
Introduction to Apama

Version 10.11.0

October 2021

This document applies to Apama 10.11.0 and to all subsequent releases.

Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 2013-2021 Software AG, Darmstadt, Germany and/or Software AG USA, Inc., Reston, VA, USA, and/or its subsidiaries
and/or its affiliates and/or their licensors.

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or
Software AGUSA Inc. and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product namesmentioned
herein may be trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
https://softwareag.com/licenses/.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product
documentation, located at https://softwareag.com/licenses/ and/or in the root installation directory of the licensed product(s).

This software may include portions of third-party products. For third-party copyright notices, license terms, additional rights or
restrictions, please refer to "License Texts, Copyright Notices and Disclaimers of Third Party Products". For certain specific third-party
license restrictions, please refer to section E of the Legal Notices available under "License Terms and Conditions for Use of Software
AG Products / Copyright and Trademark Notices of Software AG Products". These documents are part of the product documentation,
located at https://softwareag.com/licenses/ and/or in the root installation directory of the licensed product(s).

Document ID: PAM-INTRO-10110-20211015

https://www.softwareag.com/licenses/default.html
https://www.softwareag.com/licenses/default.html
https://www.softwareag.com/licenses/default.html

Table of Contents

About this Guide..7
Documentation roadmap..8
Online Information and Support...9
Data Protection...10

1 Apama Overview...11
What is Apama?..12
Understanding the different user viewpoints..14
About Apama license files..16
Running Apama without a license file..16

2 Apama Architecture..19
Distinguishing architectural features..20
How Apama integrates with external data sources..21
Descriptions of Apama components...25
How the correlator works...32

3 Apama Concepts..37
Event-driven programming..38
Complex event processing..38
Understanding monitors and listeners..40
Understanding queries..41
Architectural comparison of queries and monitors...43
Understanding dashboards...44

4 Getting Ready to Develop Apama Applications..47
Becoming familiar with Apama...48
Introduction to Software AG Designer...48
Steps for developing Apama applications..49
Overview of starting, testing and debugging applications..51

5 Apama Glossary..53
action..57
activation..57
adapter...57
aggregate function..57
batch...57
bundle..57
.cdp...57
CEP...58
channel...58
connectivity plug-in...58

Introduction to Apama 10.11.0 iii

context..58
correlator..58
correlator deployment package..58
correlator-integrated messaging for JMS..58
.csv..59
current events..59
custom blocks..59
dashboard..59
Dashboard Builder...59
dashboard data server...59
dashboard display server..59
Dashboard Viewer..59
Data Player..59
DataView...60
EPL..60
EPL plug-in..60
event...60
event collection...60
event listener...60
event pattern...60
event template...60
.evt..61
exception..61
IAF..61
Integration Adapter Framework (IAF)..61
JMon...61
latest event...61
listener..62
lot..62
match set..62
MemoryStore...62
method...62
.mon..62
monitor...62
MonitorScript..62
optional..63
parameterization...63
parameters...63
partition..63
partitioning..63
.qry..63
query...63
query aggregate..63
Query Designer...64
query input definition..64
query instance...64
query key...64
query window...64
range...64
.rtv...64

iv Introduction to Apama 10.11.0

Table of Contents

simulation..64
Software AG Designer...65
stack trace element...65
static action..65
stream...65
stream listener...65
stream network...65
stream query..65
stream source template..66
window..66
within clause...66
without clause...66

Introduction to Apama 10.11.0 v

Table of Contents

vi Introduction to Apama 10.11.0

Table of Contents

About this Guide

■ Documentation roadmap .. 8

■ Online Information and Support ... 9

■ Data Protection ... 10

Introduction to Apama 10.11.0 7

This Introduction to Apama is for new Apama users. It provides a high-level overview of Apama,
describes theApama architecture, discussesApama concepts and introduces SoftwareAGDesigner,
which is the main development tool for Apama.

Documentation roadmap

Apama provides documentation in the following formats:

HTML (available from both the documentation website and the doc folder of the Apama
installation)

PDF (available from the documentation website)

Eclipse help (accessible from Software AG Designer)

You can access the HTML documentation on your machine after Apama has been installed:

Windows. Select Start > All Programs > Software AG > Tools > Apama n.n > Apama
Documentation n.n. Note that Software AG is the default group name that can be changed
during the installation.

UNIX. Display the index.html file, which is in the doc/apama-onlinehelp directory of your
Apama installation directory.

The following guides are available:

DescriptionTitle

Describes new features and changes introducedwith the current
Apama release as well as earlier releases.

Release Notes

Summarizes all important installation information and is
intended for use with other Software AG installation guides
such as Using Software AG Installer.

Installing Apama

Provides a high-level overviewofApama, describes theApama
architecture, discussesApama concepts and introduces Software
AG Designer, which is the main development tool for Apama.

Introduction to Apama

Explains how to develop Apama applications in Software AG
Designer, which is an Eclipse-based integrated development
environment.

Using Apama with Software AG
Designer

Describes the different technologies for developing Apama
applications: EPL monitors, Apama queries, and Java. You can

Developing Apama Applications

use one or several of these technologies to implement a single
Apama application. In addition, there are C++ and Java APIs
for developing components that plug in to a correlator. You can
use these components from EPL.

Describes how to connect Apama applications to any event data
source, database, messaging infrastructure, or application.

Connecting Apama Applications to
External Components

8 Introduction to Apama 10.11.0

DescriptionTitle

Describes how to build and use an Apama dashboard, which
provides the ability to view and interact with DataViews. An

Building and Using Apama
Dashboards

Apama project typically uses one or more dashboards, which
are created in the Dashboard Builder. The Dashboard Viewer
provides the ability to use dashboards created in theDashboard
Builder. Dashboards can also be deployed as simpleweb pages.
Deployed dashboards connect to one or more correlators by
means of a dashboard data server or display server.

Describes how to deploy components with Software AG
Command Central, how to deploy and manage queries, and

Deploying and Managing Apama
Applications

how to deploy Apama applications using Docker and
Kubernetes. It also provides information for improvingApama
application performance by using multiple correlators, for
managing and monitoring Apama components over REST
(Representational State Transfer), and for using correlator
utilities and configuration files.

In addition to the above guides, Apama also provides the following API reference information:

API Reference for EPL (ApamaDoc)

API Reference for Java (Javadoc)

API Reference for C++ (Doxygen)

API Reference for .NET

API Reference for Python

API Reference for Component Management REST APIs

Online Information and Support

Software AG Documentation Website

You can find documentation on the Software AG Documentation website at https://
documentation.softwareag.com.

Software AG Empower Product Support Website

If you do not yet have an account for Empower, send an email to empower@softwareag.comwith
your name, company, and company email address and request an account.

Once you have an account, you can open Support Incidents online via the eService section of
Empower at https://empower.softwareag.com/.

Introduction to Apama 10.11.0 9

https://documentation.softwareag.com
https://documentation.softwareag.com
mailto:empower@softwareag.com
https://empower.softwareag.com/

You can find product information on the Software AG Empower Product Support website at
https://empower.softwareag.com.

To submit feature/enhancement requests, get information about product availability, and download
products, go to Products.

To get information about fixes and to read early warnings, technical papers, and knowledge base
articles, go to the Knowledge Center.

If you have any questions, you can find a local or toll-free number for your country in our Global
Support Contact Directory at https://empower.softwareag.com/public_directory.aspx and give us
a call.

Software AG Tech Community

You can find documentation and other technical information on the SoftwareAGTechCommunity
website at https://techcommunity.softwareag.com. You can:

Access product documentation, if you have Tech Community credentials. If you do not, you
will need to register and specify "Documentation" as an area of interest.

Access articles, code samples, demos, and tutorials.

Use the online discussion forums, moderated by Software AG professionals, to ask questions,
discuss best practices, and learn how other customers are using Software AG technology.

Link to external websites that discuss open standards and web technology.

Data Protection

SoftwareAGproducts provide functionalitywith respect to processing of personal data according
to the EU General Data Protection Regulation (GDPR). Where applicable, appropriate steps are
documented in the respective administration documentation.

10 Introduction to Apama 10.11.0

https://empower.softwareag.com
https://empower.softwareag.com/Products/default.asp
https://empower.softwareag.com/KnowledgeCenter/default.asp
https://empower.softwareag.com/public_directory.aspx
https://techcommunity.softwareag.com

1 Apama Overview

■ What is Apama? ... 12

■ Understanding the different user viewpoints .. 14

■ About Apama license files .. 16

■ Running Apama without a license file .. 16

Introduction to Apama 10.11.0 11

In addition to reading this Introduction to Apama, it is recommended that you do the following to
become familiar with Apama:

Work through the Apama tutorials in Software AG Designer. From the Help menu, choose
Welcome to display the Welcome page, and then click Tutorials under the Apama heading.
This displays links to interactive tutorials that provide step-by-step instructions for writing
simple Apama applications that you can then run and monitor.

Look at the Apama demos in Software AG Designer. Click Demos under the Apama heading
on the above-mentioned Welcome page.

Use the skills you learned in the tutorials to try modifying the demos as suggested in their
readme files.

There are several approaches for developing Apama applications:

EPL. Apama's Event Processing Language (EPL) is designed for developing event processing
applications. This approach is for programmerswhoneed apowerful event processing language.

Apama queries. Apama queries are useful when you want to monitor incoming events that
provide information updates about a very large set of real-world entities such as credit cards,
bank accounts, cell phones. Typically, you want to independently examine the set of events
associated with each entity, that is, all events related to a particular credit card account, bank
account, or cell phone. A query application operates on a huge number of independent sets
with a relatively small number of events in each set.

You can also use the following approach, but keep in mind that this is less powerful and therefore
not really recommended:

Apama in-process API for Java (JMon). Apama's JMon interface lets programmers use the
industry standard Java programming language to develop event processing applications.

Depending on what you are trying to accomplish, you can use as many approaches as required
in a single Apama application.

What is Apama?

Apama is an event processing platform. It monitors rapidly moving event streams, detects and
analyzes important events and patterns of events, and immediately acts on events of interest
according to your specifications.

Event-based applications differ from traditional applications in that rather than continuously
executing a sequence of instructions, they listen for and respond to relevant events. Events describe
changes to particular real-world or computer-based objects, for example a new bid price for
Vodafone's stock on the London Stock Exchange.

Events are collections of attribute-value pairs that describe a change in an object. For example, the
figure below shows stock quote events. Each stock quote has a number of attributes, including
current bid price, current offer price, and current volumes. In the figure, the highlighted event
shows the latest quote for Vodafone stock.

12 Introduction to Apama 10.11.0

1 Apama Overview

The attributes, or fields, of an individual event class may be of a variety of types, including
numerical and textual data. Eventswithmultiple fields can be viewed asmulti- dimensional types,
in that a search to find an event of interest might involve searching across several of the event
fields.

Rather than executing a sequence of activities at some defined point, an event-based systemwaits
and responds appropriately to an asynchronous signal as soon as it happens. In this way, the
response is as immediate (or real-time) as possible.

The main Apama features include:

Graphical development tools accessible to business users.

EPL, which is a concise, richly-featured event processing language.

The connectivity plug-inAPI, which allows in-correlator integrationwith external data sources
of varying formats.

