but to duplicate as well as split the event stream to each correlator. The following
images shows the partitioning strategy for the portfolio monitoring application.

Again, each monitor instance is spawned to a new context and subscribes to the channels (stock
symbols in this application) that it requires data for. Note that while the previous example would
scale very well, this will not scale as well. In particular, if one monitor instance requires data from
all or themajority of the channels, then it can become a bottleneck. However, theremay bemultiple
such monitor instances running in parallel if they are running in separate contexts.

Similar to the stockwatch application, the portfolio monitoring application may require scale-out
across multiple hosts, as shown below.

Deploying and Managing Apama Applications 10.11.0 95

7 Tuning Correlator Performance

In summary, the partitioning strategy can be thought of as a formula for splitting and duplicating
monitors and/or events between correlatorswhile preserving the correct behavior of the application.
In some circumstances, it may be necessary to re-write monitors that work correctly on a single
correlator to allow them to be partitioned across correlators, as the following section describes.

Engine topologies

Once the partitioning strategy has been defined, in terms of which events and monitors go to
which correlators, it is necessary to translate this into an engine topology. This is achieved by
connecting source and target correlators on separate channels, such that events sent by a source
correlator on a specific channel find their way to the correct contexts in the target correlator. A set
of two or more correlators connected in this way is known as a correlator pipeline, as shown in
the following image. This figure represents an example topology for a high-end application – the
majority of applications use a single correlator only, or have far simpler topologies.

96 Deploying and Managing Apama Applications 10.11.0

7 Tuning Correlator Performance

In this image, a correlator can perform the function of each of the 7 nodes (generator, worker,
watcher, tallier). Each target correlator performs some processing before passing the results to a
second worker correlator (worker3, worker4) in the form of events, sent on the channels as marked
on the diagram. tallier collates the results from these correlators for forwarding to any registered
receivers. A final correlator, watcher, monitors the events emitted by generator on chan1 and chan2
and emits events (possibly containing status information or statistical analysis of the incoming
event stream) to any registered receivers.

To deploy an application on a topology like that shown above requires separating the processing
performed into a number of self-contained chunks. In the previous figure, it is assumed that the
core processing can be serialized into three chunks, with the first two chunks split across two
correlators each (worker1/2 and worker3/4 respectively) and the third chunk residing on a single
correlator (tallier). Intermediate results from each stage of processing are passed to the next
stage as sent events, which contexts in the connected correlators receive by subscribing to the
appropriate channels.

To realize this application structure requires coding each chunk of processing as one or more
separatemonitors, which send intermediate results as an event of known type on a pre-determined
channel. These monitors can then be loaded onto the appropriate correlator. This may require an
existing application that grows beyond the capacity of a single correlator, to be re-written as a
number of (smaller) monitors to allow partitioning of the application processing into separate
chunks in the manner described above.

Correlator pipelining

To implement engine topologies comprisingmultiple correlators requires a method of connecting
correlators in pipelined configurations. This can be achieved in the following ways:

Deploying and Managing Apama Applications 10.11.0 97

7 Tuning Correlator Performance

Directly using the engine_connect tool. See “Configuring pipelining with engine_connect” on
page 98.

Indirectly using Software AG's Universal Messaging message bus. For complex deployments
where parts of the application may be moved between Apama correlators, this is likely to be
the best alternative. When using Universal Messaging, each correlator connects to the same
Universal Messaging realm. See "The Universal Messaging Transport Connectivity Plug-in"
in Connecting Apama Applications to External Components.

Programmatically via the client API, see “Configuring pipelining through the client API” on
page 104.

Using a custom launch configuration in Software AG Designer. See "Connecting correlators"
in Using Apama with Software AG Designer.

Configuring pipelining with engine_connect
The engine_connect tool allows direct connection of running correlator instances. The executable
for this tool is located in the bin directory of theApama installation. Running the tool in theApama
Command Prompt or using the apama_envwrapper (see “Setting up the environment using the
Apama Command Prompt” on page 15) ensures that the environment variables are set correctly.

Note:
Some of the functions of the engine_connect tool can be performed from within EPL. For more
information, see "Using the Management interface" in Developing Apama Applications.

Synopsis

To configure pipelining, run the following command:
engine_connect [options]

When you run this command with the –h option, the usage message for this command is shown.

Description

engine_connect connects a source correlator (the sender) to a target correlator (the receiver). The
target correlator will receive events from the specified channel(s) of the source correlator. Source
and target correlators must already be running.

Alternatively, if you specify the –f option, engine_connect reads connection information from the
specified file and sets up each connection found therein (see “Configuring pipelining through the
client API” on page 104 for details of the file format). The engine_connect tool expects the specified
file to be in the local character set. If the configuration file is in UTF-8, specify the -u option in
addition to the -f option. If the filename provided to -f is a hyphen (-), then connection information
is read from the standard input device (stdin) until end-of-file.

The connection between the source and target correlators is persistent.When one of the correlators
stops running, then when that correlator restarts it automatically reconnects with the other
correlator.

98 Deploying and Managing Apama Applications 10.11.0

7 Tuning Correlator Performance

The tool is silent by default unless an error occurs. For verbose progress information, use the –v
option.

Options

The engine_connect tool takes the options listed below.

Note:
Many of these options can also be specified as elements of a YAML configuration file (with
different element names). If an option is specified in both the command line and a YAML
configuration file, then the command line takes precedence. For further information, see
“Configuring the correlator” onpage 139 and especially the topic “Settingup connections between
correlators in a YAML configuration file” on page 154.

DescriptionOption

Displays usage information.-h | --help

Nameof the host onwhich the source (event sending) correlator
is running. The default is localhost. However, you can use the

-sn host | --sourcehost host

default or specify localhost only when the source correlator
and the target correlator are running on the same host. In all
other situations, you must specify the public IP address or the
name of the host. This ensures that the host of the target
correlator can resolve the name/address of the source correlator
host. Non-ASCII characters are not allowed in host names.

Port onwhich the source (event sending) correlator is listening.
The default is 15903.

-sp port | --sourceport port

Name of the host on which the target (event receiving)
correlator is running. The default is localhost. However, you

-tn host | --targethost host

can use the default or specify localhost only when the source
correlator and the target correlator are running on the same
host. In all other situations, you must specify the public IP
address or the name of the host. This ensures that the host of
the source correlator can resolve the name/address of the target
correlator host. Non-ASCII characters are not allowed in host
names.

Port onwhich the target (event receiving) correlator is listening.
The default is 15903.

-tp port | --targetport port

Named channel on which to send/receive events. You can
specify the -c option multiple times to send/receive events on

-c channel | --channel channel

multiple channels. Youmust specify the -c option at least once
for each sender/target pair. Until you do, no events emitted by
the sender correlator are received by the target correlator. An
event is discarded if it is sent on a channel for which you did
not specify the -c option.

Deploying and Managing Apama Applications 10.11.0 99

7 Tuning Correlator Performance

DescriptionOption

Indicates whether there is one connection (-m legacy) between
the sender and target correlators or one connection for each
specified channel (-m parallel).

-m mode | --mode mode

The default behavior is that there is one connection between
the sender and target correlators. The tool uses the same
connection for every channel. Events sent on any channel are
delivered to the default channel in the target correlator and all
events are delivered in order. You can specify default behavior
by specifying -m legacy or --mode legacy.

To create a connection for each specified channel, specify -m
parallel or --mode parallel. Events sent on a named channel
are delivered to the samenamed channel in the target correlator.
Events sent on the same channel are delivered in order. Events
sent on different channels may be re-ordered.

You also specify the -m option when you specify the -x option
to disconnect. If you are using a separate connection for each
channel, you should specify -m parallelwhen you specify the
-x option. If you are using one connection for all channels, you
should specify -m legacywhen you specify the -x option.

See also “Avoid mixing connection modes” on page 102.

When you specify the -x option, the behavior depends on
whether you also specify the -c option.

-x | --disconnect

If you specify the -x option and you do not also specify the -c
channel option, then the source correlator stops sending events
to the target correlator. Each connection between the source
correlator and the target correlator is terminated.

If you specify the -x option and the -c channel option and the
tool is using one connection for each channel, then the source
correlator terminates only the connection(s) it was using for
the channel(s) you specify. Any other connections being used
for other channels continue to be used. You can specify the -x
option with one or more instances of the -c channel option.
Remember to also specify -m parallel.

If you specify the -x option and the -c channel option and the
tool is using one connection for all channels, then the source
correlator stops sending events on only the channel(s) you
specify. The source correlator continues to send events on any
other channels it was already sending events on. If there are
no other channels, then the source correlator no longer sends
events to the target correlator.However, the connection between

100 Deploying and Managing Apama Applications 10.11.0

7 Tuning Correlator Performance

DescriptionOption

the two correlators remains in place. Remember to also specify
-m legacy.

Disconnect if slow (only takes effect on the first connection).-s | --qdisconnect

Read connection information from the named file. If this option
is specified, the options -sn, -sp, -tn, -tp and -c are all ignored.

-f file | --filename file

This file must be in the local character set or in UTF-8 format.
If it is UTF-8, specify the -u option in addition to this option.

Indicates that the connection information file is in UTF-8.-u | --utf8

Requests verbose output during engine_connect execution.-v | --verbose

Displays version information for the engine_connect tool.-V | --version

Exit status

The engine_connect tool returns the following exit values:

DescriptionValue

All connections were established successfully.0

One or more source correlators could not be contacted.1

One or more target correlators could not be contacted.2

A problem occurred establishing the connection; request invalid.3

Target correlator failed to contact the source.4

Some other error occurred.5

Comparison of legacy and parallel connection modes

Parallel connection modeLegacy connection mode

Anynumber of connections between correlators.0 or 1 connection between two correlators.

Events sent on different channels may be
delivered in a different order from the order in
which they were sent.

Events sent on different channels are delivered
in the order in which they are sent.

Sending an event to a named channel delivers it
to only that channel.

Sending an event to a named channel delivers
the event to the default channel.

Similar to Universal Messaging for passing
events between correlators.

Unlike Universal Messaging for passing events
between correlators.

Deploying and Managing Apama Applications 10.11.0 101

7 Tuning Correlator Performance

Parallel connection modeLegacy connection mode

New behavior starting with Apama 5.2.Same behavior as releases earlier than Apama
5.2.

Universal Messaging has no mechanism for enforcing ordering among events sent on different
channels. However, Universal Messaging is the better alternative when you want to use a large
number of channels to send events between components. Without Universal Messaging, the use
of two TCP connections with threads on both ends of the connection might reach the limit of how
many channels can have dedicated connections.

Avoid mixing connection modes

Successive command lines that specify the same source/target hosts/ports build on each other.
While this makes it possible to mix the legacy and parallel connection modes, you should avoid
doing that.Mixing connectionmodes can cause an event to be delivered twice to the same channel.
For example:
engine_connect -tp 15902 -sp 15903 -c channelA -c channelB
engine_connect -tp 15902 -sp 15903 -c channelA -c channelC -m legacy

The result of the first command is that there is one (legacy) connection for sending/receiving events
on channelA and channelB. The result of the second command is that there is a dedicated connection
for sending/receiving events on channelA and a dedicated connection for sending/receiving events
on channelC. Events sent on channelAwould be delivered twice: once on the legacy connection
and once on the dedicated connection.

Examples

Because you can specify command lines that build on each other, you could set up a connection
and add named channels later. You can also unsubscribe the channels you have added so that no
events are sent or received. The connection remains and you can re-add channels at a later time.
However, until you specify the -c option for a given connection, no events emitted by the source
correlator are received by the target correlator. Consider the following command line:
engine_connect -sn host1 -sp 15903 -tn host2 -tp 15904

The correlators on host1 and host2 are connected but no channels have been subscribed and
therefore no events are sent/received. To send and receive events, specify the -c option as in the
following command line:
engine_connect -sn host1 -sp 15903 -tn host2 -tp 15904 -c CHAN1 -c CHAN2

Now the connected correlators can use CHAN1 and CHAN2 to send/receive events. To add another
channel, execute this command:
engine_connect -sn host1 -sp 15903 -tn host2 -tp 15904 -c CHAN3

The correlators are now using CHAN1, CHAN2, and CHAN3 to send/receive events. To stop using CHAN2,
execute the following command. The correlators continue to use CHAN1 and CHAN3.

102 Deploying and Managing Apama Applications 10.11.0

7 Tuning Correlator Performance

engine_connect -sn host1 -sp 15903 -tn host2 -tp 15904 -x -c CHAN2

To stop sending and receiving events, execute the following command. Note that the correlators
remain connected until one of them stops. There is no penalty for this connection.
engine_connect -sn host1 -sp 15903 -tn host2 -tp 15904 -x

In this example, the following command is equivalent to the previous command.
engine_connect -sn host1 -sp 15903 -tn host2 -tp 15904 -x -c CHAN1 -c CHAN3

Connection configuration file
engine_connect can take connection information from a file for connecting and disconnecting
correlators. A sample of such a configuration file is shown below, which defines the topology
shown in “Engine topologies” on page 96.
comments are allowed prefixed by a '#' – the rest of the line
is ignored
generator:dopey.apama.com:1234
worker1:sleepy.apama.com:1234:generator{chan1,chan2,chan3}
worker2:grumpy.apama.com:1234:generator{chan2}
worker3:sneezy.apama.com:1234:worker1{w1_out}
worker4:bashful.apama.com:1234:worker2{w2_out_1,w2_out_2,w2_out_3}
tallier:happy.apama.com:1234:worker3{result},worker4{result}
watcher:doc.apama.com:1234:generator{chan1,chan2}

Connection configuration file format

Each entry in the configuration file specifies connection information for a single correlator in the
deployment. Entries can be specified in any order. The general format of an entry is:
correlator_name[:host][:port][:connection[,connection...]]

where connection is defined as:
correlator_name[{channel_name[,channel_name...]}]

correlator_name is a symbolic identifier for a correlator, used to identify source correlators in
target correlator connection information. It can consist of any combination of characters other than
whitespace, colon, comma or open/close brace characters, which are reserved as separators. host
and port identify the specific correlator this entry applies to. They can be omitted, in which case
the defaults of localhost and 15903 are used respectively.

Following this information are details of all connections to source correlators for the current (target)
entry. This information is omitted if no correlators sit “upstream” of the current entry (as with the
correlator generator, above). If there are multiple upstream source correlators, each name should
be separated by a comma (as with tallier, above, which takes events from worker3 and worker4).

For each connection, it is possible to specify the channel(s) on which the target correlator will
listen. If no channels are specified, the target correlator will register to receive all events emitted
by the source correlator regardless of channel (as with correlators worker3 and worker4which
register for all events from worker1 and worker2 respectively). One can specify specific channel

Deploying and Managing Apama Applications 10.11.0 103

7 Tuning Correlator Performance

names by enclosing them in braces and separating multiple channels by commas (as with watcher
which registers with generator for all events on channels chan1 and chan2).

In effect, the configuration file is a convenient way of grouping several calls to engine_connect.
For example, to set up the connections for the correlator tallierwould require two commands
using engine_connect:
>engine_connect -m parallel –sn sneezy.apama.com –sp 1234 –tn happy.apama.com

-tp 1234 –c result
>engine_connect -m parallel –sn bashful.apama.com –sp 1234 –tn happy.apama.com

-tp 1234 –c result

Errors in the configuration file

The configuration file can be used to both establish and remove connections in a multi-correlator
engine topology. For example, assuming the above file is saved as topology.dat, the following
commands will first set up then tear down all the connections specified therein:
>engine_connect -m parallel –f topology.dat
>engine_connect -m parallel –x –f topology.dat

In each of these cases, engine_connectwill exit with non-zero exit status on the first error it detects
in the configuration file. An error message will be printed to standard error (stderr).

Re-playing the configuration file

The behavior of engine_connectwithout the -x option is additive. This means that successive calls
to engine_connectwill attempt to add the channels specified to any existing connection between
the source and target correlator(s). For example, with reference to the configuration file above,
these commands:
>engine_connect -m parallel –sn dopey.apama.com –sp 1234 –tn sleepy.apama.com

–tp 1234 –c foo
>engine_connect -m parallel –f topology.dat

will first add a connection from correlator generator to worker1 on channel foo, then (from the
configuration file) extend that connection so that worker1 also receives all events from generator
emitted on channel chan1.

Once a connection is set up between two correlators on a channel, any further attempt to set up
that connection on the same channel will have no effect. It is therefore possible to re-play the
configuration file by invoking engine_connectwithout creating duplicate connections. This can
be useful if there is an error in the configuration file signaled when engine_connect is called, as
the error can be fixed and engine_connect re-run without requiring removal of connections that
were successfully set up by the first call to engine_connect.

Configuring pipelining through the client API
Apama provides client software development kits (SDKs) that can be used to interface with a
running correlator or group of correlators. You can use attachAsConsumerOfEngine of the Engine
Client API in Java and .NET (or attachAsConsumerOfEngine of the lower-level EngineManagement

104 Deploying and Managing Apama Applications 10.11.0

7 Tuning Correlator Performance

API in Java, .NET, C++ andC). Formore information, see "DevelopingCustomClients" inConnecting
Apama Applications to External Components.

Event partitioning
Using engine_connect or the Apama client library, it is possible to create topologies of correlators
across which an application's monitors can be partitioned. Use the engine_inject tool described
in “Injecting code into a correlator” on page 157, or bymeans of the relevant functions of the client
library, to load the relevant monitors directly on to the appropriate correlators, specifying the host
and port for each correlator.

This scheme is suitable for most applications, as monitors can be loaded once when Apama is
brought online. For some applications, however, there is a requirement for a dynamic routing
mechanism that (depending on the requirements of the application) continually splits and/or
duplicates the incoming event stream and sends it to two or more correlators. Use the IAF
transportChannel attribute to specify the channel an event is sent to, and connect that channel to
the appropriate correlators.

Using jemalloc to optimize memory usage

Apama supports the jemalloc memory allocator as an optional alternative to its standardmemory
allocator. See also http://jemalloc.net/.

Note:
This option is only available on Linux platforms and is not available on Windows at this time.

jemalloc typically consumes less memory overall. Therefore, it is advisable to use it when the
process needs excessive memory or is running out of memory. But keep in mind that there may
be throughput, latency or overall performance hits if you use this option.

To enable jemalloc as thememory allocator, set the following environment variable before starting
the correlator:
AP_ALLOCATOR=jemalloc

Deploying and Managing Apama Applications 10.11.0 105

7 Tuning Correlator Performance

http://jemalloc.net/

106 Deploying and Managing Apama Applications 10.11.0

7 Tuning Correlator Performance

8 Restricting Correlator Resource Usage with

Control Groups
OnLinux platforms, control groups (cgroups) can be used to limit the resource usage of processes,
for example, by limiting the number of CPUs a process can detect. Apama uses the number of
CPUs to determine how many threads to create. So you can use cgroups to limit this.

All cgroup restrictions that are currently active are logged at startup by the correlator (see also
“Starting the correlator” on page 116).

The number of CPUs and memory available to the correlator are exposed through various means
under the labels physicalCores and availableMemoryMB:

Management interface. See also "Using the Management interface" in Developing Apama
Applications.

Apama's REST API. See also “Managing and Monitoring over REST” on page 109.

Prometheus (under the metric sag_apama_correlator_metadata). See also “Monitoring with
Prometheus” on page 113.

Deploying and Managing Apama Applications 10.11.0 107

108 Deploying and Managing Apama Applications 10.11.0

8 Restricting Correlator Resource Usage with Control Groups

9 Managing and Monitoring over REST

Apama provides a Representational State Transfer (REST) HTTPAPI with which you canmonitor
Apama components. The monitoring capabilities are available to third-party managing and
monitoring tools or to any application that supports sending and receiving XML documents, or
receiving JSON documents, over the HTTP protocol.

Apama components expose several URIs which can be used to either monitor or manage different
parts of the system. Some are exposed by most Apama components. These are the generic
management URIs. Some are exposed only by specific types of components. For example, a
correlator running on the default port of 15903 will expose a URI at http://localhost:15903/
correlator/status. If anHTTP GET is issued against theURI, the correlatorwill return a document
with the current status of the correlator. The format of this document is depicted by the header
set in the request, that is, application/xml for XML and application/json for JSON.

Most URIs are purely for informational purposes and will only respond to HTTP GET requests,
and interacting with themwill not change the state of the component. However, some URIs allow
the state of the correlator to be modified. They will respond to one or more of the other HTTP
methods, but may only support XML and not JSON. For example, the /logLevel URI will accept
anHTTP PUT request containing anXMLdocument describingwhat the log level of the component
should be set to. However, the /request URI will accept JSON or XML documents via PUT.

All requests and responses over these interfaces have the same, simple elements:

In XML, these elements are:

prop

map

list

All elements have a name attribute. The prop element simply represents a name-value pair with
the name contained in the name attribute and the value being the content of the element. The
map element is an unordered list of named elements which might be any of the three sets of
elements, though it is quite typically simply a map of prop elements. See the /info URI as an
example. The list is very similar to the map element except that here the order is typically
regarded as significant. All responses from these URIs have a top-level element with the name
apama-response and similar all requests which are sent to these URIs should have a top-level
element with the name apama-request. If there is an error, then a response called
apama-exceptionwill be returned.

Deploying and Managing Apama Applications 10.11.0 109

In JSON, these elements are:

map {}

list []

All elements have a name-value pair. Name and value are separated by a colon (:) with the
name to the left and the value to the right of the colon. The map element, which is represented
by curly brackets, is an unordered list of named elements which might be any of map or list
elements. See the /infoURI as an example. The list element, which is represented by square
brackets, is very similar to the map element except that here the order is typically regarded as
significant. If there is an error, then a responsewith the errormessage is returned, for example,
{"apamaErrorMessage":"Not found"}.

For both formats, the /connectionsURL is a good example of all these elements being used together:

In XML, the top-level element is a mapwhich has two children, both list elements, called
senders and receivers. Each list contains a map element for each sender and receiver. Each
sender or receiver has a set of prop elements.

In JSON, the top-level element is a map {}which has two children, both list [] elements,
called senders and receivers. Each list contains a map {} element for each sender and receiver.
Each sender or receiver has a set of name-value pairs.

For detailed information on the supported URIs, see the API Reference for Component Management
REST APIs.

Two examples are provided below, one for JSON and another for XML. Each example shows only
a possible hierarchy of a response. To get the actual format of the response for each request, it is
recommended that you actually make the request.

Example for JSON:
{
"Key1": [

{"Key1.1.1":"Value1.1.1","Key1.1.2":"Value1.1.2"},
{"Key1.2.1":"Value1.2.1","Key1.2.2":"Value1.2.2"}

],
"Key2":[],
"Key3":
[
{"Key3.1.1":"Value3.1.1","Key3.1.2":[]}

],
"Key4":[]

}

Example for XML:
<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="/resources/transform.xslt"?>
<map name="apama-response">
<list name="Key1">

<map name="Key1.1">
<prop name="Key1.1.1">Value1.1.1</prop>
<prop name="Key1.1.2">Value1.1.2</prop>

</map>

110 Deploying and Managing Apama Applications 10.11.0

9 Managing and Monitoring over REST

<map name="Key1.2">
<prop name="Key1.2.1">Value1.2.1</prop>
<prop name="Key1.2.2">Value1.2.2</prop>

</map>
</list>
<list name="Key2"/>
<list name="Key3">

<map name="Key3.1">
<prop name="Key3.1.1">Value3.1.1</prop>
<list name="Key3.1.2"/>

</map>
</list>
<list name="Key4"/>

</map>

Deploying and Managing Apama Applications 10.11.0 111

9 Managing and Monitoring over REST

112 Deploying and Managing Apama Applications 10.11.0

9 Managing and Monitoring over REST

10 Monitoring with Prometheus

Prometheus is an open-source project that is used for monitoring application state. See https://
prometheus.io/ for detailed information on Prometheus and how to use it.

Standard correlator status

Apama exposes many internal correlator statistics as Prometheus metrics over HTTP on the
/metrics endpoint. For the full list of built-in metric names, see “List of correlator status
statistics” on page 180.

A sample demonstrating basic Prometheus usage, such as what metrics are exposed and how to
define new metrics, can be found in the samples/prometheus/basic directory of your Apama
installation.

User-defined status

In addition, any user-defined status can be exposed over Prometheus, provided the status name
is acceptable and the value is lexically equivalent to a number. All user-defined status names first
go through a simple escaping scheme where each comma (,), period (.) and hyphen (-) character
is replaced by an underscore (_), and then checked against the Prometheus metric name regex. If
this passes, the name is considered acceptable.

Note:
Each user-defined status that is exposed as a metric is of the gauge type.

Prometheus metadata metrics

The following Prometheus metrics use Prometheus labels attached to the metric to provide
additional information:

sag_apama_correlator_licensedata

This metric always returns a value of zero, but its labels give information about the status of
the current license.

sag_apama_correlator_metadata

This metric always returns a value of zero, but its labels give information about the current
configuration.

Deploying and Managing Apama Applications 10.11.0 113

https://prometheus.io/
https://prometheus.io/

114 Deploying and Managing Apama Applications 10.11.0

10 Monitoring with Prometheus

11 Correlator Utilities Reference

■ Starting the correlator ... 116

■ Configuring the correlator ... 139

■ Injecting code into a correlator ... 157

■ Creating and managing an Apama project from the command line 159

■ Deploying a correlator .. 163

■ Deleting code from a correlator .. 168

■ Packaging correlator input files .. 171

■ Sending events to correlators ... 174

■ Receiving events from correlators .. 176

■ Watching correlator runtime status ... 178

■ Inspecting correlator state .. 195

■ Shutting down and managing components .. 197

■ Using the command-line debugger .. 224

■ Generating code coverage information about EPL files ... 234

■ Replaying an input log to diagnose problems ... 240

■ Event file format ... 243

■ Using the Data Player command-line interface .. 248

Deploying and Managing Apama Applications 10.11.0 115

The Apama correlator is at the heart of Apama applications. The correlator is Apama's core event
processing and correlation engine. This section provides information and instructions for using
command-line tools to monitor and manage correlators.

For information about EPL, event definitions, monitors, namespaces and packages, see "Getting
Started with Apama EPL" in Developing Apama Applications.

Starting the correlator

The correlator executable starts the correlator. This is located in the bin directory of the Apama
installation. Running the executable in the Apama Command Prompt or using the apama_env
wrapper (see “Setting up the environment using the Apama Command Prompt” on page 15)
ensures that the environment variables are set correctly.

Synopsis

To start the correlator, run the following command:
correlator [options]

When you run this command with the –h option, the usage message for this command is shown.

Description

By default, the correlator executable starts a correlator process on the current host, and configures
it to listen on port 15903 for monitoring and management requests.

On start-up, the executable displays the current version number and configuration settings.

To terminate a correlator process, press Ctrl+C in thewindow inwhich it was started. Alternatively,
you can issue the engine_management command with the --shutdown option. See “Shutting down
andmanaging components” on page 197. Regardless of which technique you use to terminate the
correlator, Apama first tries to shut down the correlator cleanly. If this is not possible, for example,
perhaps because of a monitor in an infinite loop, Apama forces the correlator to shut down.

Note:
If a license file cannot be found, the correlator will run with reduced capabilities. See "Running
Apama without a license file" in Introduction to Apama.

Options

The correlator executable takes the options listed below.

Note:
Many of these options can also be specified as elements of a YAML configuration file (with
different element names). If an option is specified in both the command line and a YAML
configuration file, then the command line takes precedence. For further information, see
“Configuring the correlator” on page 139 and especially the topic “YAML configuration file for
the correlator” on page 140 which lists the available elements.

116 Deploying and Managing Apama Applications 10.11.0

11 Correlator Utilities Reference

DescriptionOption

Displays version information for the correlator.-V | --version

Displays usage information.-h | --help

Specifies the port on which the correlator should
listen for monitoring and management requests.
The default is 15903.

-p port | --port port

Alternatively, you can specify the port in a YAML
configuration file. See “Specifying the correlator
port number” on page 147 for details.

Specifies the path of the main log file that the
correlator writes messages to. The default is

-f file | --logfile file

stdout. See also “Specifying log filenames” on
page 128, “Descriptions of correlator status log
fields” on page 131 and “Text internationalization
in the logs” on page 134.

Specifies the level of information that the
correlator sends to the main correlator log file.
Specify one of the following:

-v level | --loglevel level

or

-v category=level | --loglevel
category=level

A log level which is to apply to all messages
written to the log file.

A categorywith the log level for that category.
This option can be provided multiple times.

You can also specify the log level in a YAML
configuration file. See “Setting correlator and
plug-in log files and log levels in a YAML
configurationfile” onpage 151 for details. This
topic also lists the category names that can be
specified.

A log level can be one of the following (in
increasing order of verbosity): ERROR, WARN, INFO,
DEBUG, TRACE. The default is INFO.

The use of DEBUG and TRACE is not recommended
in a production environment as the amount of
logging information will impact performance.

The use of ERROR and WARN is not recommended.
These log levels may make it impossible to
provide support due to the lack of information
in the log file. If one of these log levels is used, a
warning is printed at the top of the correlator log
file.

Deploying and Managing Apama Applications 10.11.0 117

11 Correlator Utilities Reference

DescriptionOption

Note:
If OFF, CRIT or FATAL is specified, the log level
is reset to ERROR and a warning message is
printed at the top of the correlator log file.

Specifies that if the main correlator log file
already exists, the correlator should empty it first.
The default is to append to it.

-t | --truncate

Assigns a name to the correlator. The default is
correlator. If you are running a lot of correlators

-N name | --name name

you might find it useful to assign a name to each
correlator. A name can make it easier to use the
engine_management tool to manage correlators
and adapters.

Specifies the path to the license file.-l file | --license file

Specifies that you want the correlator to buffer
messages for up to num seconds for each receiver

-m num | --maxoutstandingack num

that the correlator sends events to. The default is
10. For additional information, see “Determining
whether to disconnect slow receivers” on
page 134.

Specifies that you want the correlator to buffer
the events for each receiver up to the size in kb
represented by num.

-M num | --maxoutstandingkb num

Specifies that you want the correlator to
disconnect receivers that are consuming events

-x | --qdisconnect

too slowly. For details, see “Determiningwhether
to disconnect slow receivers” on page 134. The
default is that the correlator does not disconnect
slow receivers.

Sets the interval at which the correlator sends
information to its log file. The default is 5 seconds.

--logQueueSizePeriod p

Replace pwith a float value for the period you
want.

CAUTION:
Setting logQueueSizePeriod to 0 turns logging
off. Without correlator logging information, it
is impossible to effectively troubleshoot
problems. See also “Descriptions of correlator
status log fields” on page 131.

118 Deploying and Managing Apama Applications 10.11.0

11 Correlator Utilities Reference

DescriptionOption

Specifies that the distributed MemoryStore is
enabled, using the configuration files in the

--distMemStoreConfig dir

specified directory. Note that the configuration
filenames must end with “*-spring.xml” and the
correlator will not start unless the specified
directory contains at least one configuration file.
For more information on a distributed
MemoryStore's configuration files, see "Using the
distributed MemoryStore" in Developing Apama
Applications.