IntegrationAdapter Framework (IAF),which provides easy integration to external event source
and systems.

Note:
The IAF architecture is superseded by connectivity plug-ins. Therefore, SoftwareAG strongly
recommends choosing connectivity plug-ins over the IAF when creating new adapters and
connectivity.

Sophisticated analytics with native support for temporal arguments.

Sub-second response to detected events and patterns of interest.

Highly scalable, patented, event-driven architecture, supporting tens of thousands of concurrent
scenarios.

Integrated tools for creating visually appealing user dashboards.

Flexible event replay for testing new event scenarios and analyzing existing ones.

Tools for managing and monitoring your application.

Introduction to Apama 10.11.0 13

1 Apama Overview

The following functional diagram shows the main Apama features:

Understanding the different user viewpoints

Apama has been designed for a range of users. The figure below shows the spectrumof users from
application developers to business analysts to pure business users. Apama provides different
facilities for each of these classes of user. After the initial design is set for an Apama application,
multiple users can work concurrently to implement the design.

14 Introduction to Apama 10.11.0

1 Apama Overview

Application developers can make use of the full set of APIs and technologies within the Apama
architecture to create sophisticated, custom, CEP solutions. Using Software AG Designer, they
can create applications directly in EPL or Java. They can extend the capabilities of the Apama
correlator with their own in-house analytic routines. Using the connectivity plug-in API or the
Integration Adapter Framework (IAF), they can integrate with a new data service by developing
a new adapter if one that can be plugged in does not already exist. They can also take advantage
of low-level APIs for building custom client user interfaces in C, C++, Java and .NET.

Business analysts are providedwith GUI tools (Query Designer, Dashboard Builder) to enable the
creation of queries and dashboards without having to write code. A query is a self-contained
processing unit suitable for applications where the incoming events provide information updates
about a very large set of real-world entities. A query can be an application in its own right, or part
of a bigger application. Query Designer provides features for creating reusable application
components (parameterized queries).

Thus, there are several approaches to developing Apama applications. Your development team
can use one, two or all three in an Apama application:

EPL. Apama's native event processing language.

Queries. Use EPL and the Query Designer GUI to create Apama query applications.

Java. Apama provides an in-process API for Java (called JMon) for processing events.

Pure business users are often only interested in the end-game application. The output of the
Dashboard Builder GUI provides an immediately usable application for this purpose.

Introduction to Apama 10.11.0 15

1 Apama Overview

About Apama license files

Software AG supplies you with an Apama license file. Refer to the licensing terms specified in
your software contract for any additional legal restrictions that may be imposed on your use of
Apama.

A license file is required for the full functionality of Apama. The Software AG Installer will ask
for it during the installation. See "License file" in Installing Apama for further information.

It is possible to run Apama without a license file or with an expired license file. Apama behavior
with regard to the Apama license file is as follows:

When a license file cannot be found, the correlator will run with reduced capabilities. See
“Running Apama without a license file” on page 16.

A correlator startedwith a license file does not shut down immediatelywhen its license expires.
It continues operation for seven days beyond expiration. The correlator logs periodic warning
messages until it reaches the end of the seven days or until you replace the expired license.

Removing the license file from a running correlator does not cause it to shut down. It continues
operation for seven days after the license file is removed. The correlator logs periodic warning
messages until it reaches the end of the seven days or until you restore the license.

You can start a correlatorwith an expired license if it is less than seven days beyond expiration.

If you obtain a license file after you have been running Apama, copy it to the license directory in
your APAMA_WORK directory, for example: C:\Users\Public\SoftwareAG\ApamaWork_n.n\license\
ApamaServerLicense.xml (where n.n stands for the current version number).

If the correlator's license has expired, you have to have obtain a new license file and copy it into
the same location before the end of the above mentioned grace period. The correlator checks for
an updated license file every five minutes, so the new license file is automatically picked up. The
correlator does not need to be restarted in this case.

Note:
If you name the license file “ApamaServerLicense.xml” and put it in the license directory in
APAMA_WORK, then the correlator will automatically pick up the license file. Otherwise, you must
specify the path to the license file on the command line.

Running Apama without a license file

Apama can be run without a license file in which case it runs with reduced capabilities and can
be used for simple or exploratory use cases. Refer to "License Terms and Technical Restrictions"
in the Release Notes for the current license terms and restrictions.

The following restrictions apply when starting the correlator without a license file:

The correlator does not start more than 4 threads for EPL processing. The number of threads
being used is logged. Up to 20 contexts may be created and all are runnable, but the correlator
does not use more than 4 threads to execute EPL, limiting the correlator's performance.

16 Introduction to Apama 10.11.0

1 Apama Overview

Reliable messaging with connectivity plug-ins is not permitted.

Correlator-integratedmessaging for JMS is limited to BEST_EFFORT onlymessaging (unreliable).
It refuses to connect using reliable modes (EXACTLY_ONCE, AT_LEAST_ONCE or APP_CONTROLLED).

The correlator logs that it is running without a license file.

The following restrictions are enforced while the correlator is running and a license file cannot be
found:

The correlator is limited to 1024MB of resident memory. If 1024MB of memory is exceeded,
the correlator is stopped and an error is logged indicating that the correlator is runningwithout
a license file. There is a warning if the resident memory exceeds 90% of the 1024MB limit -
though if the correlator's memory increases very quickly, the limit may be hit before the 90%
warning is logged.

Note that this limit also includes Java memory usage. It is recommended that you size your
Java virtual machine to not consume too much memory. If you are using Java features, you
may need to use -J-Xmx256M to limit the memory usage of your Java virtual machine to 256MB
(or some suitable size less than 1024MB). Note that the memory usage may increase if a burst
of events is received.

The correlator does not allowmore than 20 contexts to be created. The spawn statement throws
an exception if it would create a new context and 20 contexts are already created. In addition,
a startup error occurs when recovering a persistent database with more than 20 contexts. Both
the exception and the startup error indicate that the correlator is running without a license
file.

The correlator does not allow more than 5 persistent EPL monitors (this does not include
monitor instances of persistentmonitors). An error is logged if there aremore than 5 persistent
monitors.

The correlator does not allow the injection of user-generated correlator deployment packages
(CDPs). If a user-generated CDP is injected, the correlator rejects the injection and an error is
logged indicating that the correlator is running without a license file.

The correlator does not allow more than 5 query definitions to run and no more than 5 query
instances per definition. When more than 5 query definitions are injected into the correlator,
ERROR log messages are written.

The query runtime drops events if there are already 50 different partition values for a query.
When more than 50 partition values are sent in, ERROR log messages are written.

If reliable JMS connections are requested dynamically, an exception is thrown which should
be caught in EPL, and an error message is logged indicating that this configuration is not
supported as the correlator is running without a license file.

The correlator info web page (http://localhost:15903/info) always shows you whether the
correlator is currently running with or without a license file.

To find out if the above-mentioned limits have been exceeded, you can check the following:

Introduction to Apama 10.11.0 17

1 Apama Overview

The correlator log file for most of the above-mentioned cases. See "Descriptions of correlator
status log fields" in Deploying and Managing Apama Applications.

The status messages of the engine_watch tool. See "Watching correlator runtime status" in
Deploying and Managing Apama Applications.

The -a (--getall) or -Pm (--getpmemory) option of the engine_management tool to get the physical
memory usage. See "Shutting down and managing components" in Deploying and Managing
Apama Applications.

The scenario browser for status information on queries. See "Using the Scenario Browser view"
in Using Apama with Software AG Designer.

18 Introduction to Apama 10.11.0

1 Apama Overview

2 Apama Architecture

■ Distinguishing architectural features ... 20

■ How Apama integrates with external data sources .. 21

■ Descriptions of Apama components ... 25

■ How the correlator works .. 32

Introduction to Apama 10.11.0 19

Apama architecture has a modular, scalable design with core features that

Monitor inbound events typically delivered by amessaging infrastructure ormarket data feed.

Analyze those events in memory, either singly or in conjunction with other events whose
attributes and temporal ordering represent a pattern.

Trigger outbound events that represent an action to be taken in response to the analysis.

As you can see, Apama's architecture is designed to process events. Event processing requires an
architecture that is fundamentally different from traditional data processing architectures. Because
Apama's architecture is event driven, an understanding of the distinctive qualities of this
architecture is crucial to designing and building robust Apama applications.

Distinguishing architectural features

Apama inverts the paradigm of traditional data-centric systems. Rather than the “store > index >
search” model of those architectures, Apama introduces the correlator — a real-time, event
processing engine. AnApama application comprises monitors and/or Apama queries that specify
the events or patterns of events that interest you. These specifications are the logical equivalent
of database queries. After you load monitors and /or Apama queries into the correlator, incoming
events flow over them and they monitor these event streams for the events and patterns you
specified. When a matching event or pattern is found the correlator processes it according to the
rules you specify.

Apama's architecture is further distinguished by its ability to support huge numbers of monitors
and queries operating simultaneously. Each can have its own logic for monitoring the event
streams, seeking out patterns and, upon detection, triggering specified actions.

The correlator supports two main programming languages: EPL and Java. EPL, Apama's native
event programming language, lets developers define rules for processing complex events. Such
rules let the correlator find temporal and causal relationships among events.

Messages on a variety of transports, such as an Enterprise Service Bus (ESB), carry events to and
from correlators. Apama connectivity plug-ins and adapters translate application-specific data
intoApama application event formats that the correlator can process. For example, Apama trading
systems integrate with various exchanges by means of adapters that translate between Apama
and market data feeds or order management protocols. For more information, see “How Apama
integrates with external data sources” on page 21.

Apama's architecture also provides tools for creating dashboards that let you manage your event
processing scenarios. You can use Apama dashboards to start, stop, parameterize, and monitor
event processing from client applications.

The Apama ADBC (Apama Database Connector) adapter provides a mechanism to capture and
replay event streams from JDBC/ODBC-compliant third-party databases. Together, the ADBC
standard adapters and Apama's Data Player in Software AG Designer let you analyze the actual
performance of applications already in production, and also investigate the likely behavior of
Apama applications prior to deployment.

20 Introduction to Apama 10.11.0

2 Apama Architecture

Apama components can be connected to each other by executing the Apama engine_connect tool
with specification of an explicit point-to-point connection or by using Software AG's Universal
Messaging message bus.

The following figure illustrates the Apama architecture. Each component is described later in this
section.

How Apama integrates with external data sources

You can connectApama to any event data source, database,messaging infrastructure, or application.
There are several ways to do this:

Write transport and codec connectivity plug-ins.

Implement Apama Integration Adapter Framework (IAF) adapters.

Develop custom client applications with Apama APIs for Java, .NET, and C++.

Create applications that use correlator-integrated messaging for JMS.

Use Software AG Digital Event Services to communicate with other Software AG products.

UseMQTT for communication between constrained devices, for example, deviceswith limited
network bandwidth.

Use Kafka for communication with the Kafka distributed streaming platform.

Introduction to Apama 10.11.0 21

2 Apama Architecture

Use Cumulocity IoT for communication with connected IoT devices.

Using connectivity plug-ins to connect with external data sources

Connectivity plug-ins can be written in Java or C++, and run inside the correlator process to allow
messages to be sent and received to/from external systems. Individual plug-ins are combined
together to form chains that define the path of a message, with the correlator host process at one
end and an external system or library at the other, and with an optional sequence of message
mapping transformations between them.

Connectivity plug-ins perform a similar role to IAF adapters: both allow plug-ins to transform
and handle delivery of events. In most cases, we recommend using connectivity plug-ins instead
of the IAF for new adapters. The reasons are:

Connectivity plug-ins run inside the correlator process itself. This allows for simpler
deployments with less moving pieces. It also avoids problems for handling cases where one
of the IAF and correlator are restarted and the other is not, or communication problems
(including latency) between them. Ensuring the correct startup order is also simpler (see
"Sending and receiving events with connectivity plug-ins" in Connecting Apama Applications to
External Components).

Connectivity plug-ins have a richer data model for both messages and configuration.
Connectivity plug-ins can be given events (including sub-events), sequences and dictionaries
as map objects. The values within a map can be strings, integers, floats, lists or maps. The lists
and maps can in turn contain any of these types (for example, a map can contain a list, where
the list contains a map which again contains a list, and so on). This provides an easier to use
API for handling nested events and other nested data structures, both in EPL events and in
external data formats (such as JSON).

Connectivity plug-ins allowmultiple codecs to be used in combination, allowing for amodular
approach to message transformation and greater re-use of codecs.

Connectivity plug-ins provide for reliablemessaging (at-least-once delivery). See "Using reliable
transports" in Connecting Apama Applications to External Components.

Connectivity plug-ins also perform a similar role to the Apama client library, which allows Java
or C++ code in an external process to send/receivemessages to/from the correlator. If Apama events
need to be made available within an external system, then consider connectivity plug-ins if the
external system has a protocol (such as JSON over HTTP). If the external system hosts plug-ins
via an API, then the client library may be a better fit.

For detailed information, see "Using Connectivity Plug-ins" in Connecting Apama Applications to
External Components.

Using IAF adapters to connect with external data sources

Apama's Integration Adapter Framework (IAF) provides bidirectional connectivity with event
sources and with your environment.

Note:

22 Introduction to Apama 10.11.0

2 Apama Architecture

The IAF architecture is superseded by connectivity plug-ins. Therefore, Software AG strongly
recommends choosing connectivity plug-ins over the IAF when creating new adapters and
connectivity.

Apama adapters provide both connectivity and XML-based mapping between your application's
data format and Apama's internal format. The purpose of an adapter is to translate events from a
proprietary format into Apama events. This lets the correlator analyze those events. Also, an
adapter converts Apama events into your proprietary source format. This lets Apama send the
events to an external service.

Adapters allow a single Apama application to efficiently monitor and analyze disparate event
types within a common event processing scenario. For example, the same scenario can process
events relating to foreign exchange (FX) aggregation, smart order routing and cross-asset trading
in capital markets or cold chain automation in supply chain applications.

Within the IAF, Apama offers a range of standard adapters for capital markets, infrastructure, and
connectivity to data and messaging sources (see https://empower.softwareag.com/Products/
default.asp), as well as APIs for building custom adapters.

The IAF is a server component that adapters plug into for runtime invocation. You can develop
an adapter with the IAF adapter library, along with whatever specific connection APIs you need
to connect to your data service. Each adapter is structured so that the mapping of parameters
between the source format and Apama format can be configured dynamically through XML.

The following figure shows the bidirectional operation of an adapter.

Examples of types of adapters include:

Middleware messaging adapters. Several middleware bus technologies are available on the
market, including technologies by Tibco, IBMMQSeries, Vitria, webMethods, SeeBeyond and
others. When the middleware you are using supports JMS, you can create applications that
use correlator-integrated messaging for JMS in place of an adapter.

Apama is able to interface with these technologies through an appropriate adapter. If the
middleware bus offers publish and subscribe capabilities, then Apama can become a named
endpoint like any other service. Apama is able to receive events from the bus and convert
them, via an adapter, into Apama events for the correlator to process. An adapter can convert
any events emitted by a correlator back into the native bus format.

Introduction to Apama 10.11.0 23

2 Apama Architecture

https://empower.softwareag.com/Products/default.asp
https://empower.softwareag.com/Products/default.asp

Database adapters. Apama is able to connect to databases for a number of purposes, including
searching historical state or storing key events as an audit trail in the corporate database. Most
popular databases support a standard access protocol, such as ODBC or JDBC. The Apama
Database Connector (ADBC) providesODBCand JDBC adapters that use these standard access
protocols to connect to your database.

Custom real-time feed adapters. A number of companies provide real-time content as
information feeds. Examples in the finance industry include Reuters, who provides a variety
of stock and news feeds, and GLTrade, who provides bidirectional access to a variety of the
world's equities and derivatives exchanges.Many such companies use custom communications
protocols to provide their data. However, Apama adapters have been easily developed for
these and other bidirectional data services.

For detailed information, see "The IntegrationAdapter Framework" inConnectingApamaApplications
to External Components.

Using Apama APIs to connect with external data sources

A range of APIs let you extendApama at the dashboard, client, and correlator levels for integration
with other environments, such as Java, .NET or C++. In addition, you can extend correlator behavior
with Java and C++ plug-ins that can call external function libraries from within an application.

For detailed information, see "Developing Custom Clients" in Connecting Apama Applications to
External Components.

Using correlator-integrated messaging for JMS to connect with external data sources

Apama's correlator-integrated messaging for JMS provides an efficient way to receive and send
JMSmessages to and fromApama applications. It also provides for reliablemessaging (guaranteed
delivery) and duplicate detection.

For detailed information, see "Using the Java Message Service (JMS)" in Connecting Apama
Applications to External Components.

Using Software AG Digital Event Services to communicate with other Software AG
products

Software AG Digital Event Services is a messaging system for communicating between different
SoftwareAGproducts using events. Digital Event Services allows event definitions to be converted
between a product's internal event or document definition to digital event types and vice versa,
so participating products can share a set of event definitions.When youdevelopApama applications
that make use of Digital Event Services, the translation between digital event type definitions and
Apama event types is done automatically. When digital events are sent to or received fromDigital
Event Services, they are converted to or from Apama events.

For detailed information, see "The Digital Event Services Transport Connectivity Plug-in" in
Connecting Apama Applications to External Components.

24 Introduction to Apama 10.11.0

2 Apama Architecture

Using MQTT for communication between constrained devices

Apama provides a connectivity plug-in, the MQTT transport, which can be used to communicate
between the correlator and an MQTT broker, where the MQTT broker uses topics to filter the
messages. MQTT messages can be transformed to and from Apama events by listening for and
sending events to channels such as prefix:topic (where the prefix is configurable).

For detailed information, see "The MQTT Transport Connectivity Plug-in" in Connecting Apama
Applications to External Components.

Using Kafka for communication with a Kafka distributed streaming platform

Apama provides a connectivity plug-in, the Kafka transport, which can be used to communicate
with the Kafka distributed streaming platform. Kafka messages can be transformed to and from
Apama events by listening for and sending events to channels such as prefix:topic (where the
prefix is configurable).

For detailed information, see "The Kafka Transport Connectivity Plug-in" in Connecting Apama
Applications to External Components.

Using Cumulocity IoT for communication with connected IoT devices

Apama provides a connectivity plug-in, the Cumulocity IoT transport, which allows you to
communicate with the IoT devices connected to Cumulocity IoT. For example, you can receive
events from the devices and send operations to the devices.

For detailed information, see "The Cumulocity IoT Transport Connectivity Plug-in" in Connecting
Apama Applications to External Components.

Descriptions of Apama components

While traditional architectures can respond to events after they have happened, Apama's
event-driven architecture responds in real time to fast moving events of any kind. Apama
applications leverage a platform that combines analytic sophistication, flexibility, performance
and interoperability. In addition to being an event processing engine, Apamaprovides sophisticated
development tools, a flexible testing environment, an extensible integration framework and
graphically-rich dashboards. This makes Apama a comprehensive event processing platform for
building real-time, event-driven applications.

Description of the Apama correlator
Apama's correlator is the engine that powers an Apama application. Correlators execute the
sophisticated event pattern-matching logic that you define in your Apama application. Apama
applications track inbound event streams and listen for events whose patterns match defined
conditions. The correlator's patented architecture canmonitor huge volumes of events per second

When an event or an event sequence matches an active event expression, the correlator executes
the appropriate actions, as defined by the application logic.

Introduction to Apama 10.11.0 25

2 Apama Architecture

The correlator can concurrently search for and identify vast numbers of discrete event patterns
with sub-millisecond responsiveness.

The correlator can deliver low latency analytics onmultiple inbounddata streams bymonitoring
the event streams for patterns you specify.

The correlator goes beyond simple event processing to deliver actionable responses.

See also “How the correlator works” on page 32.

Description of event processing languages
Apama provides developers with two language models for building event-based applications:

EPL, which is Apama's native event processing language

Apama (in-process) API for Java (JMon)

This section gives you a flavor for how these languages process events. You can find complete
information in Developing Apama Applications.

Introduction to Apama EPL

Before EPL can look for patterns in event streams, you must define the types of events you are
interested in and inject their definitions in the correlator. An event definition informs the correlator
about the composition of an event type. An example event definition for a stock exchange tick
feed is as follows:
event StockTick {

string symbol;
float price;
float volume;

}

Each field of the event has a type and a name. The type informs the correlator how to handle that
field and what operations to allow on it. As you can see, the correlator can handle multiple types,
such as numeric values and textual values, within the same event type. Apama can handle any
number of different event types at one time.

External event sources such as connectivity plug-ins, clients and the IAF need to be able to send
events into the correlator. For the correlator to be able to detect an event of interest, the event's
type definition must have been loaded into the correlator. An example of a StockTick event is as
follows:
StockTick ("APAMA", 55.20, 250010)

There are two basic EPL structures called monitors and queries.

Apama monitors

A monitor defines:

One or more listeners. EPL provides event listeners and stream listeners.

26 Introduction to Apama 10.11.0

2 Apama Architecture

An event listener observes the correlator event stream analyzing each event in turn until
it finds a sequence of events that match its event expression. When this happens the event
listener triggers, causing the correlator to execute the listener action.

A stream listener passes stream query output to procedural code. A stream query operates
on one or two streams to transform their contents into a single output stream. The type of
the stream query output items need not be the same as the type of the stream query input
items. The output for one stream query can be the input for another stream query. At the
end of the chain of stream queries, a stream listener coassigns each stream query output
item to a variable and executes specified code.

One or more actions. An action is one or more operations that the correlator performs. An
actionmight be to register a listener or it might be an operation to performwhen the correlator
finds a match between an incoming event or sequence and a listener.

The following EPL example illustrates these concepts in the form of a simple monitor called
PriceRise. Themonitor is composed of three actions. The first two actions declare listeners, which
are indicated by the on keyword.
monitor PriceRise
{

action onload() {
on all StockTick("IBM",>=75.5,*) as firstTick {

furtherRise (firstTick);
}
from tick in all StockTick(symbol="IBM")

within 60.0 every 60.0
select mean(tick.price) as f { average(tick.price); }

}
action average(float av) {

log "60-second average for IBM: "+av.toString();
}
action furtherRise(StockTick tick) {

on all StockTick("IBM",>=(tick.price*1.05),*) as finalTick {
log "IBM has hit "+finalTick.price.toString();
emit PlaceSellOrder("IBM",finalTick.price,1000.0);

}
}

}

When a monitor starts running, the correlator executes the monitor's onload() action. In the
PriceRisemonitor, the onload() action creates an event listener for all IBM stock ticks that have
a price above 75.5 at any volume and a stream listener for all IBM stock ticks. Since the last field
of the event (volume) is irrelevant to the event listener it is represented by an asterisk (*), which
indicates a wildcard. This monitor effectively goes to sleep until the correlator detects an IBM
stock tick.