Specifies that correlator-integrated messaging is
enabled using the configuration files in the

--jmsConfig dir

specified directory. Note that the configuration
filenames must end with “*-spring.xml” and the
correlator will not start unless the specified
directory contains at least one configuration file.
For more information on the configuration files
for correlator-integrated messaging for JMS, see
"Configuration files" in Connecting Apama
Applications to External Components.

Enables support for Java applications, which is
needed to inject a Java application or plug-in
using engine_inject –j.

-j | --java

Specifies an option or property that youwant the
correlator to pass to the embedded JVM. You

-J option | --javaopt option

must specify the -J option for each JVM option.
You can specify the -J or --javaopt option
multiple times in the same correlator command
line. For example:

-J "-Da=value1" -J "-Db=value2" -J "-Xmx400m"

You can use -J as a prefix. In this case, you have
to specify it without a space: -Joption. For
example:

-J-Dproperty=value

You can also specify JVM options in a YAML
configuration file. If the same JVM option is
specified in both the command line and the
configuration file, the command line takes
precedence. See also “Specifying JVMoptions” on
page 155.

Deploying and Managing Apama Applications 10.11.0 119

11 Correlator Utilities Reference

DescriptionOption

Note:
It is not possible to configure the correlator's
system classpath using the CLASSPATH
environment variable. We recommend that
you set the classpath on a per-plug-in basis,
for example, in the descriptor file for an EPL
or JMon plug-in (see "Specifying the classpath
in deployment descriptor files" in Developing
Apama Applications) or in the configuration file
for a connectivity plug-in, JMS or distributed
MemoryStore library. For cases where you
really need to set the global system classpath,
you can use -J-Djava.class.path=path.When
you use this option to pass the classpath to the
JVM, Apama prepends the correlator-internal
JAR files to the path you specify.

Specifies the path of the input log file. The
correlatorwrites only inputmessages to the input

--inputLog file

log file. If there is a problem with your
application, SoftwareAGGlobal Support can use
the input log to try to diagnose the problem. An
input log contains only the external inputs to the
correlator. There is no information about
multi-context ordering. Consequently, if there is
more than one context, there is no guarantee that
you can replay execution in the same order as the
original execution. See “Replaying an input log
to diagnose problems” on page 240.

Specifies the path to the configuration log file.
The configuration log file contains the correlator's

--configLog file

configuration, that is, the contents of all YAML
configuration files and properties files as well as
the correlator startup arguments and
environment. The configuration log is a goodway
to capture useful diagnostic information from the
correlator's startup in performance-critical
situations where it is not acceptable to enable the
input log.

Starts the correlator with the random seed value
you specify. Specify an integer whose value is in

-XsetRandomSeed int

the range of 1 to 232. The correlator uses the
random seed to calculate the random numbers
returned by the integer.rand() and float.rand()
functions. The same random seed returns the

120 Deploying and Managing Apama Applications 10.11.0

11 Correlator Utilities Reference

DescriptionOption

same sequence of random numbers. This option
is useful when your application uses the
integer.rand() and float.rand() functions and
you are using an input log to capture events and
messages coming into a correlator. If you need
to reproduce correlator behavior from that input
log, you will want the correlator to generate the
same random numbers as it generated when the
original input was captured.

Sets the maximum number of spaces in every
context's input queue. The default is that each

--inputQueueSize int

input queue has 20,000 spaces. If events are
arriving on an input queue faster than the
correlator can process them the input queue can
fill up. You can set the inputQueueSize option to
allow all input queues to accept more events.
Typically, the default input queue size is enough
so if you find that you need to increase the size
of the input queue you should try to understand
why the correlator cannot process the events fast
enough to leave roomon the default-sized queue.
If you notice that adapters or applications are
blocking it might be because a public context's
input queue is full. To determine if a public
context's input queue is full, use output from the
engine_inspect tool in conjunctionwith the status
messages in the main correlator log file.

Disables correlator optimizations that hinder
debugging. Specify this optionwhen you plan to

-g | --nooptimize

run the engine_debug tool. You cannot run the
engine_debug tool if you did not specify the -g
option when you started the correlator.

Software AG Designer automatically uses the -g
option when it starts a correlator from a debug
launch configuration. However, if you are
connecting to an externally-started correlator,
and you want to debug in that correlator, you
must ensure that the -g option was specified
when the externally-started correlator was
started.

-P or -Penabled=true enables correlator
persistence. You must specify this option to

-P | -Penabled=boolean

enable correlator persistence. If youdonot specify
any other correlator persistence options, the

Deploying and Managing Apama Applications 10.11.0 121

11 Correlator Utilities Reference

DescriptionOption

correlator uses the default persistence behavior
as described in "Enabling correlator persistence"
in Developing Apama Applications. If you specify
one or more additional correlator persistence
options, the correlator uses the settings you
specify for those options and uses the defaults
for the other persistence options.

You can also enable and configure correlator
persistence using a YAML configuration file. See
“Configuring persistence in a YAML
configuration file” on page 153 for details.

-Penabled=false disables correlator persistence,
overriding any value that was specified in a
YAML configuration file.

Specifies the period between persistence
snapshots. The default is 200 milliseconds.

-PsnapshotIntervalMillis=interval

Indicates whether or not the correlator should
automatically adjust the snapshot interval

-PadjustSnapshot=boolean

according to application behavior. The default is
true, which means that the correlator does
automatically adjust the snapshot interval. You
might want to set this to false to diagnose a
problem or test a new feature.

Specifies the path for the directory in which the
correlator stores persistent state. The default is

-PstoreLocation=path

the current directory, which is the directory in
which the correlator was started.

Specifies the name of the file that contains the
persistent state. This is the recovery datastore.
The default is persistence.db.

-PstoreName=file

Specifies that you want to clear the contents of
the recovery datastore. This option applies to the

-Pclear

recovery datastore you specify for the
-PstoreName option or to the default
persistence.db file if you do not specify the
-PstoreName option. When the correlator starts it
does not recover from the specified recovery
datastore.

For correlators that use an external clock, this is
a time expression that represents the time of day

-XrecoveryTime num

that a correlator starts at when it recovers

122 Deploying and Managing Apama Applications 10.11.0

11 Correlator Utilities Reference

DescriptionOption

persistent state and restarts processing. The
default is the time expression that represents the
time of day captured in the last committed
snapshot. This option is useful only for replaying
input logs that contain recovery information. To
change the default, specify a number that
indicates seconds since the epoch.

Specifies that the correlator should not copy the
recovery datastore to the input log when it

-noDatabaseInReplayLog

restarts a persistence-enabled correlator. The
default is that the correlator does copy the
recovery datastore to the input log upon
restarting a persistence-enabled correlator. You
might set this option if you are using an input
log as a record of what the correlator received.
The recovery datastore is a large overhead that
you probably do not need. Or, if you maintain
an independent copy of the recovery datastore,
you probably do notwant a copy of it in the input
log.

Specifies the name of the file that contains the
process identifier. This file is created at process

--pidfile file

startup and can be used, for example, to
externally monitor or terminate the process. The
correlator will remove that file after a clean
shutdown.

It is recommended that the file name includes the
logical name of the correlator and/or port number
to distinguish different correlators (for example,
my-correlator-15903.pid).

CAUTION:
If the correlator process is terminateduncleanly
or if the operating system is restarted, the
pidfile usually remains on disk. However, the
process identifier it contains is no longer valid
or may match some other newly started
process.

To prevent mistakenly sending signals to the
wrong process, ensure that the pidfile is explicitly
deleted after a restart of the operating system or
after an unclean termination of the correlator.
Alternatively, you can configure the pidfile to be
written to a transient location such as /run that

Deploying and Managing Apama Applications 10.11.0 123

11 Correlator Utilities Reference

DescriptionOption

is automatically deleted when the operating
system is started.

The correlator takes an exclusive lock on the
pidfile while it is running. This means that if you
have another correlator running using the same
pidfile, the second correlator will fail to start up.
You should not runmultiple correlators from the
same configuration using the same pidfile. In
other cases, existing pidfiles will be overwritten,
even if they contain a process identifier of a
running process.

OnLinux 64-bit systems, you can specifywhether
you want the correlator to use the compiled

--runtime mode

runtime or the interpreted runtime, which is the
default. Specify --runtime compiled or --runtime
interpreted.

The interpreted runtime compiles EPL into
bytecodewhereas the compiled runtime compiles
EPL into native code that is directly executed by
the CPU. For many applications, the compiled
runtimeprovides significantly faster performance
than the interpreted runtime. Applications that
perform dense numerical calculations are most
likely to have the greatest performance
improvement when the correlator uses the
compiled runtime. Applications that spendmost
of their time managing listeners and searching
for matches among listeners typically show a
smaller performance improvement.

Using the compiled runtime requires that the
binutils package is installed on the Linux system.

Other than performance, the behavior of the two
runtimes is the same except for the following:

The interpreted runtime allows for the
profiler and debugger to be switched on
during the execution of EPL. The compiled
runtime does not permit this. For example,
you cannot switch on the profiler or debugger
in the middle of a loop.

The amount of stack space available is
different for the two runtimes. This means

124 Deploying and Managing Apama Applications 10.11.0

11 Correlator Utilities Reference

DescriptionOption

that recursive functions run out of stack space
at a different level of recursion on the two
runtimes.

Note:
If you are using both correlator persistence and
the compiled runtime (--runtime compiled
option), we recommend the use of the
--runtime-cache option to improve recovery
times.

Enables caching of compiled runtime objects in
the specified directory. Subsequent injections of

--runtime-cache dir

the same files to any correlator using that cache
will be quicker. For more information, see
“Injection time of compiled runtime” onpage 138.

Instructs the correlator to generate clock ticks at
a frequency of num per second. Defaults to 10,

--frequency num

which means there is a clock tick every 0.1
seconds. Be aware that there is no value in
increasing num above the rate at which your
operating system can generate its own clock ticks
internally. On UNIX and some Windows
machines this is 100 and on other Windows
machines it is 64.

Instructs the correlator to disable its internal
clock. By default, the correlator uses internally

-Xclock | --externalClock

generated clock ticks to assign a timestamp to
each incoming event. When you specify the
-Xclock option, you must send time events
(&TIME) to the correlator. These time events set
the correlator's clock. For additional information,
see “Determining whether to disable the
correlator's internal clock” on page 137.

Used to configure the correlator. Specifies one of
the following:

--config file

The name of a .properties file. See also
“Using properties files” on page 146.

The name of a .yaml file. See also “Using
YAML configuration files” on page 139.

Deploying and Managing Apama Applications 10.11.0 125

11 Correlator Utilities Reference

DescriptionOption

The name of a directory containing .yaml files
and .properties files. In this case, the files
are processed in alphabetical order.

A semicolon-delimited list of .properties
files, .yaml files and directories.

This option can be specified multiple times. The
options are processed in the same sequence in
which they are specified on the command line.

If multiple .yaml files are specified, they are
merged together based on the contents of the
top-level maps they each contain. For example,
if two files have a top-level map called
connectivityPlugins, the merged document has
a single connectivityPluginsmap with all keys
and values. Both maps, however, must not
contain the same keys, otherwise an error will
occur.

For more information, see “Configuring the
correlator” on page 139.

Specifies a value for a substitution property to be
used by the Apama configuration files. The -D

-Dkey=value

arguments always take precedence over any
arguments defined in a .properties file.
Therefore, they are processed before any --config
arguments, regardless of the order on the
command line.

Using this option is similar to specifying the
substitution using a .properties file for YAML
(see also “Using properties files” on page 146).

Correlator-integratedmessaging for JMS and the
distributed MemoryStore have their own
properties files, which are Spring files. Keep in
mind that any properties that are specified with
the --config file or -Dkey=value option take
precedence and override the properties defined
in a Spring properties file. See also "Configuration
files for JMS" in Connecting Apama Applications to
External Components and "Configuration files for
distributed stores" in Developing Apama
Applications.

126 Deploying and Managing Apama Applications 10.11.0

11 Correlator Utilities Reference

DescriptionOption

-D properties are not related to Java system
properties. If your intention is to set a Java system
property, use -J-Dkey=value (and not
-Dkey=value).

Specifies the level of information that the
correlator sends to the EPL log file. The log level

--applicationLogLevel level

must be one of the following (in increasing order
of verbosity): OFF, CRIT, FATAL, ERROR, WARN, INFO,
DEBUG, TRACE. The default is the current setting of
the -v (or --loglevel) option.

You can also specify the log level in a YAML
configuration file. See “Setting EPL log files and
log levels in a YAML configuration file” on
page 149 for details.

Specifies the path of the EPL log file that the
correlator writes messages to. The default is the
current setting of the -f (or --logfile) option.

--applicationLogFile file

You can also specify the EPL log file in a YAML
configuration file. See “Setting EPL log files and
log levels in a YAML configuration file” on
page 149 for details.

Specifies the maximum time allowed for the
correlator to shut down after all persistence

--shutdownTimeoutSecs number

activities have been completed. When this time
has elapsed, the correlator shuts down forcibly,
ignoring any transport or plug-in shutdown
activities. This option is especially useful to
prevent indefinite hangs caused by plug-ins. If
this option is not provided, a default value of 90
seconds is used.

--python or --python=true enables Python
support. By default, Python support is not
enabled.

--python=boolean

You can also enable Python support using a
YAML configuration file. For more information,
see "Using Python plug-ins" inDeveloping Apama
Applications.

--python=false disables Python support,
overriding any value that was specified in a
YAML configuration file.

Deploying and Managing Apama Applications 10.11.0 127

11 Correlator Utilities Reference

Exit status

The correlator executable returns the following exit values:

DescriptionValue

The correlator terminated successfully.0

An error occurred which caused the correlator to terminate abnormally.1

Specifying log filenames
A correlator can send information to the following log files:

Main correlator log file. Upon correlator startup, the default behavior is that the correlator
logs status information to stdout. To send this information to a file, specify the -f file or
--logfile file option and replace filewith a log filename. The format for specifying a log
filename is described below.

Before you specify a log filename, you should consider your log rotation policy, which can
determine what you want to specify for the log filename. See “Rotating correlator log files” on
page 222.

EPL log files. You can create log files for packages, monitors, and events in your application.
The format you use to specify these log filenames is the same as for the main correlator log
file. For details about how to create EPL log files, see “Setting EPL log files and log levels in a
YAML configuration file” on page 149 and “Setting EPL log files and log levels dynamically” on
page 219.

Correlator input log file.When you start a correlator, you can specify the --inputLog file
option so that the correlatormaintains a special log file for all inputs. Again, before you specify
a log filename, you should consider the rotation policy for your input log files. See “Rotating
an input log file” on page 240.

Note:
The correlator input log file is slightly different from the other log files, and it is not intended
to be read by a human.

Correlator configuration log file.When you start a correlator, you can specify the --configLog
file option so that the correlator maintains a special log file for all of the correlator's
configuration.

The format for specifying a log filename is as follows:
file[${START_TIME}][${ROTATION_TIME}][${ID}][${PID}].log

The following table describes each part of a log filename specification. You cannot include spaces.
You can separate the parts of the filename specification with underscores. You can specify
${START_TIME}, ${ROTATION_TIME}, ${ID} and/or ${PID} in any order. For examples, see “Examples
for specifying log filenames” on page 130.

128 Deploying and Managing Apama Applications 10.11.0

11 Correlator Utilities Reference

DescriptionElement

Replace filewith the name of the file that you want to be the log file.
If you specify the name of a file that exists, the correlator overwrites it
on Windows or appends to it on UNIX.

file

Required.

If you also specify ${START_TIME} and/or ${ROTATION_TIME} and/or
${ID} and/or ${PID}, the correlator prefixes the name you specify to
the time the correlator was started and/or the time the log file was
rotated (logging to a newfile began) and/or an ID beginningwith “001”
and/or the process ID.

Be sure to specify a location that allows fast access.

Tag that indicates that you want the correlator to insert the date and
time that it started into the log filename.

${START_TIME}

Optional, however you probably want to always specify either this
option or ${ROTATION_TIME} to avoid overwriting log files.

Tag that indicates that you want the correlator to insert the date and
time that it starts sending messages to a new log file into the log
filename.

${ROTATION_TIME}

Optional.

If you specify ${ROTATION_TIME} and this log filename specification
appears in a correlator start-up command then the name of the initial
log file contains the time the correlator started.

Tag that indicates that you want the correlator to insert a three-digit
ID into the log filename. The ID that the correlator inserts first is “001”.

${ID}

Optional. The log ID increment is related only to rotation of log files.
See “Rotating correlator log files” on page 222 and “Rotating an input
log file” on page 240.

The ID allows you to create a sequence of log files. Each time the log
file is rotated, the correlator increments the ID. A sequence of log files
have the same name except for the ID. If you also specify
${ROTATION_TIME} then a sequence of log files have the same name
except for the rotation time and the ID.

Restarting the correlator always resets the IDportion of the log filename
to “001”.

Tag that indicates that you want the correlator to insert the process ID
into the log file name.

${PID}

Optional.

Deploying and Managing Apama Applications 10.11.0 129

11 Correlator Utilities Reference

DescriptionElement

The process IDwill be constant for the lifetime of the process. Therefore,
if you start multiple processes with the same arguments, they get
different file names.

If you plan to rotate log files then be sure to specify ${ROTATION_TIME} or ${ID}. You can also
specify both.

Examples for specifying log filenames
This topic provides examples of specifying log filenames. The format for specifying a log filename
is the same in the following cases:

Starting the correlator and specifying a main correlator log file with the --logfile option.

Starting the correlator and specifying a correlator input log file with the --inputLog option.

Invoking engine_management --setLogFile to rotate the main correlator log.

Invoking engine_management --setApplicationLogFile to create an EPL log file for a package,
monitor or event.

The following specifies that the name of the main log is “correlator_status.log”:
--logfile correlator_status.log

Suppose that the correlator processes events for a while, sends information to correlator_
status.log, and then you find that you need to restart the correlator. If you restart the correlator
and specify the exact same log filename, the correlator overwrites the first correlator_status.log
file. To avoid overwriting a log, specify ${START_TIME} in the log file name specification when you
start the correlator. For example:
--logfile correlator_status_${START_TIME}.log

The above command opens a log with a name something like the following:
correlator_status_2015-03-12_15:12:23.log

This ensures that the correlator does not overwrite a log file. Now suppose that you want to be
able to rotate the log, so you specify the ${START_TIME} and ${ID} tags:
correlator_status_${START_TIME}_${ID}.log

The initial name of the log file is something like the one on the first line below. If you then rotate
the log file then the correlator closes that file and opens a new file with a name like the one on the
second line:
correlator_status_2015-03-12_15:12:23_001.log
correlator_status_2015-03-12_15:12:23_002.log

To specify an EPL log filename for messages generated in com.example.mypackge, you can specify
the log filename as follows:

130 Deploying and Managing Apama Applications 10.11.0

11 Correlator Utilities Reference

mypackage_${ID}_${ROTATION_TIME}.log

With that specification,messages generated in com.example.mypackagewill go to a filewith a name
such as the one on the first line below. The time in the initial EPL log filename is the time that the
initial log file is created. If you rotate the logs every 24 hours at midnight then the names of
subsequent EPL log files will be something like the names in the second and third lines below.
mypackage_001_2015-03-21_18:42:06.log
mypackage_002_2015-03-22_00:00:00.log
mypackage_003_2015-03-23_00:00:00.log

If you want to run multiple correlators with the same arguments but with separate log files, you
can use the process ID to differentiate them:
--logfile correlator_${PID}.log

The above commandwill produce a log filewith a name such as the following,where each correlator
will have a unique log file:
correlator_23487.log

UNIX note

In most UNIX shells, when you start a correlator you most likely need to escape the tag symbols,
like this:
correlator -l license --inputLog input_\${START_TIME}_\${ID}.log

Descriptions of correlator status log fields
The correlator sends information to the main correlator log file every five seconds (the default
behavior) or at an interval that you specify with the --logQueueSizePeriod option when you start
the correlator.

There are one or two lines in the log file, depending on whether persistence is enabled or not:

The line startingwith Correlator Status: is always shown. See “Correlator status” on page 131
for detailed information on the log fields that are shown in this line.

The line starting with Persistence Status: is only shownwhen persistence has been enabled.
See “Persistence status” on page 133 for detailed information on the log fields that are shown
in this line.

Note:
Correlators with correlator-integrated messaging for JMS enabled send additional information
to the main log file of the correlator. For details on this information, see "Logging
correlator-integrated messaging for JMS status" in Connecting Apama Applications to External
Components.

Correlator status

When logging at INFO level, this information contains the following:

Deploying and Managing Apama Applications 10.11.0 131

11 Correlator Utilities Reference

Correlator Status: sm=11 nctx=1 ls=60 rq=0 iq=0 oq=0 icq=0 lcn="<none>" lcq=0 lct=0.0
rx=5 tx=17 rt=31 nc=2 vm=325556 pm=81068 runq=0 si=915.3 so=0.0 srn="<none>" srq=0 jvm=0

Where the fields have the followingmeanings (see “List of correlator status statistics” on page 180
for more information):

TrendMeaningField

SteadyThe number of monitor instances, also known as sub-monitors.sm

SteadyThe number of contexts in the correlator, including the main context.nctx

SteadyThe number of listeners in all contexts. This includes on statements
and active stream source templates.

ls

LowThe sum of routed events on the route queues of all contexts.rq

LowThe number of executors on the input queues of all contexts. As well
as events, this can include clock ticks, spawns, injections and other

iq

operations. A context in an infinite loop will grow by 10 per second
due to clock ticks. Every context has an input queue, which by default
is a maximum of 20,000 entries.

LowThe number of events waiting on output queues to be dispatched to
any connected external consumers/receivers.

oq

LowThe number of events on the input queues of all public contexts. See
also "About context properties" in Developing Apama Applications for
information on the receiveInput flag.

icq

NoneThe name of the slowest context. This may or may not be a public
context.

lcn

LowThe number of events on the slowest context's queue, as identified by
the name of the slowest context.

lcq

LowFor the context identified by the slowest context name, this is the time
difference in seconds between its current logical time and the most
recent time tick added to its input queue.

lct

IncreasingThe number of events that the correlator has received from external
sources since the correlator started. This includes connectivity plug-ins,

rx

correlator-integrated JMS, engine_send, other correlators connected
with engine_connect, dashboard servers, the IAF, and events that are
not parsed correctly. This number excludes events sent within the
correlator from EPL monitors or EPL plug-ins.

IncreasingThe number of events that have been delivered to external
consumers/receivers. This counts for each external consumer/receiver
an event is sent to. It counts the number of deliveries of events.

tx

IncreasingThe number of events that have been routed across all contexts since
the correlator was started.

rt

132 Deploying and Managing Apama Applications 10.11.0

11 Correlator Utilities Reference

TrendMeaningField

SteadyThe number of external consumers/receivers connected to receive
emitted events. This includes connectivity plug-ins,

nc

correlator-integrated JMS, engine_receive, or correlators connected
using engine_connect.

SteadyVirtual memory in kilobytes.vm

SteadyPhysical memory in kilobytes.pm

LowThe number of contexts on the run queue. These are the contexts that
have work to do but are not currently running.

runq

LowThe number of pages per second that are being read from swap space.
If this is greater than zero, it may indicate that the machine is

si

under-provisioned,which can lead to reducedperformance, connection
timeouts andother problems.Consider addingmorememory, reducing
the number of other processes running on themachine, or partitioning
your Apama application across multiple machines.

LowThe number of pages per second that are being written to swap space.
If this is greater than zero, it may indicate that the machine is

so

under-provisioned,which can lead to reducedperformance, connection
timeouts andother problems.Consider addingmorememory, reducing
the number of other processes running on themachine, or partitioning
your Apama application across multiple machines.

NoneThe name of the consumer/receiver with the largest number of
incoming events waiting to be processed. This is the slowest

srn

non-context consumer/receiver of events, which can be an external
receiver or an EPL plug-in.

LowThe number of events on the slowest consumer's/receiver's queue, as
identified by the name of the slowest consumer/receiver.

srq

SteadyThe sum of all memory used by the Java virtual machine (JVM)which
is embedded in the correlator (that is, the used heapmemory, the used

jvm

non-heap memory, and the used buffer pool memory). The value is
in megabytes. If the JVM is disabled, the value will be 0.

Persistence status

If persistence is enabled, information such as the following is also shown when logging at INFO
level:

Persistence Status: numSnapshots=25 lastSnapshotTime=1516203192
snapshotWaitTimeEwmaMillis=0.029071 commitTimeEwmaMillis=3.459181
lastSnapshotRowsChangedEwma=8

Deploying and Managing Apama Applications 10.11.0 133

11 Correlator Utilities Reference

Where the fields have the followingmeanings (see “List of correlator status statistics” on page 180
for more information):

TrendMeaningField

IncreasingThe number of persistence snapshots
taken since the correlator started.

numSnapshots

IncreasingThe UNIX timestamp of the last
completed snapshot.

lastSnapshotTime

VariesAn exponentially weighted moving
average (EWMA) of the time in

snapshotWaitTimeEwmaMillis

milliseconds taken to wait for a
snapshot.

VariesAn exponentially weighted moving
average (EWMA) of the time in

commitTimeEwmaMillis

milliseconds taken to commit to the
database.

VariesAn exponentially weighted moving
average (EWMA) of the number of rows
changed per snapshot.

lastSnapshotRowsChangedEwma

Text internationalization in the logs
The information given here applies for the correlator, and also for the IAF and dashboard servers.

The strings in the logs are encoded in two different ways, depending on whether they are written
to a log file or to the console:

Log file

Apama log files are always encoded as UTF-8. Any non-ASCII strings in a log file (such as
Chinese characters, German umlauts, some currency symbols, and so on)will only look correct
if your text editor is configured to view the text as UTF-8. This is irrelevant on most Linux
installations, where the default encoding is usually UTF-8.

Console

If the Apama component is logging to the console, the output is encoded according to the
locale of your system. In practice, this means that any strings that are logged to the console
(including non-ASCII strings) will look correct.

Determining whether to disconnect slow receivers
The correlator sends events tomultiple receivers. Sometimes, a receiver cannot consume its events
fast enough for the correlator to continue sending them. When this happens, the default behavior
is that the correlator suspends processing until the receiver disconnects or starts consuming events

134 Deploying and Managing Apama Applications 10.11.0

11 Correlator Utilities Reference

fast enough. In other words, a slow receiver can prevent other consumers from receiving events.
However, you might prefer to have the correlator disconnect a slow receiver and continue
processing and sending events to other consumers. Information in this section can help you
determine whether to disconnect slow receivers.

See also "Handling slow or blocked receivers" in Developing Apama Applications.

Description of slow receivers

The correlator uses two strategies to detect slow receivers: time-based, and size-based.

Time-based (maxOutstandingSecs) slow consumer detection

Events that the correlator sends to Apama clients, IAFs or other correlators are acknowledged by
the receiver after the event has been delivered to the receiver. By default, if the correlator does not
receive an acknowledgment within 10 seconds after the correlator sent the event, the correlator
marks that receiver as being slow to consume events.

For most systems, and assuming that the underlying network connections are not prone to
drop-outs, the default setting of 10 seconds is usually adequate.

You can control the length of time within which the receiver must acknowledge an event before
it is marked as a slow receiver. To do so, you can specify maxOutstandingSecs in the YAML
configuration file that is used when starting the correlator. See “YAML configuration file for the
correlator” on page 140.

For example, if you specify maxOutstandingSecs: 15.0 in the YAMLconfiguration file, the correlator
marks a receiver as slow if the correlator does not receive an acknowledgment within 15 seconds.
If you do not specify this element, the default is 10 seconds. You should not specify a value under
1 second because doing so raises the risk that the correlator might designate a receiver as slow
when it is in fact not slow.

The mechanism that flags a receiver as slow is not precise. If a receiver does not acknowledge an
event sequence after 10 seconds (the default setting), the correlator does not immediately designate
the receiver as slow. Typically, the designation happens within the next 5 seconds. If you change
the value of maxOutstandingSecs, the slow designation takes effect between 1 and 1.5 times the
value of maxOutstandingSecs.

Size-based (maxOutstandingKb) slow consumer detection

maxOutstandingKb can also be specified in the YAML configuration file that is used when starting
the correlator. See “YAML configuration file for the correlator” on page 140.

The correlator keeps track of the events that have been sent to each receiver but have not yet been
acknowledged, based on the amount of memory taken up by those events. The correlator marks
a receiver as being slow if the size of the events waiting to be acknowledged goes above the
maxOutstandingKb limit, which is 10MB by default.

Note that the size-based slow consumer detection operates completely independently of the
time-based (maxOutstandingSecs) slow consumer detection.

Deploying and Managing Apama Applications 10.11.0 135

11 Correlator Utilities Reference

It is rare for the size-based limit to be exceeded unless the events being transmitted are very large.

Connectivity plug-ins slow consumer detection

Connectivity chains use time-based slow consumer detection similar to maxOutstandingSecs. The
size of the time window is currently set at 10 seconds (not configurable). A chain that has not
processed a message for more than 10 seconds is logged as slow, but is not disconnected.

How frequently slow receivers occur

In practice, sending acknowledgments should not be slow because a dedicated thread sends
acknowledgments.Network interruptions are themost commoncause of delayed acknowledgments.
Of course, network interruptions affect events being sent as well.

Most receivers, including the engine_receive tool, normally send acknowledgments 0.1 seconds
after the message was sent. Consequently, there is very little chance of a receiver beingmistakenly
designated as slow. In production, slow receivers should be rare as long as you have done the
appropriate load testing before deployment.

If an engine library client blocks in themiddle of a sendEvents call, the receiver cannot acknowledge
messages while the client is blocked. As you know, a receiver is made up of an engine library and
a client. Clients receive events by registering a sendEvents callback with the engine library. When
the engine library gets an event from the correlator, it calls sendEvents. Problems that can cause
a client to block are typically related to I/O, networking, or synchronization. The sendEvents call
cannot complete until the problem is resolved. The receiver cannot send the acknowledgment
until the sendEvents call completes. For example, the engine_receive tool is a receiver that ismade
up of an engine library and a client whose sendEvents callback writes events received to a disk
file. If the client has to wait for the disk, then it is blocked. The likelihood of a sendEvents callback
being blocked depends onwhat the client is doing. If the client is writing to a local disk, the process
might block sometimes, but never more than a fraction of a second. However, sending the events
over a slow or unreliable network might block for a while if the network, or the remote system
cannot keep up with the event rate.

During development of event consumers, however, slow receivers aremore likely. This can happen
when a newly developed consumer receives an event from the correlator but cannot send the
acknowledgment because of a deadlock. Another development problem might be that the event
consumer cannot keep up with the load. If you have problems with slow receivers during
development, you probably need to evaluate the design of your application.

Correlator behavior when there is a slow receiver

When the correlator has a slow receiver, it can behave in one of two ways:

The default behavior is that the correlator blocks further processing. This is because a slow
receiver causes the correlator's event output queue to become full. When the queue is full, the
correlator stops processing because it has no place to put events. The processing thread stops
and does not execute anymore EPL code. The transport thread does not send anymore events
to any of the correlator's other receivers. The correlator resumes processing when the slow
receiver disconnects or acknowledges the outstanding sequence number.

136 Deploying and Managing Apama Applications 10.11.0

11 Correlator Utilities Reference

The correlator disconnects the slow receiver, and continues processing events and sending
them to its other receivers. To obtain this behavior, you specify the -x (or --qdisconnect) option
when you start the correlator. The correlator sends a message to the receiver to indicate that
the correlator is disconnecting the receiver. It is up to the receiver to reconnect.