If the correlator detects an IBM stock tick, the stream listener takes it as input and uses it to log
60-second averages for IBM stock prices. If the IBM stock tick also has a price that is greater than
or equal to 75.5, the correlator copies the field values in that event to the firstTick variable and
calls the furtherRise() action.

The furtherRise() action creates another event listener. This event listener is looking for the next
part of the event pattern, which involves detecting if the IBM stock price goes up by more than
5% from its new value. The second listener uses the firstTick variable to obtain the price value

Introduction to Apama 10.11.0 27

2 Apama Architecture

in the event that caused the first listener to detect a match. If the price rise occurs, the correlator
copies the values in the matching, incoming event to the finalTick variable, and executes the
associated block of code.

The associated block of code logs the new price and emits a PlaceSellOrder event to a receiver
that is external to the correlator. For example, an adapter can pick up this event, and translate it
into a message that an order book can operate on. The PlaceSellOrder event causes placement of
an order for 1000 units of IBM stock.

Apama queries

An Apama query does the following:

Operates on only specified input events. You can specify one or more event types. For each
event type, you can filter event content so that the query operates on only certain instances of
that event.

Partitions input events according to their keys — Based on the values of selected fields in
incoming events, the correlator segregates events into many separate partitions. Partitions
typically relate to real-world entities that you aremonitoring such as bank accounts, cell phones,
or subscriptions. For example, an automated bankmachine associates an account numberwith
every transaction. You can define a query that partitions Withdrawal events based on their
account number. Each partition could contain the Withdrawal events for one account. This lets
you look for withdrawal patterns that look suspicious.

Typically, a query application operates on a huge number of partitions with a relatively small
number of events in each partition. Each partition is identified by a unique key value, such as
an account number.

Watches for the event pattern of interest across all partitions. An event pattern can define a
sequence of events as well as conditions that determine whether there is a match. A condition
can be a filter that specifies a Boolean expression that must evaluate to true for there to be a
match, a time constraint that requires some or all elements in the pattern to occur within a
given time period, or an exclusion, which is an event whose presence prevents a match.

Executes specified actions when a pattern match is found. Actions can send events. This is
how a query can communicate with other queries, with monitor instances, and with external
system elements in a deployment, such as adapters, correlators, or other deployed processes.

Optionally uses parameters.When a query has no parameters, a single instance of the query
is automatically created when the query is loaded into a correlator. If one or more parameters
are defined for a query thenwhen the query is loaded into a correlator, no instances are created
until you specify parameter values.

The following simple query example illustrates these concepts:
query ImprobableWithdrawalLocations {

parameters {
float period;

}
inputs {

Withdrawal(value>500) key cardNumber within period;
}

28 Introduction to Apama 10.11.0

2 Apama Architecture

find Withdrawal as w1 -> Withdrawal as w2
where w2.country != w1.country {
log "Suspicious withdrawal: " + w2.toString() at INFO;

}
}

The optional parameters block in a query definition specifies parameters for which you must
supply values so that an instance of the query (a parameterization) can be created. A query that
defines parameters functions as a template formultiple parameterizations. Each parameterization
of the simple query above would watch for the identified Withdrawal events for a different time
period.

The inputs block of a query definition identifies the events that the query operates on. The example
query operates only those Withdrawal events whose value field is greater than 500 and that arrived
within the time range specified by the value of the period parameter. You can also specify that no
more than a particular number of events can be in each partition at a given moment.

In the example, the Withdrawal input definition specifies the cardNumber field as the key. The query
partitions incoming Withdrawal events according to their card numbers.

The find statement specifies the pattern you are looking for. In the example, the pattern of interest
is a Withdrawal event followed by another Withdrawal event where the country fields for the two
events are different. Since a query operates on the events in each partition independently of the
other partitions, this pattern suggests a suspicious transaction.

Finally, when a query finds a match it executes the statements in its find block. In the example,
the query logs a message that contains the Withdrawal event that triggered the match.

See also “Understanding queries” on page 41 and “Architectural comparison of queries and
monitors” on page 43.

Introduction to Apama in-process API for Java (JMon)

EPLwas designed specifically for event processing.However, some organizations and individuals
prefer to use amainstream programming language, such as Java. Consequently, Apama hasmade
the features of the correlator available in Java.

The correlator uses its embedded Java virtual machine (JVM) to execute JMon monitors. The
following Java code defines the StockTick event type.
import com.apama.jmon.Event;

public class StockTick extends Event {
public String symbol;
public double price;
public double volume;

//No argument constructor
public StockTick() {

this("",0,0);
}

//Constructor
public StockTick(String name, double price, double volume) {

this.name = name;

Introduction to Apama 10.11.0 29

2 Apama Architecture

this.price = price;
this.volume = volume;

}
}

In JMon, an event class definition must include the following:

A set of public variables to hold the event's fields

A no-arguments constructor

A parameterized constructor

While this is not as concise as EPL, these are familiar Java conventions.

The following code defines a JMon monitor that listens for any IBM stock tick events with a price
that is greater than 75.5. The onLoad()method creates an event expression object, which receives
an Apama event string. This string represents the event to listen for. Also, the PriceCheck class
implements the MatchListener class, which provides a match()method to be invoked if the
correlator finds a match. This is passed to the event expression object as well.
import com.apama.jmon.*;
public class PriceCheck implements Monitor, MatchListener {

public PriceCheck() {}
public void onLoad() {

EventExpression eventexpr =
new EventExpression("StockTick(\"IBM\",>75.5,*)");

eventexpr.addMatchListener(this);
}
public void match(MatchEvent event) {

System.out.println("Pattern detected");
}

}

Description of Software AG Designer
Software AG Designer is the main entry point for Apama development. When you are ready to
start developing your Apama application, open Software AG Designer and create an Apama
project to contain your application files.

Complete information is in Using Apama with Software AG Designer.

Description of Query Designer
Apama's Query Designer editor, which runs in Software AG Designer, provides a graphical
environment that complements Apama's event processing language. You use Query Designer to
define and update Apama queries. An Apama query monitors a very large number of real-world
entities and processes events on a per-entity basis, for example, all events related to one credit
card account.

Query Designer provides graphical tools for specifying:

30 Introduction to Apama 10.11.0

2 Apama Architecture

Inputs a query operates on. For each input, you specify the event type and a partition key
field. You can also specify a filter, a time constraint, and a maximum number of events to
operate on in each partition.

Parameters For each parameter you add, you specify a name and a type, which must be one
of integer, float, string, or boolean.

Event pattern of interest. After you add an event type as an input to a query, you can drag
that event type on to a canvaswhere you graphically define the event pattern you are interested
in.

Actions. Define one or more actions to be executed when a match is found.

Conditions. Add a filter, time constraint, or exclusion (an event that prevents a match) to the
event pattern of interest.

Aggregates. Find data based on many sets of events.

Query Designer is intended for business users who may not be familiar with EPL.

See "Adding query files to projects" in Using Apama with Software AG Designer.

Description of Dashboard Builder and Dashboard Viewer
Apama's Dashboard Builder enables you to create end-user dashboards and prepare them for
deployment. For applications written in EPL, you create DataViews and use Dashboard Builder
to create a dashboard from the DataViews.

Dashboard Builder is a visual design environment. A primary goal of Dashboard Builder is to
enable non-technical users to create sophisticated dashboards. Consequently, Dashboard Builder
provides a complete design and deployment environment. With a wide range of visual objects
and drag-and-drop development, Dashboard Builder provides the tools needed to create highly
customized dashboards from which users can start/stop, parameterize and monitor Apama
DataViews.

Dashboard Builder offers an extensive array of graphical widgetswithwhich to build customuser
dashboards.Meters, gauges, tables, graphs, and scales are available for creating highly customized
dashboards. You can further personalize the interface through addition/deletion of panels or
modification of graphics and color schemes.

Dashboard Viewer is the tool that end-users run to access dashboards.

See also "Building Dashboard Clients" and "Using the Dashboard Viewer" in Building and Using
Apama Dashboards.

Note:
This documentation refers to using the dashboard components provided with Apama. If you
are usingMashZoneNextGen instead to visualize your data fromApama, refer to theMashZone
NextGen documentation.

Introduction to Apama 10.11.0 31

2 Apama Architecture

Description of client development kits
Apama is highly extensible with a range of APIs provided at the dashboard, client and correlator
levels. You can use these APIs to integrate with other environments, such as Java, JavaBeans, C++,
or .NET. You can extend correlator behavior with plug-ins that can call external function libraries
from within an application scenario.

See "Developing Custom Clients" in Developing Apama Applications.

Description of Apama's Data Player
Apama's Data Player, which runs in Software AG Designer, accelerates the
development/deployment cycle of EPL applications or JMon applications by letting you pre-test
(via simulation) your applications on event streams captured in Apama. It also supports flexible
event processing replay features.

Data Player provides analysis tools for the Apama environment. It enables Apama users to
investigate the likely behavior of Apama applications prior to deployment, as well as analyze the
actual performance of those applications already in production.

Data Player operates on data captured by theApamaDatabaseConnector (ADBC). ADBCprovides
Apama standard adapters that allows access to JDBC/ODBC compliant databases as well as to
Apama Simfiles. Analysis can include all events received byApama or only selected event streams.
Likewise, you can choose specific segments of time from the past (for example, an entire day, a
specific 30 minute period, or any user chosen time slice). Additionally, you can accelerate replay
speedsmany times the actual live speeds, or slow themdown or pause formore careful exploration
of event processing operations.

See Using Apama with Software AG Designer for information about the Data Player. See Connecting
Apama Applications to External Components for information about the ADBC adapter.

How the correlator works

The following figure shows the inner details of a running correlator. After the figure, there is a
detailed discussion of how the correlator works.

32 Introduction to Apama 10.11.0

2 Apama Architecture

Monitors and queries identify event patterns of interest and the responses to take if those patterns
are detected. You can use EPL to write monitors and queries directly. You can use JMon to write
monitors directly. Apama uses the Software AG Designer development environment for writing
source code for monitors and queries, and provides a graphical editor for defining queries (Query
Designer).When you useQueryDesigner, the query is translated into amonitor that the correlator
can execute.

The correlator does not just execute loadedmonitors and queries in a sequential manner, as if they
were traditional imperative programs. Instead, the correlator loads its internal components (the
hypertree and the temporal sequencer) with the monitoring specifications of the monitors and
queries. The in-built virtual machines execute only the sequential analytic or action parts of the
monitors and queries.