To ensure that it has received an acknowledgment for every event sent, the correlator buffers each
event that it sends until it receives the message's corresponding acknowledgment. When there is
a slow receiver, this can use a lot ofmemory if the correlator is sending a large number ofmessages.

Tradeoffs for disconnecting a slow receiver

When you specify the -x option when you start the correlator, it means that the correlator always
disconnects a slow receiver. There are two main disadvantages to this:

The correlator loses the events that it sent to that receiver.

It is possible for the correlator to disconnect a receiver that is temporarily overloaded, and to
therefore lose events unnecessarily.

Clearly, losing events can be a very serious problem. This is why the default is that the correlator
does not disconnect slow receivers.

The advantage of disconnecting a slow receiver is that the correlator continues processing events.

The correlator always sends a warning message to its main log when it detects a slow receiver.
This lets you see where there are potential problems.

If you cannot allow the correlator to lose events, do not specify the -x option when you start the
correlator.

Determining whether to disable the correlator's internal clock
When you start the correlator, you can specify the -Xclock option to disable the correlator's internal
clock. By default, the correlator uses internally generated clock ticks to assign a timestamp to each
incoming event. When you specify the -Xclock option, you must send time events (&TIME) to the
correlator. These time events set the correlator's clock.

Use &TIME events in place of the correlator's internal clockwhen youwant to reproduce the historic
behavior of an application. For example, Apama's Data Player in Software AG Designer starts a
correlator with a command that specifies the -Xclock option. The Data Player then sends &TIME
events that let you play back events from the database.

A situation inwhich youmightwant to generate &TIME events iswhen youwant to run experiments
at faster than real time but still obtain correct timestamp behavior. In this situation, the correlator
uses the externally generated time events instead of real time to invoke timers and wait events.

Disabling the correlator's internal clock, and sending external time events, affects all temporal
operations, such as timers and wait statements.

Regardless of whether the correlator generates internal clock ticks, or receives external time events,
the correlator assigns a timestamp to each incoming event. The timestamp indicates the time that
the event arrived on the context's input queue. The value of the timestamp is the same as the last

Deploying and Managing Apama Applications 10.11.0 137

11 Correlator Utilities Reference

internally-generated clock tick or externally-generated time event. For example, suppose you have
the following events and clock ticks:
&TIME(1)
A()
B()
&TIME(2)
C()

A and B receive a timestamp of 1. C receives a timestamp of 2.

See also "Understanding time in the correlator" in Developing Apama Applications.

Injection time of compiled runtime
Injection times for systems using the compiled runtime can be very long - significantly longer than
if using only the interpreted runtime. Subsequent injection times can be improved by using the
--runtime-cache dir option, which specifies a directory where the correlator can cache the
compilation state (see “Starting the correlator” on page 116). This stores the results of compiling
EPL code on disk to be used for subsequent injections of the same code.

The compiled EPL code is specific to the system on which it was compiled and the version of
Apama thatwas used to compile it. Thismeans thatwhile a cache can bemoved or shared between
machines to improve startup on a new machine, it must be identical to the original. Otherwise,
the cached version cannot be used and it must be recompiled

An injection is able to use a cached version of a previous injection if all of the following are the
same as in a previous injection:

The EPL source code.

The source code of all files that contain any type that an injection depends on.

The correlator version.

The host operating system.

The CPU model.

The results of injections can be affected by any of the above. Therefore, if any change occurs, the
correlator will re-compile the EPL.

The cache is designed to be used to speed up re-injection on production systems and not for quicker
development cycles, which should typically use the interpreter for faster injection times. If there
are identical user acceptance testing (UAT) and production environments, then the UAT
environment can prime a cache which can then be used by the production correlator to improve
initial startup times. However, the two systemsmust be identical. The strings used to disambiguate
systems are logged at correlator startup when using the compiled runtime and can be used to
compare the systems.

The cache contents are never removed by the correlator. If you change your source, correlator
versions or platform, then the cachemay grow and contain stale itemswhich are no longer needed.
If cache sizes become a problem, then we either recommend deleting the entire cache, or just the

138 Deploying and Managing Apama Applications 10.11.0

11 Correlator Utilities Reference

cache files with the oldest timestamps. The correlator will transparently recompile any needed
files which are missing from the cache.

Configuring the correlator

You can configure the correlator using YAML configuration files and properties files. See the topics
below for detailed information on these types of files, and on how to configure certain aspects of
the correlator.

YAML configuration files are also used to configure connectivity plug-ins. See "Configuration file
for connectivity plug-ins" in Connecting Apama Applications to External Components for further
information.

Using YAML configuration files
You can specify one or more YAML files using the --config option when you start the correlator.
See “Starting the correlator” on page 116.

For detailed information onYAML, see http://www.yaml.org/spec/1.2/spec.html. A quick overview
is given below.

YAML configuration files can contain maps, lists or simple values:

A map contains a string key, followed by a colon and space, followed by a value (which can
be a map, a list or a simple value). Typically, an entry with a simple value is written on one
line, and collections (maps and lists) are written on a following line with indentation.

A list contains a number of values, each of which is written on a new line with a preceding
dash and space ("- ").

A simple value includes a string or number. It is typically written on a single line. A string
may be enclosed in quotes if needed, but this is not mandatory.

Some characters in YAML have special significance at certain positions. For example, a value
ending with a colon (:) is treated as a key in a dictionary, so if you want a string value to end
with a literal colon (:), you should quote it.

Nesting is expressed using spaces to indent different levels of object. Tabs are forbidden in
YAML files, all indentation must be performed using spaces.

For example:
myTopLevelMap:
mykey: myvalue
mylist:

- item 1 # comment
- item 2
- "a quoted string value"

YAML is a superset of JSON. Thus, any valid JSON is also usable in the YAML configuration file.
This is helpful if there is ambiguity in the way YAML expresses configuration.

YAML documents should be saved with the standard UTF-8 character encoding.

Deploying and Managing Apama Applications 10.11.0 139

11 Correlator Utilities Reference

http://www.yaml.org/spec/1.2/spec.html

YAML configuration file for the correlator
The following sample shows the format of a YAML configuration file for the correlator.
correlator:
javaApplicationSupport: false
pythonSupport: true
randomSeed: number
initialization:

list: [...]
persistence:

enabled: false
snapshotIntervalMillis: number
adjustSnapshot: true
storeLocation: path
storeName: string
clear: false

runtime: interpreted
runtimeCacheDir: path
licenseFile: path
jmsConfigDir: path
distMemStoreConfigDir: path
inputLogFile: path
externalClock: false
timerFrequency: 10
truncateLogFile: false
disableOptimizations: false
includeDatabaseInInputLog: true
statusLogIntervalSecs: 5.0
inputQueueSize: 20000
logFile: path
shutdownTimeoutSecs: number

server:
pidFile: path
port: 15903
name: string
bindAddress: [...]
permittedRootURIs: [...]
allowClient: [...]
maxOutstandingSecs: 10.0
maxOutstandingKb: 10240
disconnectSlowConsumers: false

jvmOptions: [...]

eplLogging:
.root:

level: loglevel
file: path

string:
level: loglevel
file: path

correlatorLogging:
string:

level: loglevel

environment:

140 Deploying and Managing Apama Applications 10.11.0

11 Correlator Utilities Reference

string: string

engineConnect:
- sourceHost: string

sourcePort: integer
channels:

- string
mode: string
disconnectIfSlow: boolean

includes: [...]

For configuring EPL plug-ins:
eplPlugins: [...]

For configuring connectivity plug-ins:
connectivityPlugins: [...]
startChains: [...]
dynamicChainManagers: [...]
dynamicChains: [...]

For paths, we recommend using replacements like ${PARENT_DIR} or ${APAMA_WORK} to make the
configuration files portable. See also the list of predefined properties in “Using properties files” on
page 146.

[...] denotes that this can be a list.

You can use multi-line and single-line syntax for maps (for example, in the eplLogging case).

Many of the elements in the above sample configuration file correspond to command-line options
of the correlator executable and have the same syntax and options. See the tables below, and see
the descriptions of these command-line options in “Starting the correlator” on page 116 for detailed
information.

Note:
If an element in a YAML configuration file is defined more than once, the first definition that
is loaded by the correlator takes precedence over all definitions that are loaded later. An INFO
message is then logged for all later definitions that are being ignored. Any corresponding options
that are specified directly on the command line, however, take precedence over any other later
definitions.

The following table lists the elements that can be specified in the correlator section of the YAML
configuration file (see the separate table below for the correlator/persistence section).

Note:
When developing using SoftwareAGDesigner, add any elements you need to set to the config/
CorrelatorConfig.yaml file. See also the description of the Configuration option in "Correlator
arguments" in Using Apama with Software AG Designer.

corresponds to this command-line optionThis element

-j | --javajavaApplicationSupport

--pythonpythonSupport

Deploying and Managing Apama Applications 10.11.0 141

11 Correlator Utilities Reference

corresponds to this command-line optionThis element

-XsetRandomSeedrandomSeed

--runtimeruntime

--runtime-cacheruntimeCacheDir

-l | --licenselicenseFile

--jmsConfigjmsConfigDir

--distMemStoreConfigdistMemStoreConfigDir

--inputLoginputLogFile

-Xclock | --externalClockexternalClock

--frequencytimerFrequency

-t | --truncatetruncateLogFile

-g | --nooptimizedisableOptimizations

--noDatabaseInReplayLogincludeDatabaseInInputLog

--logQueueSizePeriodstatusLogIntervalSecs

--inputQueueSizeinputQueueSize

-f | --logfilelogFile

--shutdownTimeoutSecsshutdownTimeoutSecs

The following table lists the elements that can be specified in the correlator/persistence section
of the YAML configuration file:

corresponds to this command-line optionThis element

-P | -Penabled=trueenabled

-PsnapshotIntervalMillissnapshotIntervalMillis

-PadjustSnapshotadjustSnapshot

-PstoreLocationstoreLocation

-PstoreNamestoreName

-Pclearclear

The following table lists the elements that can be specified in the server section of the YAML
configuration file:

142 Deploying and Managing Apama Applications 10.11.0

11 Correlator Utilities Reference

corresponds to this command-line optionThis element

--pidfilepidFile

-p | --portport

-N | --namename

-m | --maxoutstandingackmaxOutstandingSecs

-M | --maxoutstandingkbmaxOutstandingKb

-x | -- qdisconnectdisconnectSlowConsumers

The following table lists the remaining sections that can be specified in the YAML configuration
file:

corresponds to this command-line optionThis element

-J | --javaoptjvmOptions

--applicationLogLeveleplLogging/.root/level

--applicationLogFileeplLogging/.root/file

-v | --loglevelcorrelatorLogging/level

Other elements are described in topics under “Configuring the correlator” on page 139, and this
also includes additional information for some of the elements that correspond to the command-line
options. These are:

In the correlator section:

initialization. See “Deploying Apama applications with a YAML configuration file” on
page 155.

persistence. See “Configuring persistence in a YAML configuration file” on page 153.

In the server section:

bindAddress and permittedRootURIs. See “Binding server components to particular
addresses” on page 147.

allowClient. See “Ensuring that client connections are from particular addresses” on
page 148.

jvmOptions. See “Specifying JVM options” on page 155.

eplLogging. See “Setting EPL log files and log levels in a YAML configuration file” on page 149.

correlatorLogging. See “Setting correlator and plug-in log files and log levels in a YAML
configuration file” on page 151.

environment. See “Setting environment variables for Apama components” on page 149.

Deploying and Managing Apama Applications 10.11.0 143

11 Correlator Utilities Reference

engineConnect. See “Setting up connections between correlators in a YAML configuration
file” on page 154.

includes. See “Including YAML configuration files inside another YAML configuration file” on
page 144.

The eplPlugins element is used for configuring EPL plug-ins. There is no equivalent command-line
option. See "Writing EPL Plug-ins in Python" in Developing Apama Applications for detailed
information.

The following elements are used for configuring connectivity plug-ins. There are no equivalent
command-line options. See "Using Connectivity Plug-ins" in Connecting Apama Applications to
External Components for detailed information.

connectivityPlugins

startChains

dynamicChainManagers

dynamicChains

Including YAML configuration files inside another YAML
configuration file
Instead of specifying a list of configuration files on the command line with the --config option,
you can also specify these files in the includes section of another configuration file. For example:
includes:

- myCodec.yaml
- myTransport.yaml

When the configuration file that is specified with the --config option is processed, the list in the
includes section is expanded recursively, and the information inside the included configuration
files is merged into the main configuration. The same rules are used as for the --config option;
for details, see the description of that option in “Starting the correlator” on page 116.

You do not need to worry about multiple file inclusions (such as cyclical or diamond references),
but you must still be careful not to have duplicate keys in top-level maps.

Using an includes section can be useful for specifying a connectivity chain in a modular way. For
example, you may have a main configuration file with the following contents:
startChains:
myChain:

- apama.eventMap
- MyCodec
- MyTransport

includes:
- myCodec.yaml
- myTransport.yaml

where the included files have the following contents:

144 Deploying and Managing Apama Applications 10.11.0

11 Correlator Utilities Reference

myCodec.yaml:
connectivityPlugins:
MyCodec:

classpath: ${myJarVersion}
class: com.example.my.Codec

includes:
- propDir

You can include further files in an included file. Instead of a file name, you can also specify
the name of a directory in the includes section. All files that can be found in this directory are
then included.

The includes section in the above example assumes that there is a directory named propDir
which contains a jarVersions.properties file with the following content:
myJarVersion=myJar316.jar

myTransport.yaml:
connectivityPlugins:
MyTransport:

classpath: myOther.jar
class: com.example.my.Transport

Properties defined in included files are only valid for later files. For example, the deploymentwith
the following files will work:

1.yaml:
includes:

- my.properties
- 2.yaml

my.properties:
3=3.yaml

2.yaml:
includes:

- ${3}

The deployment with the following file, however, will not work:

1.yaml:
includes:

- my.properties
- 2.yaml
- ${3}

In this case, you should specify the my.properties file as an argumentwith the --config option,
in addition to the 1.yaml file.

See “Using properties files” on page 146 for more information.

Deploying and Managing Apama Applications 10.11.0 145

11 Correlator Utilities Reference

Using properties files
Properties files (with the file extension .properties) can be used to either specify values for
substitution variables in YAML files (see also “Using YAML configuration files” on page 139) or
to configure EPL. A properties file must be either in ISO-8859-1 encoding or in UTF-8 encoding if
it begins with an UTF-8 byte order mark (BOM).

You can specify one ormore properties files using the --config optionwhen you start the correlator.
See “Starting the correlator” on page 116. The properties files are processed in the order in which
they appear on the command line. Each properties file can refer to properties that have already
been defined by a previously processed properties file, using ${varname} syntax.

Note:
If the same property is definedmore than once, the first definition that is loaded by the correlator
takes precedence over all definitions that are loaded later. Messages are then logged for all later
definitions that are being ignored.

The properties file format is the same as the standard Java .properties file format, with # for
comments and \\ used to escape any occurrences of \. For example:
my comment line
myplugin.mykey=c:\\my directory

Properties files are by default parsed using the ISO-8859-1 encoding (Latin-1). To use characters
from other character sets, you have two options. You can use a \uXXXX escape sequence, which
uses theUCS-2 character codes. This allows you to encode any character from the BasicMultilingual
Plane (BMP). However, we do not support UTF-16 surrogate pairs to access characters outside
the BMP. Alternatively, you can provide a UTF-8 BOM as the first characters of the file. In this
case, you can use any Unicode sequence in UTF-8 directly in the file without any escaping.

You can use the following predefined properties:

DescriptionProperty

The absolute normalized path of the directory containing the
properties file or YAML file currently being processed.

${PARENT_DIR}

The path to the Apama installation.${APAMA_HOME}

The path to the Apama work directory.${APAMA_WORK}

The literal $ sign.${$}

All properties are applied to all YAML files, although conventionally, there is often a .properties
file named the same as each .yaml file. Properties files, however, are not actually tied in to YAML
files in any way. It is therefore recommended that you prefix each property key with a unique
string, such as the identifier of the chain to which it applies.

Note:
Instead of using a properties file or in addition to using a properties file, you can also use the
-D option of the correlator executable. See “Starting the correlator” on page 116.

146 Deploying and Managing Apama Applications 10.11.0

11 Correlator Utilities Reference

Properties defined either through properties files or on the command line are available to EPL
via the Management interface. For more details, see "Using the Management interface" in
Developing Apama Applications and the API Reference for EPL (ApamaDoc).

Correlator-integrated messaging for JMS and the distributed MemoryStore have their own
properties files, which are Spring files. Keep in mind that any properties that are specified with
the --config file or -Dkey=value option of the correlator executable take precedence and
override the properties defined in a Spring properties file. See also "Configuration files in JMS"
in Connecting Apama Applications to External Components and "Configuration files for distributed
stores" in Developing Apama Applications.

Runtime parameterization of configuration
Some components allow parameterization of configuration at runtime, for example, connectivity
plug-in chains created from amanager or from EPL. Variables which must be replaced at runtime
are denoted with @{varname} instead of ${varname}. Strings using this syntax may need to be
escaped with double quotes in the YAML configuration file. Instead of being supplied via the
command line or via properties files, these substitutions are providedwithin the subsystem using
that part of the configuration. See also "Creating dynamic chains from EPL" in Connecting Apama
Applications to External Components.

Specifying the correlator port number
You can specify the port on which the correlator should listen for monitoring and management
requests. To do so, you specify a port definition in the server section of the YAML configuration
file. For example:
server:
port: 15903

This is identical to specifying the --port option when starting the correlator. See also “Starting
the correlator” on page 116.

If the port is specified with the --port option when starting the correlator, this value is used. Else,
if it is specified in the YAML configuration file, that value is used. If a port is not specified at all,
the default value 15903 is used.

Binding server components to particular addresses
To bindApama server components to a particular address or set of addresses, specify a bindAddress
definition for each address. Specify this in the server section of the YAML configuration file. For
example:
server:
bindAddress:

- 127.0.0.1:15903
- 10.0.0.1

You can specify as many bindAddress definitions as you want. Clients can connect to any of the
listed addresses.

Deploying and Managing Apama Applications 10.11.0 147

11 Correlator Utilities Reference

An IP address is required. If you do not specify a port, the Apama server components use the port
that is specifiedwhen the correlator is started. Thismakes it possible to share YAML configuration
files if you want to restrict connections according to only addresses.

If you do not specify a YAML configuration file when you start the correlator, or there are no
bindAddress definitions in the YAML configuration file, the Apama components bind to the
wildcard address (0.0.0.0).

Using the correlator web interface with non-default addresses

The correlator web interface sometimes uses the client's host header for redirects. For security,
this is checked against a list of accepted host:port aliases for this component. By default, all of
the addresses of the machine on the default or overridden correlator port are part of this list.

If the correlator has a custom bind address configuration, or is being hidden behind another
component which is redirecting the web interface, the default list of permitted addresses may
need to be overridden. This can be done with the permittedRootURIs configuration entry:
server:
permittedRootURIs:

- ${EXTERNAL_HOSTNAME}:${EXTERNAL_PORT}

This can either be a single string or a list of multiple permitted URIs. This list replaces the
automatically calculated defaults, it does not append.

Ensuring that client connections are from particular addresses
To ensure that client connections are from particular addresses, add one or more allowClient
definitions to the YAML configuration file in the server section. For example:
server:
allowClient:

- 127.0.0.1
- 192.168.128.0/17

An allowClient definition takes an IP address, as in the first example above, or a CIDR (Classless
Inter-DomainRouting) address range, as in the second example above.With these example entries
in the YAML configuration file, theApama components allow connections from either the localhost
(127.0.0.1) or IP addresses where the first 17 bits match the first 17 bits of 192.168.128.0. The
Apama components do not accept connections from any other IP addresses.

If you specify a YAML configuration file when you start the correlator, and if there are any
allowClient definitions in the YAML configuration file, then the Apama components do not allow
connections from any IP address that does not fall within one of the allowClient ranges specified.
If you do not specify a YAML configuration file when you start the correlator, or there are no
allowClient definitions in a YAML configuration file that you do specify, the Apama components
accept connections from any client.

Important:
This feature is intended to preventmistakenly connecting to thewrong server. It is not intended
to prevent malicious intruders since it provides no protection against address spoofing.

148 Deploying and Managing Apama Applications 10.11.0

11 Correlator Utilities Reference

Setting environment variables for Apama components
You can use the YAML configuration file to set environment variables. Put environment variable
declarations in the environment section. For example:
environment:
MY_ENV_VAR: myvalue

If you specify a YAML configuration file when you start the correlator, and if there are any
environment variable entries in the YAML configuration file, then the Apama components use
those environment variable settings. If you do not specify a YAML configuration file when you
start the correlator, or there are no environment variable entries in a YAML configuration file that
you do specify, theApama components use the environment variable settings specified elsewhere.

Note:
You cannot use this feature to set variables such as LD_PRELOAD and LD_LIBRARY_PATH because
UNIX dictates that they are set before the affected process starts execution. These environment
variables should therefore be considered read-only.

Setting EPL log files and log levels in a YAML configuration
file
This topic describes how to configure logging for individual EPL packages. For information about
configuring the log level of the whole correlator and plug-ins running inside it, see “Setting
correlator and plug-in log files and log levels in a YAML configuration file” on page 151.

You can configure per-package logging in several ways:

Statically, in the YAML configuration file when starting the correlator, as described in this
topic.

Dynamically, using the following options of the engine_management tool:

--setApplicationLogFile

--setApplicationLogLevel

See “Setting EPL log files and log levels dynamically” on page 219 for detailed information.

Dynamically from within EPL. See "Using the Management interface" in Developing Apama
Applications for detailed information.

To set log files and/or log levels for EPL root, packages, monitors, or events, specify entries in the
eplLogging section of the YAML configuration file.

To set the default log file and level for the EPL root package, specify this in the following format:
eplLogging:
.root:

file: rootLogFilename
level: ROOTLOGLEVEL

Deploying and Managing Apama Applications 10.11.0 149

11 Correlator Utilities Reference

Replace rootLogFilenamewith the name of the log file for the EPL root package. No spaces are
allowed in the log file name. Replace ROOTLOGLEVELwith TRACE, DEBUG, INFO, WARN, ERROR, FATAL,
CRIT or OFF. For example:
eplLogging:
.root:

file: apama/root.log
level: ERROR

You do not need to specify both a log file and a log level; you can specify one or the other. If you
do not specify a log file or log level for the root package, it defaults to the correlator's log file/log
level.

To set the default log file and level for an EPL package, monitor or event, specify this in the
following format:
eplLogging:
node:

file: nodeLogFilename
level: NODELOGLEVEL

Replace nodewith the name of the EPL package, monitor, or event for which you are setting the
logging attribute. If a monitor or event is in a named package and not the root package, be sure
to specify the fully qualified name. Replace nodeLogFilenamewith the name of the default log file
for the specified EPL package,monitor or event. No spaces are allowed in the log file name. Replace
NODELOGLEVELwith TRACE, DEBUG, INFO, WARN, ERROR, FATAL, CRIT or OFF. This is the default log level
for the specified node. For example:
eplLogging:
com.myCompany.Client:

file: apama/Client.log
level: DEBUG

com.myCompany.Internal: { level: ERROR }

The above example shows both multi-line and single-line syntax. The single-line syntax is more
compact when you are just setting either the log level or the file, but not both.

For a particular node, you do not need to specify both a log file and a log level; you can specify
one or the other. If you do not specify a log file or log level for a particular node, it defaults to the
settings for a parent node. See “Tree structure of packages, monitors, and events” on page 220.

When you set log attributes in the YAML configuration file, the rules for hierarchical logging
apply. See “Setting EPL log files and log levels dynamically” on page 219.

If you pass a YAML configuration file to a correlator when you start that correlator and the
configuration file contains an eplLogging section, the correlator uses the logging settings in that
section. If you do not pass a configuration file when you start a correlator, or there are no settings
in the eplLogging section, then correlator initialization does not include any log settings except
for the default correlator log.

Whether or not you specify a YAML configuration file when you start a correlator, any log settings
you specify can be overwritten after initialization by invoking the engine_management tool and
specifying the --setApplicationLogFile and/or --setApplicationLogLevel options. See “Managing
EPL log levels” on page 220 and “Managing EPL log files” on page 222.

150 Deploying and Managing Apama Applications 10.11.0

11 Correlator Utilities Reference

Note:
Regularly rotating log files and storing the old ones in a secure location may be important as
part of your personal data protection policy. For more information, see "Recommendations for
logging by Apama application code" in Developing Apama Applications.

Setting correlator and plug-in log files and log levels in a YAML
configuration file
In a YAML configuration file, you can configure the log file and/or log level individually for
plug-ins, as well as for components of the correlator itself. You can do this either for the whole
correlator or for individual categories. This includes setting the log level for individual connectivity
plug-ins and EPL plug-ins.

Note:
You can also set the log levels individually on the command line (see “Starting the correlator” on
page 116). If a log level is specified on the command line, it overrides any setting in the YAML
configuration file.

To set the log levels in the YAML configuration file, specify entries in the correlatorLogging
section. The syntax for this section is:
correlatorLogging:

.root:
level: ROOTLOGLEVEL
file: ROOTLOGFILE

category: CATEGORYLOGLEVEL

You can specify either the log level directly, or as amapwith the key level. These are synonymous.
To set the log file, you must use the map syntax.

.root is used to specify the default log file/level for the whole correlator. We do not recommend
specifying a log level higher than INFO for the default log level, since important information may
be lost from the log files.

Valid log levels are TRACE, DEBUG, INFO, WARN, ERROR, FATAL, CRIT or OFF.

You can use replacement tokens in a log file. See “Specifying log filenames” on page 128 for more
information.

The categories for which the logging can be configured are listed in the table below. Note that log
categories are regarded as a hierarchy. For example, setting the log level for apamawill be inherited
by apama.status.

Example - the default log level for the whole correlator is set to INFO, and the log level for the
connectivity plug-ins framework is set to DEBUG:
correlatorLogging:

.root:
level: INFO

apama.connectivity: DEBUG

Deploying and Managing Apama Applications 10.11.0 151

11 Correlator Utilities Reference

controls the followingThis category

Correlator application event logging. Provides detailed
output of the inner workings of the correlator, such as

apama.applicationEvents

context-state changes, event triggering, spawning,
routing, etc. To enable application event logging, you
have to set the log level of this category to DEBUG. See also
“Viewing garbage collection and application events
information” on page 207.

Connectivity plug-ins - framework.apama.connectivity

Correlator EPL debugger.apama.debughandler

Correlator-integrated messaging for JMS.apama.jms

Internal messaging-related messages.apama.messaging

Socket-level communications.apama.socket

Correlator status lines.apama.status

Stream queries within EPL.apama.streams

Correlator garbage collection messages for all monitors.
To enable garbage collection logging, you have to set the

apama.verboseGC

log level of this category to DEBUG. See also “Viewing
garbage collection and application events
information” on page 207.

Correlator garbage collection messages for the specified
monitor. To enable garbage collection logging, you have

apama.verboseGC.MonitorName

to set the log level of this category to DEBUG. See also
“Viewing garbage collection and application events
information” on page 207.

Correlator-integrated messaging for JMS.com.apama.correlator.jms

Correlator-integratedmessaging for JMS -mapping rules.com.apama.adapters

JMon framework.com.apama.jmon

Connectivity plug-ins - Java framework.com.softwareag.connectivity

Connectivity plug-ins -messages from a specific plug-in.
Applies to connectivity plug-inswritten in both C++ and
Java.

connectivity.PluginName.
ChainName

Connectivity plug-ins - messages from managers.connectivity.TransportName.
ManagerName

Connectivity plug-ins -messages from the specified host
plug-in. The valid host plug-in names (such as eventMap)

connectivity.apama.
hostPluginName.ChainName

152 Deploying and Managing Apama Applications 10.11.0

11 Correlator Utilities Reference

controls the followingThis category

are listed in "Host plug-ins and configuration" in
Connecting Apama Applications to External Components.

Connectivity plug-ins - chain-related messages.connectivity.chain.ChainName

EPL plug-ins - in C++, Java or Python.plugins.PluginName

Note that handling of Java logging is slightly different
to EPL and Python. By convention, we recommend Java
EPL plug-ins should specify plugins.PluginNamewhen
creating the Logger object, for example,
com.apama.util.Logger.getLogger("plugins.MyPlugin").
However, this is only a convention, and if some other
string or a Java class is specified instead, then that will
be used as the correlator's log category.

Keep in mind that the logging for the EPL plug-ins is
about logging from Java, Python and C++ plug-ins that
can be called fromEPL. For information on logging from
EPL itself, see “Setting EPL log files and log levels in a
YAML configuration file” on page 149.

Note:
It is not possible to dynamically change the correlator and plug-in log levels. Only EPL log
levels can be dynamically changed (see also “Setting EPL log files and log levels dynamically” on
page 219).

Configuring persistence in a YAML configuration file
You can enable and configure correlator persistence in the following ways:

Using a YAML configuration file as described here.

On the command line, using the persistence options of the correlator executable. See “Starting
the correlator” on page 116 for more information on these options.

On the command line, the persistence options are given as -Poption=value.

In a configuration file, they are given as follows:
correlator:
persistence:

option: value

All of persistence options for the command line can also be specified in a configuration file. Special
notations are required for the following options:

-Pwithout further options or -Penabled=true enables persistence. In a configuration file, this
is specified as follows:

Deploying and Managing Apama Applications 10.11.0 153

11 Correlator Utilities Reference

correlator:
persistence:

enabled: true

-Pclear does not have a value; it is implicitly set to true. In a configuration file, this is specified
as follows:
correlator:
persistence:

clear: true

The following is a list of all the options that you can specify in a configuration file:

enabled: boolean

snapshotIntervalMillis: interval

adjustSnapshot: boolean

storeLocation: path

storeName: filename

clear: boolean

The following sample shows the format of a YAML configuration file that is used to specify the
persistence options:
correlator:
persistence:

enabled: true
snapshotIntervalMillis: 12000
storeLocation: ${PARENT_DIR}/store
storeName: mystore.db
clear: false

For detailed information on correlator persistence, see "Using Correlator Persistence" inDeveloping
Apama Applications and especially its subtopic "Enabling correlator persistence" which provides
more information on the different persistence options.

Setting up connections between correlators in a YAML
configuration file
Rather than separately invoking the engine_connect tool, you can also define connections between
correlators during correlator startup. These connections are defined as a list of entries in the
engineConnect section of the YAML configuration file. For example:
engineConnect:
- sourceHost: localhost

sourcePort: ${FIRST_PORT}
channels:

- myChannel
mode: parallel
disconnectIfSlow: false

- sourceHost: localhost
sourcePort: ${SECOND_PORT}

154 Deploying and Managing Apama Applications 10.11.0

11 Correlator Utilities Reference

channels:
- myChannel

mode: parallel
disconnectIfSlow: true

The above elements correspond to command-line options of the engine_connect tool and have the
same syntax and options. See the descriptions of these command-line options in “Configuring
pipelining with engine_connect” on page 98 for detailed information, but keep in mind that only
the options shown in the above example are supported.