The correlator contains the following components:

HyperTree multi-dimensional event matcher

The event matcher contains data structures and algorithms designed for high performance,
multi-dimensional, event filtering. The correlator loads the eventmatcherwith event templates.
An event template identifies the event you are interested in. Logically, an event template is a
multi-dimensional search. For example, a template for a stockmarket eventmight have values
such as the following:

Instrument: IBM

Bid Price: 93.0 <- -> 94.5

Offer Price: *

Introduction to Apama 10.11.0 33

2 Apama Architecture

Bid Volume: >10000

Offer Volume: *

This event template expresses a multi-dimensional search over stock market events. The
template will match any event about stock IBM, which has a bid price between 93.0 and 94.5
and a bid volume greater than 100000. The offer price and volume are irrelevant to this search
and so wildcards are used.

This kind of multi-dimensional, multi-type, ranged searching is what the event matcher was
specifically designed for. In checkingwhether an incoming eventmatches any of the registered
event templates, the event matcher exhibits logarithmic performance. This means that vast
numbers of event templates can be queried against, with the minimum possible performance
tail-off.

An event template is the basic unit of monitoring. A simple monitor might have one or a few
event templates. A more complex monitor might have many. A monitor needs to load event
templates only when events that match the specification are relevant to the monitor: in a
multi-stagemonitor, amonitor can insert and remove several event templates as themonitoring
requirements change.

Temporal and stream sequencer

The temporal and stream sequencer builds upon the single event matching capabilities of the
event matcher to providemultiple temporal event and stream correlations.With EPL or JMon,
you can declare a temporal sequence such as “tell me when any news article event is followed
within 5 minutes by a 5% fall in the price of the stock the news article was about”. This is a
temporal sequence, with a temporal constraint. The sequence is a news article event, followed
by the next stock price event, and then another stock price event with a price 5% less than the
previous price event. The temporal constraint is that the last event occurs within 5 minutes of
the first event.

The sequencermanages this temporal monitoring process, using the event matcher tomonitor
for appropriate event templates. This capability saves the programmer from having to encode
such complex temporal logic through less intuitive imperative logic.

Monitors

The correlator provides the capability formonitors to be injected as either EPL or Java bytecode.
The number ofmonitors that can be loaded into a single correlator are only limited bymemory
size. When loaded, a monitor configures the hypertree and temporal sequencer with event
templates for monitoring. The correlator stores the monitor internally and executes actions in
the appropriate virtual machine in response to event detection.

Each monitor instance has its own address space within the correlator for storage of variables
and other state. Monitor temporary storage size is limited only by the memory size of the host
machine.

Queries

Queries provide a higher level, more declarative mechanism for detecting event patterns.
Unlikemonitors, they also support automatically storing their state in a distributed cache such
as Terracotta's TCStore. TCStore allows queries to transparently and elastically scale out with

34 Introduction to Apama 10.11.0

2 Apama Architecture

the support of a JMS message bus such as Software AG's Universal Messaging. The storage
size is thus limited by the distributed cache, which can exceed thememory size of a single host
machine.

Event input queue

External interfaces, such as adapters and connectivity plug-in chains, send events into the
correlator. To start the monitoring process, the correlator injects each event, in the order in
which it arrives, into the hypertree. Any matches filter through the temporal sequencer and
invoke required actions in the virtualmachines. Some actionsmight cause events to be queued
for output. During peak event input flow, eventsmightwait on an input queue for an extremely
brief moment.

EPL virtual machine

In response to detected event patterns of interest, the EPL virtual machine executes EPL. The
fact that the correlator behaves this way, rather than continuously executing imperative code,
is another reason for its high performance. Also, you can implement parallel processing in
your applications so that the correlator can concurrently execute code in multiple monitors.

Java virtual machine

The Java virtual machine is a standard JVM that has been embedded in the correlator. Thus
any standard Java code features are accessible frommonitors. The Java virtualmachine behaves
exactly as the EPL virtual machine in that the detection of event patterns of interest invokes
code fragments.

Event output queue

Monitor actions can output events to be communicated to othermonitors or to external systems.
When a monitor routes an event, the event goes to the front of the input queue. This ensures
that any monitors that are listening for that event immediately detect it. When a monitor
generates an event for an external receiver the event goes to an output queue for transmission
to the appropriate registered party.

When you use the correlator in conjunction with connectivity plug-ins or the IAF, then an
output event might represent an action on an external service. The connectivity plug-in or IAF
transforms the output event into an invocation of the external service. An example is an event
that places an order into the order book of a Stock Exchange.

EPL plug-ins

It is possible to extend the capabilities of the correlator through an EPL plug-in. An EPL plug-in
is an externally-linked softwaremodule that registerswith the correlator through the correlator's
extensionAPI. EPLplug-ins are usefulwhenprogramming libraries of useful real-time functions
have been built up. These functions can be made available as objects that can be invoked by
EPL actions.

Apama provides a number of standard EPL plug-ins:

The MemoryStore plug-in lets monitors share in-memory data.

The TimeFormat plug-in helps you format dates and times.

Introduction to Apama 10.11.0 35

2 Apama Architecture

State persistence

When the correlator shuts down the default behavior is that all state is lost. When you restart
the correlator no state from the previous time the correlator was running is available. You can
change this default behavior by using correlator persistence. Correlator persistencemeans that
the correlator automatically periodically takes a snapshot of its current state and saves it on
disk. When you shut down and restart that correlator, the correlator restores the most recent
saved state.

To enable persistence, you indicate in your EPL codewhichmonitors youwant to be persistent.
Optionally, you can write actions that the correlator executes as part of the recovery process.
When code is injected for a persistence application, the correlator that the code is injected into
must have been started with a persistence option. Persistent monitors must be written in EPL.
State in JMonmonitors cannot be persistent. State in chunks, with a few exceptions, also cannot
be persistent.

You program the correlator by injecting monitors that you write in EPL or JMon, or by injecting
queries.

When events are sent to the correlator, the correlator processes events by comparing the events
to what listeners are active in the correlator. Each external event matches zero or more listeners.
The correlator executes a matching event's associated listeners in a rigid order. The correlator
completes the processing related to a particular event before it examines the next event. If the
processing of an event generates another event that is routed to the correlator, the correlator
processes all routed events before moving on to the next event in its queue. If a listener action
block does not route events, the next external event is considered.

36 Introduction to Apama 10.11.0

2 Apama Architecture

3 Apama Concepts

■ Event-driven programming ... 38

■ Complex event processing ... 38

■ Understanding monitors and listeners .. 40

■ Understanding queries ... 41

■ Architectural comparison of queries and monitors ... 43

■ Understanding dashboards .. 44

Introduction to Apama 10.11.0 37

This section discusses the concepts that are central to all Apama applications. A thorough
understanding of these concepts can help youdesign anddevelopmore robustApama applications.

Event-driven programming

Events are data elements. Each event is a collection of attribute-value pairs that capture the state
(or changes to state) of real-world or computer-based objects. Events consist of data and temporal
attributes that represent the what, when, and where of an object. This can be the state of an object
or the interaction of objects at a particular time. Real world examples of events include:

Stock market trades and quotes

RFID signals

Satellite telemetry data

Card swipes at a turnstile

ATM transactions

Network activities/faults

Troop movement on a battlefield

Activity on a website

Electronic funds transfers

SCADA alerts (Supervisory Control and Data Acquisition)

Processing events requires event-drivenprogramming. The hallmarks of event-drivenprogramming
include the following:

Program execution does not flow sequentially from beginning to end. There is no standard
starting point.

Program execution happens in response to the arrival of events. Some external source pushes
the events into your program.

Events arrive in asynchronous messages.

There are two main bodies of code: code that analyzes incoming events to determine if the
events are of interest and code that performs actions when events of interest are found.

There are a lot of similarities between GUI programming and event driven programming. For
example, in a GUI program you typically write code that responds to mouse clicks.

See also Developing Apama Applications, "How EPL applications compare to applications in other
languages".

Complex event processing

Complex Event Processing (CEP) is software technology that enables the detection and processing
of

38 Introduction to Apama 10.11.0

3 Apama Concepts

Events derived from other events. A derived event is an event that your application generates
as a result of applying a method or action to one or more other events.

Event sequences, often with temporal constraints.

CEP programs findpatterns in event data that enable detection of opportunities and threats. Timely
responses are then pushed to the appropriate recipients. The responses can be in the form of
automated events, such as placing orders in algorithmic trading systems, or alerts to someone
using Business Activity Monitoring (BAM) dashboards. The result is faster and better operational
decisions

EPL and JMon provide the features needed to write applications that can perform CEP. The
following example shows how EPL can concisely define event patterns and rules. While this
example shows the implementation of an Apama monitor, an example that shows an
implementation of an Apama query would also demonstrate complex event processing.

The NewsCorrelationmonitor's onload() action defines a listener that specifies a complex event
expression. The literal translation of the expression is “look for all news articles about any stock,
followed by a 5% rise in the value of that stock within 5minutes”. This is the kind of implied news
impact that might be of interest to a trader or a market risk analyst.
monitor NewsCorrelation {

action onload() {
on all NewsItem() as news {

on StockTick(symbol=news.subject) as tick {
on StockTick(symbol=news.subject,

price >= (tick.price*1.05))
within(300.0) alertUser;

}
}

}
action alertUser() {

log "News to price movement Correlation for stock "
+news.subject+" has occurred";

}
}

The on keyword specifies a listener. The initial listener nests two additional listeners that define
the event sequence of interest. The listeners do the following:

1. The initial listener watches for all NewsItem events.

2. Each time the correlator detects a NewsItem event, this listener captures it in a news variable.

3. The first nested listener then watches for a StockTick event for the stock that the news item
was about. This listener uses the news variable to access the information from the previously
detected event.

4. When the correlator detects a matching StockTick event, the first nested listener captures it in
the tick variable.

5. The innermost listener then watches for another StockTick event for the same stock but with
a price that is at least 5% higher than the price in the event captured by the tick variable. The
within keyword indicates that the correlator must detect the second StockTick event within
300 seconds (5 minutes) of finding the initial NewsItem event.

Introduction to Apama 10.11.0 39

3 Apama Concepts

6. If the correlator finds a second StockTick event that matches within 5 minutes, the monitor
sends a message to the log file. The nested listeners terminate.

If the correlator does not find a second StockTick event that matches within the 5 minutes, the
nested listeners terminate without sending a message to the log.

Understanding monitors and listeners

An introduction to monitors and listeners is in “Description of event processing languages” on
page 26. As mentioned there, monitors are the basic program component that you inject into the
correlator. You write monitors in EPL or JMon.

A monitor defines:

One or more listeners. A listener is the EPL mechanism that specifies the event or sequence of
events that you are interested in. Conceptually, listeners sift through the streams of events
that come in to the correlator and detect matching events.

One or more actions. An action is one or more operations that the correlator performs. An
action might be the registration of a listener or it might be the execution of an operation when
the correlator finds a match between an incoming event or sequence and a listener.

When the correlator executes an on statement, it creates a listener. A listener watches for an event,
or a sequence of events, that matches the event expression specified in the on statement. An event
expression defines one ormore event templates. Each event template defines an event type to look
for, and specifies whether the event's fields should have any specific values. In addition, listeners
can specify

Temporal constraints. For example, a listener can specify that two events of interest must be
received within 10 minutes.

Logic. For example, a listener can specify that it is interested in event A or event B or event C.

It is often desirable to listen, separately but concurrently, for different instances of the same event
type. For example, you might want to listen for and process, separately but concurrently, stock
tick events for different stocks. EPL accomplishes this by letting a monitor instance spawn other
monitor instances.

In the monitor code, you spawn a monitor instance by specifying the spawn keyword followed by
an action. Each act of spawning creates a new instance of the monitor.

When the correlator spawns a monitor instance, it does the following:

1. The correlator creates a new monitor instance from the original monitor instance. The new
monitor instance is almost identical to the original. The new monitor instance has a copy of
the variables from the original but the active listeners from the original monitor instance are
not copied.

2. The correlator invokes the named action on the new monitor instance.

Monitors that contain spawn statements typically act as factories, creating new monitor instances
that all listen for the same event type but where each listens for events that have different values
in one or more fields. Also, monitors can spawn to particular threads, referred to as contexts in

40 Introduction to Apama 10.11.0

3 Apama Concepts

EPL. This enables the correlator to concurrently process multiple monitor instances. (You must
create contexts in EPL to implement parallel processing. You can refer to contexts from both EPL
and JMon.)

The lifecycle of a monitor is as follows:

1. You use Software AG Designer or a correlator utility to inject the EPL or Java that defines the
monitor into the correlator.

2. The correlator creates the original monitor instance, including space for variables as needed.

3. The correlator executes the monitor instance's onload() action.

4. The original monitor instance might spawn several times creating newmonitor instances. For
each spawnedmonitor instance, the correlator creates a copy of the original monitor instance's
variable space and then executes the specified action.

5. Amonitor instance terminateswhen it has no active listeners. Upon termination, the correlator
invokes the monitor instance's ondie()method, if one is defined. Note that it is possible for a
monitor instance to remain active after the monitor instance that spawned it has terminated.

6. When the last instance of a particular monitor terminates, the correlator calls the monitor's
onunload()method, if it defines one. The last monitor instance to terminate might be the
original monitor instance or a spawned monitor instance. Regardless, when the last instance
terminates the correlator invokes the monitor's ondie()method and then the monitor's
onunload()method, if these methods are defined.

For example, suppose that amonitor definition specifies an ondie()method and an onunload()
method. You inject this monitor and the correlator creates the original monitor instance. The
original monitor instance spawns 9 times. Consequently, there are 10 instances of that monitor
in the correlator. After all of these monitor instances have terminated, the correlator will have
called ondie() 10 times and it will have called onunload() once.

See "Getting Started with Apama EPL" in Developing Apama Applications.

Understanding queries

Apama queries allow business analysts and developers to create scalable applications to process
events originating from very large populations of real-world entities. Scaling, both vertically (same
machine) and horizontally (across multiple machines), is inherent in Apama query applications.
Scaled-out deployments, involving multiple machines, will use distributed cache technology to
maintain and share application state. This makes it easy to deploy across multiple servers, and
keep the application running even if some servers are taken down for maintenance or fail.

Apama queries are designed to be easy to develop for both the business analyst and the application
developer. Graphical tools to specify the application design and full round-trip engineering allows
both the business analyst and the developer to work on the same queries. At the developer level,
an Apama query is defined using the Apama event processing language, EPL.

Apama's visual QueryDesigner in SoftwareAGDesigner enables business analysts to easily create
new queries and to view and review existing queries.

Introduction to Apama 10.11.0 41

3 Apama Concepts

Use cases for queries

Apama queries are well suited to problems that:

Map to a large set of partitions.

Have continuous availability and/or scalability requirements.

Do not require sub-millisecond latency.

Partitionsmay correspond to customer accounts, transactions being tracked, devices or some other
entity. In a query application, the correlator processes the events in each partition independently
of other partitions.

Advantages of Apama queries over Apama monitors:

Platform provides active-active availability. That is, queries can be run in a cluster, where
every node in the cluster contributes processing resources. The number of nodes can be changed
dynamically without losing state.

Scale out across multiple servers.

Declarative pattern specification.

Query evaluation is based purely on past event history. Other than events, queries have no
state and so they behave uniformly over time.

Disadvantages of Apama queries compared to Apama monitors:

Higher latency than monitors. Latency is of the order of milliseconds to seconds rather than
microseconds tomilliseconds. Exact values depend on the deployment and the types of events
being processed.

Apama monitors allow you to write custom and more powerful EPL applications that do not
have the declarative and structural bounds that queries have.

To take advantage of the scalability and availability that the queries platform offers, the problem
your application needs to solve should meet one or more of the following requirements:

Different partitions for a given query must be completely independent. However, different
queries can use different partition keys for the same event types. For example, one query may
partition ATM withdrawals by cardNumber, and another by atmId.

The average number of events in each window should be low. The recommendation is less
than 50 events. For example, if ATMwithdrawals are partitioned by cardNumber then awindow
that retains withdrawals for a three-day period is fine because the typical number of
withdrawals per card is likely to be low. While it is possible to have hundreds of withdrawals
for a single card number, that would be an exceptional case and probably indicative of
suspicious behavior.

Other than the history of events, no state is required. Queries do not provide for state to be
stored. However, it is possible to mix monitors and queries in the same deployment.

42 Introduction to Apama 10.11.0

3 Apama Concepts

The time between events destined for the same partition would typically be long, that is, more
than a few seconds between events.

The exact ordering between events is not critical. A query may treat two events for the same
partition that occur close in time as having occurred in an order that is different from the order
in which they were sent.

Query application examples

Some examples of use cases for queries include:

Customer relationmanagement.Monitoring transactions between a retailer or service provider
and individual customers. For example, queries can identify:

Transactions that are implausible and indicate fraudulent activity. See the ATM Fraud
demo which is available from the Welcome page (see also "Demos and tutorials" in Using
Apama with Software AG Designer).

Users who have not yet registered an optional account on their service provider's website.
See theUnregistered_Users_Sample applicationwhich is available from theWelcome page.
This is part of the Additional Samples.

Customers who may be interested in a particular retail offer.

Tracking parcels. Monitoring parcels to determine when one is failing to progress through the
distribution system for a certain amount of time, or is in danger of not arriving at its destination.

In all of these cases, the problem can be easily partitioned (by customer account or parcel), and
the number of events per partition is likely to be low and spread out in time.

Architectural comparison of queries and monitors

In some ways, an Apama query is similar to an Apamamonitor. Each operates as a self-contained
event processing agent that communicates with other monitors and queries by sending and
receiving events.

Note:
While Apama queries and Apama stream queries use similar terminology, they are different
constructs.Apamaqueries can communicatewithmonitors, butApamaqueries are not contained
in monitors. Whereas Apama stream queries are defined and operate inside monitors.

One difference between a monitor and a query is the programming model for scaling. With
monitors, the approach is procedural. A spawn statement is used to create new monitor instances.
Typically, for each real-world entity, a separate monitor instance is used to handle the events
relating to that entity. The developer has full control over what data is held where as well as the
design of the solution architecture. With queries, the approach is declarative. A key is defined
which is used to identify how the events are partitioned such that events from each real-world
entity are handled separately. Also, queries can use a distributed Apama MemoryStore to share
historical data between correlators. This allows query deployments to scale across several hosts,
make the same data available to multiple correlators and provide availability should a correlator
fail or be taken down for maintenance.

Introduction to Apama 10.11.0 43

3 Apama Concepts

Another difference between monitors and queries is the way in which they handle the state, or
event history. With monitors, each monitor instance holds the state, or event history, needed for
its continuing processing. This state is held inmemory, which allows high-performance processing
over complex state. With queries, the only state is the event history, which is held separately from
the query. The query is effectively stateless, which allows queries to easily scale across correlators.

Typically, a monitor instance operates on events that relate to a particular real-world entity. To
operate on events related to another entity in the same set, the monitor typically spawns another
instance. In contrast, the definition of a query specifies how to partition incoming events so that
each set of events that relates to a particular real-world entity is in its own partition. The query
operates on the events in each partition independently of every other partition.

The following table compares monitor variables with query parameters:

Query parametersMonitor variables

Must be one of the following types: boolean,
decimal, float, integer, string.

Can store any complex state that the monitor
requires.

Can only be read by the query.Can be updated by the monitor.

Are controlled by Scenario Service clients.Are private to that monitor instance.

A monitor can subscribe to a channel to receive all events sent on that channel. A query cannot
subscribe to a channel. However, running Apama queries automatically receive all events sent on
the com.apama.queries channel as well as all events sent on the default channel. For example,
monitors, adapters, and the engine_send utility can send events to the com.apama.queries channel.

Both monitors and queries can send events to a channel. In both monitors and queries, the send
statement sends events to only those components that are connected to that correlator. For both
monitors and queries, sending events to other correlators in the cluster requires connections created
by the engine_connect utility or the use of Universal Messaging to connect the correlators to the
same set of Universal Messaging channels.

In general, monitors follow amore imperative patternwhile queries havemore declarative clauses.
For example, a monitor can use conditional if ... else statements to determine whether there
is a match that triggers some processing. A query specifies where, within, and/or without clauses
to define filters, time constraints, and exclusions, respectively, right in the event pattern. In general,
this allows queries to be simpler than monitors.

Understanding dashboards

ADataView is a representation of application logic, but without any defined user interaction. You
add a dashboard to a DataView to enable end-users to:

Send an event to create a newDataView instance. Thismight include entering the initialization
values for the DataView.

Monitor the status of all DataView instances. For example, to see when a pattern has been
detected, and some action taken.

44 Introduction to Apama 10.11.0

3 Apama Concepts

Manually intervene in the execution of a DataView instance. For example, to take some action
in response to an alert.

Send an event to deactivate a DataView instance.

In anApama application, a dashboard is a real-time, business cockpit for controlling and receiving
real-time updates from running DataViews. Deployed dashboards connect to one or more
correlators through a dashboard data server. As the DataViews in a correlator run, and their
variables or fields change, the correlator sends update events to all connected dashboards. When
a dashboard receives an update event, it updates its display in real time to show the behavior of
theDataView. User interactionswith the dashboard, such as sending an event to create an instance
of a DataView, result in control events that the dashboard data server sends to the correlator.

See "Introduction to Building Dashboard Clients" in Building and Using Apama Dashboards.

See "Making event type definitions available to monitors and queries" in Developing Apama
Applications.

Alternatively, you can use the MemoryStore EPL plug-in in EPL applications. The MemoryStore
creates DataViews for you.

Introduction to Apama 10.11.0 45

3 Apama Concepts

46 Introduction to Apama 10.11.0

3 Apama Concepts

4 Getting Ready to Develop Apama Applications

■ Becoming familiar with Apama ... 48

■ Introduction to Software AG Designer .. 48

■ Steps for developing Apama applications .. 49

■ Overview of starting, testing and debugging applications .. 51

Introduction to Apama 10.11.0 47

The discussions in the following topics provide a foundation for developing your Apama
application.

Becoming familiar with Apama

To become familiar with Apama, you should

Work through the tutorials in Software AG Designer. On the Welcome page, click Tutorials
under theApama heading. The tutorials provide step-by-step instructions for developing EPL
applications.

Execute and examine the demonstration applications available from Software AG Designer.
On theWelcomepage, clickDemosunder theApamaheading. The demonstration applications
are interactive. You can create instances of queries, set parameters for queries, and watch the
queries execute. The demonstrations provide simple examples of what Apama can do and
how you might interact with your Apama application.