Note:
On startup, the configuration specified in the engineConnect section always uses the current
correlator as the target correlator. Unlike the engine_connect tool, you cannot explicitly specify
an arbitrary target correlator with engineConnect.

On startup, engineConnect is not available to correlators running in persistent mode.

Unlike the engine_connect tool, when the mode is not specified for an entry in the engineConnect
YAML, the default mode is parallel, meaning that there is one connection for each specified
channel.

Specifying JVM options
In a YAML configuration file, you can specify JVM options which the correlator is to pass to the
embedded JVM. To do so, you provide a list of JVM options with the jvmOptions key. If an option
has a leading hyphen, you have to enclose the option in quotes. But you can also specify the option
without quotes by leaving out the leading hyphen; in this case, the correlator will automatically
add the hyphen. Thus, you can specify the JVM options as shown in the following example:
jvmOptions:
- "-Dkey1=value1"
- Dkey2=value2
- "-Xms100m"
- Xmx500m

You can specify JVM options in multiple configuration files. The options from all the files are then
appended together in the order in which they have been specified. If the same JVM option is
specified in the command line aswell as in a configuration file, the command line takes precedence.
For more details, see the description of the -J option in “Starting the correlator” on page 116.

Deploying Apama applications with a YAML configuration file
Instead of having another process inject code and send events into a correlator at startup, it is also
possible to use a YAML configuration file to list files to be loaded by the correlator at startup. This
is useful for Docker containers or other minimal environments where only part of an Apama
installation is available or it is not practical to run Java tools to perform the injections. It is also a
better fit for Docker use cases as the correlator does not require any other coordination process
for startup. For typical installations not using such environments, use of Antmacros or Command
Central is recommended instead, which perform the injections after starting the correlator.

Deploying and Managing Apama Applications 10.11.0 155

11 Correlator Utilities Reference

TheYAMLconfiguration file for the correlator is specified using the --config optionwhen starting
the correlator (see also “Starting the correlator” on page 116). The YAML file itself contains the
following:
correlator:

initialization:
list:

- ${PARENT_DIR}/bin/myPlugin.jar
- ${PARENT_DIR}/eventdefinitions/evtdef.mon
- ${APAMA_HOME}/monitors/ConnectivityPlugins.mon
- ${PARENT_DIR}/monitors/app.mon
- ${PARENT_DIR}/events/start.evt

encoding: UTF8

It is recommended to use a substitution variable such as ${APAMA_HOME} or ${PARENT_DIR} rather
than absolute or relative paths. Thismakes the configuration independent of the correlator's current
working directory.

The list entries must have one of the following extensions:

.mon for EPL monitor, aggregate and event definition source.

.jar for JMon or EPL plug-ins written in Java.

.cdp for correlator deployment packages.

.evt for event files.

Apama queries (.qry) are not supported in source form. Digital events have to be generated into
EPL, and the generated EPL needs to be listed in the YAML configuration.

Note:
If you use the engine_deploy tool, EPL code is automatically generated from query files. For
further information, see “Deploying a correlator” on page 163.

The encoding entry is optional. If UTF8 is specified, all of the text input files (.mon, .evt) are read
asUTF-8. If local is specified or if the encoding entry is not specified at all, the text files are assumed
to be in the local encoding unless they start with a UTF-8 byte order mark (BOM) in which case
they are treated as UTF-8.

This mechanism separates the build-time (calculating injection order, generating EPL) steps from
the deployment-time steps, so no build steps are required in the environmentwhere the correlator
is running. This doesmean that any changes to the project potentially require rewriting the YAML
list and then redeploying, however, it allows separation of these concerns.

Note:
The correlator port is opened before the injections have completed. This allowsmonitoring tools
to connect while the injections occur, but this also means that the correlator may not be entirely
readywhen a client connects. You can use the flushAllQueues request (see “Shutting down and
managing components” on page 197) to wait for the injections to complete.

156 Deploying and Managing Apama Applications 10.11.0

11 Correlator Utilities Reference

Injecting code into a correlator

To inject EPL files, EPL plug-ins in Java, JMon applications, or correlator deployment packages
(CDPs) into the correlator, invoke the engine_inject tool. The executable for this tool is located
in the bin directory of the Apama installation. Running the tool in the Apama Command Prompt
or using the apama_envwrapper (see “Setting up the environment using the Apama Command
Prompt” on page 15) ensures that the environment variables are set correctly.

Synopsis

To inject applications into the correlator, run the following command:
engine_inject [options] [file1 [file2 ...]]

When you run this command with the –h option, the usage message for this command is shown.

Description

The engine_inject tool reads application definitions from the specified file(s) and injects them
into a correlator. If you do not specify a filename, or if you specify a hyphen (-) as the filename,
the correlator reads data from the standard input device (stdin) until you indicate the end of the
file: Ctrl+D on UNIX and Ctrl+Z on Windows.

Application definitions can be monitors scripted in Apama's Event Processing Language (EPL).
Formore information onEPL, see "Introduction toApamaEvent ProcessingLanguage" inDeveloping
Apama Applications. Alternatively, you can specify the –j or -c options. The -j option specifies that
youwill inject an applicationwritten in Java. The -c option specifies that youwill inject a correlator
deployment package file.

When you specify the -j option, each file you inject must be a Java archive file (JAR) that contains
a single JMon application. Formore information, see "Overviewof JMonApplications" inDeveloping
Apama Applications.

When you specify the -c option, the file you inject must be an Apama correlator deployment
package (CDP). Formore information on preparing aCDP, see “Packaging correlator input files” on
page 171.

By default, the engine_inject tool is silent unless an error occurs. To view information about
engine_inject execution, specify the --verbose option.

If you try to inject invalid EPL files or invalid JMon applications, the correlator generates an error.
None of the application data in the invalid file is loaded. The engine_inject tool terminates. If
you specify multiple EPL or Java files for injection the engine_inject tool injects all of them or
terminates when it reaches the first file that contains an error. For example:
engine_inject 1.mon 2.mon 3.mon

If the file 2.mon contains an error, then engine_inject successfully injects 1.mon and then terminates
when it finds the error in 2.mon. The tool does not operate on 3.mon.

Deploying and Managing Apama Applications 10.11.0 157

11 Correlator Utilities Reference

If you try to inject a CDP, the correlator processes each EPL file packaged in the CDP separately.
If one file in a CDP contains an error, then the correlator reports an error for that file and does not
run it but it does run the other files in the CDP (if they have no errors). It does not matter which
file in the CDP contains the error. That is, the first file in the CDP that the correlator processes can
contain an error and the correlator still runs the other files in the CDP if they contain no errors.

Note:
If a license file cannot be found, the correlator does not allow the injection of user-generated
CDPs. See "Running Apama without a license file" in Introduction to Apama.

Options

The engine_inject tool takes the following options:

DescriptionOption

Displays usage information.-h | --help

Name of the host onwhich the correlator is running. The
default is localhost. Non-ASCII characters are not
allowed in host names.

-n host | --hostname host

Port on which the correlator is listening. The default is
15903.

-p port | --port port

Requests verbose output during engine_inject execution.-v | --verbose

Indicates that input files are in UTF-8 encoding. The
default is that the engine_inject tool assumes that the

-u | --utf8

EPL files to be injected are in the native character set of
your platform. Set this option to override this assumption.
The engine_inject tool then assumes that all input files
are in UTF-8.

Displays version information for the engine_inject tool.-V | --version

Indicates that each operand is a Java archive file (JAR
file) that contains a single JMon application or an EPL
plug-in in Java.

-j | --java

Indicates that each operand is a correlator deployment
package (CDP) file.

-c | --cdp

Indicates that instead of injecting the specified files you
want to print the hashes (UTF8-encoded) for the files. If

-s | --hashes

engine_inject is operating on Java or correlator
deployment package (CDP) files, then you must also
specify -j or -c.

158 Deploying and Managing Apama Applications 10.11.0

11 Correlator Utilities Reference

Operands

The engine_inject tool takes the following operands:

DescriptionOperand

The names of zero or more files that contain application
data in Apama EPL, JMon, or correlator deployment

[file1 [file2 ...]]

package (CDP) files. If you do not specify one or more
filenames, the engine_inject tool takes input from stdin.

Exit status

The engine_inject tool returns the following exit values:

DescriptionValue

All definitions were injected into the correlator successfully.0

No connection to the correlator was possible or the connection failed.1

Other error(s) occurred while injecting the supplied definitions.2

Text encoding

By default, the engine_inject tool uses the default system encoding to determine the local character
set. The engine_inject tool then translates all submitted EPL text from the local character set to
UTF-8. Consequently, it is important to correctly set the machine's locale.

However, some input files might start with a UTF-8 Byte Order Mark. The engine_inject tool
treats such input files as UTF-8 and does not do any translation. Alternatively, you can specify
the -u option when you run the engine_inject tool. This forces the tool to treat each input file as
UTF-8.

Creating and managing an Apama project from the command
line

The apama_project tool can be used to create and manage an Apama project outside of Software
AG Designer. It lets you perform the following actions:

create an Apama project,

list all supported bundles that can be added to a project,

list all bundles/instances that have already been added to a project,

add connectivity, adapter and EPL bundles and their instances to a project,

remove bundles/instances from a project.

Deploying and Managing Apama Applications 10.11.0 159

11 Correlator Utilities Reference

Each Apama project generated by this tool is compatible with Software AG Designer and can
seamlessly be imported into Software AG Designer as an Apama project. For more information,
see "Working with Projects" in Using Apama with Software AG Designer.

The executable for this tool is located in the bin directory of the Apama installation. It is
recommended that you run this tool in the Apama Command Prompt or using the apama_env
wrapper (see “Setting up the environment using the Apama Command Prompt” on page 15);
otherwise you have to provide the full path the apama_project executable each time you run it.

Synopsis

To use this tool, run the following command:
apama_project command [options]

When you run this command with the help (or --help, -help or –h) option, the usage message for
this command is shown. For example:

To display help for all commands:
apama_project help

To display help for a specific command:
apama_project command help

Description

You can only specify one command at a time.

Apart from the command for creating a project, all other commands require you to run the tool
from the project directory.

The apama_project tool takes the following commands and options:

DescriptionOptionCommand

Creates a newproject directorywith the specified
name in the current directory. If the project name

projectnamecreate

is to consist of more than one word, you have to
enclose it in quotes.

The new project directory has the same structure
and content as an Apama project that you create
with Software AG Designer. If desired, you can
import it into Software AG Designer.

Note:
We recommend committing your project into
a version control system, so that changes are
recorded and you can compare or revert
changes across versions if needed.

160 Deploying and Managing Apama Applications 10.11.0

11 Correlator Utilities Reference

DescriptionOptionCommand

Lists all connectivity, adapter and EPL bundles
that are available for adding to the project. Also

not applicablelist bundles

lists the bundles with instance information that
are already present in the project.

Some bundles support adding several instances
to the same project if desired. For example, you
can add separateHTTPClient connectivity bundle
instances to talk to different servers. Other
bundles support adding only one instance. Such
“singleton” bundles, once added to the project,
will no longer show up in the list of bundles that
can be added.

Index numbers are shown for the bundles which
can still be added. They can be used as shortcuts
instead of typing the full name. Note that the
index numbers are subject to change; they differ
each time a bundle has been added. So if youwant
to use the number shortcut, list the bundles once
more in order to find the correct number.

Adds the specified bundle to the project (which
was either created using the apama_project tool
or Software AG Designer).

bundlename [--instance
instancename]

add bundle

The bundlename can be a display name that was
displayed by the list bundles command or the
absolute path of a .bnd file. If the name consists
of more than one word, you have to enclose it in
quotes.

Instead of specifying a bundle name, you can also
specify the corresponding index number that has
been output with the list bundles command.

For bundles supportingmultiple bundle instances,
you can optionally specify a user-defined instance
name using --instance instancename. This is
useful for indicating the logical name or purpose
of the service or server being connected to. For
some bundles, the provided instance name may
be used in EPL code. Once added, the instance
cannot be renamed, though it is possible to delete
and re-add it with a different name. If a
user-defined instance is not specified, the default
instance name is used.

Deploying and Managing Apama Applications 10.11.0 161

11 Correlator Utilities Reference

DescriptionOptionCommand

Duplicate instance names are not allowed for the
project, even if the instances are of different
bundles.

You can only add bundles from the standard EPL
and connectivity catalogs. Adding bundles from
theCapitalMarkets Foundation, CapitalMarkets
Adapters, or user-defined bundle catalogs is not
supported.

Adds multiple bundles to the project (which was
either created using the apama_project tool or
Software AG Designer).

bundlename bundlename
...

The bundlename can be a display name that was
displayed by the list bundles command or the
absolute path of a .bnd file. If the name consists
of more than one word, you have to enclose it in
quotes.

Note:
When adding multiple bundles, it is not
permitted to specify index numbers or the
--instance argument.

You can only add bundles from the standard EPL
and connectivity catalogs. Adding bundles from
theCapitalMarkets Foundation, CapitalMarkets
Adapters, or user-defined bundle catalogs is not
supported.

Removes the specified bundle from the project.
Either specify an instancename to remove a

bundlename |
instancename

remove bundle

specific instance or specify a bundlename to remove
all instances associatedwith the specified bundle
display name.

CAUTION:
All associated files will be deleted from disk.
So check carefully and take a backup of your
project if you are in doubt whether you really
want to delete it.

Examples

The following examples show the different ways in which the apama_project tool can be started.

Note:

162 Deploying and Managing Apama Applications 10.11.0

11 Correlator Utilities Reference

Keep in mind that you have to change to the project directory if you want to run the commands
for listing, adding or removing bundles.

Create an Apama project that is named “MyApamaProject” in the current directory:
apama_project create MyApamaProject

List all connectivity and EPL bundles in APAMA_HOME that can be added to the current Apama
project:
apama_project list bundles

Add a bundle to the current Apama project, with a user-defined instance name:
apama_project add bundle "HTTP Client" --instance "MyHTTP"

Add a bundle to the current Apama project using the index number:
apama_project add bundle 34

Remove a bundle from the current Apama project, including all of its instances:
apama_project remove bundle "HTTP Client"

Deploying a correlator

The engine_deploy tool lets you perform the following actions with an Apama project that has
been created with Software AG Designer or with the apama_project tool:

generate an initialization file list,

generate a correlator deployment directory,

create a Zip file with the contents of the correlator deployment directory,

generate a correlator deployment package (CDP),

perform the initialization in a running correlator.

This tool can also be usedwith a directory ofApamafiles if you are not using SoftwareAGDesigner.

The executable for this tool is located in the bin directory of the Apama installation. Running the
tool in the Apama Command Prompt or using the apama_envwrapper (see “Setting up the
environment using the Apama Command Prompt” on page 15) ensures that the environment
variables are set correctly.

You can also use Ant to generate a correlator deployment directory or a correlator deployment
package. The apama-macros.xml file includes the generate-correlator-deploy-dir and
project-to-cdpmacros for this purpose. See also “About deploying Apama applications with an
Ant script” on page 14.

Note:
If a license file cannot be found, the correlator cannot read user-generated CDPs. See "Running
Apama without a license file" in Introduction to Apama.

Deploying and Managing Apama Applications 10.11.0 163

11 Correlator Utilities Reference

Synopsis

To use this tool, run the following command:
engine_deploy action [options] path1 [path2 ...]

When you run this command with the –h option, the usage message for this command is shown.

Description

The action that you have to specify when you run this tool can be one of the following:

DescriptionAction

Specifies where the initialization file list is to be created.
This can be written either to a file or standard output.

--outputList file | stdout

Specifies the deployment directory into which the project
artifacts are to be copied and in which the YAML

-d dir | zipfile

or configuration files and properties files are to be created.
--outputDeployDir dir | zipfile Instead of a directory, you can also specify the name of a

Zip file that is to be created (for example, OutputDir.zip)
and which contains the same contents as the deployment
directory. If you specify the name of an existing Zip file, this
Zip file will be overwritten.

Specifies the file name of the correlator deployment package
(CDP) that is to be generated. The CDP is created using the

--outputCDP file

correct injection order, and it contains any EPL files, JMon
JAR files, event files and nested CDPs.

Note:
You can also create CDPs using Software AG Designer.
See "Exporting correlator deployment packages" inUsing
Apama with Software AG Designer.

Specifies that each EPLfile is to be injected into the correlator
that is running on the specified host and port.

--inject host port

Note:
It is not advisable to inject CDPfiles containing event files
with large numbers of events into a persistent correlator.
In this case, it is recommended that you create a CDP
which only contains event files. A CDP which only
contains event files is not persisted.

Note:
Only one action can be specified at a time.

164 Deploying and Managing Apama Applications 10.11.0

11 Correlator Utilities Reference

Deployment directory

When you use this tool to generate a deployment directory, it copies all required files from the
project into a deployment directory. It also generates all required YAML configuration files and
properties files using the information that is currently defined in the project's launch configuration
(see "Launching Projects" inUsing Apama with Software AG Designer for more information on how
to set up a launch configuration).

The deployment directory includes all of the project artifacts, except for log files, along with
following generated files:

ContentsFile name

List of all files that are to be loaded by the correlator at startup.
See also “Deploying Apama applications with a YAML
configuration file” on page 155. This file is always generated.

initialization.yaml

Substitution variables for locations outside the project directory
and APAMA_HOME used by initialization.yaml. This file is not

initialization.properties

generated for projects that use only initialization files from
APAMA_HOME and the project directory.

Connectivity configuration. This file is only generated when the
input directory is an Apama project and when this project
includes connectivity bundles.

connectivity.yaml

Configuration entries for the port, log file and log level. This file
is only generated when a launch configuration is present.

arguments.yaml

Substitution variables for customizing the settings in
arguments.yaml, such as the port.

correlator.properties

Includes extraArgs for any extra command line arguments
specified in the launch configuration. These cannot be used by
the YAML configuration file for the correlator. Therefore, they
must bemanually passed on the command line bywhatever tool
is responsible for staring the correlator.

This file contains properties logsDir and dataDir to allow easily
changing the location where data (for example, runtime cache
directory, pid file) and log files are written without needing to
modify the properties for each file path individually. There is
also a property startTimeoutSecs, which is not currently used
by any Apama tools, but can be used to provide a hint to
customer-developed deployment or testing tools about how long
to wait for the component to start up.

Persistence configuration of the project. This file is only generated
when a launch configuration is present.

persistence.yaml

Deploying and Managing Apama Applications 10.11.0 165

11 Correlator Utilities Reference

ContentsFile name

Values for the persistence options such as storeLocation, clear
and enabled. See also “Configuring persistence in a YAML
configuration file” on page 153.

persistence.properties

After all output has been generated, you use the correlator executable with the --config option
to start the correlatorwith all the YAMLand properties files that have been generated. For example:
correlator --config C:/MyDeployDir

See “Starting the correlator” on page 116 for detailed information on the available options.

If you want to override one or more property values that are defined in the generated properties
files, you have to send an additional properties file containing these overrides (or you can set the
property directly by specifying it on the command line) to the correlator before sending the generated
properties files. For example, when you specify the following, the property values defined in the
file myOverrides.propertieswill take precedence over all of the properties defined in other files.
correlator --config myOverrides.properties --config deployDir/

Important:
If the project requires any JAR files from an EPL plug-in in Java or from a JMon application,
you have to make available the JAR files before you start the engine_deploy tool.

Options

The engine_deploy tool takes the following options:

DescriptionOption

Specifies the files from the project that are to be
included in the output/injection. For example:

--include pattern[,pattern]

/foo/Bar*.evt,.mon

Specifies the files from the project that are to be
excluded from the output/injection. For example:

--exclude pattern[,pattern]

**/foo/Bar*.evt

Note:
Log files are always excluded.

Operands

path1 and other optional paths that you can specify when you run the engine_deploy tool can
point to the following:

166 Deploying and Managing Apama Applications 10.11.0

11 Correlator Utilities Reference

A project directory. This is the directory which contains the .project file and, if defined, the
.dependencies file.

If exactly one deployment (.deploy) file exists in the project directory, it is automatically used.
If the directory contains more than one deployment file, an exception is thrown. In this case,
you have to select the deployment file to be used by specifying the path to it (instead of
specifying the path to a project directory). You also have to specify the path to a deployment
file explicitly if your launch configuration contains multiple correlators, followed by an
exclamation mark (!) and the correlator name as described below.

Note:
You can only specify one project at a time. If a project references additional projects, then
the generated injection order might not be accurate.

If you are not using Software AG Designer or the apama_project tool, you can specify any
directory containing Apama files (for example, .mon files, etc.).

A deployment (.deploy) file. This file is automatically generated by Software AGDesigner for
each launch configuration that has been defined for a given project. It is located under
project_dir/config/launch. See also "Defining custom launch configurations" inUsingApama
with Software AG Designer.

If more than one correlator is defined in the deployment file, you have to add an exclamation
mark (!) followed by the correlator name (otherwise, the tool will give an error message and
fail). For example:

MyDeployFile.deploy!myCorrelator

If your launch configuration has multiple correlators, it is recommended that you generate a
separate correlator deployment directory for each correlator.

If a deployment file is used which contains environment variables, you have to explicitly
specify these variables when you start the correlator with the correlator executable. These
variables are not captured from the launch configuration. This is important when using EPL
plug-ins and connectivity plug-ins that are written in C++.

Zero or more .properties files which contain substitution variables that have been defined in
the specified project. The properties files are used when you specify a project directory or
deployment file. You can specify these paths in any order.

A text (.txt) file. This is the initialization file list which lists the project artifacts to be included.

One or more correlator deployment packages (.cdp files) to be injected into the correlator.

Examples

The following examples (for Windows) show the different ways in which the engine_deploy tool
can be started.

Create an initialization list by pointing to a project directory containing the EPL files:
engine_deploy --outputList C:/initialization_list.txt MyProject

Deploying and Managing Apama Applications 10.11.0 167

11 Correlator Utilities Reference

Create a correlator deployment directory by pointing to a deployment file within the project,
and using the substitution variables that have been defined in a properties file that is also
available in the project:
engine_deploy --outputDeployDir C:/MyDeployDir

MyProject/config/launch/MyDeployFile.deploy!myCorrelator
C:/MyProjects/environment.properties

The name of the correlator that is to be used is given after the exclamation mark (!).

Files coming from external variables are also copied into C:/MyDeployDir. In addition, the file
initialization.properties is generated which contains information on these variables.

Create a correlator deployment package by pointing to a deployment file within the project:
engine_deploy --outputCDP C:/output.cdp

C:/MyDeployDir/MyProject/config/launch/MyDeployFile.deploy!myCorrelator

The correlator deployment package can then be injected into the correlator using
engine_initalize or engine_inject.

Perform the initialization into a running correlator by pointing to a deployment file within the
project and excluding specific files from the injection:
engine_deploy --inject C:/MyDeployDir

--exclude MyProject/dashboards/**
MyProject/config/launch/MyDeployFile.deploy!myCorrelator

The --exclude option specifies that the generated deployment directory does not contain the
files from the MyProject/dashboards directory, and that these files are also not to be used during
injection.

Deleting code from a correlator

The engine_delete tool removes EPL code and JMon applications from the correlator. The executable
for this tool is located in the bin directory of theApama installation. Running the tool in theApama
Command Prompt or using the apama_envwrapper (see “Setting up the environment using the
Apama Command Prompt” on page 15) ensures that the environment variables are set correctly.

Synopsis

To remove applications from the correlator, run the following command:
engine_delete [options] [name1 [name2 ...]]

When you run this command with the –h option, the usage message for this command is shown.

Description

The engine_delete tool deletes named applications, monitors and event types from a correlator.
Names are the full package names as previously assigned to an application monitor or event type
when injected into the correlator.

168 Deploying and Managing Apama Applications 10.11.0

11 Correlator Utilities Reference

To specify the items you want to delete, you can specify any one of the following in the
engine_delete command line:

Names of the items to delete.

The -f option with the name of a file that contains the names of the items you want to delete.
In this file, specify each name on a separate line.

Neither of the above. In this case, the engine_delete tool reads names from stdin until you
type an end-of-file signal, (Ctrl+D on UNIX and Ctrl+Z on Windows). If you want, you can
specify a hyphen (-) in the command line to indicate that input will come from stdin.

The tool is silent by default unless an error occurs. To receive progress information, specify the
–v option.

The tool permits two kinds of operations: delete and kill. These cause different side-effects.
Therefore, you must use them carefully.

When you delete a monitor, the correlator tries to terminate all of that monitor's instances. If
they are responsive (not in some deadlocked state), each one executes its ondie() action, and
when the last one exits the correlator calls the monitor's onunload() action. This assumes that
the monitor you are deleting defines ondie() and onunload() actions.

If a monitor instance does not respond to a delete request, the correlator cannot invoke the
monitor's onunload() action. In this case, youmust kill, rather than delete, themonitor instance.

When you kill a monitor, the correlator immediately terminates all of the monitor's instances,
without invoking ondie() or onunload() actions.

Time taken to delete code

Deleting code from a correlator can require scanning the state of the correlator to ensure that the
types being deleted are no longer in use. Thus, the deletion will run at least as slowly as it takes
the slowest context in the correlator to respond to external events, and will depend on howmany
objects there are live in the correlator.

If a type is found to be in use and you are not using the -F or -a option, then the deletion will fail
with an error message, reporting what is still using the type that was requested to be deleted. If
events of the type being deleted are sent to the correlator, they will fail to be parsed and the
correlator will report errors.

Options

The engine_delete tool takes the following command line options:

DescriptionOption

Displays usage information. Optional.-h | --help

Deploying and Managing Apama Applications 10.11.0 169

11 Correlator Utilities Reference

DescriptionOption

Name of the host onwhich the correlator is running. The
default is localhost. Optional. Non-ASCII characters are
not allowed in host names.

-n host | --hostname host

Port on which the correlator is listening. Optional. The
default is 15903.

-p port | --port port

Indicates that you want the engine_delete tool to read
names of items to delete from the specified file. In this

-f filename | --file filename

file, each line contains one name. Optional. The default
is that input comes from stdin.

Forces deletion of named event types even if they are still
in use. That is, they are referenced by active monitors or

-F | --force

applications. A forced delete also removes all objects that
refer to the event type you are deleting. For example, if
monitor A has listeners for B events and C events and you
forcibly delete C events, the operation deletes monitor A,
which of course means that the listener for B events is
deleted. Optional. The default is that event types that are
in use are not deleted.

Kills all instances of the named monitor regardless of
whether an instance is in use. For example, you can

-k | --kill

specify this option to remove a monitor that is stuck in
an infinite loop. Any ondie() and onunload() actions
defined in killed monitors are not executed.

Forces deletion of all applications, monitors, and event
types. The correlator finishes processing any events on

-a | --all

input queues and then does the deletions. Any events
sent after invoking engine_delete -a are not recognized.
Specifying this option does not stop a monitor that is in
an infinite loop. You must explicitly kill such monitors.
Specifying the -a option is equivalent to specifying the
-F option and naming every object in the correlator. If
you want to kill every object in the correlator, shut down
and restart the correlator. See “Shutting down and
managing components” on page 197.

Removes the “are you sure?” prompt when using the -a
option.

-y | --yes

Requests verbose output.-v | --verbose

Indicates that input files are in UTF-8 encoding. This
specifies that the engine_delete tool should not convert
the input to any other encoding.

-u | --utf8

170 Deploying and Managing Apama Applications 10.11.0

11 Correlator Utilities Reference

DescriptionOption

Displays version information for the engine_delete tool.-V | --version

Operands

The engine_delete tool takes the following operands:

DescriptionOperand

The names of zero or more EPL or JMon applications,
monitors and/or event types to delete from the correlator.

[name1 [name2 ...]]

If you do not specify at least one item name, and you do
not specify the -f option, the engine_delete tool expects
input from stdin.

Exit status

The engine_delete tool returns the following exit values:

DescriptionValue

The items were deleted from the correlator successfully.0

No connection to the correlator was possible or the connection failed.1

Other error(s) occurred while deleting the named items.2

Packaging correlator input files

The engine_package tool assembles EPLfiles, JARfiles and event files into a correlator deployment
package (CDP). You can inject a CDP file into the correlator just as you inject an EPL file or a JAR
file containing a JMon application. CDP files use a proprietary, non-plaintext format that treats
files in a manner similar to the way a JAR file treats a collection of Java files. In addition, using a
CDP file guarantees that all files, assuming no errors, are injected and are injected in the correct
order. See “Injecting code into a correlator” on page 157 for details about how the correlator handles
an error in a file that is in a CDP. See also “Deploying a correlator” on page 163 for alternative
ways to deploy the correlator or for creating CDPs from Software AG Designer projects.

While the names of events, monitors, aggregates, and JAR files that are contained in a CDP file
are visible to the correlator utilities engine_inspect, engine_manage, and engine_delete, the code
that defines them is not.

The executable for this tool is located in the bin directory of the Apama installation. Running the
tool in the Apama Command Prompt or using the apama_envwrapper (see “Setting up the
environment using the Apama Command Prompt” on page 15) ensures that the environment
variables are set correctly.

Deploying and Managing Apama Applications 10.11.0 171

11 Correlator Utilities Reference

Synopsis

To package files into a CDP file, run the following command:
engine_package [options] [file1 [file2 ...]]

When you run this command with the –h option, the usage message for this command is shown.

Description

The engine_package tool creates a correlator deployment package (CDP). A CDP file contains one
or more files. You specify the name of the CDP file to create as an argument to the -o option.

You can specify the files you want to include on the command line, or you can use the -m option
and specify a manifest file that contains the names of the files. The manifest file is a text file; each
line in the file specifies a relative or absolute path to a file. Files should be listed in the order in
which you want them to be injected into the correlator.

You can also specify another CDP file to include in this package. The files from the original CDP
are injected in the specified place in the order within this package.

Options

The engine_package tool takes the following options:

DescriptionOption

Displays usage information.-h | --help

Displays version information for the engine_package
tool.

-V | --version

Name of the CDP file to create. Required.-o filename | --output filename

Name of the manifest file that lists the files you want
to package.

-m filename | --manifest filename

Indicates that input files are in UTF-8 encoding. The
default is that the engine_package tool assumes that

-u | --utf8

the files to be packaged are in the native character set
of your platform. Set the -u option to override this
assumption. The engine_package tool then assumes
that all input files are in UTF-8.

Operands

The engine_package tool takes the following operands:

172 Deploying and Managing Apama Applications 10.11.0

11 Correlator Utilities Reference

DescriptionOperand

The names of the EPL, JAR, event or other CDP files to
be included in the package. The order in which these

[file1 [file2 ...]]

files are specified will become the order in which they
are injected into the correlator when the CDP file is
injected. Instead of listing the files on the command line,
you can list them in amanifest file and use the -m option.

Exit status

The engine_package tool returns the following exit values:

DescriptionValue

Returned on success.0

Returned on any error.1

Example

The following example describes how to create a correlator deployment package filewithmultiple
monitor files and inject the CDP file into a running correlator.

1. Create a manifest file containing a list of files to include in the CDP. For this example, the file
is named “manifest.txt” and each line contains the full path name of an EPL file or JAR file:
c:\dev\sample\monitor1.mon
c:\dev\sample\monitor2.mon
C:\dev\sample\jmon-app.jar

2. To create the CDPfile, call the engine_package tool stating the output filename and themanifest
file to include in the CDP. (Note, instead of using a manifest file, you can list the files
individually in the engine_package arguments.)
engine_package.exe -o c:\sample.cdp -m c:\dev\sample\manifest.txt

3. To inject the CDP file, call the engine_inject tool with -c (or --cdp). This injects each file that
is included in the CDP file into the correlator.
engine_inject.exe -c c:\sample.cdp

Sample output from the correlator:
2012-07-11 13:51:33.156 INFO [3852] - Injected CDP from file

c:\sample.cdp (b2f097b02791e5dd4ac73cda38e153e9),
size 313 bytes, decoding and compile time 0.00 seconds

Deploying and Managing Apama Applications 10.11.0 173

11 Correlator Utilities Reference

Sending events to correlators

The engine_send tool sends Apama-format events into a correlator or IAF adapter. The executable
for this tool is located in the bin directory of theApama installation. Running the tool in theApama
Command Prompt or using the apama_envwrapper (see “Setting up the environment using the
Apama Command Prompt” on page 15) ensures that the environment variables are set correctly.

If the events youwant to send are not inApama format, youmust use an adapter that can transform
your event format into Apama event format.

Note:
You can also send events using Software AG Designer. For more information, see "Sending an
event from the Engine Information view" in Using Apama with Software AG Designer.

Synopsis

To send Apama-format events to a correlator or IAF adapter, run the following command:
engine_send [options] [file1 [file2 ...]]

When you run this command with the –h option, the usage message for this command is shown.

Description

The engine_send tool sends Apama-format events to a correlator. In Apama-format event files,
you can specifywhether to send the events in batches of one ormore events or at set time intervals.

The correlator reads events from one or more specified files. Alternatively, you can specify a
hyphen (-) or not specify a filename so that the correlator reads events from stdin until it receives
an end-of-file signal (Ctrl+D on UNIX and Ctrl+Z on Windows).

For details about Apama-format events, see “Event file format” on page 243.

By default, the engine_send tool is silent unless an error occurs. To view progress information
during engine_send execution, specify the -v option when you invoke engine_send.

You can also use engine_send to send events directly to the Integration Adapter Framework (IAF).
To do this, specify the port of the IAF. By default, this is 16903.

Options

The engine_send tool takes the following options:

DescriptionOption

Displays usage information. Optional.-h | --help

Name of the host on which the correlator to which you want
to send events is running. Optional. The default is localhost.
Non-ASCII characters are not allowed in host names.

-n host | --hostname host

174 Deploying and Managing Apama Applications 10.11.0

11 Correlator Utilities Reference

DescriptionOption

Port on which the correlator is listening. Optional. The default
is 15903.

-p port | --port port

For events for which a channel is not specified, this option
designates the delivery channel. If a channel is not specified

-c channel | --channel channel

for an event and you do not specify this option, the event is
delivered to the default channel, which is the empty string. All
public contexts receive events sent to the default channel. All
queries receive events sent to the default channel.

To send events to only running Apama queries, specify the
com.apama.queries channel. See "Defining Queries" in
Developing Apama Applications.

Number of times to cycle through and send the input events.
Optional. Replace countwith one of the following values:

-l count | --loop count

0— Indicates that you want the engine_send tool to iterate
through and send the input data once. This is the default.

Any negative integer— Indicates that you want the
engine_send tool to indefinitely cycle through and send the
input events.

Any positive integer — Indicates the number of times to
cycle through and send the input events.

The engine_send tool ignores this option if you specify it and
the input is from stdin.

Requests verbose output during execution. Optional.-v | --verbose

Indicates that input files are in UTF-8 encoding. This specifies
that the engine_send tool should not convert the input to any
other encoding.

-u | --utf8

Displays version information for the engine_send tool. Optional.-V | --version

Operands

The engine_send tool takes the following operands:

DescriptionOperand

Specify zero, one, or more files that contain event data.
Each file you specify must comply with the event file

[file1 [file2 ...]]

format described in “Event file format” on page 243. If
you do not specify any filenames, the engine_send tool
takes input from stdin.

Deploying and Managing Apama Applications 10.11.0 175

11 Correlator Utilities Reference

Exit status

The engine_send tool returns the following exit values:

DescriptionValue

The events were sent successfully.0

No connection to the correlator was possible or the connection failed.1

One or more other errors occurred while sending the events.2

Operating notes

To end an indefinite cycle of sending events, press Ctrl+C in the window in which you invoked
the engine_send tool.

You might want to indefinitely cycle through and send events in the following situations:

In test environments. For example, you can use engine_send to simulate heartbeats. If you then
kill the engine_send process, you can test your EPL code that detects when heartbeats stop.

In production environments. For example, you can use the engine_send tool to initialize a large
data table in the correlator.

Text encoding

By default, the engine_send tool checks the environment variable or global setting that specifies
the locale because this indicates the local character set. The engine_send tool then translates EPL
text from the local character set toUTF-8. Consequently, it is important to correctly set themachine's
locale.

However, some input files might start with a UTF-8 Byte Order Mark. The engine_send tool treats
such input files as UTF-8 and does not do any translation. Alternatively, you can specify the -u
option when you run the engine_send tool. This forces the tool to treat each input file as UTF-8.

Receiving events from correlators

The engine_receive tool lets you connect to a running correlator and receive events from it. Events
received and displayed by the engine_receive tool are in Apama event format. This is identical
to the format used to send events to the correlator with the engine_send tool. Consequently, it is
possible to reuse the output of the engine_receive tool as input to the engine_send tool.

The executable for this tool is located in the bin directory of the Apama installation. Running the
tool in the Apama Command Prompt or using the apama_envwrapper (see “Setting up the
environment using the Apama Command Prompt” on page 15) ensures that the environment
variables are set correctly.

176 Deploying and Managing Apama Applications 10.11.0

11 Correlator Utilities Reference

Synopsis

To receive Apama-format events from a correlator, run the following command:
engine_receive [options]

When you run this command with the –h option, the usage message for this command is shown.

Description

The engine_receive tool receives events from a correlator and writes them to stdout or to a file
that you specify. The correlator output format is the same as that used for event input and is
described in “Event file format” on page 243.

You can specify one ormore channels onwhich to listen for events from the correlator. The default
is to receive all output events. For more information, see "Subscribing to channels" in Developing
Apama Applications.

To view progress information during engine_receive execution, specify the –v option.

You can also use engine_receive to receive events emitted by the Integration Adapter Framework
(IAF) directly. To do this, specify the port of the IAF. By default, this is 16903.

Options

The engine_receive tool takes the following options:

DescriptionOption

Displays usage information. Optional.-h | --help

Name of the host on which the correlator is running. Optional.
The default is localhost. Non-ASCII characters are not allowed
in host names.

-n host | --hostname host

Port on which the correlator is listening. Optional. The default is
15903.

-p port | --port port

Named channel on which to listen for output events from the
correlator. Optional. The default is to listen for all output events.

-c channel | --channel
channel

You can specify the -c optionmultiple times to listen onmultiple
channels.

Dumps all received events in the specified file. Optional. The
default is to write the events to stdout.

-f file | --filename file

Omits BATCH timestamps from the output events. Optional. The
default is to preserve BATCH timestamps in events.

-s | --suppressBatch |
--suppressbatch

Records the first received batch of events as being received at 0
milliseconds after the engine_receive tool was started. Optional.

-z | --zeroAtFirstBatch |
--zeroatfirstbatch

Deploying and Managing Apama Applications 10.11.0 177

11 Correlator Utilities Reference

DescriptionOption

The default is that the first received batch of events is received at
the number ofmilliseconds since engine_receive actually started.

Specifies that you want engine_receive output to include the
channel that an event arrives on. If you then use the

-C | --logChannels

engine_receive output as input to engine_send, events are
delivered back to the same-named channels. See “Event
association with a channel” on page 247.

Automatically (re)connect to the server when available.-r | --reconnect

Disconnect from the correlator if the engine_receive tool cannot
keep up with the events from the correlator.

-x | --qdisconnect

Requests verbose output during engine_receive execution.
Optional.

-v | --verbose

Indicates that received event files are in UTF-8 encoding. This
specifies that the engine_receive tool should not convert the input
to any other encoding.

-u | --utf8

Displays version information for the engine_receive tool.
Optional.

-V | --version

Exit status

The engine_receive tool returns the following exit values:

DescriptionValue

All events were received successfully.0

No connection to the correlator was possible or the connection failed.1

Other error(s) occurred while receiving events.2

Text encoding

The engine_receive tool translates all events it receives from UTF-8 into the current character
locale. It is therefore important that you correctly set the machine's locale. To force the
engine_receive tool to output events in UTF-8 encoding, specify the -u option.

Watching correlator runtime status

The engine_watch tool lets youmonitor the runtime operational status of a running correlator. The
executable for this tool is located in the bin directory of the Apama installation. Running the tool
in theApamaCommandPrompt or using the apama_envwrapper (see “Setting up the environment

178 Deploying and Managing Apama Applications 10.11.0

11 Correlator Utilities Reference

using the Apama Command Prompt” on page 15) ensures that the environment variables are set
correctly.

Synopsis

To monitor the operation of a correlator, run the following command:
engine_watch [options]

When you run this command with the –h option, the usage message for this command is shown.

Description

The engine_watch tool periodically polls a correlator for status information, writing the standard
statusmessages to stdout (see “List of correlator status statistics” on page 180 formore information
on the standard status messages). When you also specify the -a option, any user-defined status
values are appended to the standard status messages. For additional progress information, use
the –v option.

Options

The engine_watch tool takes the following options:

DescriptionOption

Displays usage information. Optional.-h | --help

Name of the host onwhich the correlator is running. The default
is localhost. Non-ASCII characters are not allowed in host
names.

-n host | --hostname host

Port on which the correlator is listening. Optional. The default
is 15903.

-p port | --port port

Specifies the poll interval in milliseconds. Optional. The default
is 1000.

-i ms | --interval ms

Writes status output to the named file. Optional. The default is
to send status information to stdout.

-f filename | --filename
filename

Indicates that you want raw output format, which is more
suitable for machine parsing. Raw output format consists of a

-r | --raw

single line for each status message. Each line is a
comma-separated list of status numbers. This format can be
useful in a test environment.

If you do not specify that youwant rawoutput format, the default
is a multi-line, human-readable format for each status message.

Deploying and Managing Apama Applications 10.11.0 179

11 Correlator Utilities Reference

DescriptionOption

Outputs all user-defined status values after the standard status
messages. Optional. The default is to output only the standard
status messages.

-a | --all

If you also specify the --raw option, you can specify the --title
option so that the output contains headers that make it easy to
identify the columns.

-t | --title

Outputs one set of status information and then quits. Optional.
The default is to indefinitely return status information at the
specified poll interval.

-o | --once

Displays process names and versions in addition to status
information. Optional. The default is to display only status
information.

-v | --verbose

Displays version information for the engine_watch tool. Optional.
The default is that the tool does not output this information.

-V | --version

Exit status

The engine_watch tool returns the following exit values:

DescriptionValue

All status requests were processed successfully.0

No connection to the correlator was possible or the connection failed.1

Other error(s) occurred while requesting/processing status.2

List of correlator status statistics
This topic gives a detailed list of the status values that can be monitored for a correlator. The
descriptions below show where the status values are used. The status is available through the
following mechanisms:

REST API: The name of the key in the REST API. See also “Managing and Monitoring over
REST” on page 109 and the descriptions of /correlator/status and /info/stats in the API
Reference for Component Management REST APIs.

Java API: The name of the method in the EngineStatus Java API (and also the equivalent,
where available, in the C++, .NET and EPL APIs). See the com.apama.engine.EngineStatus
interface in the API Reference for Java (Javadoc).

Note:
In the C++API, the status statistics names are defined as constants inside the client_status_
names.hpp file. See also the API Reference for C++ (Doxygen).

180 Deploying and Managing Apama Applications 10.11.0

11 Correlator Utilities Reference

Log field: The name of the status log field in the Status: log lines in the main correlator log
file. See also “Descriptions of correlator status log fields” on page 131.

Prometheus metric name: The name used to expose internal correlator statistics to the
Prometheus monitoring system. See also “Monitoring with Prometheus” on page 113.

Display name: The standard status message that the engine_watch tool writes to stdout (see
“Watching correlator runtime status” on page 178). The same status message is also shown in
the Engine Status view of Software AG Designer (see "Using the Engine Status view" inUsing
Apama with Software AG Designer).

The descriptions below also indicate the typical trend. This can be one of the following:

Steady: After any start-up phase, this number would typically be steady. It may increase as
bursts of events come in, or if there is a change in the size of the application (for example, the
number of items the application is tracking). Typically, if these numbers are continually trending
upwards when there is no more being asked of the application, that indicates an application
leak of monitor instances, listeners or objects. This will eventually lead to an out of memory
condition.

Increasing: Thismay be increasing in normal usage. Depending on deployment, some statistics
may not be increasing, though if they normally are and have stopped increasing, this may
indicate that something is preventing events being delivered or processed correctly.

Low: This number is typically 0 or near 0. If this number increases, this typically indicates that
the correlator is not keeping up with processing events. For queues, it is normal that during
bursts of activity, these may be non-zero for some time. Steadily increasing queue sizes can
be a sign of back-pressure due to a slow receiver, or the system is not keeping up and may
eventually block senders due to not processing the events at the rate they arrive.

Varies: Will typically vary. 0 may indicate a problem with events being delivered.

None: Typically, all contexts and receivers should be keeping up, so none are reported as slow
(in which case, the empty string will be returned from the API).

The term “receiver” which is used in the descriptions below refers to any of the following:

EPL, Java or C++ plug-ins using the Correlator.subscribemethod.

Connectivity plug-ins for “towards” transport events.

JMS connections sending events out of the correlator.

Client library connections, including other correlators that have been connected with the
engine_connect, iaf or engine_receive tools.

Time since the correlator was started

The time in milliseconds since the correlator was started.

Typical trend: increasing.

REST API: uptime

Deploying and Managing Apama Applications 10.11.0 181

11 Correlator Utilities Reference

Java API: getUptime

Log field: not applicable

Prometheus metric name: sag_apama_correlator_uptime_seconds

Display name: Uptime (ms)

Number of contexts

The number of contexts in the correlator, including the main context.

Typical trend: steady.

REST API: numContexts

Java API: getNumContexts

Log field: nctx=n

Prometheus metric name: sag_apama_correlator_contexts_total

Display name: Number of contexts

Number of monitors

The number of EPL monitor definitions injected into the correlator. This number changes on
injections, deletions or if the last instance of a monitor terminates.

Typical trend: steady.

REST API: numMonitors

Java API: getNumMonitors

Log field: not applicable

Prometheus metric name: sag_apama_correlator_monitors_total

Display name: Number of monitors

Number of monitor instances

The number of monitor instances, also known as sub-monitors.

Typical trend: steady.

REST API: numProcesses

Java API: getNumProcesses

Log field: sm=n

Prometheus metric name: sag_apama_correlator_monitor_instances_total

182 Deploying and Managing Apama Applications 10.11.0

11 Correlator Utilities Reference

Display name: Number of sub-monitors

Number of Java applications and Java EPL plug-ins

The number of Java applications and Java EPL plug-ins loaded in the correlator. This number
changes on injections and deletions.

Typical trend: steady.

REST API: numJavaApplications

Java API: getNumJavaApplications

Log field: not applicable

Prometheus metric name: sag_apama_correlator_java_applications_total

Display name: Number of Java applications

Number of listeners

The number of listeners in all contexts. This includes on statements and active stream source
templates.

Typical trend: steady.

REST API: numListeners

Java API: getNumListeners

Log field: ls=n

Prometheus metric name: sag_apama_correlator_listeners_total

Display name: Number of listeners

Number of sub-listeners

The number of sub-event-listeners that are active across all contexts. Stream source templates will
have one sub-event-listener. An on statement can have multiple sub-event-listeners. See also
"Evaluating event listeners for all A-events followed by B-events" inDeveloping ApamaApplications.

Typical trend: steady.

REST API: numSubListeners

Java API: getNumSubListeners

Log field: not applicable

Prometheus metric name: sag_apama_correlator_sub_listeners_total

Display name: Number of sub-listeners

Deploying and Managing Apama Applications 10.11.0 183

11 Correlator Utilities Reference

Number of event types

The number of event types defined within the correlator. This number changes on injections and
deletions.

Typical trend: steady.

REST API: numEventTypes

Java API: getNumEventTypes

Log field: not applicable

Prometheus metric name: sag_apama_correlator_event_types_total

Display name: Number of event types

Number of executors on input queues

The number of executors on the input queues of all contexts. As well as events, this can include
clock ticks, spawns, injections and other operations. A context in an infinite loop will grow by 10
per second due to clock ticks. Every context has an input queue, which by default is a maximum
of 20,000 entries.

Typical trend: low.

REST API: numQueuedInput

Java API: getNumQueuedInput

Log field: iq=n

Prometheus metric name: sag_apama_correlator_queued_input_total

Display name: Events on input queue

Number of received events

The number of events that the correlator has received from external sources since the correlator
started. This includes connectivity plug-ins, correlator-integrated JMS, engine_send, other correlators
connectedwith engine_connect, dashboard servers, the IAF, and events that are not parsed correctly.
This number excludes events sent within the correlator from EPL monitors or EPL plug-ins.

Typical trend: increasing.

REST API: numReceived

Java API: getNumReceived

Log field: rx=n

Prometheus metric name: sag_apama_correlator_input_total

Display name: Events received

184 Deploying and Managing Apama Applications 10.11.0

11 Correlator Utilities Reference

Number of processed events

The number of events processed by the correlator in all contexts. This includes external events
and events routed to contexts by monitors. An event is considered to have been processed when
all listeners and streams thatwerewaiting for it have been triggered, orwhen it has been determined
that there are no listeners for the event.

Typical trend: increasing.

REST API: numProcessed

Java API: getNumProcessed

Log field: not applicable

Prometheus metric name: sag_apama_correlator_processed_total

Display name: Events processed

Sum of events on route queues

The sum of routed events on the route queues of all contexts.

Typical trend: low.

REST API: numQueuedFastTrack

Java API: getNumQueuedFastTrack

Log field: rq=n

Prometheus metric name: sag_apama_correlator_queued_route_total

Display name: Events on internal queue

Number of routed events

The number of events that have been routed across all contexts since the correlator was started.

Typical trend: increasing.

REST API: numFastTracked

Java API: getNumFastTracked

Log field: rt=n

Prometheus metric name: sag_apama_correlator_route_total

Display name: Events routed internally

Deploying and Managing Apama Applications 10.11.0 185

11 Correlator Utilities Reference

Number of external consumers/receivers

The number of external consumers/receivers connected to receive emitted events. This includes
connectivity plug-ins, correlator-integrated JMS, engine_receive, or correlators connected using
engine_connect.

Typical trend: steady.

REST API: numConsumers

Java API: getNumConsumers

Log field: nc=n

Prometheus metric name: sag_apama_correlator_consumers_total

Display name: Number of consumers

Number of events on output queues

The number of events waiting on output queues to be dispatched to any connected external
consumers/receivers.

Typical trend: low.

REST API: numOutEventsQueued

Java API: getNumOutEventsQueued

Log field: oq=n

Prometheus metric name: sag_apama_correlator_queued_output_total

Display name: Events on output queue

Number of events created for sending to external channels

The number of events that have been sent (see "The send ... to statement" in Developing Apama
Applications) or emitted (see "The emit statement" in Developing Apama Applications) to channels
which have at least one external consumer/receiver subscribed (see also “Number of external
consumers/receivers” on page 186). This excludes events sent to channels with no external
consumers/receivers. This counts each event once, even if delivered to multiple external
consumers/receivers.

Typical trend: increasing.

REST API: numEmits

Java API: getNumOutEventsCreated

Log field: not applicable

Prometheus metric name: sag_apama_correlator_created_output_total

186 Deploying and Managing Apama Applications 10.11.0

11 Correlator Utilities Reference

Display name: Output events created

Number of events delivered to external consumers/receivers

The number of events that have been delivered to external consumers/receivers. This counts for
each external consumer/receiver an event is sent to. It counts the number of deliveries of events.

Note:
This status indicator counts every event that was delivered, whereas the previous status indicator
counts every event that was sent. For example, sending one event to a channel with two external
consumers/receivers would be counted as one event sent (numEmits), but two events delivered
(numOutEventsSent).

Typical trend: increasing.

REST API: numOutEventsSent

Java API: getNumOutEventsSent

Log field: tx=n

Prometheus metric name: sag_apama_correlator_output_total

Display name: Output events sent

Number of events on input queues of all public contexts

The number of events on the input queues of all public contexts. See also "About context properties"
in Developing Apama Applications for information on the receiveInput flag.

Typical trend: low.

REST API: numInputQueuedInput

Java API: getNumInputQueuedInput

Log field: icq=n

Prometheus metric name: sag_apama_correlator_queued_input_public_total

Display name: Events on input context queues

Name of slowest context

The name of the slowest context. This may or may not be a public context.

Typical trend: none.

REST API: mostBackedUpInputContext

Java API: getMostBackedUpInput

Log field: lcn=name

Deploying and Managing Apama Applications 10.11.0 187

11 Correlator Utilities Reference

Prometheus metric name: The name of the slowest context is given as a Prometheus label on
the Prometheus metric sag_apama_correlator_slowest_input_queue_size_total

Display name: Slowest context name

Number of events on queue for slowest context

The number of events on the slowest context's queue, as identified by the name of the slowest
context.

Typical trend: low.

REST API: mostBackedUpICQueueSize

Java API: getMostBackedUpQueueSize

Log field: lcq=n

Prometheus metric name: sag_apama_correlator_slowest_input_queue_size_total

Display name: Slowest context queue size

Time difference in seconds for slowest context

For the context identified by the slowest context name, this is the time difference in seconds between
its current logical time and the most recent time tick added to its input queue.

Typical trend: low.

REST API: mostBackedUpICLatency

Java API: getMostBackedUpICLatency

Log field: lct=seconds

Prometheus metric name: sag_apama_correlator_slowest_input_queue_latency_seconds

Display name: not applicable

Name of slowest consumer/receiver of events

The name of the consumer/receiver with the largest number of incoming events waiting to be
processed. This is the slowest non-context consumer/receiver of events, which can be an external
receiver or an EPL plug-in.

Typical trend: none.

REST API: slowestReceiver

Java API: getSlowestReceiver

Log field: srn=name

188 Deploying and Managing Apama Applications 10.11.0

11 Correlator Utilities Reference

Prometheus metric name: The name of the slowest consumer/receiver of events is given as a
Prometheus label on the Prometheus metric
sag_apama_correlator_slowest_output_queue_size_total

Display name: Slowest receiver name

Number of events on queue for slowest consumer/receiver

The number of events on the slowest consumer's/receiver's queue, as identified by the name of
the slowest consumer/receiver.

Typical trend: low.

REST API: slowestReceiverQueueSize

Java API: getSlowestReceiverQueueSize

Log field: srq=n

Prometheus metric name: sag_apama_correlator_slowest_output_queue_size_total

Display name: Slowest receiver queue size

Number of events per second

The number of events per second currently being processed by the correlator across all contexts.
This value is computed with every status refresh and is only an approximation.

Typical trend: varies.

REST API: not applicable

Java API: not applicable

Log field: not applicable

Prometheus metric name: not applicable

Display name: Event rate over last interval

Number of enqueued events

The number of events queued from the enqueue statement (not the enqueue...to statement). The
enqueue statement is deprecated.

Typical trend: low.

REST API: enqueueQueueSize

Java API: not applicable

Log field: not applicable

Prometheus metric name: not applicable

Deploying and Managing Apama Applications 10.11.0 189

11 Correlator Utilities Reference

Display name: not applicable

Virtual memory

Virtual memory. For the REST API, the value is in megabytes. For the log field, the value is in
kilobytes. For Prometheus, the value is in bytes.

Typical trend: steady.

REST API: virtualMemoryMB

Java API: not applicable

Log field: vm=kB

Prometheus metric name: sag_apama_correlator_virtual_memory_bytes

Display name: not applicable

Physical memory

Physical memory. For the REST API, the value is in megabytes. For the log field, the value is in
kilobytes. For Prometheus, the value is in bytes.

Typical trend: steady.

REST API: physicalMemoryMB

Java API: not applicable

Log field: pm=kB

Prometheus metric name: sag_apama_correlator_physical_memory_bytes

Display name: not applicable

Peak physical memory usage

The highest amount of physical memory used by the correlator at any measurement point since
startup, given in units of megabytes. This is the highest measured amount of memory, measured
when a status line is logged or status is requested from the correlator.

Typical trend: steady.

REST API: peakPhysicalMemoryMB

Java API: not applicable

Log field: not applicable

Prometheus metric name: not applicable

Display name: not applicable

190 Deploying and Managing Apama Applications 10.11.0

11 Correlator Utilities Reference

Number of contexts on run queue

The number of contexts on the run queue. These are the contexts that have work to do but are not
currently running.

Typical trend: low.

REST API: not applicable

Java API: not applicable

Log field: runq=n

Prometheus metric name: not applicable

Display name: not applicable

Number of pages read from swap space

The number of pages per second that are being read from swap space. If this is greater than zero,
it may indicate that the machine is under-provisioned, which can lead to reduced performance,
connection timeouts and other problems. Consider adding more memory, reducing the number
of other processes running on themachine, or partitioning yourApama application acrossmultiple
machines.

Typical trend: low.

REST API: swapPagesRead

Java API: not applicable

Log field: si=n

Prometheus metric name: sag_apama_correlator_swap_pages_read_hertz

Display name: not applicable

Number of pages written to swap space

The number of pages per second that are being written to swap space. If this is greater than zero,
it may indicate that the machine is under-provisioned, which can lead to reduced performance,
connection timeouts and other problems. Consider adding more memory, reducing the number
of other processes running on themachine, or partitioning yourApama application acrossmultiple
machines.

Typical trend: low.

REST API: swapPagesWrite

Java API: not applicable

Log field: so=n

Prometheus metric name: sag_apama_correlator_swap_pages_write_hertz

Deploying and Managing Apama Applications 10.11.0 191

11 Correlator Utilities Reference

Display name: not applicable

Number of snapshots

The number of persistence snapshots taken since the correlator started. These statistics will only
exist if the correlator is running in persistent mode.

Typical trend: increasing.

REST API: persistenceNumSnapshots

Java API: not applicable

Log field: numSnapshots=n

Prometheus metric name: sag_apama_correlator_persistence_snapshots_total

Display name: not applicable

Timestamp of last snapshot

TheUNIX timestamp of the last completed snapshot. These statisticswill only exist if the correlator
is running in persistent mode.

Typical trend: increasing.

REST API: persistenceLastSnapshotTime

Java API: not applicable

Log field: lastSnapshotTime=timestamp

Prometheus metric name: sag_apama_correlator_persistence_last_snapshot_timestamp

Display name: not applicable

Time waiting for a snapshot (EWMA)

An exponentially weightedmoving average (EWMA) of the time in milliseconds taken to wait for
a snapshot. These statistics will only exist if the correlator is running in persistent mode.

Typical trend: varies.

REST API: persistenceSnapshotWaitTimeEwmaMillis

Java API: not applicable

Log field: snapshotWaitTimeEwmaMillis=milliseconds

Prometheus metric name: sag_apama_correlator_persistence_snapshot_wait_ewma_seconds

Display name: not applicable

192 Deploying and Managing Apama Applications 10.11.0

11 Correlator Utilities Reference

Time to commit to database (EWMA)

An exponentially weighted moving average (EWMA) of the time in milliseconds taken to commit
to the database. These statistics will only exist if the correlator is running in persistent mode.

Typical trend: varies.

REST API: persistenceCommitTimeEwmaMillis

Java API: not applicable

Log field: commitTimeEwmaMillis=milliseconds

Prometheus metric name: sag_apama_correlator_persistence_commit_time_ewma_seconds

Display name: not applicable

Number of changed rows (EWMA)

An exponentiallyweightedmoving average (EWMA) of the number of rows changed per snapshot.
These statistics will only exist if the correlator is running in persistent mode.

Typical trend: varies.

REST API: persistenceLastSnapshotRowsChangedEwma

Java API: not applicable

Log field: lastSnapshotRowsChangedEwma=n

Prometheus metric name:
sag_apama_correlator_persistence_snapshot_rows_changed_ewma_total

Display name: not applicable

Total heap memory used by the JVM

The total heapmemory used by the Java virtualmachine (JVM)which is embedded in the correlator.
For the RESTAPI, the value is in megabytes. For Prometheus, the value is in bytes. These statistics
will only exist if the embedded JVM has been enabled. If the JVM is disabled, the REST API will
return 0 (zero) as the value, and Prometheus will not have this metric.

Typical trend: steady.

REST API: jvmMemoryHeapUsedMB

Java API: not applicable

Log field: not applicable

Prometheus metric name: sag_apama_correlator_jvm_heap_used_bytes

Display name: not applicable

Deploying and Managing Apama Applications 10.11.0 193

11 Correlator Utilities Reference

Total free heap memory in the JVM

The total heap memory that is free in the Java virtual machine (JVM) which is embedded in the
correlator. For the REST API, the value is in megabytes. For Prometheus, the value is in bytes.
These statistics will only exist if the embedded JVM has been enabled. If the JVM is disabled, the
REST API will return 0 (zero) as the value, and Prometheus will not have this metric.

Typical trend: steady.

REST API: jvmMemoryHeapFreeMB

Java API: not applicable

Log field: not applicable

Prometheus metric name: sag_apama_correlator_jvm_heap_free_bytes

Display name: not applicable

Total non-heap memory used by the JVM

The total non-heap memory used by the Java virtual machine (JVM) which is embedded in the
correlator. For the REST API, the value is in megabytes. For Prometheus, the value is in bytes.
These statistics will only exist if the embedded JVM has been enabled. If the JVM is disabled, the
REST API will return 0 (zero) as the value, and Prometheus will not have this metric.

Typical trend: steady.

REST API: jvmMemoryNonHeapUsedMB

Java API: not applicable

Log field: not applicable

Prometheus metric name: sag_apama_correlator_jvm_non_heap_used_bytes

Display name: not applicable

Total memory used by all buffer pools in the JVM

The sumofmemory used by all buffer pools in the Java virtualmachine (JVM)which is embedded
in the correlator. For the REST API, the value is in megabytes. For Prometheus, the value is in
bytes. These statisticswill only exist if the embedded JVMhas been enabled. If the JVM is disabled,
the REST API will return 0 (zero) as the value, and Prometheus will not have this metric.

Typical trend: steady.

REST API: jvmMemoryBufferPoolUsedMB

Java API: not applicable

Log field: not applicable

Prometheus metric name: sag_apama_correlator_jvm_buffer_pool_used_bytes

194 Deploying and Managing Apama Applications 10.11.0

11 Correlator Utilities Reference

Display name: not applicable

Total memory used by the JVM

The sumof allmemory used by the Java virtualmachine (JVM)which is embedded in the correlator
(that is, the used heap memory, the used non-heap memory, and the used buffer pool memory).
For the REST API and the log field, the value is in megabytes. For Prometheus, the value is in
bytes. These statisticswill only exist if the embedded JVMhas been enabled. If the JVM is disabled,
the REST API and the log field will return 0 (zero) as the value, and Prometheus will not have this
metric.