Examine sample code. Your Apama installation directory contains a samples directory that
contains many examples of queries, monitors, JMon programs, EPL plug-ins, Apama client
programs, and more.

Read all of this material, Introduction to Apama, so that you have a broad understanding of
what Apama is all about.

Understand what is covered in the Apama user documentation. Peruse the documentation so
that you knowwhere to look for particular information. You can then refer to the documentation
for the component you need to use.

Introduction to Software AG Designer

Software AG Designer is the main tool for implementing Apama applications. It contains a set of
Eclipse plug-ins that provides a number of Eclipse perspectives:

Use theApamaWorkbench perspectivewhen you are new toApama. This perspective provides
a simplified view of Apama features that makes it easy to get started developing Apama
applications.

Use the Query Designer to define a query.

Use theApamaDeveloper perspectivewhen you are comfortable using theApamaWorkbench
perspective. The Developer perspective gives you far more control over your Apama project
than the Apama Workbench perspective. For example, you can view more than one Apama
project at one time, and you can specify launch configuration parameters.

Use the Apama Runtime perspective for monitoring and debugging the execution of Apama
applications.

Use the Apama Debug perspective to debug your Apama application. The Debug perspective
allows you to set break points, examine variable values, and control execution.

48 Introduction to Apama 10.11.0

4 Getting Ready to Develop Apama Applications

Use theApamaProfiler perspective to profile yourApama application. The Profiler perspective
allows you to see which components of your application are consuming the most CPU time
or to see if there are other bottlenecks in the application.

When developing an Apama application, the first step is to create an Apama project to contain
your application files. An Apama project is a convenient way to manage the various files that
make up your application. For example, an Apama application can include the following types
of files:

EPL files (.mon extension).

Query files (.qry extension).

Java files.

Dashboard files (.rtv extension).

Files that contain sample events (.evt extensions).

C++, Java and .NET files that contain Apama client applications or EPL plug-ins.

Adapters that provide the interface between your event sources and Apama.

Image files for your dashboards.

Text, HTML or XML files.

You can add and manage all of these files from your Apama project in Software AG Designer. In
addition, Software AG Designer provides an EPL editor and a Java editor whose features include
content assistance, auto-bracketing, templates for frequently entered constructs, and problem
detection. After you build an Apama project, Software AG Designer flags any line that contains
an error.

If your project contains dashboards, Software AG Designer opens the Dashboard Builder when
you double-click an .rtv file. You can also use Software AG Designer to test your application.
Software AG Designer provides Apama features that inject your application into the correlator,
send test event streams to the correlator, launch adapters, and configure andmonitor the operation
of your application in a test environment.

Finally, Software AG Designer provides tools for packaging your application so that you can
deploy it. See "Overview of Developing Apama Applications" in Using Apama with Software AG
Designer.

Steps for developing Apama applications

Typically, Apama development is an iterative cycle:

Introduction to Apama 10.11.0 49

4 Getting Ready to Develop Apama Applications

Multiple contributors with varying expertise can work concurrently to develop an Apama
application.

The main steps for developing an Apama application include:

1. Model: Design your application. Important tasks aremodeling the events that your application
needs to handle and identifying the services that your application must provide.

2. Implement: Use Software AGDesigner to create anApama project to contain your application
files (EPLfiles, adapters, event files, dashboards, and so on). SinceApama applications typically
consist of many components, it is often possible to concurrently implement them, particularly
if several people are working on the application:

Create queries with Apama's Query Designer in Software AG Designer.

Write EPL or JMon programs in Software AG Designer.

Develop Apama client applications.

Implement or develop adapters.

Create dashboards in Dashboard Builder.

Develop EPL plug-ins that extend the correlator's standard features.

3. Test: In Software AG Designer, Apama provides a runtime perspective and Scenario Browser
view that help test applications as they are built. You can also use Apama's Data Player in
Software AGDesigner in conjunction with the ADBC adapter to analyze application behavior
before, or after, deployment. You can automate testing through the use of command-line
clients.

4. Deploy: Use Software AG Command Central to start and manage Apama components,
including correlators. Or use the macro definitions in the Ant script that is provided with
Apama. You can also use the Ant export wizard in Software AGDesigner to generate a simple
Ant script for deploying your Apama project. Tune Apama applications for optimum
performance.

See "OverviewofDeployingApamaApplications" inDeploying andManagingApamaApplications.

50 Introduction to Apama 10.11.0

4 Getting Ready to Develop Apama Applications

Overview of starting, testing and debugging applications

Software AG Designer provides tools for running your Apama application in a test environment.

In the Apama Workbench perspective, click the Start button to start a correlator and inject the
current project. The Scenario Browser panel is then shown. Use the Scenario Browser to create
running instances of your queries and examine parameter values during execution. You can
monitor execution in the Console and Problems panes.

In the ApamaDeveloper perspective, select the project youwant to test. SelectRun from themenu
bar and then select whether you want to run, debug or profile your Apama application. You can
specify one or more launch configurations for your project.

In the Apama Runtime perspective, you can monitor your running application.

InUsingApamawith Software AGDesigner, see "Launching Projects", "Debugging EPLApplications",
and "Debugging JMon Applications".

Introduction to Apama 10.11.0 51

4 Getting Ready to Develop Apama Applications

52 Introduction to Apama 10.11.0

4 Getting Ready to Develop Apama Applications

5 Apama Glossary

■ action .. 57

■ activation .. 57

■ adapter ... 57

■ aggregate function .. 57

■ batch ... 57

■ bundle ... 57

■ .cdp ... 57

■ CEP .. 58

■ channel ... 58

■ connectivity plug-in ... 58

■ context .. 58

■ correlator .. 58

■ correlator deployment package .. 58

■ correlator-integrated messaging for JMS ... 58

■ .csv ... 59

■ current events ... 59

■ custom blocks ... 59

■ dashboard .. 59

■ Dashboard Builder .. 59

Introduction to Apama 10.11.0 53

■ dashboard data server ... 59

■ dashboard display server ... 59

■ Dashboard Viewer .. 59

■ Data Player ... 59

■ DataView .. 60

■ EPL ... 60

■ EPL plug-in ... 60

■ event ... 60

■ event collection ... 60

■ event listener .. 60

■ event pattern .. 60

■ event template .. 60

■ .evt .. 61

■ exception .. 61

■ IAF .. 61

■ Integration Adapter Framework (IAF) ... 61

■ JMon ... 61

■ latest event ... 61

■ listener .. 62

■ lot .. 62

■ match set .. 62

■ MemoryStore .. 62

■ method ... 62

■ .mon ... 62

54 Introduction to Apama 10.11.0

5 Apama Glossary

■ monitor ... 62

■ MonitorScript .. 62

■ optional ... 63

■ parameterization ... 63

■ parameters ... 63

■ partition .. 63

■ partitioning .. 63

■ .qry ... 63

■ query .. 63

■ query aggregate ... 63

■ Query Designer .. 64

■ query input definition .. 64

■ query instance .. 64

■ query key .. 64

■ query window ... 64

■ range .. 64

■ .rtv .. 64

■ simulation ... 64

■ Software AG Designer .. 65

■ stack trace element .. 65

■ static action .. 65

■ stream .. 65

■ stream listener .. 65

■ stream network ... 65

Introduction to Apama 10.11.0 55

5 Apama Glossary

■ stream query .. 65

■ stream source template .. 66

■ window ... 66

■ within clause ... 66

■ without clause ... 66

56 Introduction to Apama 10.11.0

5 Apama Glossary

action

An action is a block of code. Optionally, an action can have parameters and/or a return type. An
action can be called, typically as part of responding to an event listener. Actions can be members
of monitors, events or queries. The following action names have special meanings and may be
called by the correlator:

On monitors only: onload(), ondie(), onunload()

On monitors and events: onBeginRecovery(), onConcludeRecovery()

activation

When the passage of time or the arrival of an item causes a stream network or an element in a
stream network to process items.

adapter

Software component that translates events from a non-Apama format to Apama format. This
allows the correlator to analyze the event. An adapter plugs into the Apama Integration Adapter
Framework (IAF) and injects events into the correlator. Adapters can be bidirectional, converting
event formats in both directions.

aggregate function

A function that operates on all items in a query window, for example, sum().

batch

When you define awindow in a streamquery, you can specify that youwant to update thewindow
in batches. A batch can be a certain number of items, or it can be the items that arrived in a certain
length of time.

bundle

When using Apama in Software AGDesigner, a bundle is a named collection of Apama-provided
objects that are required to execute a particular type of Apama application. Typically, a bundle
includes EPL files, event definition files and event files, but it can include awide range of file types
such as IAF configuration files.

.cdp

File extension for Apama correlator deployment packages.

Introduction to Apama 10.11.0 57

5 Apama Glossary

CEP

Complex event processing. CEP technologies let you detect and process events derived from other
events, and sequences of events with or without temporal constraints.

channel

Adapter and client configurations can specify the channel to deliver events to. A channel is a string
name that contexts and receivers can subscribe to in order to receive particular events. In EPL,
you can send an event to a specified channel. Sending an event to a channel delivers it to any
contexts that are subscribed to that channel, and to any clients or adapters that are listening on
that channel.

connectivity plug-in

AC++ or Java class running inside the correlator that can transform and transmitmessages between
the correlator and external data sources.

context

Contexts allows EPL applications to organizework into threads that the correlator can concurrently
execute. In EPL, context is a reference type. When you create a variable of type context, or an
event field of type context, you are actually creating an object that refers to a context. The context
might or might not already exist. You can then use the context reference to spawn to the context
or enqueue an event to the context.When you spawn to a context, the correlator creates the context
if it does not already exist.

correlator

Event correlation engine. The part of Apama that looks for events of interest, analyses matching
events, and executes appropriate actions.

correlator deployment package

Acorrelator deployment package (CDP) is a file that contains application EPL code in a proprietary,
non-plain-text format. These files treat EPL files similarly to the way Java files are treated in JAR
files. CDP files can be created by exporting from Apama projects in Software AG Designer or by
using the engine_package utility. CDP files can be injected to the correlator just as EPL files and
JAR files containing JMon applications are injected.

correlator-integrated messaging for JMS

Apama's correlator-integratedmessaging for JMSprovides an efficientway forApama applications
to send messages and to receive JMS messages for processing. Correlator-integrated messaging
for JMS also provides for reliable messaging (guaranteed delivery) and duplicate detection.

58 Introduction to Apama 10.11.0

5 Apama Glossary

.csv

File extension ("comma separated values") for some exported data; suitable for third party
applications such as spread sheets.

current events

The set of current events contains the events in the window(s) of a partition.

custom blocks

In Apama query find blocks, %custom blocks contain EPL code that you write.

dashboard

Business cockpit for controlling, receiving, and visualizing real-time updates from DataViews.

Dashboard Builder

GUI for creating and modifying dashboards.

dashboard data server

Process that mediates communication between dashboards and DataViews. The dashboard data
servermediates correlator access for local deployments. It delivers raw data fromwhich deployed
dashboards construct the visualization objects that they display.

dashboard display server

Process thatmediates communication between dashboards andDataViews. The dashboard display
server mediates correlator access for simple thin-client, web-page deployments. It delivers
already-constructed visualization objects in the form of image files and image maps.

Dashboard Viewer

Desktop application that supports local deployment of dashboards.

Data Player

Apama component in Software AG Designer that lets you retrieve events that pass through the
correlator. You can use the Data Player to play back stored events and use the results to develop,
test, and debug applications.

Introduction to Apama 10.11.0 59

5 Apama Glossary

DataView

Table structure that contains event fields that you specify. In EPL applications, you createDataViews
so that you can use the Dashboard Builder to create dashboards that let you interact with your
running EPL application in the correlator.

EPL

The Apama Event Processing Language (EPL) is an event-based scripting language that is an
interface to the correlator. Java is the other interface to the correlator.

EPL plug-in

EPL plug-ins are C++ code modules or Java classes that you write to extend the capability of an
Apama component. Apama provides APIs that let you write EPL plug-ins for correlators,
dashboards, and adapters.

event

An occurrence of a particular circumstance of interest at a specific time that usually corresponds
to a message of some form. The message is a collection of attribute-value pairs that describe a
change in an object.

event collection

The process of storing events that stream through the correlator. Using Apama's Data Player in
Software AG Designer, the collected events can be played back to analyze what happened or to
test alternative strategies. The collected events can also be exported to spreadsheet applications.

event listener

An event listener observes the correlator event stream, analyzing each event in turn until it finds
a sequence of events thatmatch its event expression.When this happens, the event listener triggers,
causing the correlator to execute the listener action. See also “stream listener” on page 65.

event pattern

Specification of the event or sequence of events or aggregation that you are interested in. An event
pattern can include conditions and operators.

event template

Basic unit of monitoring in the correlator. An event template specifies the pattern that you want
to act on. A simple application contains one or a few event templates. Amore complex application
can contain many event templates. Here is an example of the data that a particular event template
might define:

60 Introduction to Apama 10.11.0

5 Apama Glossary

Instrument = IBM

Bid Price > 93 and < 95

Offer Price = *

Bid Volume > 100000

Offer Volume = *

.evt

File extension for files that contain events.

exception

An exception is an object that represents a runtime error that can be caught with a try ... catch
statement. In EPL, Exception is a reference type in the com.apama.exceptions namespace. See
"Exception handling" in Developing Apama Applications.

IAF

Integration Adapter Framework.

Note:
The IAF architecture is superseded by connectivity plug-ins. Therefore, Software AG strongly
recommends choosing connectivity plug-ins over the IAF when creating new adapters and
connectivity.

Integration Adapter Framework (IAF)

Server component that adapters plug into for runtime invocation.

Note:
The IAF architecture is superseded by connectivity plug-ins. Therefore, Software AG strongly
recommends choosing connectivity plug-ins over the IAF when creating new adapters and
connectivity.

JMon

Apama in-process API for Java.

latest event

The latest event is the event that was most recently added to a query partition.

Introduction to Apama 10.11.0 61

5 Apama Glossary

listener

See “event listener” on page 60 and “stream listener” on page 65.

lot

The items produced by a single activation of a stream query. Like an auction lot, a stream query
lot can contain one or more items.

match set

For a query, this is the set of events thatmatches the specified pattern and that causes the statements
in the query find block to be executed. A match set always includes the latest event.

MemoryStore

TheMemoryStore provides an in-memory, table-based, data storage abstractionwithin a correlator.
All EPL code running in a correlator in any context can access the data stored by theMemoryStore.
In other words, all EPLmonitors running in a correlator have access to the same data. The Apama
MemoryStore can also be used in a distributed fashion to provide access to data stored in a
MemoryStore to applications running in a cluster of multiple correlators.

method

There are two kinds of built-in methods: type methods and instance methods. Type methods are
associated with types. Instance methods are associated with values. Built-in methods are treated
exactly the same as user-defined actions. See “action” on page 57.

.mon

File extension for EPL files.

monitor

A monitor contains event monitoring patterns and the responses to take when the monitor's
listeners detect those patterns. You can use EPL or Java to define a monitor.

MonitorScript

EPL is the new name forMonitorScript. Within the product, both EPL andMonitorScript are used
and should be treated as synonymous. EPL or MonitorScript is the Apama event-based scripting
language that is an interface to the correlator. Java is the other interface to the correlator.

62 Introduction to Apama 10.11.0

5 Apama Glossary

optional

An optional is a value that contains either a value (of some EPL type), or is empty and thus has
no value. This is useful for mapping to null values in other languages such as Java, or for data
which may not be present in some circumstances.

parameterization

An Apama query that defines parameters is referred to as a parameterized query. An instance of
a parameterized query is referred to as a parameterization.

parameters

AnApama query can define parameters and then refer to those parameters throughout the query
definition. This enables a query definition to function as a template for multiple query instances,
which are referred to as parameterizations.

partition

In a query, a partition contains a set of events that all have the same key value. One or more
windows contain the events added to each partition.

partitioning

A strategy to scale Apama by deploying multiple correlator processes to spread the workload
across several processors and/or machines. A correlator can be used to partition incoming events,
sending them to different correlators based on rules specific to your partitioning strategy.

.qry

File extension for files that contain query definitions.

query

A self-contained processing unit. It partitions incoming events according to a key and then
independently processes the events in each partition. Processing involves watching for an event
pattern and then executing a block of procedural code when that pattern is found.

query aggregate

An event pattern in a query can aggregate event field values to find data based on many sets of
events. Specify the every keyword in conjunction with the select and having clauses.

Introduction to Apama 10.11.0 63

5 Apama Glossary

Query Designer

An Apama editor in Software AG Designer for writing queries.

query input definition

In a query, the inputs block defines one or more query input definitions. An input definition
specifies an event type plus details that indicate how to partition incoming events. An input
definition can also filter which events are operated on, and specify what state, or event history, is
to be held.

query instance

When a query has no parameters, a single instance of the query is automatically created when the
query is loaded into a correlator. This instance looks for match sets in all of this query's partitions.
If one or more parameters are defined for a query, when the query is loaded into a correlator, no
instances are created until a set of parameter values is specified. Apama's Scenario Service then
creates an instance of that query using the specified parameter values and that instance is referred
to as a parameterization.

query key

A query key identifies one or more fields in the events being operated on. Each input definition
must specify the same key.

query window

For each input, a window contains the events that are current. The query operates on only current
events.

range

In a query's find statement, a within clause and/or a without clause can specify the between keyword
to define a range that restricts which part of the pattern the within or without clause applies to.
The condition that the between clause is part of must occur in the range of identifiers specified in
the between clause.

.rtv

File extension for dashboard view files.

simulation

AData Player playback session that uses persisted event data for “what if” analysis. A simulation
can test what would happen with modified data.

64 Introduction to Apama 10.11.0

5 Apama Glossary

Software AG Designer

Eclipse-based GUI. When Apama is installed with Software AG Designer, you can use it for
managing Apama projects, developing EPL files, and running Apama applications in test
environments.

stack trace element

A stack trace element is an object that describes an entry in the stack trace. A
com.apama.exceptions.Exception object contains a sequence of stack trace elements that show
where an exception was first thrown and the calls that lead to that exception. In EPL,
com.apama.exceptions.StackTraceElement is a reference type. See "Exceptionhandling" inDeveloping
Apama Applications.

static action

A static action can only be declared inside an event type. It does not apply to a specific instance
of an event.

stream

A conduit or channel through which items flow. An item can be an event, a location type or a
simple type (boolean, decimal, float, integer, or string). The set of items flowing through the
stream is often referred to as “a stream of items” and so, here, a stream represents an ordered
sequence of items over time. A stream transports items of only one type. Streams are internal to
a monitor.

stream listener

A construct that continuously watches for items from a stream and invokes the listener code block
each time new items are available.

stream network

Anetwork of stream source templates, streams, streamqueries, and stream listeners. The upstream
elements in the stream network feed the downstream elements to generate derived, added-value
items.

stream query

A query that the correlator applies continuously to one or two streams. The output of a stream
query is one continuous stream of derived items.

Introduction to Apama 10.11.0 65

5 Apama Glossary

stream source template

An event template preceded by the all keyword. It uses no other event operators. A stream source
template creates a stream that contains events that match the event template.

window

In a query, for each input, a window contains the events that are current. The query operates on
only current events.

Whenworkingwith streams, awindow is a dynamic portion of the items flowing through a stream.
A window identifies which items a stream query is currently processing.

within clause

In a query, a within clause sets the time period during which events in the match set must have
been added to their windows. A pattern can specify zero, one, or more within clauses.

without clause

In a query, a without clause specifies event types, which must be specified in the query's inputs
block,whose presence prevents amatch. For example, if a potentialmatch set contains three events,
it can be a match only if a type specified in a without clause was not added to a window after the
first event or before the third event. Any event type that can be used in the find pattern can be
used in the without clause.

66 Introduction to Apama 10.11.0

5 Apama Glossary

	Table of Contents
	About this Guide
	Documentation ​roadmap
	Online ​Information ​and ​Support
	Data ​Protection

	1 Apama ​Overview
	What ​is ​Apama?
	Understanding ​the ​different ​user ​viewpoints
	About ​Apama ​license ​files
	Running ​Apama ​without ​a ​license ​file

	2 Apama ​Architecture
	Distinguishing ​architectural ​features
	How ​Apama ​integrates ​with ​external ​data ​sources
	Descriptions ​of ​Apama ​components
	How ​the ​correlator ​works

	3 Apama ​Concepts
	Event-​driven ​programming
	Complex ​event ​processing
	Understanding ​monitors ​and ​listeners
	Understanding ​queries
	Architectural ​comparison ​of ​queries ​and ​monitors
	Understanding ​dashboards

	4 Getting ​Ready ​to ​Develop ​Apama ​Applications
	Becoming ​familiar ​with ​Apama
	Introduction ​to Software ​AG ​Designer
	Steps ​for ​developing ​Apama ​applications
	Overview ​of ​starting, ​testing ​and ​debugging ​applications

	5 Apama ​Glossary
	action
	activation
	adapter
	aggregate ​function
	batch
	bundle
	.cdp
	CEP
	channel
	connectivity ​plug-​in
	context
	correlator
	correlator ​deployment ​package
	correlator-​integrated ​messaging ​for ​JMS
	.csv
	current ​events
	custom ​blocks
	dashboard
	Dashboard ​Builder
	dashboard ​data ​server
	dashboard ​display ​server
	Dashboard ​Viewer
	Data ​Player
	DataView
	EPL
	EPL ​plug-​in
	event
	event ​collection
	event ​listener
	event ​pattern
	event ​template
	.evt
	exception
	IAF
	Integration ​Adapter ​Framework ​(IAF)
	JMon
	latest ​event
	listener
	lot
	match ​set
	MemoryStore
	method
	.mon
	monitor
	MonitorScript
	optional
	parameterization
	parameters
	partition
	partitioning
	.qry
	query
	query ​aggregate
	Query ​Designer
	query ​input ​definition
	query ​instance
	query ​key
	query ​window
	range
	.rtv
	simulation
	Software ​AG ​Designer
	stack ​trace ​element
	static ​action
	stream
	stream ​listener
	stream ​network
	stream ​query
	stream ​source ​template
	window
	within ​clause
	without ​clause