Typical trend: steady.

REST API: jvmMemoryAllUsedMB

Java API: not applicable

Log field: jvm=MB

Prometheus metric name: sag_apama_correlator_jvm_memory_all_bytes

Display name: not applicable

Number of threads in use by the JVM

The total number of active threads in the Java virtual machine (JVM). These statistics will only
exist if the embedded JVM has been enabled. If the JVM is disabled, the REST API will return 0
(zero) as the value, and Prometheus will not have this metric.

Typical trend: steady.

REST API: jvmNumThreads

Java API: not applicable

Log field: not applicable

Prometheus metric name: sag_apama_correlator_jvm_num_threads

Display name: not applicable

Inspecting correlator state

The engine_inspect tool lets you inspect the state of a running correlator. This means you can
review the applications loaded and running on a correlator. The executable for this tool is located
in the bin directory of the Apama installation. Running the tool in the Apama Command Prompt
or using the apama_envwrapper (see “Setting up the environment using the Apama Command
Prompt” on page 15) ensures that the environment variables are set correctly.

Synopsis

To inspect applications on a running correlator, run the following command:

Deploying and Managing Apama Applications 10.11.0 195

11 Correlator Utilities Reference

engine_inspect [options]

When you run this command with the –h option, the usage message for this command is shown.

Description

The engine_inspect tool retrieves state information from a running correlator and sends it to
stdout. By default, the tool outputs information on the monitors, JMon applications, event types
and container types currently injected in a correlator.

You can filter this list by specifying command-line options. When you specify one or more of the
-m, -j, -e, -t, -x, -P, or -R options, the engine_inspect tool displays only the information indicated
by the option(s) you specify. See the table below for more information on these options.

Options

The engine_inspect tool takes the following options:

DescriptionOption

Displays the names of all EPL monitors in the correlator and the
number of monitor instances each monitor has spawned.

-m | --monitors

Displays the names of all JMon applications in the correlator and the
number of event listeners each JMon application has created.

-j | --java

Displays the names of all event types in the correlator and the number
of templates of each type, as defined in listener specifications. This

-e | --events

includes each event template in an on statement and each stream
source template, for example, stream<A> := all A().

For more information about event types and listeners, see
"Introduction to Apama Event Processing Language" in Developing
Apama Applications.

Displays the current EPL timers active within the system. The four
types of timerswhichmay be displayed here are wait, within, at, and

-t | --timers

stream. The stream timers are those set up to support the operation
of a stream network.

Displays the names of any user-defined contexts, howmanymonitor
instances are running in each context, what channels each context is
subscribed to, andhowmany entries are on each context's input queue.

-x | --contexts

Displays a list of the custom (user-defined) aggregate functions that
have been injected. You use aggregate functions in stream queries.
Apama built-in aggregate functions are not listed.

-a | --aggregates

Displays the names of any plug-in receivers, the channels the plug-in
is subscribed to, and the number of items on the plug-in's input queue.

-P | --pluginReceivers

196 Deploying and Managing Apama Applications 10.11.0

11 Correlator Utilities Reference

DescriptionOption

Aplug-in receiver is an EPL plug-in that is subscribed to one or more
channels.

Displays the names of any external receivers, each receiver's address,
the channels each receiver is subscribed to, and the number of entries
on each receiver's output queue.

-R | --receivers

Indicates that you want raw output, which is more suitable for
machine parsing. Raw output provides the name of each entity in the

-r | --raw

correlator followed by the number of instances associated with that
entity. For a monitor, you get the number of its monitor instances.
For a JMon application, you get the number of its listeners. For an
event type, you get the number of its templates. For example:
com.apama.samples.stockwatch.StockWatch 1
Tick 1

Displays usage information.-h | --help

Name of the host on which the correlator is running. The default is
localhost. Non-ASCII characters are not allowed in host names.

-n host | --hostname host

Port on which the correlator is listening. The default is 15903.-p port | --port port

Displays process names and versions in addition to application
information. Optional. The default is to display only application
information.

-v | --verbose

Displays version information for the engine_inspect tool.-V | --version

Exit status

The engine_inspect tool returns the following exit values:

DescriptionValue

All status requests were processed successfully.0

No connection to the correlator was possible or the connection failed.1

Other error(s) occurred while requesting/processing status.2

Shutting down and managing components

All Apama components (correlator, IAF, dashboard data server, and dashboard display server)
implement an interface with which they can be asked to shut themselves down, provide their
process identifier, and respond to communication checks.

Deploying and Managing Apama Applications 10.11.0 197

11 Correlator Utilities Reference

For historical reasons, there are several tools that all do the same thing. You can use any of these
tools to manage any component:

engine_management

component_management

iaf_management

When managing a correlator, the recommendation is to use the engine_management tool, which
provides some additional correlator-specific options that are not available in the other tools. The
only other differences in behavior among these tools are:

engine_management and component_management default to the local correlator port (15903).

iaf_management defaults to the default IAF port (16903).

The executable for the engine_management tool is located in the bin directory of the Apama
installation. Running the tool in the Apama Command Prompt or using the apama_envwrapper
(see “Setting up the environment using the Apama Command Prompt” on page 15) ensures that
the environment variables are set correctly.

Note:
Some of the functions of the engine_management tool can be performed from within EPL. For
more information, see "Using the Management interface" in Developing Apama Applications.

Synopsis

To use the correlator's management tool, run the following command:
engine_management [options]

When you run this command with the –h option, the usage message for this command is shown.

Description

Use the engine_management tool to connect to a running component. Once connected, the tool can
shut down the component or return information about the component. The engine_management
tool can connect to any of the following types of components:

Correlator

Adapter

Dashboard data server and dashboard display server (using the management port, and not
the data port)

If you want to use the dedicated dashboard_management tool, see "Managing and stopping the
data server and display server" in Building and Using Apama Dashboards.

The engine_management tool sends output to stdout.

198 Deploying and Managing Apama Applications 10.11.0

11 Correlator Utilities Reference

Options

The engine_management tool takes the following options. These options are also available for the
component_management and iaf_management tools. Keep in mind that all of these tools use different
ports (see above). To obtain all information for a particular component, specify the -a option. All
options are optional.

DescriptionOption

Displays version information for the
engine_management tool.

-V | --version

Display usage information.-h | --help

Displays information in a more verbose manner. For
example, when you specify the -v option, the

-v | --verbose

engine_management tool displays statusmessages that
indicate that it is trying to connect to the component,
has connected to the component, is disconnecting, is
disconnected, and so on. If you are having trouble
obtaining the information you want, specify the -v
option to help determine where the problem is.

Nameof the host onwhich the component is running.
The default is localhost. Non-ASCII characters are
not allowed in host names.

-n host | --hostname host

Port on which the component you want to connect
to is listening. The default is 15903.

-p port | --port port

Instructs the engine_management tool to wait for the
component to start and be in a state that is ready to

-w | --wait

receive EPL files. This option is similar to the -W
option, except that this option (the -w option)
instructs the tool to wait forever. The -W option lets
you specify how many seconds to wait. See the
information for the -W option for an example.

Instructs the engine_management tool to wait num
seconds for the component to start and be in a state

-W num | --waitFor num

that is ready to receive EPL files. If the component is
not ready to receive EPL files before the specified
number of seconds has elapsed, the
engine_management tool terminates with an exit code
of 1.

This option is most useful in scripts, when the
component you want to operate on has not yet
started. For example, suppose a script specifies the
following commands:

Deploying and Managing Apama Applications 10.11.0 199

11 Correlator Utilities Reference

DescriptionOption
correlator.exe options
engine_inject some_EPL_files

It can sometimes take a few seconds for a component
to start, and this number of seconds is not always
exactly predictable. If the engine_inject tool runs
before the correlator is ready to receive EPL files, the
engine_inject tool fails. To avoid this for a local
correlator that is listening on the default port, insert
the following command between these commands:
engine_management -W 10

This lets the engine_management tool wait for up to
10 seconds for the correlator'smanagement interface
to be available. To set an appropriate wait time for
your application, monitor your application's
performance and adjust as needed.

Displays the name of the component. For example,
when you start a correlator, you can give it a name

-N | --getname

with the -N option. This is the name that the
engine_management tool returns. If you do not assign
a name to a correlator when you start it, the default
name is correlator.

Displays the type of the component that the
engine_management tool connects to. The returned

-T | --gettype

value is one of the following: correlator or iaf. If
you see that a port is in use, you can specify this
option to determine the type of component that is
using that port.

Gets the uptime of the component in milliseconds.
This can be useful if you wish to track when and for

-M | --getuptime

how long a particular component has been running
for.

Gets the virtual memory usage of the component in
megabytes. This can be useful if youwish tomeasure

-Vm | --getvmemory

the virtual memory usage of a component, for
example, to identify possible memory leaks.

For the Java-baseddashboarddata server anddisplay
server, the virtualmemory value returned is the total
of the heap and non-heap “used” memory, as given
by the java.lang.management.MemoryMXBean class.

200 Deploying and Managing Apama Applications 10.11.0

11 Correlator Utilities Reference

DescriptionOption

Gets the physical memory usage of the component
in megabytes. This can be useful if you wish to

-Pm | --getpmemory

measure the physicalmemory usage of a component,
for example, to identify possible memory leaks.

For the Java-baseddashboarddata server anddisplay
server, the physical memory value returned is the
total of the heap andnon-heap “committed”memory,
as given by the java.lang.management.MemoryMXBean
class.

Displays the physical ID of the component. This can
be useful if you are looking at log information that
identifies components by their physical IDs.

-Y | --getphysical

Displays the logical ID of the component. This can
be useful if you are looking at log information that
identifies components by their logical IDs.

-L | --getlogical

Displays the log level of the component. The returned
value is one of the following: TRACE, DEBUG, INFO, WARN,
ERROR, CRIT, FATAL, or OFF.

-O | --getloglevel

Displays the version of the component. For example,
when the tool connects to a correlator, it displays the
version of the correlator software that is running.

-C | --getversion

Displays the product version of the component. For
example, when the tool connects to a correlator, it

-R | --getproduct

displays the version of the UNIX software that is
running.

Displays the build number of the component. This
information is helpful if you need technical support.

-B | --getbuild

It indicates the exact software contained by the
component you connected to.

Displays the build platform of the component. This
information is helpful if you need technical support.

-F | --getplatform

It indicates the set of libraries required by the
component you connected to.

Displays the process identifier of the correlator you
are connecting to. This can be useful if you are

-P | --getpid

looking at log information that identifies components
by their process identifier.

Displays the host name of the component. When
debugging connectivity issues, this option is helpful

-H | --gethostname

Deploying and Managing Apama Applications 10.11.0 201

11 Correlator Utilities Reference

DescriptionOption

for obtaining the host name of a component that is
running behind a proxy or on amultihomed system.

Displays the user name of the component. On a
multiuser machine, this is useful for determining
who owns a component.

-U | --getusername

Displays the working (current) directory of the
component. This can be helpful if a plug-in writes a
file in a component's working directory.

-D | --getdirectory

Displays the port of the component.-E | --getport

This option is for use by technical support. It displays
all the connections to the component.

-c | --getconnections

Displays all information for the component.-a | --getall

Disconnects the sender that has the physical ID you
specify. If you specify a reason, the

-xs id:id reason | --disconnectsender
id:id reason

engine_management tool sends the reason to the
correlator. The correlator then logs the message,
sends the reason to the sender, and disconnects the
sender. You can specify the component ID as
physical_ID/logical_ID.

Disconnects the receiver that has the physical ID you
specify. If you specify a reason, the

-xr id:id reason | --disconnectreceiver
id:id reason

engine_management tool sends the reason to the
correlator. The correlator then logs the message,
sends the reason to the receiver, and disconnects the
receiver. You can specify the component ID as
physical_ID/logical_ID.

This option is for use by technical support. It displays
component-specific information for the specified
category.

-I category | --getinfo category

Ping the component. This confirms that the
component process is running and acknowledging
communications.

-d | --deepping

Sets the amount of information that the component
logs in the component-specific log file. In order of

-l level | --setloglevel level

decreasing verbosity, you can specify TRACE, DEBUG,
INFO, WARN, ERROR, FATAL, CRIT, or OFF.

Note:

202 Deploying and Managing Apama Applications 10.11.0

11 Correlator Utilities Reference

DescriptionOption

Setting the log level of the main correlator log file
to anything other than INFO is discouraged. See the
description of the -v (or --loglevel) option in
“Starting the correlator” on page 116 for more
details.

If --setloglevel and --setApplicationLogFile
both use the same log file, then the log file defined
with --setApplicationLogFile is not changed.

This option sends a component-specific request. For
example: engine_management -r cpuProfile

-r type arg* | --dorequest type arg*

frequency. This returns the profiling frequency in
Hertz.

The following request types are available and apply
to the correlator only:

applicationEventLogging— Sends detailed
application information to the correlator log file.
See “Viewing garbage collection and application
events information” on page 207.

codeCoverage—Lets you checkwhich lines in an
EPLfile have been executed. See “Recording code
coverage information” on page 234.

cpuProfile— Lets you profile Apama EPL
applications. See “Using the CPU profiler” on
page 215.

eplMemoryProfileOverview—Returns
information on all the monitors in the correlator.
See “Using theEPLmemoryprofiler” onpage 208.

eplMemoryProfileMonitorInstanceDetail—
Returns monitor instance details. See “Using the
EPL memory profiler” on page 208.

eplMemoryProfileMonitorDetail—Returns
aggregated monitor instance details. See “Using
the EPL memory profiler” on page 208.

flushAllQueues— Sends a request into the
correlator that waits until every event/injection
sent or enqueued to a context before the
flushAllQueues request started has been
processed, and every event emitted as a result of
those events has been acknowledged. This may

Deploying and Managing Apama Applications 10.11.0 203

11 Correlator Utilities Reference

DescriptionOption

block if a slow receiver is connected to the
correlator. Events enqueued to a context after the
request has startedmay ormay not be processed.
Thus, if youwant to see the results of one context
enqueueing to a second, which enqueues to a
third, you should execute engine_management -r
flushAllQueues three times, to ensure it has been
processed by each context. This does not change
the behavior of the correlator (the correlator will
always flush all queues as soon as it is able to), it
just waits for events currently on input queues
to complete. In addition, flushAllQueues also
waits for any queued MemoryStore operations
to complete, such as the preparation of a new
store.

flushChannelCache—Notifies all
dynamicChainManagers again (for example, Digital
Event Services and Universal Messaging) about
all channels which contexts are subscribed to or
have sent to. This allows the manager to change
its decision about whether it needs to subscribe
to the channel (for example, when a channel has
been created on Universal Messaging after the
correlator was started). See also "Requirements
of a transport chain manager plug-in class" in
Connecting Apama Applications to External
Components.

setOOB— Enables out of band notifications for a
correlator. See Out of band connection
notifications" in Developing Apama Applications.

startInternalClock—Starts the internal clocking
of a correlatorwhichwas startedwith the -Xclock
option (see “Determining whether to disable the
correlator's internal clock” on page 137 for more
information on the -Xclock option).
startInternalClock first advances the time of all
contexts to the current wall-clock time and then
continues sending clock ticks at the configured
frequency. It will do nothing if the internal clock
is already running.

toStringQueues—Outputs the current contents
of all input and output queueswithin the running
correlator. This can be helpful for identifying slow

204 Deploying and Managing Apama Applications 10.11.0

11 Correlator Utilities Reference

DescriptionOption

senders/receivers and potential causes (such as
very large events or excessive flow).

verbosegc— Enables logging of garbage
collection events. See “Viewing garbage collection
and application events information” on page 207.

The following request type applies to the IAF only:

getEventTypes—Returns a string representation
of the event types known to the running IAF.

Certain other requests for the -r option are available
for use by Apama technical support.

See “Management requests” on page 205 for
additional options.

Instructs the component to shut down and specifies
a message that indicates the reason for termination.

-s why | --shutdown why

The component inserts the string you specify in its
log file with a CRIT flag, and then shuts down.

Management requests

The options in the tables below replicate -r (or --dorequest) request types of the same name.

The following options are specific to the correlator:

DescriptionOption

Rotates all the log files. See “Rotating all
correlator log files” on page 223.

--rotateLogs

Sets the log file for EPL log messages (global
or per-package).

--setApplicationLogFile [node=]path

For more information on how to set, get and
unset the log file, see “Setting EPL log files and
log levels dynamically” on page 219.

Sets the log level for EPL log messages (global
or per-package). Formore information on how

--setApplicationLogLevel [node=]level

to set, get and unset the log level, see “Setting
EPL log files and log levels dynamically” on
page 219.

Displays the EPL log file for this node.--getApplicationLogFile node

Deploying and Managing Apama Applications 10.11.0 205

11 Correlator Utilities Reference

DescriptionOption

Displays the EPL log level for this node.--getApplicationLogLevel node

Displays the root EPL log file.--getRootApplicationLogFile

Displays the root EPL log level.--getRootApplicationLogLevel

Unsets the EPL log file for this node.--unsetApplicationLogFile node

Unsets the EPL log level for this node.--unsetApplicationLogLevel node

Unsets the root EPL log file.--unsetRootApplicationLogFile

Unsets the root EPL log level.--unsetRootApplicationLogLevel

The following option is specific to the correlator and the IAF:

DescriptionOption

Instructs the component to close the
component-specific log file it is using and to

--setLogFile path

open a new log file with the name you specify.
This has no effect on EPL logging which uses
a separate log file. See “Rotating specified log
files” on page 224 and "IAF log file rotation" in
Connecting Apama Applications to External
Components.

The following option is specific to the IAF:

DescriptionOption

Reopens the log file of the component. See "IAF
log file rotation" in Connecting Apama
Applications to External Components.

--reopenLog

Exit values

The engine_management tool returns the following exit values:

DescriptionValue

All status requests were processed successfully.0

Indicates one of the following:1

No connection to the specified component was possible.

The connection failed.

206 Deploying and Managing Apama Applications 10.11.0

11 Correlator Utilities Reference

DescriptionValue

You specified the waitFor option and the specified time elapsed without the
component starting.

One or more errors occurred while requesting/processing status.2

Deep ping failed.3

Viewing garbage collection and application events information
The information in this topic applies to the correlator only.

You can enable logging of verbose garbage collection and application events in different ways
and at different times, as described below.

Using the engine_management tool to enable garbage collection and application
event logging for a running correlator

A handy way to view garbage collection (GC) information for a running correlator is to execute
the following command:
engine_management -r verbosegc on

This command enables logging of garbage collection events, and is particularly useful in production
environments. The additional garbage collection information goes to the correlator log, where the
garbage collection messages are logged at DEBUG level and are signposted by a prefix,
<apama.verboseGC.MonitorName>, where MonitorName indicates themonitorwhere garbage collection
occurred.

To disable logging of garbage collection information, execute the following command:
engine_management -r verbosegc off

The above commands provide an alternative to the following command, which provides a great
deal of detailed output (such as context-state changes, event triggering, spawning, routing, etc.)
in addition to garbage collection information:
engine_management -r applicationEventLogging on

Again, this output goes to the correlator log, with the messages being logged at DEBUG level. Any
additional log messages to the garbage collection messages are signposted by the prefix
<apama.applicationEvents>.

To turn this off, execute the following command:
engine_management -r applicationEventLogging off

See “Shutting down and managing components” on page 197 for more information on the -r (or
--dorequest) option of the engine_management tool.

Deploying and Managing Apama Applications 10.11.0 207

11 Correlator Utilities Reference

Enabling garbage collection and application event logging at correlator startup

You can also enable garbage collection logging at correlator startup. To do so, execute the following
command:
correlator --loglevel apama.verboseGC=DEBUG

This enables verbose garbage collection logging for all monitors.

If you only wish to enable garbage collection logging for a particular monitor, append the name
of the monitor (for example, “MyMonitor”) to apama.verboseGC as follows:
correlator --loglevel apama.verboseGC.MyMonitor=DEBUG

This enables verbose garbage collection logging only for the monitor which has the name
“MyMonitor”.

Similarly, you can also enable application event logging at start time by starting a correlator with
the following command:
correlator --loglevel apama.applicationEvents=DEBUG

Note:
If you enable application event logging at start time in this fashion, this will not enable verbose
garbage collection logging (as is the casewhen enabling it using the engine_management request).
Furthermore, it is not possible to enable application event logging on a per-monitor basis, as it
is for garbage collection logging.

See “Starting the correlator” on page 116 for more information on the --loglevel (or -v) option of
the correlator command.

Using a YAML configuration file to enable garbage collection and application event
logging at correlator startup

Another way to enable garbage collection logging or application event logging at start time is
through a YAML configuration file. For more information, see the descriptions of the following
categories in “Setting correlator and plug-in log files and log levels in a YAML configuration
file” on page 151:

apama.verboseGC

apama.verboseGC.MonitorName

apama.applicationEvents

Using the EPL memory profiler
The information in this topic applies to the correlator only.

You use the EPL memory profiler to display information on monitors and monitor instances.

208 Deploying and Managing Apama Applications 10.11.0

11 Correlator Utilities Reference

The EPLmemory profiler is invoked using the -r (or --dorequest) option of the engine_management
tool, followed by a request. Several requests are available for the EPL memory profiler, which are
described below.

Important:
Do not use these requests on latency-sensitive applications. You should use them routinely only
when developing or debugging.

When a request is issued, the correlator execution is momentarily paused to gather statistics.

The information that is returned for a request can be viewed directly (for example, in the Apama
Command Prompt), or it can be written to a comma-separated values (CSV) file which can easily
be viewed in tabular form using a tool such as Microsoft Excel.

Note:
All byte counts returned by a request are approximate values. The EPL memory profiler only
shows memory usage that can be directly attributed to individual monitor instances. There are
some parts of the correlator runtime that are not tracked, but these are typically small and fixed.
Any memory used by Java or C++ plug-ins is not tracked. The profiler is useful in indicating
the shape of the memory usage of an application - which monitors and event types are using
more memory in proportion to the rest of the EPL runtime.

The values returned for the number of bytes and the number of EPL objects also include EPL
objects that are no longer being used, and have not yet been garbage-collected. Therefore, the
values will never be precise unless you are lucky enough tomake this request just after garbage
collection has run. See also "Garbage collection" in Developing Apama Applications.

The size of event expressions, including internal data structures associatedwith them, is excluded
(and is typically small).

Each request returns the following string, in addition to the column headers described below:

"Version:version, Snapshot time:time, Component ID:id, Host:host-name, Port:port, EPL
memory:bytes"

OutputString element

Information on the correlator version.Version:version

Time at which the EPL memory profiler has taken the snapshot. This
is the date in milliseconds. The date “1446716459541”, for example,
translates into “Thu Nov 05 2015 09:40:59” in UTC time.

Snapshot time:time

Correlator component ID.Component ID:id

Name of the host on which the correlator is running.Host:host-name

Port number on the above host.Port:port

Total memory used by the EPL types in the correlator.EPL memory:bytes

Deploying and Managing Apama Applications 10.11.0 209

11 Correlator Utilities Reference

Returning information on all monitors

The following command returns information on all the monitors in the correlator:
engine_management -r eplMemoryProfileOverview

This request does not take arguments. If arguments are passed, they are ignored.

The output shows the following information in the following order:

Information shown in this columnColumn header

The name of the monitor.Monitor

The number of monitor instances.Monitor instances

The number of EPL objects created by the monitor instances (for
example, dictionaries, events, sequences, and so on).

EPL objects

The number of active listeners.Listeners

The approximate number of bytes used by EPL objects created by the
monitor instances.

Bytes

The approximate number of bytes covering miscellaneous internals
that the correlator maintains for book-keeping per monitor instance.

Overhead bytes

Returning monitor instance details

The following command returns information for all EPL types across the monitor instances of a
specific monitor in the correlator:
engine_management -r eplMemoryProfileMonitorInstanceDetail monitor-name

where monitor-name is the name of the monitor.

You can also specify all to list the instance details of all monitors. The results are returned using
the following sort order:

1. monitor name (ascending)

2. monitor instance ID (ascending)

3. EPL type (ascending)

The output shows the following information in the following order:

Information shown in this columnColumn header

The name of the monitor.Monitor

true if the monitor is persistent. false it is not persistent.Persistent

210 Deploying and Managing Apama Applications 10.11.0

11 Correlator Utilities Reference

Information shown in this columnColumn header

The type of the EPL object (see "Types" in the "EPL Reference", which
is part of Developing Apama Applications) and also any active listeners.

EPL type

The output shows one entry for each listener. For example, if there is
a monitor with one instance, and which has 2 listeners where each
listener has 10 active instances, then the output will contain 2 rows.
The number of EPL objects will then be 10 for each row.

The name of the context.Context name

The ID of the context.Context ID

The ID of the monitor instance.Monitor instance ID

The number of EPL objects created by the monitor instances (for
example, dictionaries, events, sequences, and so on).

EPL objects

The approximate number of bytes used by EPL objects created by the
monitor instances.

Bytes

The output for the context is a combination of EPL type and monitor instance. For example, if
there are 10 monitor instances where each instance has lots of objects of 3 different types, then the
output will have 30 rows.

Unlike other EPL objects which belong to a single monitor instance, some strings are shared
between several monitor instances. When a string is only used by a single monitor instance, it is
shown like any other object in the output of the request, that is, with an EPL type of “string”.
However, if the same string is shared between multiple monitor instances, then each monitor or
monitor instance that is using it will show the EPL type as “string (shared)”. This is a performance
optimization which avoids unnecessary copying. For example, a string may be shared in the
following cases:

When a monitor containing a string spawns to another monitor instance.

When a monitor has a string that it sends inside an event to a monitor in another context.

When an input event containing strings is received by multiple monitor instances which then
store these strings.

One of the implications of sharing is double-counting, for both the number of EPL objects and the
number of bytes. If multiple monitor instances refer to the same shared strings, the output of the
request will include these numbers against each monitor instance separately. However, the
duplication is eliminated when object sizes are summed up for the “EPL memory” value, so it
may end up being notably lower than the sum of the “Bytes” in each row.

See “Handling of reference types” on page 212 for more information.

Deploying and Managing Apama Applications 10.11.0 211

11 Correlator Utilities Reference

Returning aggregated monitor instance details

The following command is similar to eplMemoryProfileMonitorInstanceDetail, except that it
aggregates the object count and size from each monitor instance, displaying data per monitor
rather than per monitor instance.
engine_management -r eplMemoryProfileMonitorDetail monitor-name

where monitor-name is the name of themonitor. You can also specify all to list all monitors, sorted
by the monitor name.

The output shows the following information in the following order:

Information shown in this columnColumn header

The name of the monitor.Monitor

true if the monitor is persistent. false it is not persistent.Persistent

The type of the EPL object (see "Types" in the "EPL Reference", which
is part of Developing Apama Applications) and also any active listeners.

EPL type

The output shows one entry for each listener. For example, if there is
a monitor with one instance, and which has 2 listeners where each
listener has 10 active instances, then the output will contain 2 rows.
The number of EPL objects will then be 10 for each row.

The number of EPL objects created by the monitor instances (for
example, dictionaries, events, sequences, and so on).

EPL objects

The approximate number of bytes used by EPL objects created by the
monitor instances.

Bytes

This request also takes account of shared strings. See the description of the
eplMemoryProfileMonitorInstanceDetail request for details.

See “Handling of reference types” on page 212 for more information.

Handling of reference types

For reference types (such as sequence and dictionaries), the size is not reflected in the object
referencing it. Instead, the size is associatedwith the actual object which is referenced. For example,
if an event references/contains a sequence, the size of the sequence has no effect on the byte count
of that event.

The any type does not show up in the EPLmemory profiler output. Reference types held in an any
value show up as if theywere held in a value of their type. Boxed primitives show up as a separate
type (with the first letter in capitals) in the EPL memory profiler output; for example:
monitorName,false,..Integer,main,1,1,2,240
monitorName,false,AnyContainer,main,1,1,2,240

212 Deploying and Managing Apama Applications 10.11.0

11 Correlator Utilities Reference

In the above example, there are two AnyContainer objects, and there are two boxed primitives (the
..Integer type). For both, there are two objects in memory and are consuming 240 bytes for each
type.

Visualizing the EPL memory profiler information in Microsoft Excel

You can write the output from each of the above requests to a comma-separated values (CSV) file
which can easily be viewed in tabular form using a tool such as Microsoft Excel.

The example below shows how to visualize the output of the
eplMemoryProfileMonitorInstanceDetail request in Microsoft Excel using a pivot table.

1. Save the output of the request in a CSV file and open this file with Microsoft Excel.

2. Create a new PivotTable in Microsoft Excel, and in the resulting dialog select the range of
data for the pivot table (ideally, the information for the entire range is already provided in the
corresponding text box).

3. For this example, add the following fields to the report:

Monitor

EPL type

Context name

EPL objects

Bytes

If required, you can also add the following fields:

Monitor instance ID

Context ID

Themonitor instance ID is helpful if multiple monitor instances exist within the same context.

After you have added the fields, you can see the following in the table:

row labels which include the monitor name, the context name and the EPL type, and

columns which sum up the number of EPL objects and the approximate number of bytes.

For example:

Deploying and Managing Apama Applications 10.11.0 213

11 Correlator Utilities Reference

4. If you want to get an overview of the context level in the row labels, just drag the Context
name label above theMonitor label as shown in the example below, and then check the changes
in the report:

214 Deploying and Managing Apama Applications 10.11.0

11 Correlator Utilities Reference

5. Similarly, if you want to see how the EPL objects are distributed over the different contexts
andmonitors, justmove theEPL type to the very top of the row labels, followed by theMonitor
and Context name labels.

6. Once the data is shown as wanted in the table, you can conditionally format the table to
highlight individual columns, for example, to show high values or values that are above the
threshold or above the average. Detailed information on how to do this can be found in the
Excel help.

A basic use case is to highlight the values for the object count and byte count that are above
the average. To do so, select the Sum of EPL objects column and then choose the following
command: Conditional Formatting > Top/Bottom Rules > Above Average. You can then
select a formatting option from a dialog, for example, red text. As a result, all values in the
cells of the Sum of EPL objects column that are above the average are shown in red. If you
want, you can do the same for the Sum of Bytes column.

You can also use additional conditional formatting (for example, color scales) to highlight the
cells with values above the average.

Using the CPU profiler
The information in this topic applies to the correlator only.

Using the CPUprofiler, you can profile applicationswrittenwith EPL. Data collected in the profiler
allows you to identify possible bottlenecks in an EPL application. When testing an application, or
after you deploy an application, you might find it handy to write a script that includes obtaining
profile information. TheCPUprofiler that is described here allows you to obtain profile information
without the overhead of Software AG Designer (see also "Profiling EPL Applications" in Using
Apama with Software AG Designer).

The CPU profiler is invoked using the -r (or --dorequest) option of the engine_management tool:
engine_management -r cpuProfile argument

where argument can be one of the following:

Deploying and Managing Apama Applications 10.11.0 215

11 Correlator Utilities Reference

DescriptionArgument

Starts to capture the state of all contexts in the correlator.on

Stops capturing profile data.off

Returns the samples collected since the correlatorwas started or since the profiler
was reset. Returned data is in CSV (comma-separated values) format. A sample
is the state of the correlator at the moment the profiler collects data.

get

Returns totals for all contexts.gettotal

Clears profiling samples collected.reset

Returns the profiling frequency in Hertz.frequency

If a context is executing, it is typically in the EPL interpreter. However, it might also be doing
something such as matching events or collecting garbage. For EPL execution, there is a call stack
for each context. For the purposes of the profiler, there is one entry at the top for themonitor name,
then comes the listener/onload action, and then any actions that is calling, and so on. The only
action that the correlator is actually executing is at the bottom of the stack.

A context can be in one or two of the following states:

CPU. The correlator is executing code in this context.

Runnable. The correlator has work to do in this context, but it has been rescheduled because
the correlator is executing code in another context.

Idle. The correlator has no work to do in this context.

Non-Idle. The correlator has work to do in this context. When a context is in this state, it is
also in one other state: CPU, Plug-in, Blocked, or Runnable.

Plug-in. The correlator is executing a plug-in in this context.

Blocked. The correlator cannot make progress in this context. It is blocked because of a full
queue. The full queue might be the correlator output queue (the context is trying to emit an
event) or another context's input queue.

When the profiler takes a sample, it examines every context in the correlator. Every entry in each
context's call stack results in addition ormodification of a line in the profiler output. TheCumulative
column is incremented for all samples, and one or more of the other columns is incremented for
the lowest (deepest) call stack element according to what states the context is in.

When the correlator is not executing EPL code, there is only one element in the stack, for example,
when the correlator is processing an event.

The profiler's resolution is to a EPL action. That is, the profiler does not distinguish between lines
within an action. The line number in the output is the first line of the action that generates code.
For example, variable declarationswithout initializers, and comments do not generate code, while
statements, and declarations with initializers, do generate code. The profiler treats the body of a

216 Deploying and Managing Apama Applications 10.11.0

11 Correlator Utilities Reference

listener (the code the correlator executes when the listener fires) as an action with the name
::listenerAction::.

If youwant to profile parts of a single large action, you need to split the action intomultiple actions
in order to determine where time is spent. Remember that action calls have some cost, so that
could skew the results.

The cpuProfile get or cpuProfile gettotal request returns samples to stdout as lines of
comma-separated values.

Output is sorted by context and then by CPU time. For example:
Context ID,Context name,Location,Filename and line number,Cumulative time,
CPU time,Empty,Non-Idle,Idle,Runnable,Plug-in,Blocked,Total ticks:573
3,3,processor:processor.::listenerAction::,create-state.mon:
50,556,293,0,556,0,0,263,0

In the above output, nearly all of the time of this context (3) is spent in the listener that starts on
line 50 of create-state.mon. The time is spread between executing EPL code (293 samples) and
executing a plug-in (263 samples). Each context spent similar amounts of time executing EPL and
executing plug-ins but in different listeners (notice the different line numbers).

This output is intended to be imported to a spreadsheet, such as Microsoft Excel. If you do that,
then the values in one sample (one row) provide the following information in the following order:

Information shown in this columnColumn header

ID of the context. A context ID is not present in data returned by -r
cpuProfile gettotal.

Context ID

Name of the context. A context name is not present in data returned by
-r cpuProfile gettotal.

Context name

What the correlator is doing or where the correlator is executing code at
the moment the sample was collected. The value is one of the following:

Location

Monitor:monitor_name— The top-level entry for the monitor.

monitor_name.code_owner.action_name— For example, if monitor
monny calls an action act on event pkg.evie, this location would be
monny.pkg.evie.act. If a listener has been triggered, the action name
is always ::listenerAction::.

monitor_name.;GC—Garbage collection.

Event:event_name— Event matching or coassignment of an event of
that type.

Idle—Correlator has no work to do.

There are other possible values that you might rarely see. They are
self explanatory.

Deploying and Managing Apama Applications 10.11.0 217

11 Correlator Utilities Reference

Information shown in this columnColumn header

If the correlator is executing EPL code, indicates the filename and line
number of the beginning of the action that is executing.

Filename and line
number

Cumulative time indicates time spent in this location or in something that
this location was calling (directly or indirectly). CPU time shows time
spent in this location, not the actions it called.

Cumulative time

Number of samples inwhich the correlator is executing the location/action
and is not in a plug-in (see Plug-in later in this table). CPU time is a subset

CPU time

of Cumulative time. It does not include time spent in the location(s) called
by this location.

Number of samples in which the context was empty. An empty context
should happen very rarely. A context might be empty if there is a race
between getting the location and the state.

Empty

Number of samples in which the context was at this row's location and
not idle. Each sample in this count is also in the count for CPU time,
Runnable, Plug-in, or Blocked.

Non-Idle

Number of samples inwhich the contextwas idle. This should correspond
to a location of Idle or Only just started profiling, which means it is
an unknown state.

Idle

As with other cumulative counters, races can result in misleading results.
For example, Idle in an action, but those are best ignored and should be
small.

Number of samples in which the location was the lowest point on the call
stack and the context was runnable. Runnable means it could have made

Runnable

progress, but the scheduler determined that the correlator should run
something else instead.

When all rows contain 0 for this entry, it means that the correlator never
(or very rarely) had to re-schedule one context to run another context. A
non-zero value means this location was running for a long time, and it
was suspended so that other contexts could run.

Number of samples in which the location is executing an EPL plug-in.Plug-in

Number of samples in which the context was unable to make progress.
For example, it was trying to emit an event but the correlator output queue

Blocked

was full, or it was trying to enqueue an event to a particular context but
that context's input queue was full.

The cpuProfile request returns the following string, in addition to the column headers described
above:

"Version:version, Snapshot time:time, Profile start time:time, Component ID:id,
Host:host-name, Port:port"

218 Deploying and Managing Apama Applications 10.11.0

11 Correlator Utilities Reference

OutputString element

Information on the correlator version.Version:version

Time at which the CPUprofiler has taken the snapshot. This is the date
inmilliseconds. The date “1446716459541”, for example, translates into
“Thu Nov 05 2015 09:40:59” in UTC time.

Snapshot time:time

Time at which the CPU profiler has been started. This is the date in
milliseconds.

Profile start time:time

Correlator component ID.Component ID:id

Name of the host on which the correlator is running.Host:host-name

Port number on the above host.Port:port

Setting EPL log files and log levels dynamically
This topic describes how to configure logging for individual EPL packages. It applies to the
correlator only. For information about configuring the log level of thewhole correlator and plug-ins
running inside it, see “Setting correlator and plug-in log files and log levels in a YAML configuration
file” on page 151.

You can configure per-package logging in several ways:

Dynamically, using the following options of the engine_management tool as described in this
topic:

--setApplicationLogFile

--setApplicationLogLevel

Statically, in a YAML configuration file when starting the correlator. See “Setting EPL log files
and log levels in a YAML configuration file” on page 149 for detailed information.

Dynamically from within EPL. See "Using the Management interface" in Developing Apama
Applications for detailed information.

In EPL code, you can specify log statements as a development or debug tool. By default, log
statements that you specify in EPL send information to the correlator log file. If a log file was not
specified when the correlator was started, and you have not executed the engine_management tool
to associate a log file with the correlator, log statements send output to stdout.

In place of this default behavior, you can specify different log files for individual packages,monitors
and events. This can be helpful during development. For example, you can specify a separate log
file for a package or monitor you are implementing, and direct log output from only your
development code to that file.

Also, you can specify a particular log level for a package, monitor, or event. The settings of log
files and log levels are independent of each other. That is, you can set only a log level for a particular

Deploying and Managing Apama Applications 10.11.0 219

11 Correlator Utilities Reference

package,monitor or event, or you can set only a log level for a particular element. The topics below
provide information for managing individual log files and log levels.

See also “Rotating correlator log files” on page 222.

Note:
Regularly rotating log files and storing the old ones in a secure location may be important as
part of your personal data protection policy. For more information, see "Recommendations for
logging by Apama application code" in Developing Apama Applications.

Tree structure of packages, monitors, and events

Packages, monitors and events form a tree as illustrated in the figure below. For each node in the
tree, you can specify a log file and/or a log level. Nodes for which you do not specify log settings
inherit log settings from their parent node.

The root of the tree is the default package, which contains code that does not explicitly specify a
package with the package statement. Specified packages are intermediate nodes. Packages can
nest inside each other. Monitors and events in specified packages are leaf nodes. If you specify an
event type in a monitor, that event is a leaf node and its containing monitor is an intermediate
node.

For example, suppose you specify packageA.log as the log file for packageA. The packageA.log file
receives output from log statements in MonitorE and MonitorK. If EventF contains any action
members that specify log statements, output would go to the packageA.log file.

Now suppose that you set ERROR as the log level for the default package and you set INFO as the
log level for PackageB. For log statements in MonitorG, PackageH, and MonitorL, the correlator
compares the log statement's log level with INFO. For log statements in the rest of the tree, the
correlator compares the log statement's log level with ERROR. For details, see the table in “Managing
EPL log levels” on page 220.

Managing EPL log levels

To set the log level for a package, monitor or event, invoke the engine_management tool as follows:
engine_management --setApplicationLogLevel [node=]logLevel

220 Deploying and Managing Apama Applications 10.11.0

11 Correlator Utilities Reference

DescriptionOption

Optionally, specify the name of a package, monitor or event. If you
do not specify a node name, the tool sets the log level for the default
package.

node

Specify OFF, CRIT, FATAL, ERROR, WARN, INFO, DEBUG, or TRACE.logLevel

To obtain the log level for a particular node, invoke the tool as follows:
engine_management --getApplicationLogLevel [node]

If you do not specify a node, the tool returns the log level for the default package. To remove the
log level for a node, so that it takes on the log level of its parent node, invoke the tool as follows.
Again, if you do not specify a node, you remove the log level for the default package. The default
package then takes on the log level in effect for the correlator. The default correlator log level is
INFO.
engine_management --unsetApplicationLogLevel [node]

To manage the log level for an event that you define in a monitor, see “Managing event logging
attributes” on page 222.

After the correlator identifies the applicable log level, the log level itself determines whether the
correlator sends the log statement output to the appropriate log file. The following table indicates
which log level identifiers cause the correlator to send the log statement to the appropriate log
file.

Log statements with these
identifiers are ignored

Log statements with these identifiers
go to the appropriate log file

Log level in effect

CRIT, FATAL, ERROR, WARN, INFO,
DEBUG, TRACE

NoneOFF

FATAL, ERROR, WARN, INFO, DEBUG,
TRACE

CRITCRIT

ERROR, WARN, INFO, DEBUG, TRACECRIT, FATALFATAL

WARN, INFO, DEBUG, TRACECRIT, FATAL, ERRORERROR

INFO, DEBUG, TRACECRIT, FATAL, ERROR, WARNWARN

DEBUG, TRACECRIT, FATAL, ERROR, WARN, INFOINFO

TRACECRIT, FATAL, ERROR, WARN, INFO, DEBUGDEBUG

NoneCRIT, FATAL, ERROR, WARN, INFO, DEBUG,
TRACE

TRACE

See also "Log levels determine results of log statements" in Developing Apama Applications.

Deploying and Managing Apama Applications 10.11.0 221

11 Correlator Utilities Reference

Managing EPL log files

To specify a log file for a package, monitor or event, invoke the engine_management tool as follows:
engine_management --setApplicationLogFile [node=]logFile

DescriptionOption

Optionally, specify the name of a package, monitor or event. If you do
not specify a node name, the tool associates the log file with the default
package.

node

Specify the path of the log file. You specify the name of an EPL log file
in the same way that you specify the name of a main correlator log file
or input log file. See “Specifying log filenames” on page 128.

logFile

To obtain the path of the log file for a particular node, invoke the tool as follows:
engine_management --getApplicationLogFile [node]

If you do not specify a node, the tool returns the log file for the default package. To disassociate
a log file from its node, so that the node uses the log file of its parent node, invoke the tool as
follows. Again, if you do not specify a node, you disassociate the log file from the default package.
The correlator log file is then in effect for the default package. If a log file has not been specified
for the correlator, the default is stdout.
engine_management --unsetApplicationLogFile [node]

Managing event logging attributes

If you specify an event type in a monitor, that event does not inherit the logging configuration
from the enclosing monitor. It is expected that this will change in a future release. To explicitly
set logging attributes for an event type defined in a monitor, invoke the engine_management tool
and specify an unqualified event type name. Do not specify an enclosing scope, such as
com.apamax.myMonitor.NestedEventType. For example:
engine_management --setApplicationLogFile NestedEventType=foo.log
engine_management --setApplicationLogLevel NestedEventType=DEBUG

Rotating correlator log files
Rotating a correlator log file refers to closing a log file being used by a running correlator and
opening a new log file to be used instead from that point onwards. This lets you archive log files
and avoid log files that are too large to easily view.

Each site should decide on and implement its own correlator log rotation policy. You should
consider the following:

How often to rotate log files.

How large a correlator log file can be.

222 Deploying and Managing Apama Applications 10.11.0

11 Correlator Utilities Reference

What correlator log file naming conventions to use to organize log files.

There is a lot of useful header information in the main log file being used when the correlator
starts. If you need to provide log files to Apama technical support, you should be able to provide
the log file that was in use when the correlator started, as well as any other log files that were in
use before and when a problem occurred.

Note:
Regularly rotating log files and storing the old ones in a secure location may be important as
part of your personal data protection policy. For more information, see "Protecting and erasing
data from Apama log files" in Developing Apama Applications.

To rotate the correlator log file and also rotate any other log file the correlator is using (input log
file, EPL log files), see “Rotating all correlator log files” on page 223.

To rotate only the main correlator log file, see “Rotating specified log files” on page 224.

Note:
Some people use the term “log rolling” instead of “log rotation”.

Rotating all correlator log files
The information in this topic applies to the correlator only.

To invoke rotation of all log files that the correlator is using, you can do the following:

Invoke the engine_management tool and specify --rotateLogs.

This rotates the main correlator log file, the correlator input log file if it is being generated,
and any EPL log files that are being generated. When you invoke this management request
then the correlator closes each log file it was using.

If the log filename specification declared ${START_TIME}, ${ROTATION_TIME} and/or ${ID}, then
the correlator starts new log files with updated names according to the log filename
specification; for example, if ${ID}was specified, then the ID portion of a log filename would
be incremented by 1.

In EPL, create amonitor that uses theManagement interface EPLplug-in to trigger log rotation
on a schedule. See "Using the Management interface" in Developing Apama Applications.

On UNIX only, you can write a cron job that periodically sends a SIGHUP signal to Apama
processes.

The standard UNIX SIGHUPmechanism causes Apama processes to re-open their log files. If
the log file nameswere specifiedwith ${ROTATION_TIME} and/or ${ID}, then the re-opened files
have names that contain the rotation time and/or the incremented ID.

If you want a log filename to always be the same and so did not declare ${START_TIME},
${ROTATION_TIME} or ${ID} in the log filename specification, then the correlator starts new log files
that have the same names as the log files it closed. On Windows, this would overwrite the closed
log files, so youmustmove the log files before invoking rotation. OnUNIX, log files are appended
to if the names are the same.

Deploying and Managing Apama Applications 10.11.0 223

11 Correlator Utilities Reference

Rotating specified log files
Run one of the following utilities to rotate a particular log file. On Windows, set up scheduled
tasks that run the utilities. On UNIX, write a cron job that periodically runs the utilities. The
behavior is the same on both Windows and UNIX, except as noted.

The following command (which is available for both the correlator and the IAF) instructs the
component to close its component-specific log file and start using a new log file that has the
name you specify. If the name of the file contains blanks, be sure enclose it in quotationmarks.
engine_management --setLogFile log-filename

The following command (which is only available for the correlator) instructs the correlator to
use the specified file as the log file for the specified node, which can be a package, monitor, or
event. See also “Setting EPL log files and log levels dynamically” on page 219.
engine_management --setApplicationLogFile [node=]log-filename

If you use separate log files for particular packages, monitors, or events you might want to
rotate those log files at the same time that you rotate the main correlator log file. This keeps
yourApama log files in syncwith each other. See “Rotating all correlator log files” on page 223.

On Windows, when you rotate a log file, you must ensure that the new log filename is different
from the name of the log file that was in use. Apama takes care of this for you if you specify
${ROTATION_TIME} and/or ${ID} in the log-filename specification. If the name is not different, the
old file is overwritten. If youwant to use the same log filename, then youmustmove the file before
you rotate it.

On UNIX, a log file is never overwritten. If you rotate a log file and specify the same name, then
Apama appends messages to the content already there.

Apama does not support automatic log file rotation based on log file size.

The only way to rotate the correlator input log is to rotate all correlator log files. See “Rotating all
correlator log files” on page 223.

Using the command-line debugger

The engine_debug tool lets you control execution of EPL code in the correlator and inspect correlator
state. This tool is a correlator client that runs a single command from the command line. It is not
an interactive command-line debugger. The executable for this tool is located in the bin directory
of the Apama installation.

In general, this tool is expected to be most useful when you are ready to deploy your application
or after deployment. During development, the interactive debugger in Software AGDesigner will
probably be most useful to you.

Before you run the engine_debug tool, specify the -g option when you start the correlator.
Specification of this option disables some correlator optimizations. If you run the engine_debug
tool and you did not specify the -g option when you started the correlator, the optimizations
hinder the debugging process. For example, the correlatormight simultaneously executemultiple

224 Deploying and Managing Apama Applications 10.11.0

11 Correlator Utilities Reference

statements over multiple lines even if you are using debugger commands to step through the
program line by line.

Synopsis

To debug applications on a running correlator, run the following command:
engine_debug [[global-options] [command [options]] ...]

To obtain a usage message, run the command with the help option.

Description

Debugging a running correlator has some effect on the other programs that connect to that
correlator. While you pause a correlator, the expected behavior of connected components is as
follows:

Sending events to the correlator continues to put events on the input queue of each public
context. However, since the input queues are not being drained, if an input queue fills up, this
will block senders, including the engine_send tool and adapters.

The correlator sends out any events on its output queue. When the output queue is empty,
receivers no longer receive events; no contexts are sending events.

Other inspections of the correlator proceed as normal. For example, engine_watch,
engine_management, and profiling data.

You can shut down the correlator.

You can inject monitors while the correlator is stopped. They will not run any of the onload()
or similar code until the correlator resumes, but the inject call should succeed.

Java applications continue to run completely independently ofwhether the correlator is stopped.

All other requests block until the correlator resumes processing. This includes dumping
correlator state, loading, and changing debug or profiling state.

The engine_debug tool is stateless. Consequently, during debugging, you can have multiple
concurrent connections to the same correlator.

Debug commands

The ordering of arguments to engine_debug commands works as follows:

All arguments before the first command apply to all commands in that command line. This is
useful for setting the host and port if you are not using the local defaults.

All arguments following a command apply to only that command and they override any
applicable arguments specified before the first command.

The arguments to a particular command can be in any order

Deploying and Managing Apama Applications 10.11.0 225

11 Correlator Utilities Reference

When there aremultiple commands in a line, the debugger executes them in the order inwhich
they are specified. Execution continues until either all complete, or one fails, which prevents
execution of any subsequent commands.

The engine_debug tool takes the following commands as options:

DescriptionCommandAbbreviation

Displays a usage message. To
obtain help for a particular

help [command]h [command]

engine_debug command, specify
that command.

Displays the current debugger
state, and position if stopped.

statusp

Lists injected files and their
hashes.

hashesha

Steps into an action.stepintosi

Steps out of an action.stepoutsot

Steps over an instruction.stepoversov

Begins processing instructions.runr

Stops processing instructions.stopb

Waits for the correlator to stop
processing instructions. Specify

wait [--timeout timeout]w [-to int]

an integer that indicates the
number of seconds to wait. The
debugger waits forever if you do
not specify a timeout. See “The
wait command” on page 232 for
more information.

Displays current stack
information for all contexts. The

stack [--context contextid] | [--frame
frameid]

s

output includes the frame ID
associated with each variable. To
display stack information for only
a particular context, specify the
--context argument. To display
stack information for only a
particular frame, specify the
--frame argument.

226 Deploying and Managing Apama Applications 10.11.0

11 Correlator Utilities Reference

DescriptionCommandAbbreviation

Displays the value of one ormore
variables. Specify a monitor

inspect
--instance monitorinstance |
--instance monitorinstance
--frame frameid |
--instance monitorinstance
--variable variablename |
--instance monitorinstance
--frame frameid
--variable variablename |
--frame frameid |
--frame frameid
--variable variablename

i

instance and/or a frame ID and/or
a variable name to display a list
of variables in that monitor or in
a particular monitor frame, or to
display the value of a particular
variable. Obtainmonitor instance
IDs from engine_inspect output
or correlator log statements.
Obtain frame IDs from
engine_inspect stack output.

Displays information about all
contexts in the correlator or about

context [--context contextid]c

only the context you specify.
Information displayed includes
context name, context ID,monitor
instances in the context, and
monitor instance IDs.

Enables debugging. Youmust run
this in order to do anydebugging.

enablee

Disables debugging. You must
run this to disable debugging. If

disabled

youdonot disable debugging, the
correlator runs more slowly and
continues to stop when it hits
breakpoints.

Causes the debugger to pause if
it encounters an error.

breakonerror enableboe

Causes the debugger to continue
processing if it encounters an
error.

breakonerror disableboeoff

Adds a breakpoint at the
beginning of the specified line. If

breakpoint add
[--breakonce] --file filename
 --line linenumber |
[--breakonce] --owner ownername
 --action actionname
 --line linenumber

ba

you do not specify --breakonce,
the correlator always pauses at
this point when debugging is
enabled. You must specify the
line number where you want the
breakpoint. As usual, this is the
absolute offset from the
beginning of the file. You must

Deploying and Managing Apama Applications 10.11.0 227

11 Correlator Utilities Reference

DescriptionCommandAbbreviation

specify either the name of the file
that contains the breakpoint or
the owner and action name that
contains the breakpoint. When
the owner is a monitor instance,
specify
package_name.monitor_name or
just monitor_name if there is no
package.

Removes a breakpoint. Specify
one of the following:

breakpoint delete
--file filename
--line linenumber |
--owner ownername
--action actionname
--line linenumber |
--breakpoint breakpointid

bd

File name and line number.

Owner name, action name
and line number. When the
owner is a monitor instance,
specify
package_name.monitor_name
or just monitor_name if there
is no package.

Breakpoint ID. You can obtain
a breakpoint ID by executing
the breakpoint list
command.

For each breakpoint in the
correlator, this displays the
following:

breakpoint listbls

Breakpoint ID.

Name of file that contains the
breakpoint.

Name of the action that
contains the breakpoint.

Name of the owner of the
breakpoint.

Number of the line that the
breakpoint is on.

The breakpoint owner is the name
of the monitor that contains the
breakpoint or the name of the
event typedefinition that contains

228 Deploying and Managing Apama Applications 10.11.0

11 Correlator Utilities Reference

DescriptionCommandAbbreviation

the breakpoint. If the breakpoint
is in an event type definition, the
definition must specify an action
and processing must create a
closure between an event instance
and an action call.

For information about closures,
see "Using action type variables"
in Developing Apama Applications.

Exit status

The engine_debug tool returns the following exit values:

DescriptionValue

Success. All requests were processed successfully.0

Failure. The correlator could not parse the command line, or an exception occurred,
such as losing a connection or trying to use a non-existent ID.

1

Obtaining online help for the command-line debugger
The command-line debugger provides online help. To obtain general information, enter the
following:
engine_debug help

To get help for a particular command, specify that command after the help keyword.

For example, if you want to find out what the status command does, enter the following:
engine_debug help status

Or to findoutwhich options you can specifywith the breakpoint add command, enter the following:
engine_debug help breakpoint add

Enabling and disabling debugging in the correlator
To use the debugger, you must enable debugging in the correlator. To enable debugging locally
on the default port, enter the following:
engine_debug enable

Deploying and Managing Apama Applications 10.11.0 229

11 Correlator Utilities Reference

When you are done debugging, you should disable debugging in the correlator. If you do not, the
correlator runsmore slowly and continues to pausewhen it hits a breakpoint. To disable debugging
in the local correlator on the default port, enter the following:
engine_debug disable

You can also enable and disable the debugger in a remote correlator by specifying the host name
and the port number. For example:
engine_debug enable --host foo.bar.com --port 1234

engine_debug disable --host foo.bar.com --port 1234

Working with breakpoints using the command-line debugger
You can use the command-line debugger to add, list and remove breakpoints.

Adding breakpoints

There are two ways to add a breakpoint. If you know the EPL file name and the line number, you
can enter something like the following:
engine_debug breakpoint add --file filename.mon --line 27

When you specify a file name, you must specify the exact path you specified when you injected
the monitor. For example, suppose you ran the following:
engine_inject foo.mon

You can then specify “foo.mon” for the file name. Now suppose you ran this:
engine_inject c:\foo\bar\baz.mon

You must then specify “c:\foo\bar\baz.mon” for the file name.

If you prefer to use the monitor and action name, along with the line number, enter something
like this:
engine_debug breakpoint add --monitor package.monitor --action actionName

--line 27

The debugger output indicates the line number where it added the breakpoint. In some cases, the
debugger does not set the breakpoint on the line you specified, for example, when a statement
runs over multiple lines.

Listing breakpoints

To obtain a list of the breakpoints currently set in the correlator, enter the following:
engine_debug breakpoint list

230 Deploying and Managing Apama Applications 10.11.0

11 Correlator Utilities Reference

Removing breakpoints

To remove a breakpoint by specifying the file name and the line number, enter something like the
following:
engine_debug breakpoint delete --file filename.mon --line 27

To use the monitor name to remove a breakpoint, enter something like this:
engine_debug breakpoint delete --monitor package.monitor --action actionName

--line 27

To delete a breakpoint by using the breakpoint ID that appears in the breakpoint list returned by
the debugger, enter something like this:
engine_debug breakpoint delete --breakpoint 1

Controlling execution with the command-line debugger
When the correlator stops at a breakpoint, you can use the debugger to step over the next line:
engine_debug stepover

However, youmost likelywant to step over the line, confirm that the correlator stopped, and learn
about the current state of the debugger. You can do this by entering multiple commands in one
line. For example:
engine_debug stepover wait --timeout 10 status

This is the equivalent of the following three commands:

engine_debug stepover—Causes the debugger to step over one line of EPL.

engine_debug wait --timeout 10—Causes the debugger to pause until either a breakpoint
is hit, or ten seconds pass.

engine_debug status—Displays the debugger's current status.

Following are more examples of entering multiple commands in one line.
engine_debug stepinto wait --timeout 10 status

engine_debug stepout wait --timeout 10 status

To instruct the correlator to continue executing EPL code, run the following command:
engine_debug run

You use the engine_debug run command regardless of how the correlator was stopped — a
breakpoint was reached, a step operation, a wait command.

To stop the correlator, enter the following command:
engine_debug stop

Deploying and Managing Apama Applications 10.11.0 231

11 Correlator Utilities Reference

The wait command

The wait command connects to the correlator to determine if the correlator has suspended
processing. If the correlator is in suspend mode, the wait command returns immediately and
debugging continues. If the correlator is not in suspendmode, the wait command remains connected
to the correlator. The wait command returnswhen something else suspends the correlator orwhen
the timeout is reached. Operations that can suspend the correlator include reaching a breakpoint,
stepping into or over a line, or some other client explicitly stopping the correlator. If the wait
command reaches the timeout, it suspends the correlator before it returns.

Stepping can take a variable amount of time. For example, suppose the debugger stops at the end
of a listener and you execute a step command. The debugger is now outside the flow of execution
until another event comes in. The time that the debugger has to wait for the step to finish is
dependent upon when the next matching event arrives.

Command shortcuts for the command-line debugger
Putting multiple commands in the same command line can get verbose. For example, suppose
you want to step out of an action on a remote machine. You would need to enter something like
this:
engine_debug stepout --host foo.bar.com --port 1234 wait --timeout 10

--host foo.bar.com --port 1234 status --host foo.bar.com --port 1234

The command-line debugger provides easier ways to invoke this.

Any arguments that you specify before the first debugging command apply to the entire
command line.

All individual commands and their arguments have abbreviations.

For example, the following command does the same thing as the previous verbose command:
engine_debug -h foo.bar.com -p 1234 sot w -to 10 p

The following table lists the abbreviations you can use for command arguments. For abbreviations
of commands, see “Debug commands” on page 225.

AbbreviationCommand

-a--action

-bo--breakonce

-bp--breakpoint

-c--context

-f--file

-fm--frame

232 Deploying and Managing Apama Applications 10.11.0

11 Correlator Utilities Reference

AbbreviationCommand

-n--host

-mt--instance

-l--line

-o--owner

-p--port

-R--raw

-to--timeout

-u--utf8

-v--variable

-V--verbose

Examining the stack with the command-line debugger
When the correlator stops at a breakpoint, you can display the stackwith the following command:
engine_debug stack

The results of this command show the number of the frame that contains each variable. In the
following example, the frame number is the number before the right parenthesis:
0)

C:/dev/adbc/apama-test/system/correlator-debug/testcases/
correctness/Corr_Debug_cor_002/Input/test.mon:35

foo.baz.test.runtest[setupctx(2)/foo.baz.test(3)]
1)

C:/dev/adbc/apama-test/system/correlator-debug/testcases/
correctness/Corr_Debug_cor_002/Input/test.mon:19

foo.baz.test.::listenerAction::[setupctx(2)/foo.baz.test(3)]

You can use these frame numbers (frame IDs) as arguments to the engine_debug inspect command.

To see just the contents of the top frame, run this command:
engine_debug stack --frame 0

Displaying variables with the command-line debugger
To list all variables in the current stack frame, enter the following:
engine_debug inspect

To obtain the value for a variable in the current stack frame, enter the following:

Deploying and Managing Apama Applications 10.11.0 233

11 Correlator Utilities Reference

engine_debug inspect -variable variableName

To obtain the value for a variable further down the stack, run the stack command to determine
the frame number and then enter the following:
engine_debug inspect -variable variableName -frame frameid

Generating code coverage information about EPL files

The correlator can generate “code coverage” information about EPL files indicating which lines
have been executed. This is useful for measuring the quality of test cases, discovering lines of EPL
codewhich are not being exercised by any tests, aswell as for helping diagnose bugs or understand
complex interactions in the EPL.

Recording code coverage information
The recording of code coverage information can be enabled and written (dumped) to disk using
management requests, or using an environment variable that automatically writes out a coverage
file when the correlator is shut down or when code is deleted from the correlator.

The epl_coverage tool can then be used tomerge together the coverage files that have beenproduced
by the correlator and produce summary statistics about how much of each source file is covered,
as well as an HTML report where each source line is shown annotated with different colors to
indicate which lines are not being covered. For detailed information, see “Creating code coverage
reports” on page 236.

Enabling the code coverage feature will disable the compiled runtime, and it will also enable the
debugger (“Using the command-line debugger ” on page 224) and CPU profiler (see “Using the
CPU profiler” on page 215).

Dumping code coverage information using management requests

One way to enable and dump code coverage information is via the -r codeCoverage option of the
engine_management tool (see also “Shutting down and managing components” on page 197). You
can send the following requests:

DescriptionRequest

Enables the recording of code coverage information. This also
disables optimizations for any subsequently injected files,

codeCoverage on

disables use of the compiled runtime and enables the EPL
debugger. Code coveragemust be enabled before injecting EPL
to record code coverage information. EPL injected before code
coverage is enabled will be omitted from the coverage report
(unless using the environment variable as described below).

Note:
This option is not suitable for production use.

234 Deploying and Managing Apama Applications 10.11.0

11 Correlator Utilities Reference

DescriptionRequest

Disables the recording of code coverage information. This also
removes any in-memory coverage information stored so far,

codeCoverage off

but does not reset any features changed by codeCoverage on
such as optimizations and possibly the compiled runtime.

Returns the code coverage information either for all EPL files
in the correlator or just for the (optional) source EPL filename

codeCoverage dump [filename]

provided. The output format is suitable for input to the
epl_coverage tool, and is encoded as a UTF-8 string.

Automatically writing code coverage information using an environment variable

It is also possible to start the correlator in a mode where it automatically writes code coverage
information to disk when it is shut down or is given an engine_delete --all request (see also
“Deleting code from a correlator” on page 168).

This mode is enabled by setting the AP_EPL_COVERAGE_FILE environment variable to the path of a
file to which coverage information is to be written. If you do this, the correlator starts in code
coverage collectionmodewithdebugging enabled, the compiled runtimedisabled andoptimizations
disabled. On shutdown, it writes the code coverage information to the path specified in the
environment variable.

The environment variable can contain replacement tokens in the same format as the correlator log
file (see “Specifying log filenames” on page 128). Given that the coverage file is not subject to log
rotation, only the ${PID} and ${START_TIME} tags are appropriate.

Example (for Windows):
set AP_EPL_COVERAGE_FILE=c:\mypath\mycorrelator.${PID}.eplcoverage
start correlator
(run application, etc.)
engine_management --shutdown "Clean correlator shutdown from command line"

Of course, the correlator must be cleanly shut down for this to work, as no coverage information
is written if the process is terminated without warning. If a dump is triggered by engine_delete
--all and more EPL is then injected before the correlator is shut down, all coverage information
written by engine_delete is overwritten by later coverage information and is thus lost. However,
if engine_delete is immediately followed by a clean shutdown, there will be no new coverage
information when the shutdown occurs. Therefore, the file will not be overwritten.

Code coverage and deletion of monitors

The code coverage information for transient monitors, monitors which have died, and monitors
which were deleted by name is retained. This enables you to later call codeCoverage dump to get
the coverage information.

An engine_delete --all, however, resets all the coverage information. When you set the
AP_EPL_COVERAGE_FILE environment variable, the coverage information is automatically dumped
during an engine_delete --all.

Deploying and Managing Apama Applications 10.11.0 235

11 Correlator Utilities Reference

If you delete a monitor and then reinject the EPL file, then all coverage information for that EPL
file is reset for the newly injected file.

Common usage patterns

Enable code coverage, inject your application and send typical events into the correlator. Then
dump a coverage report. This gives you a complete list of code covered by initialization and
events being processed in the system.

Set the AP_EPL_COVERAGE_FILE environment variable before running your test suite. Then collate
all the coverage reports. This lets you check that your tests exercise all the code paths.

Enable code coverage and inject your application. Then disable and enable code coverage (to
clear the reporting data). Then send a single event through and dump a coverage report. This
lets you see what code is run by a single event.

Creating code coverage reports
The epl_coverage tool takes one or more coverage files that have been output by the correlator's
code coverage feature, merges them together to create a new combined .eplcoverage file (which
can be used as input for the tool), and creates a CSV, XML and HTML report of the coverage of
each source EPL file. The executable for this tool is located in the bin directory of the Apama
installation.

Synopsis

To create code coverage reports, run the following command:
epl_coverage [options] file1.eplcoverage [file2.eplcoverage ...]

Example (for Windows):
epl_coverage --output c:\mycoverage --source "%APAMA_WORK%\projects\myproject"
--exclude "**/Apama/**/*.mon" *.eplcoverage

When you run this command with the –h option, the usage message for this command is shown.

Description

The --output argument specifies the directory into which the tool writes the output files. If not
specified, the current directory is used.

The output includes the following files:

merged.eplcoverage. A single file containing the combined EPL code coverage information
from all the input files. This can be used as input to another invocation of the epl_coverage
tool.

coverage_summary.csv. A summary of the percentage of lines and instructions covered in
each source file in the standard “comma-separated values” text format (in the operating system's
local character encoding). This file may be useful for reviewing coverage information in a

236 Deploying and Managing Apama Applications 10.11.0

11 Correlator Utilities Reference

spreadsheet, or as input for an automated tool that records coverage information as part of a
continuous integration build/test system. The file starts with a header line beginning with the
hash (#) character which identifies the columns used in the rest of the file. It is recommended
that any tool that reads this file should use the header line to identify the contents of each
column; this is helpful in case columns are added or reordered in a later release.

epl_coverage.xml. An XML representation of the combined code coverage information for all
the input files. This file is written in a widely-used coverage file format that can be read by
many third-party tools (the file format that was popularized by Cobertura, which is a code
coverage utility for Java; see also https://cobertura.github.io/cobertura/).

index.html (and associated .css and .html files). AnHTML summary of coverage information,
including annotated copies of the source files showing which executable lines are covered.

The HTML report needs to be able to locate the original EPL source files in order to show an
annotated view of them. In most cases, the absolute path of each file is provided when the source
file is injected and these files will be found automatically by the tool, provided they were not
deleted since the injection. In some cases, however, the full path will not be available, for example,
if a source file was injected as part of a CDP (correlator deployment package) file. In such cases,
you should use the --source option to specify the directories containing the source files. It will
recursively search these directories for file names that match the ones which were injected. You
should avoid having multiple files with the same names in different directories, else the --source
searching may find the wrong file.

You can apply filters that remove information about unwanted EPL files from all of the output
files (including merged.eplcoverage). The --include and --exclude options can each be specified
multiple times. They specify file patterns to include or exclude (for example “**/foo/Bar*.mon”).
These patterns use the following characters:

forward slashes (/) to indicate directory separators (on all platforms),

a single asterisk (*) to indicate any number of non-directory separator characters,

two asterisks (**) to indicate any number of characters potentially including directory separators,
and

a question mark (?) to indicate a single character.

If no --include argument is provided, the default is to include all file paths, except those that are
removed by --exclude arguments. These patterns are matched against the absolute paths of the
files that were injected into the correlator, and are not affected by the --source argument.

When the number of coverage input files is large, you can avoid an extremely long command line
(which some operating systems do not support) by putting the coverage file list into a
newline-delimited UTF-8 text file and providing the path to that file on the command line instead,
prefixed with an @ symbol. For example:
epl_coverage "@c:\mypath\coverage_file_list.txt"

Options

The epl_coverage tool takes the following options:

Deploying and Managing Apama Applications 10.11.0 237

11 Correlator Utilities Reference

https://cobertura.github.io/cobertura/

DescriptionOption

Displays usage information.-h | --help

Displays version information for the epl_coverage tool.-V | --version

Specifies the directory intowhich the toolwrites the output
files. If not specified, the current directory is used.

-o dir | --output dir

Filtering option which specifies the EPL source files to
include (defaults to **). This option can be specified
multiple times.

-i pattern | --include pattern

Filtering option which specifies the EPL source files to
exclude (for example, “**/foo/Bar*.mon”). This option can
be specified multiple times.

-x pattern | --exclude pattern

HTML report optionwhich specifies the search directories
for locating any source files that were injected without

-s dir | --source dir

specifying an absolute path. This option can be specified
multiple times.

If supplied, this option is also used by the XML report for
normalizing/fixing uppaths to source files, allowing them
to be located by third-party tools.

HTML report option which specifies the title to write into
the HTML file.

--title str

Interpreting the code coverage reports
Many lines in an EPL file do not contain any executable instructions, for example, comments, event
definitions (except where they contain actions) and event expressions used to declare listeners.
These lines are not marked up by the epl_coverage tool.

Lines that do contain executable code may have one or more executable elements (instructions),
and the epl_coverage tool reportswhether all or only some of those instructions have been executed.
It may therefore be useful to split complex EPL constructs (such as multi-part if statements) over
multiple lines as much as possible to make the output clearer as to what is covered. The exact
details of how many instructions are on any given line is subject to change and therefore not
documented, but information onpartial coveragemay sometimes beuseful for identifying branching
constructs where not all branches are covered.

Tip:
Every executable line that is not fully covered has the (!) string in the margin, which makes it
possible to jump backwards and forwards between these lines using the Find functionality
provided by most web browsers.

The purpose of the coverage information is to provide insight into areas of user EPL that are being
missed by test cases. Although it is worth aiming for a high percentage of lines and instructions
being covered, it is not always possible to write tests that cover every line. However, as long as

238 Deploying and Managing Apama Applications 10.11.0

11 Correlator Utilities Reference

someone looks at the lines that were missed, there is no need to worry about having less than 100
percent coverage.

Similarly, the information about partial line coverage can often be useful, particularly for control
constructs where it might indicate a missed branch in an if statement, or a while loop condition
that always returns false. But it will not always be possible for users to get 100 percent coverage
of every line, or (since the internal instructions used by EPL are not documented and may be
changed at any time between versions) even to understand the reason why a line was not fully
covered in some cases. Software AG support cannot provide explanations for why a given line of
EPL was only partly covered.

Examples

The following code snippets illustrate some common cases.

The following line is partially but not fully covered if a() returns true every time this line is
executed, since the instructions for the value of b() are never checked in this case.
if a() or b() {

The following line is only partially covered unless the test is run with DEBUG logging enabled,
since expressions in log statements are only evaluated if the log level is specified.
log "Hello world" at DEBUG;

Another common example is a stream query that uses an aggregate where nothing drops out
of the window while the test is executed. For example, if less than 100 seconds pass after the
first E() event, the following line is only partially covered:
from a in all E() within 100.0 select com.apama.aggregates.sum(a.val) as i

If the test does not have anything drop out of the withinwindow, then you will get amber
coverage, as no code to remove a value from the set being aggregated over (by sum) is being
executed. This may happen if no events go through this query, or if only less than 20 seconds
pass since the first event.

Any code in an onunload action will never be covered at all, since it is only executed with
engine_delete, which also removes the coverage information.

Using EPL code coverage with PySys tests
TheApama installation includes the Python-based PySys test framework andApamahelper classes
for PySys.

The Apama helper classes for PySys can enable code coverage recording, and automatically run
a coverage report from the .eplcoverage files at the end of test execution, which will help users
to create better test cases and to find code paths in their EPL applications that do not have adequate
test coverage. To use this feature, start your tests with -XcodeCoverage, for example:
pysys run -XcodeCoverage

For an example, see the README.txt file in the samples/pysys directory of your Apama installation.

Deploying and Managing Apama Applications 10.11.0 239

11 Correlator Utilities Reference

Replaying an input log to diagnose problems

When you start the correlator, you can specify that you want it to copy all incoming messages to
a special file, called an input log. An input log is useful if there is a problemwith either the correlator
process or an application running on the correlator. If there is a problem, you can reproduce
correlator behavior by replaying the messages captured in the input log. Incoming messages
include the following:

Events

EPL

Java

Correlator deployment packages (CDPs)

Connection, deletion, and disconnection requests

If you are unable to diagnose the problem, you can provide the input log to Software AG Global
Support. A support engineer can then feed your input log into a new correlator to try to diagnose
the problem.

The information in the following topics describes how to generate and use an input log. See also
“Examples for specifying log filenames” on page 130.

Regularly rotating log files and storing the old ones in a secure location may be important as part
of your personal data protection policy. For more information, see "Handling personal data "at
rest" in the correlator input log file" in Developing Apama Applications.

Creating an input log file
To create an input log, specify the following option when you start a correlator:
--inputLog filename[${START_TIME}][${ROTATION_TIME}][${ID}][${PID}].log

You specify the name of an input log file in the same way that you specify the name of a main
correlator log file. See “Specifying log filenames” on page 128.

In addition, specify any other options that youwould normally specifywhen you start the correlator.

Rotating an input log file
While the input log can get rather large, most file systems can handle large input logs with no
special action on your part. However, you might encounter one of the following situations:

You want to archive your input logs.

Your operating system enforces a limit on file size.

The input log has become too large.

240 Deploying and Managing Apama Applications 10.11.0

11 Correlator Utilities Reference

In these situations, you can rotate the input log. Rotating the input log means that the correlator
closes the current input log and starts sending messages to a new input log.

You should rotate the input log only when you have a specific need to do so. You do not want to
have thousands of input logs in a directory since file systems do not handle this efficiently.

If you plan to rotate input logs, specify the ${ID} tag when you specify the --inputLog option
when you start the correlator. For examples, see “Examples for specifying log filenames” on
page 130.

To rotate the input log, invoke the engine_management tool and specify the --rotateLogs option.
The name of the new input log is the same as the name of the closed input log except that the
correlator increments the ID portion of the input log filename by 1. See “Rotating all correlator
log files” on page 223.

Performance when generating an input log
When the file system that hosts the input log is fast, generating an input log should not have any
noticeable effect on correlator performance in most cases. It is possible to use the input log with
connectivity plug-ins (see "UsingConnectivity Plug-ins" inConnectingApamaApplications to External
Components), but the performance impact will be significant for chains using the apama.eventMap
host plug-in and any chains that are using small batches of events. Consequently, the
recommendation is to always run correlators that send information to input logs. Just make sure
you have enough disk space for the input log. You need to monitor repeated use to determine
how much space is required.

With the correlator generating an input log, you can implement your application so that it sends
aminimumamount of information to themain correlator log file. You do not need to log application
information because you can always recover application information from the input log.
Implementing an application that sends large amounts of application information to the main
correlator log file can negatively impact performance.

Reproducing correlator behavior from an input log
To use an input log to reproduce correlator behavior, you must do the following:

1. Run the extract_replay_log Python utility.

2. Run the replay_execute script that the extract_replay_log utility generates.

Invoking the extract script

The extract_replay_log.py script is in the utilitiesdirectory in yourApama installation directory.
You must have at least Python 2.4 to run this utility. You can download Python from http://
www.python.org. If you are using Linux, you probably already have Python installed.

The format for running the extract_replay_log utility is as follows:
extract_replay_log.py [options] inputLogFile

Deploying and Managing Apama Applications 10.11.0 241

11 Correlator Utilities Reference

http://www.python.org
http://www.python.org

Replace inputLogFilewith the path for the input log you want to extract. If you specify the first
input log in a series, the subsequent input logs must be in the same directory as the first input log.

The options you can specify are as follows:

DescriptionOption

Specifies the directory that you want to contain the output
from the extract_replay_log utility. The default is the
current directory.

-o=dir | --output=dir

Specifies the language of the script that the
extract_replay_log utility generates. Replace langwith
one of the following:

-l=lang | --lang=lang

shell to generate the replay_execute.sh UNIX shell
script.

batch to generate the replay_execute.batWindows
batch file. This is the default.

Specifies that the script that extract_replay_log generates
should include the command line for starting a correlator.

-c | --correlator

When you run the generated script, the correlator will be
started with all of the command-line options needed to
replay the input log.

Specifies a path to a license file for starting a correlator.--licence

Specifies a port on which to start the correlator.--port

Indicates that you want verbose utility output.-v | --verbose

Displays help for the utility.-h | --help

The extract_replay_log utility generates the following:

A script whose execution duplicates the correlator activity captured by the input log.

Event files where each one is prefixed with “replay_”.

EPL and possibly JAR and correlator deployment package (CDP) files where each one is
prefixed with “replay_”.

Invoking the replay script

Before you run the replay script, you can optionally edit the generated event files, EPL files, or
JAR files to slightly modify the behavior you are about to replay. For example, you might add
logging for debugging purposes. However, there are restrictions on what you can change:

You cannot insert any of the following:

calls to integer.getUnique(), rand() or incrementCounter

242 Deploying and Managing Apama Applications 10.11.0

11 Correlator Utilities Reference

send, emit, spawn...to, or enqueue...to statements

context constructors

You cannot change the number of parseable events sent to the correlator. For example, you
cannot attach a dashboard component to the input log because the dashboard components
work by sending events to the correlator.

You cannot change the number of event definitions and monitors injected.

Making any of these changes can potentially alter the behavior of later operations.

If you are using the MemoryStore and the correlator reads or writes to a store on disk then to
accurately play back execution you must have a copy of that store as it was before the correlator
modified it. Also, if you are using the MemoryStore frommultiple contexts it is unlikely to replay
correctly because the order of interaction with the MemoryStore is not in the input log.

After you have optionally edited the generated files, you are ready to invoke the replay_execute
script. The replay_execute script tries to replay the contents of the input log into the correlator
running on the default port.

While the correlator exactly reproduces the activity captured in the input log, it can execute the
same activity faster during replay than when it was executed originally. This is because the
correlator already has all the events it needs to process; it does not have to wait for any events.
Replaying a log is typically significantly faster than original correlator activity. It is possible that
you will find that the time it takes to replay a log is not much less than the time it took for the
original activity. In this case, it is possible you were running too close to capacity during the
original run. If that is the case, you risk not being able to keep up with the event flow during
regular correlator execution. If you anticipate higher event flow then you should investigate
optimizing your application or running it on a faster computer.

Event file format

You can use the engine_send tool to stream a sequence of events through the correlator. The
engine_send tool accepts input from one or more data files to support tests or simulations, or from
stdin to allow dynamic generation of events. In the latter case, you can generate events from user
input or by piping output from an event generation program to engine_send. In all cases,
engine_send requires event data formatted as described in this section. For detailed information
on the engine_send tool, see “Sending events to correlators” on page 174.

The engine_receive tool outputs events in this same file format. This means you can use events
generated by the engine_receive tool as input to a second correlator that is executing the
engine_send tool. For detailed information on the engine_receive tool, see “Receiving events from
correlators” on page 176.

Event representation
A single event is identified by the event type name and the values of all fields as defined by that
type. Event type names must be fully-qualified by prefixing the package name into which the
corresponding event type was injected, unless the event was injected into the default package.

Deploying and Managing Apama Applications 10.11.0 243

11 Correlator Utilities Reference

The specific EPL types and how theymap from the event representation are shown in an example
in “Event types” on page 246, but there are certain basic types that can be included as shown in
the following example:
// integer
MyEvent(-1,1)

// decimal and float
MyEvent(-2.0,2.0)

// decimal and float in exponential form (0.02,200)
MyEvent(-2.0e-2,2.0e2)

// string
MyEvent("three")

// boolean
MyEvent(true,false)

Both decimal and float types can be represented in scientific form if required, including when
nested in optional or any types and inner events.

A string is a sequence of characters enclosed in double quotes ("). The backslash character (\) is
used as an escape character to allow inclusion of special characters such as newlines and horizontal
tabs.

use this notationTo include this character in a string

\"Double quote

This makes sure that the quote is not treated as the
end of the string literal.

\nNewline

\tTab

\\Backslash

Use two backslashes if you want to include a single
backslash in the string. The compiler will remove
any extra backslashes.

Examples:
MyEvent("Hello, World!")
MyEvent("\ta\tstring\twith\ttabs\tbetween\twords")
MyEvent("a string on\n two lines")
MyEvent("a string with \\ a backslash and a \" quote")

Localization, such as different formats for decimals or quotation marks, is not supported.

Each event is given on a separate line. Only single-line comments are allowed. Start each comment
line with // or #. Any blank lines are ignored.

For example, following are three valid events:

244 Deploying and Managing Apama Applications 10.11.0

11 Correlator Utilities Reference

// This is an event file that contains some sample events.
// Here are three stock price events:
my.test.StockPrice("XRX",11.1)
my.test.StockPrice("IBM",130.6)
my.test.StockPrice("MSFT",70.5)

For those events, the following event type definition must be injected into the package test:
package my.test;

event StockPrice {
string stockSymbol;
float stockValue;

}

If the above events were saved in an .evt file, engine_sendwould send each event in turn, as soon
as the previous event finished transmission. This behavior can optionally be modified in several
ways:

Specifying that batches of events should be sent at specified time intervals.

Specifying that all events on all queues should be processed before sending the next event.

Event timing
In .evt files, it is possible to specify the following:

Time intervals for sending batches of events to the correlator.

Waiting for all events on all queues at that point in time to be processed before sending the
next event.

Adding BATCH tags to send events at intervals

You can specify time intervals for sending batches of events to the correlator. This is achieved by
specifying the BATCH tag followed by a time offset in milliseconds. For example, the following
specifies two batches of events to be sent 50 milliseconds apart.
BATCH 50
StockPrice("XRX", 11.1)
StockPrice("IBM", 130.6)
StockPrice("MSFT", 70.5)
BATCH 100
StockPrice("XRX", 11.0)
StockPrice("IBM", 130.8)
StockPrice("MSFT", 70.1)

The addition of a “time” allows simulations of “bursts” of events, or more random distributions
of event traffic. Times are measured as an offset from when the current file was opened. If only
one file of events is being read and transferred, then this would be the same as since the start of
a run (that is, from the time that the engine_send tool starts processing the event data). If multiple
files are being read in, the timing starts all over again upon the (re)opening of each file.

Deploying and Managing Apama Applications 10.11.0 245

11 Correlator Utilities Reference

If the time given for a batch is less than the current time, or if no time is given following a BATCH
tag (or if no BATCH tag is provided), then the events are sent as soon as they are read in, immediately
following the preceding batch.

Using &FLUSHING mode for more predictable event processing order

Sending events in flushing mode can help provide a more predictable event processing order.
However, flushing mode is slower than the default behavior.

By default, events are delivered in an optimal way, not waiting for previously sent events to be
processed before the next event is delivered to contexts (or other consumers of channels). When
flushing mode is enabled the behavior is as follows:

1. The correlator sends an event.

2. The correlator processes all events on all queues at that point in time, repeating this as many
times as specified in the flushing specification.

3. The correlator sends the next event.

To enable flushing mode, insert the following line in a .evt file:
&FLUSHING(n)

Replace nwith an integer that specifies how many times to flush queues in between each event.
Set this to the maximum length of a chain of send-to operations between contexts that could occur
in your application. If you specify a number that is bigger than required the correlator simply
repeats the flush operation, which incurs a small overhead. To disable flushing mode, insert the
following line in the .evt file:
&FLUSHING(0)

Enabling or disabling flushing mode affects only the events sent on that connection or from that
event file.

When sending &TIME events in to a multi-context application, the time ticks are delivered directly
to all contexts. This can be different than the way in which events in the .evt file are sent in to the
correlator and then sent between contexts in an application. This difference can result in processing
events at an incorrect simulated time. In these cases, sending &FLUSHING(1), for example, before
sending time ticks and events can result in more predictable and reliable behavior.

Event types
The following example illustrates how each type is specified in an event representation. Given the
event type definitions:
event Nested {
integer i;

}
event EveryType {
boolean b;
integer i;
float f;

246 Deploying and Managing Apama Applications 10.11.0

11 Correlator Utilities Reference

string s;
location l;
sequence<integer> si;
dictionary<integer, string> dis;
Nested n;
optional<Nested> opt;
any anyValue;

}

the following is an expanded string representation for an EveryType event:
EveryType (
true, // boolean is true/false (lower-case)
-10, // positive or negative integer
1.73, // float
"foo", // strings are (double) quoted
location(1.0,1.0,5.0,5.0), // locations are 4-tuples of float values
[1,2,3], // sequences are enclosed in brackets []
{1:"a",2:"b"}, // dictionaries are enclosed in braces {}
Nested(1), // nested events include event type name
optional<Nested>(Nested(10)), // optional payload inside parentheses, may be

// empty, in which case it is represented by the
// string "optional()"

any(integer,42) // any names a type and the string form of that
// type; other examples include the following:
// any(sequence<Nested>,[Nested(1)])
// may also be empty, in which case the string
// form is: "any()"

);

Note:
This example is split over several lines for clarity. In practice, this definition must all be written
on the same line, and without the comments. Otherwise the correlator will fail to parse the
event.

Types can of course be nested to create more complex structures. For example, the following is a
valid event field definition:
sequence<dictionary<integer, Nested>>

and the following is a valid representation of a value for this field:
[{1:Nested(1)}, {2:Nested(2)}, {3:Nested(3)}]

You can also get an event's string representation in EPL by using the toString()method.

Event association with a channel
The engine_send tool can send an event file that associates channels with events. Likewise, the
engine_receive tool can output an event file that includes the channel on which an event was
received. The event format is the same for both tools:
"channel_name",event_type_name(field_value1[, field_valuen]...)

For example, suppose you want to send Tick events, which contain a string followed by an
integer, to the PreProcessing channel. The contents of the .evt file would look like this:

Deploying and Managing Apama Applications 10.11.0 247

11 Correlator Utilities Reference

"PreProcessing",Tick("SOW", 35)
"PreProcessing",Tick("IBM", 135)

A channel name is optional. In a file being sent with the engine_send tool, you can mix event
representations that specify channels with event representations that do not specify channels.
Events for which a channel is specified go to only those contexts subscribed to that channel.

The default behavior is that events are sent on the default channel (the empty string) when a
channel is not explicitly specified. Events sent on the default channel go to all public contexts. All
runningApama queries receive events sent on the default channel. To change the default behavior
for events sent by the engine_send tool, you can specify engine_send -c channel. If a channel is
not explicitly specified for an event, then it is sent to the channel identified with the -c option .
See “Sending events to correlators” on page 174.

Using the Data Player command-line interface

Apama's Data Player in Software AG Designer lets you play back previously saved event data as
you develop your application. During playback, you can analyze the behavior of your application.
Or, if you modify the saved event data, you can analyze how your application performs with the
altered data. Software AG Designer plays back event data that has been stored in standard data
formats.

When you are ready to test your application, the command-line interface to the Data Player lets
you write scripts and unit tests to exercise the API layers. Or, if you just want to play back events
to the correlator, using the command-line interface might be easier than using the Data Player
GUI in Software AG Designer.

To use the command-line interface to theData Player, youmust have already used theGUI interface
in SoftwareAGDesigner. That is, youmust have already defined queries and query configurations
in Software AGDesigner. When you use the command-line interface (that is, the adbc_management
tool), you specify query names and query configurations that you created in SoftwareAGDesigner.
The executable for this tool is located in the bin directory of the Apama installation.

TheData Player relies onApamaDatabaseConnector (ADBC) adapters that are specific to standard
ODBC and JDBC database formats as well as the comma-delimited Apama Sim format. Apama
release 4.1 and earlier captured streaming data to files in the Sim format. These adapters run in
the Apama Integration Application Framework (IAF), which connects the data sources to the
correlator. The information here assumes that you are already familiar with the information in
"Using the Data Player" in Using Apama with Software AG Designer.

Synopsis

To use the Data Player from the command line, run the following command:
adbc_management --query queryName --configFile file [options]

When you run this command with the –h option, the usage message for this command is shown.

Options

The adbc_management tool takes the following options:

248 Deploying and Managing Apama Applications 10.11.0

11 Correlator Utilities Reference

DescriptionOption

Displays usage information.-h | --help

Name of the host onwhich the correlator is running. The default
is localhost. Non-ASCII characters are not allowed in host
names.

-n host | --hostname host

Port on which the correlator is listening. The default is 15903.-p port | --port port

Runs the specified query, which is defined in the query
configuration file that you identifywith the --configFile option.

--query queryName

This is a query you created with Apama's Data Player in
Software AG Designer. You did this when you clicked on the +
button on the action bar. You specified a query name, and that
is the name you need to specify here.

The query configuration file to use. This is the query
configuration file associated with your project. In Software AG

--configFile file

Designer, the query configuration file is always called
dataplayer_queries.xml (in the project's config directory).

The user name to use for the database connection. Optional.--username user

The password to use for the database connection. Optional.--password password

The type of the playback events returned. The default is Native.
The only other choice is Wrapped. A return type of Nativemeans

--returnType returnType

that each matching event is sent as-is to the correlator. When
you specify Wrapped, each matching event is inside a container
event. The name of the container event is Historical followed
by the name of the event in the container, for example,
HistoricalTick. The container event will be in the default
namespace. Event wrapping allows events to be sent to the
correlator without triggering application listeners. A separate,
user-definedmonitor can listen for wrapped events, modify the
contained event, and reroute it such that application listeners
can match on it.

This option is equivalent to the Data Player option to Generate
time event from data. When the correlator is running with the

--backTest boolean

-Xclock option, time in the correlator is controlled by &TIME()
events. This is how theData Player controls the playback speed.
If the correlator is not running with the -Xclock option, the
correlator keeps its own time. The default is true, which means
that the correlator is running with the -Xclock option. Set this
option to falsewhen the correlator is not running with the
-Xclock option.

Specifies the speed for playing back the query. Optional. A float
value less than or equal to 0.0means that youwant the correlator

--speed playBackSpeed

Deploying and Managing Apama Applications 10.11.0 249

11 Correlator Utilities Reference

DescriptionOption

to play it back as fast as possible. A float value greater than 0.0
indicates a multiple for the playback speed. To play at normal
speed, specify 1.0. For half normal speed, specify 0.5. For twice
normal speed, specify 2.0. For 100 times normal speed, specify
100.00.

250 Deploying and Managing Apama Applications 10.11.0

11 Correlator Utilities Reference

	Table of Contents
	About this Guide
	Documentation roadmap
	Online Information and Support
	Data Protection

	1 Security Requirements for Apama
	2 Overview of Deploying Apama Applications
	About deploying components with Command Central
	About deploying Apama applications with an Ant script
	About deploying Apama applications with Docker
	About deploying Apama applications with Kubernetes
	About Apama command line utilities
	About deploying dashboards
	About tuning applications for performance
	Setting up the environment using the Apama Command Prompt

	3 Deploying Apama Components with Command Central
	Overview of deploying components with Command Central
	Getting started with Command Central
	Administering Apama in Command Central
	Monitoring Apama from Command Central
	Deploying a Designer project to Command Central

	4 Deploying and Managing Queries
	Overview of deploying and managing query applications
	Query application architecture
	Deploying query applications
	Running queries on correlator clusters
	Managing parameterized query instances
	Monitoring running queries

	5 Deploying Apama Applications with Docker
	Introduction to Apama in Docker
	Licensing Apama in Docker
	Quick start to using an Apama image
	Building an Apama image from the current installation
	Deploying an Apama application in Docker
	Developing an Apama application using the Docker image
	Building Apama projects during the Docker build
	Using Docker Compose with Apama
	Apama samples for Docker
	Using the Apama image with the Docker stack

	6 Deploying Apama Applications with Kubernetes
	Introduction to Apama in Kubernetes
	Quick start to using Apama in Kubernetes
	Deploying an Apama application using Kubernetes
	Apama samples for Kubernetes

	7 Tuning Correlator Performance
	Scaling up Apama
	Partitioning strategies
	Engine topologies
	Correlator pipelining
	Using jemalloc to optimize memory usage

	8 Restricting Correlator Resource Usage with Control Groups
	9 Managing and Monitoring over REST
	10 Monitoring with Prometheus
	11 Correlator Utilities Reference
	Starting the correlator
	Configuring the correlator
	Injecting code into a correlator
	Creating and managing an Apama project from the command line
	Deploying a correlator
	Deleting code from a correlator
	Packaging correlator input files
	Sending events to correlators
	Receiving events from correlators
	Watching correlator runtime status
	Inspecting correlator state
	Shutting down and managing components
	Using the command-line debugger
	Generating code coverage information about EPL files
	Replaying an input log to diagnose problems
	Event file format
	Using the Data Player command-line interface

